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Abstract. Andrew Wiles’ analytic proof of Fermat’s Last Theorem FLT, which appeals to geometrical properties of real and
complex numbers, leaves two questions unanswered: (i) Why is xn + yn = zn solvable only for n < 3? (ii) What technique might

Fermat have used that led him to, even if only briefly, believe he had ‘a truly marvellous demonstration’ of FLT? In this inter-

disciplinary perspective of why FLT can be treated as a pre-formally true arithmetical proposition (one which, moreover, might
not be provable formally in the first-order Peano Arithmetic PA), we admit only elementary (i.e., number-theoretic) reasoning,

without appeal to analytic properties of real and complex numbers, to argue why any formal proof of FLT may need—as is
implicitly suggested by Wiles’ proof—to appeal essentially to geometrical properties of arithmetical propositions. Moreover, we

argue that Fermat could have reasoned informally: (a) for ALL natural numbers y < z, we can cut a symmetrically centered

length y from a string of length z, where the remaining, symmetrically centered, configuration is uniquely defined by every
isomorphic configuration of a string of length x, where x ∈ N; (b) for SOME natural numbers y < z, we can design a jigsaw

puzzle such that removing a symmetrically centered square tile of side y from a square tile of side z, will leave a symmetrically

centered configuration of regular 2-D tiles that is uniquely defined by every isomorphic configuration of a square tile of side
x ∈ N; and (c) for NO natural numbers y < z, can we design a LEGO blocks puzzle such that removing a symmetrically centered

LEGO cube of side y from a LEGO cube of side z, will leave a symmetrically centered configuration of regular 3-D objects

that is uniquely defined by every isomorphic configuration of a LEGO cube of side x ∈ N. Fermat could then have argued,
pre-formally and more generally, that (a)-(c) are particular instances of the arithmetical property that: if xn + yn = zn and

z = y + 2(k + a
nn ), then FLT is equivalent to proving (not necessarily arithmetically within PA) the necessary and sufficient

conditions which would admit the representation xn = zn−yn = 2.nC1(k+ a
nn )yn−1 +22.nC2(k+ a

nn )2yn−2 + . . .+2n(k+ a
nn )n;

and conceived, consequently, that if xn, yn, zn denote corresponding n-dimensional hyper-cubes in a Euclidean hyperspace Hn, such

that the symmetrically centered configuration of n-D hyper-objects corresponding to zn − yn, denoted by CSym(zn −Hn
yn) =Hn

2.nC1(k + a
nn )y(n−1) +Hn

22.nC2(k + a
nn )2y(n−2) +Hn

. . . +Hn
2n(k + a

nn )n =Hn
CSym(xn), can be well-defined uniquely upto

isomorphism, then this would entail that xn + yn = zn if, and only if, n < 3.
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1. Introduction

Fermat’s Last Theorem FLT states that no three positive integers x, y, z satisfy the equation xn+yn =
zn for any integer value of n greater than 2. FLT has been made famous, literally and literarily (see
[20], p.73) beyond it’s innate challenge for mathematicians, by Pierre de Fermat’s posthumously
revealed remarks, written around 1637 in the margin of his copy of Diophantus’ Arithmetica:

“It is impossible for a cube to be written as a sum of two cubes or a fourth power to be written as the
sum of two fourth powers or, in general, for any number which is a power greater than the second to be
written as a sum of two like powers. . . . I have a truly marvellous demonstration of this proposition which
this margin is too narrow to contain”.
. . . Singh: [20], p.66, An English translation of Fermat’s marginal noting in Latin.

For 358 years, FLT remained unproven; until the 108-page proof [22]1—appealing to geometrical
properties of real and complex numbers in order to prove an essentially arithmetical problem over the

1Detailed consideration of Wiles’ ‘analytic’ proof lies beyond the scope, and competence, of this evidence-based, pre-
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natural numbers—was published in 1995 by Andrew Wiles in the Annals of Mathematics. It proved an
equivalence between, seemingly disparate, geometric properties of elliptic curves and modular forms
that can be cogently argued (see §3.) as entailing FLT from the specified premises.

What yet remains unanswered, though, is whether, and if so what, Fermat might have ‘realised’
he had ‘briefly deluded himself’ as having solved ‘with an irretrievable idea’ (see also [20], p.128):

“It is not known whether Fermat had actually found a valid proof for all exponents n, but it appears
unlikely. Only one related proof by him has survived, namely for the case n = 4, as described in the
section Proofs for specific exponents. While Fermat posed the cases of n = 4 and of n = 3 as challenges
to his mathematical correspondents, such as Marin Mersenne, Blaise Pascal, and John Wallis, he never
posed the general case. Moreover, in the last thirty years of his life, Fermat never again wrote of his “truly
marvelous proof” of the general case, and never published it. Van der Poorten suggests that while the
absence of a proof is insignificant, the lack of challenges means Fermat realised he did not have a proof;
he quotes Weil as saying Fermat must have briefly deluded himself with an irretrievable idea.

The techniques Fermat might have used in such a “marvelous proof” are unknown.
. . .Wikipedia: https://en.wikipedia.org/wiki/Fermat%27s Last Theorem, accessed 10th October 2020.

Wiles’ proof thus leaves two questions unaddressed, which we shall seek to illuminate by a putative
reconstruction—from an inter-disciplinary, pre-formal (see [18]; also §2.), perspective—of:

(i) What argument or technique might Fermat have used that led him to, even if only briefly,
believe he had ‘a truly marvellous demonstration’ of FLT?

“Wiles’s proof of Fermat’s Last Theorem relies on verifying a certain conjecture born in the 1950s.
The argument exploits a series of mathematical techniques developed in the last decade, some of
which were invented by Wiles himself. The proof is a masterpiece of modern mathematics, which
leads to the inevitable conclusion that Wiles’s proof of the Last Theorem is not the same as Fermat’s.
Fermat wrote that his proof would not fit into the margin of his copy of Diaphantus’s Arithmetica, and
Wiles’s 100 pages of dense mathematics certainly fulfills this criterion, but surely the Frenchman did
not invent modular forms, the Taniyama-Shimura conjecture, Galois groups, and the Kolyvagin-Flach
method centuries before anyone else.

If Fermat did not have Wiles’s proof, then what did he have?”
. . . Singh: [20], p.307.

(ii) Why is xn + yn = zn solvable only for n = 2?2

A curious feature (see [9], Chapter XXVI, pp.731-776; [4], pp.303-304; [20], pp.115-117, 126-127,
& 251-252; [15], p.657, §3.1 Germain’s plan for proving Fermat’s Last Theorem; [7], Abstract)
of recorded, post-Fermat, attempts to prove FLT has been the, seemingly universal, focus on
seeking a formal proof, and understanding, of only (as claimed by Fermat) why xn + yn = zn is
unsolvable for both specific, and general, values of n > 2 when x, y, z, n ∈ N.

