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Wepresent an efficient iterative power seriesmethod for nonlinear boundary-value problems that treats the typical divergence prob-
lem and increases arbitrarily the radius of convergence. This method is based on expanding the solution around an iterative initial
point. We employ this method to study the unsteady, viscous, and incompressible laminar flow and heat transfer over a shrinking
permeable cylinder. More precisely, we solve the unsteady nonlinear Navier–Stokes and energy equations after reducing them to
a system of nonlinear boundary-value problems of ordinary differential equations. The present method successfully captures dual
solutions for both the flow and heat transfer fields and a unique solution at a specific critical unsteadiness parameter. Comparisons
with previous numerical methods and an exact solution verify the validity, accuracy, and efficiency of the present method.

1. Introduction

Numerous phenomena in engineering and applied science
fields are governed by nonlinear boundary-value problems
(BVPs). Therefore, BVPs have received a huge attention from
mathematicians, physicists, and engineers for the sake of find-
ing and analyzing their solutions. Generally speaking, finding
the analytical solutions for nonlinear BVPs is far from trivial
and often is impossible. Therefore, many numerical tech-
niques have been developed to solve such type of problems.
These methods include Adomian’s decomposition method,
homotopy perturbation method, variational iteration
method, optimal homotopy asymptotic method, operational
matrices techniques based on various orthogonal polynomi-
als and wavelets, finite difference method, and spectral meth-
ods; the reader is referred to [1–6] and references therein.

The fluid dynamics and heat transfer of a viscous incom-
pressible fluid flowing past stretching surfaces, such as a
sheet or tube, have attracted considerable interests of many
researchers because of their importance in many industrial
applications such as the quality of certain products. One

of the most interesting conditions for stretching surfaces
problems is the velocity at the surface, where it mainly figures
the characteristics of the fluid based upon two essential
factors, fluid viscosity and suction parameter. A remarkable
interest of several researchers concentrated on tracking the
existence of dual solutions for the flow within a certain range
of unsteadiness and suction parameters [7–17]. Although, the
literature reveals numerous research papers discussing the
flow over a stretching sheet and moving plate [18–26], there
are only few studies focusing on the problem of flowing past a
stretching cylinder or tube; see [8–10] and references therein.

It is established that the differential equations describ-
ing the fluid flow BVPs are highly nonlinear and demand
extremely accurate numerical schemes. In this work, we
show that an iterative procedure, based on successive power
series expansions, provides one suchhigh accuracy numerical
scheme. Often, using power series solutions turns to be use-
less because the resulting solution diverges at a finite radius
of convergence. The divergence is intrinsic to the nature of
the solution in the sense that it persists to exist even with an
infinite power series expansion. The method presented here
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solves this problem showing that the radius of convergence
can be delayed arbitrarily to any large value.This value could,
in principle, approach infinity achieving exact solutions.

Among the many different methods of solving nonlinear
differential equations [27–33], the power series method is the
most straight forward and efficient [34]. It has been used
as a powerful numerical scheme for many problems [35–
43] including chaotic systems [44–47].Many numerical algo-
rithms and codes have been developed based on this method
[34–36, 44–48]. However, the abovementioned finiteness of
radius of convergence is a serious problem that hinders the
use of this method to wide class of differential equations,
in particular the nonlinear ones. For instance, the nonlinear
Schrödinger equation (NLSE) with cubic nonlinearity has
sech(𝑥) as a solution. Using the power series method to solve
this equation produces the power series of sech(𝑥), which is
valid only for 𝑥 < 𝜋/2.

Recognizing that a powerful numerical scheme based
on this method is already established [34–36, 44–48], we
nonetheless present a thorough investigation of the error
associated with this method with the aim of showing how we
can systemically reduce errors to infinitesimal values while
having the Central Processing Unit (CPU) time within a
reasonable range. We will show robustness and efficiency of
the method via a highly demanding fluid flow boundary-
value problem.Therefore, solving the problem of finite radius
of convergence will open the door wide for applying the
power series method to much larger class of differential
equations, particularly the nonlinear ones.

Briefly, the present technique is based on iterative power
series expansions of the solution. The domain of the inde-
pendent variable, say 𝜂, is divided into a number 𝐼 of
segments each of width Δ, where Δ is smaller than the
radius of convergence. A power series solution is obtained
by expanding the solution around the left end of the first
segment using the initial conditions given with the problem.
Similarly, a power series solution is obtained by expanding
around the start of the second segment but now using the
first series to calculate the initial conditions. This is repeated𝐼 times till a solution at 𝜂 = 𝐼 × Δ is obtained. In the limit𝐼 → ∞ and Δ → 0 the series solution becomes an exact
solution. This scheme is effectively equivalent to an iterative
procedure of repeated iterative calculation of the recursion
relations of the power series in the first segment. Another aim
of this paper is to apply this method to study the unsteady
flow and heat transfer characteristics of fluid flow over a
shrinking permeable infinite long cylinder.We will show that
the iterative numerical scheme resulting from this method is
exceeding the efficiency of typical numerical methods used.
In addition, we managed to find an exact solution which
enabled us to calculate accurately the error for a finite value
of number of iterations 𝐼. It should be noted that the present
work is a part of the Master thesis [49].

