Skip to main content
Log in

Computing with Synthetic Protocells

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amar P, Legent G, Thellier M, Ripoll C, Bernot G, Nystrom T, Saier M Jr, Norris V (2008) A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency. BMC Syst Biol 2:27

    Article  Google Scholar 

  • Benenson Y (2012) Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 13(7):455–468

    Article  Google Scholar 

  • Binz HK, Amstutz P, Plückthun A (2005) Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 23(10):1257–1268

    Article  Google Scholar 

  • Bouffard M, Molina F, Amar P (2015) Extracting logic gates from a metabolic network. In: P. Amar, F. Képès, V. Norris (eds.) Proceedings of the conference “advances in systems and synthetic biology”. EDP Sciences, Strasbourg, France, pp 63–76

  • Candeias LP, MacFarlane DPS, McWhinnie SLW, Maidwell NL, Roeschlaub CA, Sammes PG, Rachel W (1998) The catalysed nadh reduction of resazurin to resorufin. J Chem Soc Perkin Trans 2:2333–2334

    Article  Google Scholar 

  • Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26(7):787–793

    Article  Google Scholar 

  • Chaize B, Colletier J-P, Winterhalter M, Fournier D (2004) Encapsulation of enzymes in liposomes: high encapsulation efficiency and control of substrate permeability. Artif Cells Blood Substit Immobil Biotechnol 32(1):67–75

    Article  Google Scholar 

  • Chandran D, Bergmann FT, Sauro HM, Densmore D (2011) Computer-aided design for synthetic biology. In: Koeppl H, Setti G, di Bernardo M, Densmore D (eds) Design and analysis of biomolecular circuits. Springer, New York, pp 203–224

    Chapter  Google Scholar 

  • Cook SA (1971) The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM symposium on theory of computing, STOC’71, New York, NY, USA, ACM, pp 151–158

  • Duncanson WJ, Lin T, Abate AR, Seiffert S, Shah RK, Weitz DA (2012) Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip 12(12):2135

    Article  Google Scholar 

  • Elani Y, Law RV, Ces O (2014) Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat Commun 5:5305

    Article  Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453

    Article  Google Scholar 

  • Falciani C, Lozzi L, Pini A, Bracci L (2005) Bioactive peptides from libraries. Chem Biol 12(4):417–426

    Article  Google Scholar 

  • Hanes J, Schaffitzel C, Knappik A, Plückthun A (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18(12):1287–1292

    Article  Google Scholar 

  • Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825

    Article  Google Scholar 

  • Huang X, Patil AJ, Li M, Mann S (2014) Design and construction of higher-order structure and function in proteinosome-based protocells. J Am Chem Soc 136(25):9225–9234

    Article  Google Scholar 

  • Kamat NP, Katz JS, Hammer DA (2011) Engineering polymersome protocells. J Phys Chem Lett 2(13):1612–1623

    Article  Google Scholar 

  • Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Complexity of computer computations. Plenum Press, New York, pp 85–103

    Chapter  Google Scholar 

  • Katzen F, Deshmukh M, Daldal F, Beckwith J (2002) Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J 21(15):3960–3969

    Article  Google Scholar 

  • Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379

    Article  Google Scholar 

  • Koeppl H (2011) Design and analysis of bio-molecular circuits. Springer, Berlin

    Book  Google Scholar 

  • Luisi PL, Stano P (2011) The minimal cell the biophysics of cell compartment and the origin of cell functionality. Springer, Berlin

    Google Scholar 

  • Marchisio MA, Stelling J (2009) Computational design tools for synthetic biology. Curr Opin Biotechnol 20(4):479–485

    Article  Google Scholar 

  • Matosevic S, Paegel BM (2011) Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line. J Am Chem Soc 133(9):2798–2800

    Article  Google Scholar 

  • Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Nat Acad Sci USA 101(51):17669–17674

    Article  Google Scholar 

  • Osyczka A, Moser CC, Daldal F, Leslie Dutton P (2004) Reversible redox energy coupling in electron transfer chains. Nature 427(6975):607–612