Moreover, Michael Harris’ recent claim (in [13], Other publications, #21; see also §3.) that
‘Wiles’ proof, complicated as it is, has a simple underlying structure that is easy to convey
to a lay audience’, implicitly admits that such an understanding yet remains as elusive as was
reflected in Keith Devlin’s 1994 observation:

“Wiles made his claim at the end of a series of three lectures he gave at a small meeting of number-
theorists at the Isaac Newton Institute at Cambridge, England. The powerful new techniques he

formal (see [2], §1.D), perspective; which only seeks an ‘elementary’ understanding of why xn +yn = zn is provable only
for x, y, z, n ∈ N and n < 3. However we address, in §3., Michael Harris’ outline (see [13], Other publications, #21) of
the logical steps in Wiles’ ‘analytic’ proof, in order to highlight how these ‘mirror’ the logical steps in the ‘elementary’
proof in §2.B. of this putative reconstruction of the reasoning behind Fermat’s laconic marginal noting.

2The Diophantine equation is, of course, trivially solvable for n = 1; and Pythagoras’ Theorem evidences that it is
solvable for n = 2.
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outlined in his proof, together with his own track record as a research mathematician, were enough
to convince the audience that the new proof was probably correct. And, since that audience included
many of the world’s most highly qualified experts in the area, that was good enough for everyone
else. Such was the complexity of Wiles’ argument that, even with a copy of his 200-page proof, most
of us would in any case have to rely on the judgement of these experts.”
. . .Devlin: [10].

A possible reason could be that even definitive expositions of Wiles’ reasoning—such as, for
instance, [13]—may not (see §3.) view the ‘proof’ as capable of being essentially enhanced by
formally justifying the necessity of appeal to arcane geometrical properties, of real and complex
numbers3, for concluding the logical truth of putative Diophantine solutions of, essentially,
arithmetical propositions when such solutions are expressed geometrically as elliptic curves.

The fragility of uncritically accepting ‘sociological validation of proofs’ in lieu of logical validity is
highlighted by Henk Barendregt and Freek Wiedijk in [5] ‘The Challenge of Computer Mathematics’4:

“During the course of history of mathematics proofs increased in complexity. In particular in the 19-th
century some proofs could no longer be followed easily by just any other capable mathematician: one had
to be a specialist. This started what has been called the sociological validation of proofs. In disciplines
other than mathematics the notion of peer review is quite common. Mathematics for the Greeks had
the ‘democratic virtue’ that anyone (even a slave) could follow a proof. This somewhat changed after
the complex proofs appeared in the 19-th century that could only be checked by specialists. Nevertheless
mathematics kept developing and having enough stamina one could decide to become a specialist in
some area. Moreover, one did believe in the review by peers, although occasionally a mistake remained
undiscovered for many years. This was the case with the erroneous proof of the Four Colour Conjecture
by Kempe [1879].

In the 20-th century this development went to an extreme. There is the complex proof of Fermat’s Last
Theorem by Wiles. At first the proof contained an error, discovered by Wiles himself, and later his new
proof was checked by a team of twelve specialist referees†. Most mathematicians have not followed in
detail the proof of Wiles, but feel confident because of the sociological verification.”
. . .Barendregt and Wiedijk: [5], 1. The Nature of Mathematical Proof.

For instance, if FLT5 is not provable in PA, it would follow by [1], Theorem 7.1 (p.41)6, that no
deterministic algorithm TM could, for any specified n > 2, evidence that xn + yn = zn is unsolvable7.

In which case, even if8—as entailed by Wiles’ proof—FLT can be evidenced as numeral-wise true9

under a well-defined interpretation of PA over N10, seeking to understand why xn + yn = zn is
unsolvable for all n > 2 may be futile. Instead, one could reasonably expect a better insight (see
§2.B.a.) by seeking why xn +yn = zn is solvable for n = 2 (and trivially for n = 1), but not for n = 3.

3A justification the pre-formal proof of FLT in §2.B. seeks to achieve more transparently by identifying, and gen-
eralising, the necessary and sufficient geometrical properties which entail the specific case of FLT for n = 3, in the
pre-formal argument in §2.B.a.(b), without appeal to properties of real and complex numbers.

4As also by Melvyn B. Nathanson in [17], ‘Desperately Seeking Mathematical Truth’.
5Strictly speaking the PA-formula, say [FLT], expressing FLT in PA.
6A PA formula [F (x)] is PA-provable if, and only if, [F (x)] is algorithmically computable as always true in N.
7Since FLT is not then algorithmically computable as an always true arithmetical proposition by [1], Definition 2,

p.37: A number theoretical relation F (x) is algorithmically computable if, and only if, there is an algorithm ALF that can
provide objective evidence for deciding the truth/falsity of each proposition in the denumerable sequence F (1), F (2), . . ..

8As in the case of Kurt Gödel’s well-known ‘formally undecidable’ arithmetical proposition [(∀x)R(x)] (see [1],
Corollary 8.3, p.42): In any model of PA, Gödel’s arithmetical formula [R(x)] interprets as an algorithmically verifiable,
but not algorithmically computable, tautology over N.

9In the sense of being algorithmically verifiable as a true arithmetical proposition for any specified instantiation by
[1], Definition 1, p.37: A number-theoretical relation F (x) is algorithmically verifiable if, and only if, for any given
natural number n, there is an algorithm ALF,n which can provide objective evidence for deciding the truth/falsity of each
proposition in the finite sequence {F (1), F (2), . . . , F (n)}.

10In other words, for any specified n > 2, there would be some deterministic algorithm TMn which could evidence
xn + yn = zn as unsolvable for only that specified value of n; or, equivalently, for all values ≤ n.
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Some insight into why xn + yn = zn can be treated informally as true only for n < 3 follows if—
instead of expressing any putative integral solution a, b, c ∈ N of the, essentially arithmetical, equation
ap + bp = cp (p an odd prime) geometrically as an elliptic curve, and seeking to identify the latter’s
Galois representation with a unique modular form (cf. [22]; see also [13] and §3., eqns. (A)-(E))—we
note that, if xn + yn = zn for x, y, z, n ∈ N, and z = y + 2(k + a

nn ) (see Figs.1-3), we can express:

(i) xn = 2.nC1(k + a
nn )yn−1 + 22.nC2(k + a

nn )2yn−2 + . . . + 2n(k + a
nn )n

FLT is then equivalent to proving the necessary and sufficient conditions (see §2.B.a.(b)) that, for
any specified n ≥ 1 ∈ N, admit some y, z ≥ 1 ∈ N which yield a unique representation of xn as above.

We shall argue that even if such a proof were arithmetically impossible because FLT is PA-
unprovable, we could yet visualise (as in §2.A. below) Fermat’s Last Theorem as a formal proposition
concerning the geometrical properties of recursively well-defined mathematical objects in the struc-
ture, say Hn, of n-D hyper-objects11 in a n-dimensional Euclidean space; where the cases n = 2, 3
can be corresponded to the geometrical properties in physical space of the familiar LEGO blocks.