The rest of the paper is organized as follows. In Section 2,
a mathematical representation of our method is illustrated
using a general form of nonlinear ordinary differential
equation, while henceforth we call it iterative power series
method. Sections 3 and 4 display the implementation of
the iterative power series method on the heat and mass

transfer model. Section 5 focuses on analyzing the validity
of this present technique and demonstrating its efficiency
by drawing comparisons with the achieved exact analytical
solution and other numerical methods. In Section 6, we
analyze and discuss the properties of the solutions obtained.
We endwith a summary of ourmain conclusions in Section 7.

2. General Scheme of the Iterative Power
Series (IPS) Method

In this section, we give a brief description of the present
method. Consider a general ordinary differential equation of
the form

𝐹 [𝑓 (𝜂) , 𝑓󸀠 (𝜂) , 𝑓󸀠󸀠 (𝜂) , . . . , 𝑓(𝑚) (𝜂) , 𝑔 (𝜂)] = 0,
𝜂 ∈ (𝜂0, 𝜂∞] ,

(1)

with𝑚 initial conditions

𝑓(𝑖) (𝜂0) = 𝑎𝑖 × 𝑖!, 𝑖 = 0, 1, 2, . . . , 𝑚 − 1, (2)

where 𝑓(𝑖) is the 𝑖th derivative of 𝑓(𝜂), 𝑎𝑖 are real constants,
and 𝑔(𝜂) is a known function. The factor 𝑖! is introduced,
without loss of generality, for the constants 𝑎𝑖 to correspond
to the coefficients of the power series expansion below. At
first, we divide the interval [𝜂0, 𝜂] into a number of 𝐼 identical
segments each of width Δ = (𝜂 − 𝜂0)/𝐼. Then we expand𝑓(𝜂) in a power series around the beginning of each interval,
namely,

𝑓𝑖 (𝜂) = 𝑛max∑
𝑛=0

𝑎𝑖𝑛 (𝜂 − (𝜂0 + 𝑖Δ))𝑛 ,
𝑖Δ ≤ 𝜂 ≤ (𝑖 + 1) Δ, 0 ≤ 𝑖 < 𝐼,

(3)

where 𝑓𝑖(𝜂) is the power series expansion around the start of
the 𝑖th segment and 𝑎𝑖𝑛 are the coefficients of the power series.
Recursion relations between the coefficients are obtained
upon substituting the power series solution, (3), into the
differential equation, (1), which can be expressed in terms of
the first𝑚 coefficients corresponding to the initial conditions

𝑎𝑖𝑛 = 𝑎𝑖𝑛 ({𝑎𝑖𝑘}) , 0 ≤ 𝑘 < 𝑚, 𝑛 ≥ 𝑚, (4)

where {𝑎𝑖𝑘} denotes the set of coefficients 𝑎𝑖0, 𝑎𝑖1, . . . , 𝑎𝑖𝑚−1. The
essential idea of the IPSmethod is to calculate the coefficients{𝑎𝑖+1𝑘 } of the (𝑖+1)th power series from the 𝑖th series according
to (2),

𝑎𝑖+1𝑘 = 1
𝑘!
𝑑𝑘
𝑑𝜂𝑘 𝑓𝑖 (𝜂)

󵄨󵄨󵄨󵄨󵄨𝜂=𝜂0+(𝑖+1)Δ , (5)

which upon using (3) reads

𝑎𝑖+1𝑘 = 1
𝑘!
𝑛max∑
𝑛=0

𝑎𝑖𝑛+𝑘 × 𝑑𝑘
𝑑Δ𝑘Δ𝑛+𝑘 (6)
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and is simplified to

𝑎𝑖+1𝑘 = 𝑛max∑
𝑛=0

𝑎𝑖𝑛+𝑘 × (𝑛 + 𝑘𝑘 )Δ𝑛 (7)

and then imposes the condition 𝑛max > 𝑘. Here, ( 𝑛+𝑘𝑘 ) is the
binomial function. The last equation is the basis for the IPS
algorithm. Starting from the initial conditions {𝑎0𝑘} for the
power series of the zeroth interval, an iterative application of
(7) leads to the coefficients of the 𝐼th interval, namely, {𝑎𝐼𝑘}
which give the solution at the desired point, 𝜂 = 𝜂0 + 𝐼Δ,