    Article  Google Scholar 

  • Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402(6757):47–52

    Article  Google Scholar 

  • Peters RJRW, Marguet M, Marais S, Fraaije MW, van Hest JCM, Lecommandoux S (2014) Cascade reactions in multicompartmentalized polymersomes. Angew Chem Int Ed 53(1):146–150

    Article  Google Scholar 

  • Purnick PEM, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410–422

    Article  Google Scholar 

  • Rakhit R, Navarro R, Wandless TJ (2014) Chemical biology strategies for posttranslational control of protein function. Chem Biol 21(9):1238–1252

    Article  Google Scholar 

  • Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (2009) Protocells: bridging nonliving and living matter. MIT Press, Boston

    Google Scholar 

  • Rialle S, Felicori L, Dias-Lopes C, Peres S, Atia SE, Thierry AR, Amar P, Molina F (2010) BioNetCAD: design, simulation and experimental validation of synthetic biochemical networks. Bioinformatics 26(18):2298–2304

    Article  Google Scholar 

  • Richmond DL, Schmid EM, Martens S, Stachowiak JC, Liska N, Fletcher DA (2011) Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc Nat Acad Sci 108(23):9431–9436

    Article  Google Scholar 

  • Riggsbee CW, Deiters A (2010) Recent advances in the photochemical control of protein function. Trends Biotechnol 28(9):468–475

    Article  Google Scholar 

  • Sarpeshkar R (2010) Ultra low power bioelectronics: fundamentals, biomedical applications, and bio-inspired systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smaldon J, Romero-Campero FJ, Trillo FF, Gheorghe M, Alexander C, Krasnogor N (2010) A computational study of liposome logic: towards cellular computing from the bottom up. Syst Synth Biol 4(3):157–179

    Article  Google Scholar 

  • Smuc T, Ahn I-Y, Ulrich H (2013) Nucleic acid aptamers as high affinity ligands in biotechnology and biosensorics. J Pharm Biomed Anal 81–82:210–217

    Article  Google Scholar 

  • Song S, Kole S, Bernier M (2012) A chemical cross-linking method for the analysis of binding partners of heat shock protein-90 in intact cells. BioTechniques. doi:10.2144/000113856

  • Stanish I, Singh A (2001) Highly stable vesicles composed of a new chain-terminus acetylenic photopolymeric phospholipid. Chem Phys Lipids 112(2):99–108

    Article  Google Scholar 

  • Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX-a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403

    Article  Google Scholar 

  • Strickland D, Lin Y, Wagner E, Hope CM, Zayner J, Antoniou C, Sosnick TR, Weiss EL, Glotzer M (2012) TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat Methods 9(4):379–384

    Article  Google Scholar 

  • Sunami T, Hosoda K, Suzuki H, Matsuura T, Yomo T (2010) Cellular compartment model for exploring the effect of the lipidic membrane on the kinetics of encapsulated biochemical reactions. Langmuir 26(11):8544–8551

    Article  Google Scholar 

  • Teh S-Y, Khnouf R, Fan H, Lee AP (2011) Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics. Biomicrofluidics 5(4):044113

    Article  Google Scholar 

  • Thiele J, Abate AR, Shum HC, Bachtler S, Förster S, Weitz DA (2010) Fabrication of polymersomes using double-emulsion templates in glass-coated stamped microfluidic devices. Small 6(16):1723–1727

    Article  Google Scholar 

  • Wakeham MC, Jones MR (2005) Rewiring photosynthesis: engineering wrong-way electron transfer in the purple bacterial reaction centre. Biochem Soc Trans 33:851–857

    Article  Google Scholar 

  • Xiang Z, Lacey VK, Ren H, Jing X, Burban DJ, Jennings PA, Wang L (2014) Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angew Chem Int Ed 53(8):2190–2193

    Article  Google Scholar 

  • Yoshimoto M (2011) Stabilization of enzymes through encapsulation in liposomes. In: Minteer SD (ed) Enzyme stabilization and immobilization. Humana Press, New York, pp 9–18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Amar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courbet, A., Molina, F. & Amar, P. Computing with Synthetic Protocells. Acta Biotheor 63, 309–323 (2015). https://doi.org/10.1007/s10441-015-9258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-015-9258-8

Keywords

Navigation