Such an insight could be viewed as yielding a pre-formal proof of FLT by visually evidencing,
without appeal to properties of real and complex numbers, that if, for some natural numbers x, y, z, n,
we can well-define unique n-D hyper-cubes xn, yn, zn ∈ Hn which entail xn + yn = zn, then n = 2.
‘Pre-formal’, as detailed by Markus Pantsar in [18]:

“What I refer to as pre-formal mathematics in this work is more often discussed as informal mathematics
in literature. The choice of terminology here is based on two reasons. First, I want to stress the order
in which our mathematical thinking develops. We initially grasp mathematics through informal concepts
and only later acquire the corresponding formal tools. Second, the term “informal mathematics” seems to
have an emerging non-philosophical meaning of mathematics in everyday life, as opposed to an academic
pursuit—which is not at all the distinction that I am after here.”
. . . Pantsar: [18], §1.1 General background.

Moreover, we interpret Pantsar’s ‘pre-formal mathematics’ here (see also Anand [2], §1.A, Pre-
formal mathematics) as evidencing the philosophy that an evidence-based12 definition of mathematical
truth is a, necessarily transparent, prerequisite for determining—in a formal proof theory—which
axiomatic assumptions of a formal theory underlie the truth of pre-formal, evidence-based, reasoning.

In a recent paper [16] on Proof vs Truth in Mathematics, Roman Murawski too (as does Harris
in [13]; see §3.) emphasises the critical role that “informal proofs” (which could be viewed as corre-
sponding to Pantsar’s pre-formal proofs) variously play in ‘mathematical research practice’ for not
only the understanding, but also the subsequent verification and justification, of formal proofs:

“Mathematics was and still is developed in an informal way using intuition and heuristic reasonings—
it is still developed in fact in the spirit of Euclid (or sometimes of Archimedes) in a quasi-axiomatic
way. Moreover, informal reasonings appear not only in the context of discovery but also in the context of
justification. Any correct methods are allowed to justify statements. Which methods are correct is decided
in practice by the community of mathematicians. The ultimate aim of mathematics is “to provide correct
proofs of true theorems” [2, p. 105]. In their research practice mathematicians usually do not distinguish
concepts “true” and “provable” and often replace them by each other. Mathematicians used to say that
a given theorem holds or that it is true and not that it is provable in such and such theory. It should be
added that axioms of theories being developed are not always precisely formulated and admissible methods
are not precisely described.2

Informal proofs used in mathematical research practice play various roles. One can distinguish among
others the following roles (cf. [4], [7]):

11See Wikipedia: Hypercube.
12‘Evidence-based’ as defined implicitly in Anand [1], and explicitly in Anand [2], §1.D., in the sense (see [2], §5.A) of

Gualtiero Piccinini’s knowledge as factually grounded belief (see [19]), rather than that of Plato’s knowledge as justified
true belief.
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(1) verification,

(2) explanation,

(3) systematization,

(4) discovery,

(5) intellectual challenge,

(6) communication,

(7) justification of definitions.

The most important and familiar to mathematicians is the first role. In fact only verified statements can be
accepted. On the other hand a proof should not only provide a verification of a theorem but it should also
explain why does it hold. Therefore mathematicians are often not satisfied by a given proof but are looking
for new proofs which would have more explanatory power. Note that a proof that verifies a theorem does
not have to explain why it holds. It is also worth distinguishing between proofs that convince and proofs
that explain. The former should show that a statement holds or is true and can be accepted, the latter—
why it is so. Of course there are proofs that both convince and explain. The explanatory proof should
give an insight in the matter whereas the convincing one should be concise or general. Another distinction
that can be made is the distinction between explanation and understanding. In the research practice of
mathematicians simplicity is often treated as a characteristic feature of understanding. Therefore, as G.-C.
Rota writes: “[i]t is an article of faith among mathematicians that after a new theorem is discovered, other,
simpler proof of it will be given until a definitive proof is found” [23, p. 192].

It is also worth quoting in this context Aschbacher who wrote:

The first proof of a theorem is usually relatively complicated and unpleasant. But if the
result is sufficiently important, new approaches replace and refine the original proof, usually
by embedding it in a more sophisticated conceptual context, until the theorem eventually
comes to be viewed as an obvious corollary of a larger theoretical construct. Thus proofs are a
means for establishing what is real and what is not, but also a vehicle for arriving at a deeper
understanding of mathematical reality [1, p. 2403].

As indicated above a concept of a “normal” proof used by mathematicians in their research practice (we
called it “informal” proofs) is in fact vague and not precise.
. . .Murawski: [16], §2. Proof in Mathematics: Formal vs Informal, pp.11-12.

2.A. Could this have been Fermat’s ‘truly marvellous demonstration ’?

It is not unreasonable to assume that Fermat could have intuited some such pre-formal perspective
towards mathematical truth and proof, and visualised that, for any pair of natural numbers z > y:

(1) z

y

x

k + a k + a
@I

@I

@I

XXX
Xy

@I���
�:
x

y

z

k + az −H1
y

Fig.1

Not to scale

We can take a string (see Fig.1), say z, of length z units, cut off a central section y of length y
units, and we will always (courtesy human self-evidence) have a 1-dimensional object consisting
of two separated pieces of length k+a units each, denoted by say z −H1

y, which can be uniquely
defined upto isomorphism under change of scale (see Definition 2):

� by cutting into smaller units a string x of length x units, where x is also a natural number,

� and re-assembling the smaller lengths to form the symmetrically centered configuration:

CSym(z −H1
y) =H1

2k + a,
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� such that any two such re-assemblies are isomorphic upto uniqueness (by Definition 2);

(2)
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Fig.2

Not to scale

We can take a square tile (see Fig.2), say z2, of side z and area z2, cut off a central square
tile y2 of side y and area y2, and we will sometimes (courtesy Pythagoras’ Theorem) have a

2-dimensional object, say z2 −H2
y2 (shaded area in Fig.2), which can be uniquely defined upto

isomorphism under change of scale (see Definition 2):

� by cutting into smaller square tiles a square tile x2 of side x and area x2, where x is also
a natural number,

� and re-assembling the smaller square tiles to form the symmetrically centered configuration

of z2 −H2
y2:

CSym(z2 −H2
y2) =H2

4(k + a
22 )y +H2

4(k + a
22 )2,

� such that any two such re-assemblies are isomorphic upto uniqueness (by Definition 2);

Comment: In other words, by Pythagoras’ Theorem we can (see §2.B.a.(a)) design a jigsaw puzzle
for some y, z ∈ N such that any configuration C(y2) of y2, along with any configuration which is

isomorphic to CSym(z2 −H2
y2) =H2

4(k + a
22 )y+H2

4(k + a
22 )2, could be assembled as the square z2.