𝑓𝐼 (𝜂) = 𝑛max∑
𝑛=0

𝑎𝐼𝑛 × (𝜂 − (𝜂0 + 𝐼Δ))𝑛 . (8)

Both analytical and numerical schemesmay be deduced from
this algorithm. For the numerical scheme, the value of Δ
used is inserted as a number Δ = (𝜂∞ − 𝜂0)/𝐼. On the
other hand, leaving 𝜂 as a variable results in an analytical
solution in terms of a power series in 𝜂which is equivalent to
a functional transformation on the zeroth order series; that is,
the coefficients of the 𝑖th series are functional transformation
of the (𝑖 − 1)th series. In such a case the last power series
for the 𝐼th interval corresponds to 𝐼 such that functional
transformations and all power series expansions of the zeroth
up to (𝐼−1)th intervals will be included in the 𝐼th expansion.

The coefficient 𝑎𝑖0 of each 𝑖th expansion represents the
value of the solution at 𝜂 = 𝜂0 + 𝑖Δ, which gives a discrete
representation of 𝑓(𝜂). Therefore, in the limit 𝐼 → ∞, the
discrete representation turns to a continuous one and thus we
conjecture that the exact solution is obtained in the limits of𝐼 → ∞ and 𝑛max →∞

𝑓(𝜂) = lim
𝐼→∞

∞∑
𝑛=0

𝑎𝐼𝑛 × (𝜂 − (𝜂0 + 𝐼Δ))𝑛 . (9)

3. Heat and Mass Transfer Model

In this section we will employ the present numerical tech-
nique on heat and mass transfer over a shrinking permeable
cylinder described in Zaimi et al. [8] and Elnajjar et al.
[10]. For completeness, we redescribe precisely the phys-
ical model. The flow is considered an unsteady, laminar,
viscous, and incompressible fluid with uniform velocity 𝑈
and uniform temperature 𝑇∞ over a permeable shrinking
circular cylinder.The cylinder is assumed to be infinitely long
and the flow has constant properties. The diameter of the
cylinder is assumed to be time dependent with the radius𝑎(𝑡) = 𝑟0√1 − 𝛽𝑡, where 𝑟0 is a positive constant, 𝛽 is the
constant of expansion/contraction strength, and 𝑡 is the time.
Clearly, the cylinder’s radius is shrinking with time if 𝛽 is
positive and stretching with time if 𝛽 is negative. Notice that
since the flow is axisymmetric, the flow field should be a
function of the radial coordinate, 𝑟, and the longitudinal.
The governing equations for the unsteady and incompressible
fluid without body force are the continuity, momentum, and

energy equations. These equations in cylindrical coordinate
system, (𝑟, 𝑧), are given by

1
𝑟
𝜕
𝜕𝑟 (𝑟𝑢𝑟) +

𝜕𝑢𝑧𝜕𝑧 = 0,
𝜕𝑢𝑟𝜕𝑡 + 𝑢𝑟

𝜕𝑢𝑟𝜕𝑟 + 𝑢𝑧
𝜕𝑢𝑟𝜕𝑧

= −1𝜌
𝜕𝑝
𝜕𝑟 + ](𝜕2𝑢𝑟𝜕𝑟2 +

1
𝑟
𝜕𝑢𝑟𝜕𝑟 +

𝜕2𝑢𝑟𝜕𝑧2 −
𝑢𝑟𝑟2 ) ,

𝜕𝑢𝑧𝜕𝑡 + 𝑢𝑟
𝜕𝑢𝑧𝜕𝑟 + 𝑢𝑧

𝜕𝑢𝑧𝜕𝑧
= −1𝜌

𝜕𝑝
𝜕𝑧 + ](𝜕2𝑢𝑧𝜕𝑟2 +

1
𝑟
𝜕𝑢𝑧𝜕𝑟 +

𝜕2𝑢𝑧𝜕𝑧2 ) ,
𝜕𝑇
𝜕𝑡 + 𝑢𝑟

𝜕𝑢𝑟𝜕𝑟 = 𝛼(1𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑇
𝜕𝑟 )) ,

(10)

where 𝑟 and 𝑧 are the polar coordinates in the radial and
axial directions, respectively, 𝑢𝑟 and 𝑢𝑧 are the fluid velocity
components in the radial and axial directions, respectively,
and 𝑇 is the fluid temperature. The function 𝑝 represents
the fluid pressure and the parameters ], 𝜌, and 𝛼 denote
the fluid viscosity, the fluid density, and the fluid thermal
diffusivity, respectively. Notice that we assumed that there
is no azimuthal velocity component. The assumed boundary
conditions associated with (10) for the velocity components
and the temperature are given by

𝑢𝑟 = − 2]𝛾
𝑟0√1 − 𝛽𝑡 ,

𝑢𝑧 = − 4]𝑧
𝑟20 (1 − 𝛽𝑡) ,

𝑇𝑠 = 𝑐0√1 − 𝛽𝑡 + 𝑇∞
at 𝑟 = 𝑎 (𝑡) ,

𝑢𝑧 = 0,
𝑇 = 𝑇∞

as 𝑟 󳨀→ ∞,

(11)

where 𝑇𝑠 is the constant surface temperature and 𝑐0 is a
positive constant.

The similarity transformations which convert (10) into
nonlinear ordinary differential equations are given by [8, 10]

𝑢𝑟 = − 2]
𝑟0√1 − 𝛽𝑡

𝑓 (𝜂)
√𝜂 ,

𝑢𝑧 = 4]𝑧
𝑟20 (1 − 𝛽𝑡)𝑓

󸀠 (𝜂) ,
𝑇 = (𝑇𝑠 − 𝑇∞) (𝜃 (𝜂) − 𝑇∞) + 𝑇∞,

(12)
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where 𝑓󸀠(𝜂) = 𝑑𝑓/𝑑𝜂 and 𝜂 is the similarity variable given by

𝜂 = ( 𝑟𝑟0)
2 1
1 − 𝛽𝑡 . (13)

In addition, it should be noted that 𝑓 represents the dimen-
sionless stream function and 𝜃 represents the normalized
temperature. Applying the above similarity transformations,
(10) and the boundary conditions (11) reduce to

𝜂𝑓󸀠󸀠󸀠 + 𝑓󸀠󸀠 + 𝑓𝑓󸀠󸀠 − 𝑓󸀠2 − 𝑆 (𝜂𝑓󸀠󸀠 + 𝑓󸀠) = 0, (14)

𝜂𝜃󸀠󸀠 + 𝜃󸀠 (1 + Pr𝑓 − 𝑆Pr𝜂) − 𝑆Pr𝜃 = 0, (15)

subject to

𝑓 (1) = 𝛾,
𝑓󸀠 (1) = −1,
𝑓󸀠 (∞) = 0,
𝜃 (1) = 1,
𝜃 (∞) = 0,

(16)

where 𝑆 = 𝑟20𝛽/4] is the unsteadiness parameter representing
the strength of contraction/expansion, 𝛾 = −𝑟0𝑈/2] is the
suction parameter, and Pr = ]/𝛼 is the Prandtl number.

Our main target is to solve (14) and (15), subject to the
boundary conditions (16), using the present technique in the
ranges 0 ≤ 𝛾 ≤ 7 and −4 ≤ 𝑆 ≤ 0 at Pr = 0.7. In this study, we
will analyze the normalized skin friction coefficient, 𝑓󸀠󸀠(1),
and the normalized heat transfer rate, −𝜃󸀠(1).
4. IPS Method for Heat and
Mass Transfer Model

The following is a detailed implementation of the IPSmethod
used to solve (14) and (15) subject to the boundary conditions
(16). It is worth mentioning that (14) includes only the
variable 𝑓, while (15) includes both 𝜃 and 𝑓. Therefore, it is
more convenient to find the variable 𝑓 from (14) and then
solve (15). Furthermore, for the sake of simplicity, we render
(14) to an initial-value problem; that is,

𝑓󸀠󸀠󸀠 = 1𝜂 (−𝑓󸀠󸀠 − 𝑓𝑓󸀠󸀠 + 𝑓󸀠2 + 𝑆 (𝜂𝑓󸀠󸀠 + 𝑓󸀠)) , (17)

with

𝑓 (1) = 𝛾,
𝑓󸀠 (1) = −1,
𝑓󸀠󸀠 (1) = 𝜆,

(18)

where 𝜆 must be chosen using the shooting method [10] so
that the solution satisfies the boundary condition 𝑓󸀠(∞) =0. Notice that by setting different initial values for 𝜆 in the
shooting method, dual solutions are obtained.

As mentioned in Section 2, we start by expanding 𝑓(𝜂) in
power series around the initial point 𝜂0 = 1

𝑓0 (𝜂) = 𝑛max∑
𝑛=0

𝑎0𝑛 (𝜂 − 1)𝑛 , (19)

and the derivatives, 𝑓0󸀠, 𝑓0󸀠󸀠, and 𝑓0󸀠󸀠󸀠 can be calculated
simply by differentiating this series. Substituted in (14), the
coefficients, 𝑎0𝑛 , for 𝑛 ≥ 3, can be found recursively in terms
of the initial conditions 𝑎00 , 𝑎01 , and 𝑎02 through the recursion
relations. The first two recursion relations are given by

𝑎03 = 16 [(𝑎01)
2 − 2𝑎02 (1 + 𝑎00 − 𝑆) + 𝑎01𝑆] ,

𝑎04 = 1
24 [(𝑎01)

2 (𝑆 − 2 − 𝑎00)
+ 2𝑎02 (2 + (𝑎00)2 + 𝑎00 (3 − 2𝑆) − 𝑆 + 𝑆2)
+ 𝑎01 (2𝑎02 + 𝑆 (𝑆 − 2 − 𝑎00))] .