(3)
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33

@@I

@I @I
x3 z3

Fig.3

Not to scale

We can take a cube (see Fig.3), say z3, of side z and volume z3, cut off a central cube y3

of side y and volume y3, but we will never (courtesy Fermat’s insight) have a 3-dimensional
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object, say z3 −H3
y3, which can be uniquely defined upto isomorphism under change of scale

(see Definition 2):

� by cutting into smaller cubes a cube x3 of side x and volume x3, where x is also a natural
number,

� and re-assembling the smaller cubes to form the symmetrically centered configuration of

z3 −H3
y3:

CSym(z3 −H3
y3) =H3

6(k + a
33 )y2 +H3

12(k + a
33 )2y +H3

8(k + a
33 )3,

� such that any two such re-assemblies are isomorphic upto uniqueness (by Definition 2);

Comment: In other words, Fermat’s insight entails that we cannot (see §2.B.a.(b)) design a LEGO
blocks puzzle for any y, z ∈ N such that any configuration C(y3) of the cube y3, along with

any configuration of LEGO blocks which is isomorphic to CSym(z3 −H3
y3) =H3

6(k + a
33 )y2 +H3

12(k + a
33 )2y +H3

8(k + a
33 )3, could be assembled into the cube z3.

We note that all three are particular instances of a n-dimensional mathematical object, say
zn −Hn

yn, which is uniquely defined upto isomorphism by the following, symmetrically centered,

configuration CSym(zn −Hn
yn) of zn −Hn

yn if, and only if, zn − yn = xn for some particular set of
natural numbers z, y, x:

CSym(zn −Hn
yn) =Hn

2.nC1(k + a
nn )y(n−1)+Hn

22.nC2(k + a
nn )2y(n−2)+Hn

. . .+Hn
2n(k + a

nn )n,

where:

Definition 1. (Isomorphic configuration) Any two ‘configurations’ of a n-D hyper-object xn ∈
Hn, denoted by

∑j
i=1 ai(

∏n
k=1 uik) and

∑j
i=1 bi(

∏n
k=1 vik), where (

∏n
k=1 uik), (

∏n
k=1 vik) ∈ Hn and

ai, bi, uik, vik ∈ N, are defined as isomorphic if, and only if, for any 1 ≤ i ≤ j ∈ N, bi = rnai and
(
∏n

k=1 uik) = rn(
∏n

k=1 vik) for some rational r > 0 ∈ Q13.

Definition 2. (Uniqueness) A n-D hyper-object xn is uniquely defined upto isomorphism if, and
only if, for all 1 ≤ i ≤ j ∈ N, either ai|bi or bi|ai in any two ‘configurations’

∑j
i=1 ai(

∏n
k=1 uik) and∑j

i=1 bi(
∏n

k=1 vik) of xn that are isomorphic.

For xn to, then, admit a configuration CSym(zn −Hn
yn) that will uniquely define zn −Hn

yn, each
term in the configuration (which too is a configurations of n-D objects) must also be uniquely defined
upto isomorphism under any change of scale by Definition 2.

However, we argue pre-formally in §2.B. that, for any natural numbers x, y, z which claim to yield
a solution of zn − yn = xn, such unique isomorphism is only possible for n < 3.14

2.B. Could this be viewed as a pre-formal proof of FLT?

Proposition 2.1. If xp + yp = zp, where 1 < x < y < z ∈ N, and p ∈ N is a prime, then p = 2.

Proof. 1. Consider the three, symmetrically centered, squares (2-D hypercubes) with sides x, y, z
in Fig.4 for any specified natural numbers 1 < x < y < z which are co-prime.

13Q is the structure of the rational numbers.
14We note that, in his commentary [13] on FLT, Michael Harris outlines Wiles’ proof as arguing that (see §3.): If

ap + bp = cp for some odd prime p and a, b, c ∈ N, then there would exist ‘another modular form, this one of weight 2
and level 2’; however there are no such modular forms.
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z y x
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Fig.4

Not to scale

Then Fig.4 is a pictorial proof (compare [20], p.29, Fig. 4) that x2 + y2 = z2 if, and only if, we
can physically construct (assemble uniquely) a 2-D LEGO blocks (tiles) puzzle for k > 0 and
a ∈ {0, 1, 2, 3}, where k + a

22 > 0, such that:

(a) one square block (tile) of side y,

(b) plus 4 rectangular blocks (tiles) with dimensions y × (k + a
22 ),

(c) and 4 square blocks (tiles) of side (k + a
22 ),

must combine to well-define a square block (tile) denoted by, say, z2, of side z, where the 2-D

‘hyper-object’ denoted by, say (shaded area), z2 −H2
y2, is uniquely defined upto isomorphism

(by Definition 2) by the symmetrically centered ‘configuration’ of 2-D LEGO blocks (tiles):

(i) CSym(z2 −H2
y2) =H2

4(k + a
22 )y +H2

4(k + a
22 )2.

2. Similarly, Fig.5 is a pictorial proof15 that x3 + y3 = z3 if, and only if, we can physically
construct (assemble uniquely) a 3-D LEGO blocks puzzle for k > 0 and a ∈ {0, 1, 2, . . . , 26},
where k + a

33 > 0, such that:

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��

�
�
�
�

�
�
�
�
�

�
�
�
�
�

z y x

k

a
33

k + a
33

@@I

@I @I
x3 z3

Fig.5

Not to scale

(a) one cube block of side y,

(b) plus 6 parallelepiped blocks with base y2 and height (k + a
33 ),

15Compare the visual ‘challenge’ suggested in [20], p.31, Fig.5. Also Gerd Falting’s insightful (albeit analytic) visual-
isation ([20], p.255, Fig.23) of xn + yn = 1 for x, y ∈ C, n ∈ N, when extended to zn − yn = 1 for z, y ∈ C, n ∈ N.
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(c) plus 12 parallelepiped blocks with base (k + a
33 )2 and height y,

(d) plus 8 cube blocks of side (k + a
33 ),

must combine to well-define a cube block denoted by z3, of side z, where the 3-D ‘hyper-

object’ denoted by z3 −H3
y3 is uniquely defined upto isomorphism (by Definition 2) by the

symmetrically centered ‘configuration’ of 3-D LEGO blocks:

(i) CSym(z3 −H3
y3) =H3

6(k + a
33 )y2 +H3

12(k + a
33 )2y +H3

8(k + a
33 )3.

3. In the general case, if xp + yp = zp for p ≥ 2, and z = y + 2(k + a
pp ), a not unreasonable appeal

to a principle of symmetry such as Curie’s (see [3], §2.2, Curie’s principle) suggests that the p-D

hyper-object denoted by zp −Hp
yp must then be well-defined uniquely upto isomorphism (by

Definition 2) by the symmetrically centered ‘configuration’ of p-D hyper-objects denoted by:

(i) CSym(zp −Hp
yp) =Hp

2.pC1(k + a
pp )y(p−1) +Hp

22.pC2(k + a
pp )2y(p−2) +Hp

. . .+Hp
2p(k + a

pp )p.