(20)

Recalculating 𝑓0(𝜂), 𝑓0󸀠(𝜂), and 𝑓0󸀠󸀠(𝜂) at 𝜂 = 1 + Δ gives

𝑎10 = 𝑓0 (Δ) ,
𝑎11 = 𝑓0󸀠 (Δ) ,
𝑎12 = 𝑓

0󸀠󸀠 (Δ)
2 .

(21)

Now, 𝑎10 , 𝑎11 , and 𝑎12 play the role of the initial conditions for
the next series expansion, where we expand the solution and
its derivatives in power series around 𝜂0 = 1 + Δ

𝑓1 (𝜂) = 𝑛max∑
𝑛=0

𝑎1𝑛 (𝜂 − (1 + Δ))𝑛 . (22)

Resubstituting these power series expansions in the differen-
tial equation, we get the new recursion relations 𝑎1𝑛(𝑎10 , 𝑎11 , 𝑎12).
The next iterative step is to calculate 𝑓1(𝜂) and its first two
derivatives at 𝜂 = 1+2Δwhich will give the initial conditions
for the new power series. Repeating this process 𝐼 times, the
general forms of the first two recursion relations of (14) are
found to be

𝑎𝐼3 = 1
6 (1 + 𝐼Δ) [(𝑎𝐼1)

2 − 2𝑎𝐼2 (1 + 𝑎𝐼0 − 𝑆 − 𝑆𝐼Δ)
+ 𝑎𝐼1𝑆] ,

(23)

𝑎𝐼4 = 1
24 (1 + 𝐼Δ)2 [(𝑎

𝐼
1)2 (−2 − 𝑎𝐼0 + 𝑆 + 𝑆𝐼Δ)

+ 𝑎𝐼1 (2𝑎𝐼2 (1 + 𝐼Δ) + 𝑆 (−2 − 𝑎𝐼0 + 𝑆 + 𝑆𝐼Δ))
+ 2𝑎𝐼2 (𝑆 (−1 − 𝐼Δ) + (𝑆 + 𝑆𝐼Δ)2 + 2 + (𝑎𝐼0)2

+ 𝑎𝐼0 (3 − 2𝑆 − 2𝑆𝐼Δ))] ,

(24)
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where

𝑎𝐼0 = 𝑓𝐼−1 (Δ) ,
𝑎𝐼1 = (𝑓𝐼−1)󸀠 (Δ) ,

𝑎𝐼2 = (𝑓
𝐼−1)󸀠󸀠 (Δ)
2 .

(25)

In summary, the IPS procedure can be reduced to the
following algorithm:

𝑓 (Δ) = 𝑎0 + 𝑎1Δ + 𝑎2Δ2 + 𝑎3Δ3 + 𝑎4Δ4 + 𝑂 (Δ5) , (26)

𝑎0 = 𝑓 (Δ) ,
𝑎1 = 𝑓󸀠 (Δ) ,
𝑎2 = 𝑓

󸀠󸀠 (Δ)
2 ,

(27)

where 𝑎3 = 𝑎3(𝑎0, 𝑎1, 𝑎2) and 𝑎4 = 𝑎4(𝑎0, 𝑎1, 𝑎2) are the
recursion relations obtained from the differential equation.
We have removed the superscripts that indicate the index of
the iteration for convenience. The scheme is thus described
simply as follows: one starts with (26) to calculate 𝑓(Δ),
followed by updating the initial conditions according to (27)
and then using the updated values back in (26) and so on.The
procedure has to be repeated 𝐼 times with Δ = (𝜂 − 1)/𝐼.

Similarly, for the energy equation

𝜃󸀠󸀠 = 1𝜂 (−𝜃󸀠 (1 + Pr𝑓 − 𝑆Pr𝜂) + 𝑆Pr𝜃) , (28)

subject to

𝜃 (1) = 1,
𝜃󸀠 (1) = 𝜎, (29)

where 𝜎 must be chosen using the shooting method [10] so
that the solution satisfies the boundary condition 𝜃(∞) = 0.
We expand 𝜃(𝜂) in power series around the same initial point

𝜃0 (𝜂) = 𝑛max∑
𝑛=0

𝑏0𝑛 (𝜂 − 1)𝑛 (30)

and similarly for the derivatives, 𝜃0󸀠 and 𝜃0󸀠󸀠. Substituted in
(15), the coefficients, 𝑏0𝑛 , for 𝑛 ≥ 2, are found recursively in
terms of the initial conditions 𝑏00 and 𝑏01 through the recursion
relations. Employing the IPS method, the first two recursion
relations are found to be