4. If we, therefore, represent:

— the concept ‘physically construct ’ mathematically by the concept ‘well-define’ (in the usual
sense of deterministically assigning an unambiguous ‘configuration’, which need not, how-
ever, be unique); and

— the concept ‘pictorial ’ by ‘formal ’;

we can uniquely correspond:

— the relation zp − yp = xp in a formal Peano Arithmetic (such as PA); and

— the relation, CSym(zp −Hp
yp) =Hp

CSym(xp)—in any putative, formal, geometry THp
(of

the structure Hp of p-D hyper-objects in a p-dimensional Euclidean space which includes

the cases where p = 2, 3)—between the p-D hyper-objects denoted by zp −Hp
yp and xp,

that is well-defined uniquely upto isomorphism (see Definition 2) by the symmetrically
centered ‘configuration’ of p-D hyper-objects:

(i) CSym(zp −Hp
yp) =Hp

2.pC1(k + a
pp )y(p−1)+Hp

22.pC2(k + a
pp )2y(p−2)+Hp

. . .+Hp
2p(k + a

pp )p.

Of course we assume here as intuitively plausible that we could formally define ‘configuration
C(xp) of a p-D hyper-object xp’, ‘symmetrically centered configurations of a p-D hyper-object
xp’, ‘isomorphic configurations of a p-D hyper-object xp’, ‘hyper-volume V(xp) of a p-D hyper-
object xp’, ‘−Hp

’, ‘=Hp
’, ‘+Hp

’ and ‘≡Hp
’ in THp

so as to admit the pictorial interpretations §2.B.1
and §2.B.2 when p = 2, 3 respectively, such that §2.B.4(i) interprets as:

(ii) zp −Hp
yp denotes a p-D hyper-object that is well-defined uniquely upto isomorphism (see

Definition 2) in Hp by the symmetrically centered ‘configuration’ of:

(a) the 2.pC1 p-D hyper-objects, each denoted by (k + a
pp )× y(p−1) with hyper-dimensions:

(k + a
pp )× y × y × . . .× y︸ ︷︷ ︸

(p−1)

;

(b) the 22.pC2 p-D hyper-objects, each denoted by (k + a
pp )2 × y(p−2) with hyper-dimensions:

(k + a
pp )× (k + a

pp )× y × y × . . .× y︸ ︷︷ ︸
(p−2)

;

. . .
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(c) the 2p p-D hypercubes, each denoted by (k + a
pp )p with sides (k + a

pp );

and where, in the usual arithmetic of the natural numbers:

(iii) xp = 2.pC1(k + a
pp )y(p−1) + 22.pC2(k + a

pp )2y(p−2) + . . . + 2p(k + a
pp )p.

5. Since z − y = 2(k + a
pp ) ∈ N, each term of §2.B.4(iii) admits only those values of a ∈ N that

yield a natural number. We thus have that if §2.B.4(iii) well-defines a p-D hypercube denoted
by xp in the theory THp

of p-D hyper-objects, then this would correspond to the symmetrically
centered ‘configuration’ of p-D hyper-objects well-defined only upto isomorphism (see Definition
1) by:

(i) CSym(xp) =Hp
2.pC1(k + a

pp )y(p−1)(u)p +Hp
22.pC2(k + a

pp )2y(p−2)(u)p +Hp
. . . +Hp

2p(k +
a
pp )p(u)p

where (u)p denotes the p-D unit hypercube.

6. However, for 1 ≤ r ≤ p, the p-D hyper-objects defined in §2.B.4(ii)(a)-§2.B.4(ii)(c) must further
be well-defined uniquely upto isomorphism (see Definition 2) at any rational scale 0 < s ≤ 1 of
scaled down p-D hyper-objects denoted by:

(i) 2r.pCr(k + a
pp )ry(p−r) =Hp

1
sp .2

r.pCr((k + a
pp )s)r(ys)(p−r).

7. In particular, since z − y = 2(k + a
pp ) ∈ N, the p-D hyper-object well-defined uniquely upto

isomorphism (see Definition 2) by the symmetrically centered ‘configuration’ of p-D hyper-
objects denoted by:

(i) the 2p p-D hypercubes (k + a
pp )p with hyper-dimensions denoted by (k + a

pp )p, and cumu-
lative p-D hyper-volume 2p(k + a

pp )p, in a p-dimensional Euclidean space;

must be capable of also being well-defined uniquely upto isomorphism (see Definition 2) by the
symmetrically centered ‘configuration’ of p-D hyper-objects denoted by:

(ii) the pp scaled down p-D hypercubes ((k + a
pp )2

p)p with hyper-dimensions denoted by ((k +
a
pp )(2

p))p, and cumulative p-D hyper-volume pp((k + a
pp )(2

p))p = 2p(k + a
pp )p.

8. Moreover, since THp
must admit the pictorial interpretations §2.B.1 and §2.B.2 when p = 2, 3

respectively—as detailed in §2.B.a.(a) and §2.B.a.(b)—then the p-D hyper-object denoted by

zp −Hp
yp is well-defined uniquely upto isomorphism (see Definition 2) under interpretation in

Hp by the symmetrically centered ‘configuration’ of p-D hyper-objects §2.B.4(i) if, and only if,
each term in §2.B.4(i) is isomorphic (see Definition 1) under any change of scale.

9. Consequently, if zp −Hp
yp denotes a p-D hyper-object that is well-defined uniquely upto isomor-

phism (see Definition 2) under interpretation in Hp by the symmetrically centered ‘configuration’
of p-D hyper-objects §2.B.4(i), by Definition 2 we cannot have that both:

(i) CSym(zp −Hp
yp) =Hp

2.pC1(k + a
pp )y(p−1) +Hp

22.pC2(k + a
pp )2y(p−2) +Hp

. . .+Hp
2p(k + a

pp )p;

and:

(ii) CSym(zp −Hp
yp) =Hp

2.pC1(k + a
pp )y(p−1)+Hp

22.pC2(k + a
pp )2y(p−2)+Hp

. . .+Hp
pp((k + a

pp )2
p)p;
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satisfy CSym(zp −Hp
yp) =Hp

CSym(xp), and thereby entail zp − yp = xp, if 2p 6 | pp.

10. Hence, if the p-D hyper-object denoted by zp −Hp
yp is well-defined uniquely upto isomorphism

(see Definition 2) under interpretation in Hp by the symmetrically centered ‘configuration’ of
p-D hyper-objects §2.B.4(i), then pp = 2p, and p = 2.

11. Further (see §2.B.a.(a) below), since 22 = 2.2C1 = 22.2C2, the p-D hyper-object sought to be
well-defined uniquely upto isomorphism (see Definition 2) in §2.B.(4(i)) by the symmetrically
centered ‘configuration’ of p-D hyper-objects:

(i) C(zp −Hp
yp) =Hp

2.pC1(k + a
pp )y(p−1) +Hp

22.pC2(k + a
pp )2y(p−2) +Hp

. . . +Hp
2p(k + a

pp )p,

where y, z ∈ N, does uniquely well-define a p-D hypercube denoted by xp under change of scale,
where x ∈ N, for p = 2.

The proposition follows. �

Corollary 2.2. If xn + yn = zn, where 1 < x < y < z ∈ N, and 1 < n ∈ N, then n = 2.

Corollary 2.2 follows since, as noted by Simon Singh in [20] (p.98), by showing that x4 + y4 = z4

is unsolvable for x, y, z ∈ N, Fermat had ‘given mathematicians a head start’ in proving FLT since,
additionally:

“To prove Fermat’s Last Theorem for all values of n, one merely has to prove it for the prime values of n.
All other cases are merely multiples of the prime cases and would be proved implicitly.”
. . . Singh: [20], p.99.

The significance of showing we cannot well-define the n-D hyper-object denoted by zn uniquely
upto isomorphism (see Definition 2), for n > 2, such that CSym(zn −Hn

yn) =Hn
CSym(xn) interprets

as zn−yn = xn in N, is that it circumvents any implicit appeal (see [20], p.126) to unique factorisation
‘in number systems that extend beyond the ordinary integers’:

“In the 1840’s, several mathematicians worked on a general proof which, like Miyaoka’s, foundered on an
unwarranted assumption: they had assumed that the unique factorization of integers into primes (such as
60 = 2× 2× 3× 5) would hold for number systems that extend beyond the ordinary integers. In actuality,
unique factorization is rather rare. For instance, 2×3 and 1+

√
−5 and 1−

√
−5 are distinct factorizations

of 6 in a number system that treats
√
− 5 as an integer.”

. . .Cipra: [8].

2.B.a. Why is xn + yn = zn solvable for n = 2, but not for n = 3

We consider the cases n = 2 and n = 3 to illustrate why xn + yn = zn can be argued pre-formally as
solvable for n = 2, but unsolvable for n > 2; where we note that for any specified natural numbers
x, y, z, k, a ∈ N as defined in §2.B., Proposition 2.1:

(a) If x2 + y2 = z2 and z − y = 2(k + a
22 ) then, for instance:

(i) the 2.2C1 2-D hyper-objects denoted by (k + a
22 )× y, with hyper-dimensions (k + a

22 )× y,
and cumulative 2-D hyper-volume 2.2C1.(k + a

22 )y,

defined in §2.B.4(i) are well-defined uniquely upto isomorphism (see Definition 2) by (assembled
uniquely from):

(ii) the 24 scaled down 2-D hyper-objects denoted by (k + a
22 )1

2 × y(1
2), with hyper-dimensions

(k + a
22 )1

2 × y(1
2), and cumulative 2-D hyper-volume 24.(k + a

22 )1
2y(1

2) = 2.2C1.(k + a
22 )y;
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whilst:

(iii) the 22.2C2 2-D hypercubes denoted by (k + a
22 )2, with hyper-dimensions (k+ a

22 )×(k+ a
22 ),

and cumulative 2-D hyper-volume 22.2C2.(k + a
22 )2,

are also well-defined uniquely upto isomorphism (see Definition 2) by (assembled uniquely from):

(iv) the 24 scaled down 2-D hypercubes denoted by ((k + a
22 )(1

2))2 with hyper-dimensions ((k+
a
22 )(1

2))× ((k + a
22 )(1

2)), and cumulative 2-D hyper-volume 24.((k + a
22 )(1

2))2 = 22.2C2.(k +
a
22 )2.

(b) However, if x3 + y3 = z3 and z − y = 2(k + a
33 ), then:

(i) the 23 3-D hypercubes denoted by (k + a
33 )3, with hyper-dimensions (k + a

33 )× (k + a
33 )×

(k + a
33 ), and cumulative 3-D hyper-volume 23.(k + a

33 )3,

are capable of being well-defined upto isomorphism (see Definition 1), but not capable of being
well-defined uniquely upto isomorphism (see Definition 2) by (assembled uniquely from):

(ii) the 33 scaled down 3-D hypercubes denoted by ((k + a
33 )(2

3))3, with hyper-dimensions
((k + a

33 )(2
3)) × ((k + a

33 )(2
3)) × ((k + a

33 )(2
3)) and cumulative 3-D hyper-volume 33.((k +

a
33 )(2

3))3 = 23.(k + a
33 )3;

in a 3-D LEGO blocks puzzle which evidences CSym(z3 −H3
y3) =H3

CSym(x3) as well-defined
only upto isomorphism (see Definition 1) in §2.B.4(i), since we cannot assemble the 3-D hyper-
cube denoted by z3 in the puzzle by replacing 23 identical 3-D hypercubes (as defined in (i)),
with 33 scaled down, identical, 3-D hypercubes (as defined in (ii)).

Comment: In other words, we can never design a LEGO blocks puzzle for any y, z ∈ N such
that any configuration C(y3) of the cube y3, along with any configuration of LEGO blocks which is

isomorphic (see Definition 1) to CSym(z3 −H3
y3) =H3

6(k + a
33 )y2 +H3

12(k + a
33 )2y +H3

8(k + a
33 )3,

could be assembled into a cube z3.

Reason: If, in the above LEGO blocks puzzle,
∑j

i=1 ai(
∏n

k=1 uik) and
∑j

i=1 bi(
∏n

k=1 vik) are any two
uniquely well-defined configurations upto isomorphism (see Definition 2) of the hypercube xn, each
of which, along with any configuration (see Definition 1) of the hypercube yn, could be assembled
uniquely into a hypercube zn, then it is:

� necessary, but not sufficient, that:
∑j

i=1 ai(
∏n

k=1 uik) and
∑j

i=1 bi(
∏n

k=1 vik) are isomorphic
(by Definition 1);

� necessary and sufficient that:
∑j

i=1 ai(
∏n

k=1 uik) and
∑j

i=1 bi(
∏n

k=1 vik) are isomorphic (by
Definition 1); and, for all 1 ≤ i ≤ j, either ai|bi or bi|ai.

2.B.b. Does FLT need to appeal essentially to geometrical properties of arithmetical
propositions?