𝑏𝐼2 = 1
2 (1 + 𝐼Δ) [𝑏𝐼0Pr𝑆 + 𝑏𝐼1 (−1 − 𝑎𝐼0Pr + Pr𝑆

+ 𝐼ΔPr𝑆)] ,

𝑏𝐼3 = 1
6 (1 + 𝐼Δ)2 [𝑏

𝐼
0Pr𝑆 (−2 − 𝑎𝐼0Pr + 𝑆 (1 + 𝐼Δ)Pr)

+ 𝑏𝐼1 (2 + (𝑎𝐼0)2 Pr2 − Pr𝑆 + Pr2𝑆2 − Pr𝑆𝐼Δ
+ 2Pr2𝑆2𝐼Δ + Pr2𝑆2𝐼2Δ2 − 𝑎𝐼1Pr (1 + 𝐼Δ)
+ 𝑎𝐼0Pr (3 − 2Pr𝑆 (1 + 𝐼Δ)))] ,

(31)

where

𝑏𝐼0 = 𝜃𝐼−1 (Δ) ,
𝑏𝐼1 = (𝜃𝐼−1)󸀠 (Δ) .

(32)

5. Validation

In this section we aim at demonstrating the performance and
efficiency of the present numerical scheme. Firstly, in order
to obtain accurate numerical results, we have to pay attention
to the selection of the numerical algorithm parameters, 𝐼,𝑛max, and 𝜂∞. To achieve this target we focus on studying the
following:

𝑓󸀠󸀠󸀠 = 1𝜂 (−𝑓󸀠󸀠 − 𝑓𝑓󸀠󸀠 + 𝑓󸀠2 + 𝑆 (𝜂𝑓󸀠󸀠 + 𝑓󸀠)) ,
𝜂 ∈ (1, 𝜂∞] ,

(33)

with

𝑓 (1) = 𝛾,
𝑓󸀠 (1) = −1,
𝑓󸀠󸀠 (1) = 𝜆,

(34)

where 𝜆 is updated using the shooting method to satisfy the
condition 𝑓󸀠(∞) = 0. Notice that several recent studies
such as [10–16] reported the existence of a critical value of 𝑆
(named 𝑆𝑐) at which the problem has no solution (for 𝑆 > 𝑆𝑐),
only one solution (at 𝑆 = 𝑆𝑐), and dual solutions (for 𝑆 < 𝑆𝑐). It
is worth mentioning that we succeeded in finding the explicit
analytical form of the first solution for (33) subject to (34)
under a condition 𝑆 = −1/𝛾; that is

𝑓 (𝜂) = 𝛾𝑒(1−𝜂)/𝛾. (35)

This exact solution will play a crucial role in proving the
advantages of our numerical scheme.

The approximate solutions of the problems (33) and (34)
at three different iterations 𝐼 = 1, 2, and 3, together with the
exact solution obtained by (35) when 𝑆 = −1 and 𝛾 = 1,
are displayed in Figure 1. It is clearly seen that increasing the
number of iterations in the IPS method delays the divergence
point.

To achieve an “optimal choice” of 𝜂∞, we solve the
problem with 𝜂∞ = 7, 8, . . . , 17. Table 1 shows the values of 𝜆
up to 50 digits corresponding to the values of 𝜂∞. It is clearly
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Table 1: Progressing of 𝜆 values with 𝜂∞ at 𝛾 = 1 and 𝑆 = −1.
𝜂∞ 𝜆
7 1.06032130948772355259169445286450439527129433161564
8 1.02826614125492573507123370718399515004546832373446
9 1.01244316459533191876326159442255228857229463473780
10 1.00535010609275538041830857835707790239466505001516
11 1.00221279175507729615034859048196423158532888754168
12 1.00084874204304334646862685662321915732040012124886
13 1.00030312215822976659593816307972112761442861473174
14 1.00016671718702637162776598969384662018793573810246
15 1.00003031221582297665959381630797211276144286147317
16 1.00003031221582297665959381630797211276144286147317
17 1.00003031221582297665959381630797211276144286147317

Table 2: The upper bound of the error for the first solution at 𝛾 = 2 and 𝑆 = −1 versus the CPU time at different values of 𝑛max.

𝑛max 𝐸IPS CPU time (seconds)
3 ≈ 10−5 0.0156001
4 ≈ 10−7 0.0312002
5 ≈ 10−9 0.0780005
6 ≈ 10−10 0.156001
7 ≈ 10−12 0.296402
8 ≈ 10−14 0.546004
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Figure 1: Velocity profiles, 𝑓󸀠(𝜂), for the first solution; exact (solid)
and approximate (dashed) solutions at different 𝐼 with 𝑆 = −1 and𝛾 = 1.

seen that the value of 𝜆 stabilizes at around 𝜂∞ = 15; hence
we choose 𝜂∞ = 15 as the optimal value for the rest of the
calculations in the entire paper. It should be noted that most
of the used numerical schemes for such type of problems, [8–
10, 17], had chosen 𝜂∞ = 7 to represent the infinity which,
definitely, gave lower order of accuracy. This conclusion can
be easily tested via the exact solution (35) which gives𝑓󸀠(7) =−0.00247875 and𝑓󸀠(15) = −8.31529×10−7. However, we will
only show the interval up to 𝜂∞ = 8 for the rest of the coming
figures.

The upper bound of the error in the IPS method can be
estimated as follows. At each iterative step an error of orderΔ𝑛max+1 results from terminating the power series at 𝑛max.This

error will be magnified 𝐼 times due to the iterative procedure.
As a result, the upper bound of the error of the IPS method is

𝐸IPS = 𝐼 (Δ)𝑛max+1 . (36)

Table 2 presents the CPU time in seconds, which is
machine-dependent, versus the upper bound of the error,𝐸IPS, of the IPS method for the first solution at 𝛾 = 2 and𝑆 = −1, where 𝑛max varies from 3 to 8.

The exact solution, (35), provides a unique possibility of
calculating the error of the IPS method and comparing it
with that of other numerical methods. Figure 2 presents a
comparison between the error of the IPS method and the
explicit Runge–Kutta method of order four (ERK4) for the
problem at 𝛾 = 1 and 𝑆 = −1. The advantages of the present
technique over the other one are notable.

A further comparison is done in Figure 3 on the normal-
ized skin friction coefficient, 𝑓󸀠󸀠(1), as a function of 𝑆 with
Zaimi et al. [8] and Elnajjar et al. [10] for the case when 𝛾 = 0.
Excellent agreements are obtained. It should be mentioned
herein that Elnajjar et al. [10] used a combination of the
implicit Runge–Kutta method and the shooting method
while Zaimi et al. [8] implemented the shooting method
described in the book by Jaluria and Torrance [11].

It is worth mentioning here that our technique success-
fully showed its definite capability to exceed the machine
precision which is 10−14. A clear sign on this is the systematic
reduction in the error in Table 2 when compared with the
exact solution. Moreover, all computations are performed
with at least 14 decimal digits of precision, knowing that
all computations are operated using Mathematica software
10.4 and carried out on a Lenovo PC with the following
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Figure 2: Error of the IPS method (a) and ERK4 (b) for the case of 𝛾 = 1 and 𝑆 = −1. The error is defined as the difference between the
numerical solution and the exact solution (35).
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Figure 3: Normalized skin friction coefficient, 𝑓󸀠󸀠(1), as a function
of 𝑆 for 𝛾 = 0.

specifications: model: Z470, processor: Core(TM) i5-2430M
CPU @ 2.40GHz, system type: 64-bit, and installed memory
(RAM): 4.00GB.

6. Results and Discussion

In this section, we discuss the effects of both suction param-
eter, 𝛾, and unsteadiness parameter, 𝑆, on the velocity profile,𝑓󸀠(𝜂), the normalized skin friction coefficient, 𝑓󸀠󸀠(1), the
temperature profile, 𝜃(𝜂), and the heat transfer rate, −𝜃󸀠(𝜂).
The numerical simulations are conducted at a fixed Prandtl
number, Pr = 0.7, while the ranges considered for the other
parameters are 0 ≤ 𝛾 ≤ 7 and −4 ≤ 𝑆 ≤ −1.

Figure 4 shows the first and second solutions of the
velocity profiles for 𝛾 = 0, 1, 3, 5, 7 with a fixed unsteadiness
parameter, 𝑆 = −2. It is clearly seen that the first solution for
the fluid velocity inside the boundary layer region increases
as 𝛾 increases, while the second solution shows an opposite
trend. In addition, the two solutions of the velocity profile
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Figure 4: Velocity profiles, 𝑓󸀠(𝜂), for different values of 𝛾 at 𝑆 = −2:
first solution (a) and second solution (b).

become steeper with higher magnitudes as 𝛾 increases.
These observations emphasize the effect of increasing the
suction parameter of the cylinder’s wall which is to decrease
the boundary layer thickness. Consequently, increasing the
suction parameter causes an increment in the normalized
skin friction coefficient for the first solution and decrement
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Figure 5: Normalized skin friction coefficient, 𝑓󸀠󸀠(1), as a function
of 𝑆 for different values of 𝛾: the first solution (solid) and second
solution (dotted).
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Figure 6: Temperature profiles, 𝜃(𝜂), for different values of 𝛾 at 𝑆 =−2: first solution (a) and second solution (b).

in the normalized skin friction coefficient for the second
solution, as clearly shown in Figure 5. These findings are
consistent with the results reported by Elnajjar et al. [10] and
Zaimi et al. [8].