In conclusion, we note §2.B. and §2.B.a. argue the pre-formal perspective that FLT is a true arith-
metical proposition which appeals necessarily to the essentially geometrical properties of unique
isomorphism of n-dimensional hyper-cubes xn, yn, zn, in the structure Hn of n-D hyper-objects in a
n-dimensional Euclidean space, such that:

(a) Fermat’s Last Theorem can be interpreted as an assertion concerning the geometrical proper-
ties of the hyper-geometric objects sought to be well-defined uniquely upto isomorphism (by
Definition 2) in §2.B.4(i); where
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(b) If x, y, z, n,∈ N, and zn = xn + yn, the n-D hyper-object denoted by zn −Hn
yn, with symmet-

rically centered configuration CSym(zn −Hn
yn), is well-defined uniquely upto isomorphism (by

Definition 2) only if n ≤ 2 (see §2.B.10); and

(c) Since it would then follow that CSym(zn −Hn
yn) =Hn

CSym(xn), the n-D hyper-object denoted
by xn, and sought to be well-defined upto isomorphism (by Definition 1) in §2.B.5(i), such that

xn =Hn
(zn −Hn

yn), is also well-defined uniquely (see Definition 2) only if n ≤ 2 (see §2.B.10);
whence

(d) For any specified y, z,∈ N, xn cannot be well-defined uniquely in N by 2.nC1(k + a
nn )y(n−1) +

22.nC2(k + a
nn )2y(n−2) + . . . + 2n(k + a

nn )n such that there is a deterministic algorithm which
will evidence xn + yn = zn for any specified n > 2.

Comment: We note §2.B. and §2.B.a. argue the pre-formal perspective that FLT is a true arith-
metical proposition which appeals necessarily to the essentially geometrical properties of unique
isomorphism of n-dimensional hyper-cubes xn, yn, zn, in the structure Hn of n-D hyper-objects in a
n-dimensional Euclidean space, since it is not pre-formally evident that the geometrical property of
unique isomorphism of a n-dimensional hyper-cube xn in Hn, where x, n ∈ N, can be corresponded
to any arithmetical property of the integer xn.

Reason: If xn = zn − yn, and z = y + 2(k + a
nn ) (see Figs.1-3), then xn is well-defined uniquely in N

by both:

(i) xn = 2.nC1(k + a
nn )y(n−1) + 22.nC2(k + a

nn )2y(n−2) + . . .+ 2n(k + a
nn )n, and

(ii) xn = 2.nC1(k + a
nn )y(n−1) + 22.nC2(k + a

nn )2y(n−2) + . . .+ pn((k + a
nn ) 2

p
)n

for all primes p, and not only for p = 2 as in the case of the n-D hyper-object in Hn denoted by xn,
and sought to be well-defined uniquely upto isomorphism in §2.B.10 such that xn =Hn

(zn −Hn
yn).

It is conceivable that such a pre-formal insight could have been intuited by Fermat, and viewed
initially as a ‘truly marvellous demonstration’; but perhaps16 one whose ‘truth’ in the general case
he was unable to evidence just enough (lacking a seemingly common argument for sufficient special
cases) to let his initial claim lie obscured, but not disowned; thus bequeathing posterity the question:

“If Fermat did not have Wiles’s proof, then what did he have?”

Mathematicians are divided into two camps. The hardheaded skeptics believe that Fermat’s Last Theorem
was the result of a rare moment of weakness by the seventeenth century genius. They claim that, although
Fermat wrote ‘I have discovered a truly marvellous proof,’ he had in fact found only a flawed proof. The
exact nature of this flawed proof is open to debate, but it is quite possible that it may have been along
the same lines as the work of Cauchy or Lamé.

Other mathematicians, the romantic optimists, believe that Fermat may have had a genuine proof. What-
ever this proof might have been, it would have been based on seventeenth-century techniques, . . . ”
. . . Singh: [20], pp.307-308.

3. Should Wiles’ pre-formal proof of FLT be treated putatively as
sufficiently formal?

The significance of, and need for, Pantsar’s explicit distinction between formal and pre-formal proofs
of mathematical propositions (see §2.) is highlighted by Michael Harris’ recent questioning of the
necessity for a foundational perspective that would justify why Wiles’ proof of FLT may be treated
putatively as a logically true arithmetical proposition:

16In the absence of an evidence-based distinction between the weaker requirements for evidencing the logical truth
of algorithmically verifiable arithmetical propositions (see [1], Definition 1; also [2], §7.C, Definition 18), vis à vis the
stronger requirements for evidencing the logical truth of algorithmically computable arithmetical propositions (see [1],
Definition 2; also [2], §7.C, Definition 20).
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“After Wiles’ breakthrough, it became common to hear talk of a new “golden age” of mathematics,
especially in number theory, the field in which the Fermat problem belongs. The methods introduced by
Wiles and Taylor are now part of the toolkit of number theorists, who consider the FLT story closed. But
number theorists were not the only ones electrified by this story.

I was reminded of this unexpectedly in 2017 when, in the space of a few days, two logicians, speaking on
two continents, alluded to ways of enhancing the proof of FLT—and reported how surprised some of their
colleagues were that number theorists showed no interest in their ideas.

The logicians spoke the languages of their respective specialties—set theory and theoretical computer
science—in expressing these ideas. The suggestions they made were intrinsically valid and may someday
give rise to new questions no less interesting than Fermat’s. Yet it was immediately clear to me that these
questions are largely irrelevant to number theorists, and any suggestion that it might be otherwise reflects
a deep misunderstanding of the nature of Wiles’ proof and of the goals of number theory as a whole.

The roots of this misunderstanding can be found in the simplicity of FLT’s statement, which is responsible
for much of its appeal: If n is any positive integer greater than 2, then it is impossible to find three positive
numbers a, b and c such that

an + bn = cn

This sharply contrasts with what happens when n equals 2: Everyone who has studied Euclidean geometry
will remember that 32 + 42 = 52, that 52 + 122 = 132, and so on (the list is infinite). Over the last few
centuries, mathematicians repeatedly tried to explain this contrast, failing each time but leaving entire
branches of mathematics in their wake. These branches include large areas of the modern number theory
that Wiles drew on for his successful solution, as well as many of the fundamental ideas in every part of
science touched by mathematics. Yet no one before Wiles could substantiate Fermat’s original claim.”
. . .Harris: [13], Other publications, #21.

Prima facie, Harris seems to hold that ‘the simplicity of FLT’s statement’ and, presumably, the
seeming straightforwardness of his following outline of the argument underlying Wiles’ proof—covering
‘large areas of the modern number theory that Wiles drew on for his successful solution, as well as
many of the fundamental ideas in every part of science touched by mathematics’—should suffice for
establishing FLT informally (also pre-formally in Pantsar’s sense) as a logically true arithmetical
proposition which substantiates Fermat’s original claim:

“. . . Wiles’ proof, complicated as it is, has a simple underlying structure that is easy to convey to a lay
audience. Suppose that, contrary to Fermat’s claim, there is a triple of positive integers a, b, c such that

(A) ap + bp = cp

for some odd prime number p (it’s enough to consider prime exponents). In 1985, Gerhard Frey pointed
out that a, b and c could be rearranged into

(B) a new equation, called an elliptic curve,

with properties that were universally expected to be impossible. More precisely, it had long been known
how to leverage such an elliptic curve into

(C) a Galois representation,

which is an infinite collection of equations that are related to the elliptic curve, and to each other, by
precise rules.