Figure 6 presents the temperature profiles of the fluid
flow, 𝜃(𝜂), at 𝑆 = −2 and 𝛾 = 0, 1, 3, 5, 7. It is obviously
noticeable that both solutions for temperature profiles admit

4
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
 (
1)

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5
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Figure 7: Heat transfer rate, −𝜃󸀠(1), as a function of 𝑆 for different
values of 𝛾: the first solution (solid) and second solution (dotted).

similar behaviour, where they become wider and more
relaxed as the suction parameter decreases. These kinds of
behaviour inspire us to conclude that the developed thermal
boundary layer and the corresponding rate of heat transfer
are decreasing as 𝑆 increases. However, the second solution
depicts more relaxed behaviour compared with the first
solution. This slight difference between the first and sec-
ond temperature profiles indicates that the second solution
reflects higher thermal boundary layer than the first solution
and, thus, a larger rate of the heat transfer as confirmed by
Figure 7.

The variation of both the normalized skin friction coeffi-
cient, 𝑓󸀠󸀠(1), and the heat transfer rate, −𝜃󸀠(1), as functions
of 𝑆, are shown, respectively, in Figures 5 and 7 for 𝛾 =0, 0.5, 1, 1.5, 2. The results demonstrate the existence of a
critical value 𝑆𝑐 in the 𝑆-domain at which the problem has
no solution for 𝑆 > 𝑆𝑐, only one solution at 𝑆 = 𝑆𝑐, and dual
solutions for 𝑆 < 𝑆𝑐. Figure 5 shows that |𝑓󸀠󸀠(1)| increases
as 𝛾 increases which is due to the increase in the surface
shear stress coefficient. Moreover, we observe that |𝑓󸀠󸀠(1)|
is decreasing with 𝑆. However, Figure 7 clearly shows that
increasing 𝛾 will definitely increase the heat transfer rate
while increasing 𝑆 causes a decrease in the heat transfer rate.

Figure 8 displays the first and second solutions of the
velocity profiles for 𝑆 = −1, −2, −3, −4with a fixed value of the
suction parameter, 𝛾 = 1. Generally speaking, the behaviour
of 𝑓󸀠(𝜂) is very similar to the case of the variable suction
parameter; that is, increasing the unsteadiness parameter
produces steeper behaviour in the velocity profiles for the first
solution while the second solution shows an opposite trend.
In agreement with the case of the variable suction parameter
in Figure 4, increasing the unsteadiness parameter will then
cause a reduction in the thickness of the boundary layer.

Figure 9 presents the temperature profiles of the fluid flow,𝜃(𝜂), at 𝛾 = 1 and 𝑆 = −1, −2, −3, −4. Clearly, the increase in
the unsteadiness parameter or the suction parameter leads to
the same trend.

Finally, we end up our discussion with Figure 10 which
presents an overview of the solution for problems (14) and
(15) subject to the boundary conditions (16) in the 𝛾-𝑆domain
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Figure 8: Velocity profiles, 𝑓󸀠(𝜂), for different values of 𝑆 at 𝛾 = 1: first solution (a) and second solution (b).
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Figure 9: Temperature profiles, 𝜃(𝜂), for different values of 𝑆 at 𝛾 = 1: first solution (a) and second solution (b).
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Figure 10: An overview of the solution for problems (14) and (15)
subject to the boundary conditions (16) in the 𝛾-𝑆 domain.

for Pr = 0.7 and 0 ≤ 𝛾 ≤ 2. The straight line in this figure
represents the occurrence of unique solution of the problem.

7. Conclusions

In this work, we presented a numerical technique for solving
nonlinear BVPs based on iterative power series solutions.
We have demonstrated its efficiency and accuracy through
validation against the numerical ERK4. We have shown that
our method excels over the ERK4 by orders of magnitude
in accuracy. Moreover, the accuracy in our method is sys-
tematically controlled such that the error can be reduced
to any arbitrary small value. We successfully studied the
unsteady viscous flow over a contracting cylinder using the
present technique. The velocity and temperature profiles of
the ordinary version of Navier–Stokes equations for different
suction and unsteadiness parameters are calculated. We have
obtained the exact solution of the first solution of the fluid
flow under a specific condition, 𝑆 = −1/𝛾, and have employed
it to emphasize the efficiency of the present numerical
technique.

The convergence analysis of the IPSmethod is considered
for a future work. However, we strongly believe that the
method is convergent. This is conjectured by the systematic
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reduction in error upon increasing the number of iterations
or the number of terms in the power series. We believe
that this technique will serve researchers in different fields
working on nonlinear systems. In particular, the technique
will be very useful for systems described by nonintegrable
nonlinear differential equations.
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