The links between these three steps were all well-understood in 1985. By that year, most number theorists
were convinced—though proof would have to wait—that every Galois representation could be assigned,
again by a precise rule,

(D) a modular form,

which is a kind of two-dimensional generalization of the familiar sine and cosine functions from trigonom-
etry.

The final link was provided when Ken Ribet confirmed a suggestion by Jean-Pierre Serre that the properties
of the modular form entailed by the form of Frey’s elliptic curve implied the existence of
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(E) another modular form, this one of weight 2 and level 2.

But there are no such forms. Therefore there is no modular form (D), no Galois representation (C), no
equation (B), and no solution (A).

The only thing left to do was to establish the missing link between (C) and (D), which mathematicians
call the modularity conjecture.

This missing link was the object of Wiles’ seven-year quest. It’s hard from our present vantage point to
appreciate the audacity of his venture. Twenty years after Yutaka Taniyama and Goro Shimura, in the
1950s, first intimated the link between (B) and (D), via (C), mathematicians had grown convinced that
this must be right. This was the hope expressed in a widely read paper by André Weil, which fit perfectly
within the wildly influential Langlands program, named after the Canadian mathematician Robert P.
Langlands. The connection was simply too good not to be true. But the modularity conjecture itself
looked completely out of reach. Objects of type (C) and (D) were just too different.”
. . .Harris: [13], Other publications, #21.

Comment: We note that in the putative reconstruction of Fermat’s unrecorded ‘proof’ of
FLT in §2.B., instead of Harris’ (B) above, we consider the arithmetical expression detailed in
§2.:

(i) xn = 2.nC1(k + a
nn )yn−1 + 22.nC2(k + a

nn )2yn−2 + . . .+ 2n(k + a
nn )n

and, instead of Harris’ (C) above, we consider the corresponding geometrical configuration of
n-dimensional mathematical objects as defined and detailed in §2.A.:

(ii) CSym(zn −Hn
yn) =Hn

2.nC1(k + a
nn )y(n−1)+Hn

22.nC2(k + a
nn )2y(n−2)+Hn

. . .+Hn
2n(k + a

nn )n

By extrapolating the pictorial argument for n = 1, 2, 3 in §2.A., and considering what is
entailed by Definition 1 and Definition 2 in the general case, we then argue pre-formally in
§2.B.a. that (i) uniquely defines (ii) upto isomorphism if, and only if, n < 3. We conclude
that this entails FLT.

We further note that:

� whilst Wiles’ analytic proof appeals to properties of real and complex numbers17 for
establishing that: ‘the missing link between (C) and (D)’ entails that ‘there is no modular
form (D), no Galois representation (C), no equation (B), and no solution (A)’ for some
odd prime p;

� the pre-formal proof in §2.B.a. is elementary, since it does not appeal to properties of
real and complex numbers18 for establishing that: for n > 2, (i) above does not uniquely
define (ii) upto isomorphism by Definition 2, thereby entailing that there is no solution
(A) for some odd prime p.

Harris acknowledges that establishing FLT as a theorem within a formal system such as the
first-order Zermelo-Fraenkel set theory ZFC, or a first-order Peano Arithmetic such as PA, may be
desirable in principle; since both can lay claim to admit automated theorem proving that would, then,
establish FLT additionally as an algorithmically computable (logical) truth under any well-defined (i.e.,
evidence-based19) Tarskian interpretation of the concerned formal theory:

“Mathematical logic was developed with the hope of placing mathematics on firm foundations—as an
axiomatic system, free of contradiction, that could keep reasoning from slipping into incoherence.”
. . .Harris: [13].

However he questions both the practical utility and theoretical necessity of such rigour in the
absence of a consensus on what constitutes a mathematical language of categorical communication:

17As do the 1896 proofs of the Prime Number Theorem by Jacques Hadamard and Charles Jean de la Vallée Poussin
(see [21], Theorem 3.7, p.44).

18As is the case with the 1948 proofs of the Prime Number Theorem by Atle Selberg and Paul Erdős (see [11], Theorem
6, p.9).

19As detailed in [1], §3 (see also [2], §2.A) in the case of PA.
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“Although Kurt Gödel’s work revealed this hope to be chimerical, many philosophers of mathematics, as
well as some logicians (a small but vocal minority, according to the set theorist), still regard ZFC and the
requirements listed above as a kind of constitution for mathematics.

Mathematicians never write proofs this way, however. A logical analysis of Wiles’ proof points to many
steps that appear to disregard ZFC, and this is potentially scandalous: When mathematicians make up
rules without checking their constitutionality, how can they know that everyone means the same thing?”
. . .Harris: [13], Other publications, #21.

Instead, he justifies his perspective of the validity of Wiles’ proof of FLT by commenting, from a
professional mathematician’s perspective, that:

“More recently, in the fall of 2016, for example, 10 mathematicians gathered at the Institute for Advanced
Study in Princeton, New Jersey, in a successful effort to prove a connection between elliptic curves and
modular forms in a new setting. They had all followed different routes to understanding the structure of
Wiles’ proof, which appeared when some of them were still small children. If asked to reproduce the proof
as a sequence of logical deductions, they would undoubtedly have come up with 10 different versions. Each
one would resemble the (A) to (E) outline above, but would be much more finely grained.

Nevertheless—and this is what is missing from the standard philosophical account of proof—each of the
10 would readily refer to their own proof as Wiles’ proof. They would refer in a similar way to the proofs
they studied in the expository articles or in the graduate courses they taught or attended. And though
each of the 10 would have left out some details, they would all be right.

What kind of thing is Wiles’ proof, if it comes in so many different flavors? In philosophy of mathematics
it’s customary to treat a published proof as an approximation of an ideal formalized proof, capable in
principle of being verified by a computer applying the rules of the formal system. Nothing outside the formal
system is allowed to contaminate the ideal proof—as if every law had to carry a watermark confirming its
constitutional justification.

But this attitude runs deeply counter to what mathematicians themselves say about their proofs. Mathe-
matics imposes no ideological or philosophical litmus test, but I’m convinced that most of my colleagues
agree with the late Sir Michael Atiyah, who claimed that a proof is “an ultimate check—but it isn’t the
primary thing at all.” Certainly the published proof isn’t the primary thing.

Wiles and the number theorists who refined and extended his ideas . . . were certainly aware that a proof
like the one Wiles published is not meant to be treated as a self-contained artifact. On the contrary, Wiles’
proof is the point of departure for an open-ended dialogue that is too elusive and alive to be limited by
foundational constraints that are alien to the subject matter.”
. . .Harris: [13], Other publications, #21.

From the evidence-based perspective of this pre-formal, putative, reconstruction of what Fermat
might have intuited when making his marginal notation on FLT, Harris could be viewed as drawing
upon his earlier perceptions of mathematical ‘truth’, mathematical ‘knowledge’, and mathematical
‘intuition’ for his defense that Wiles’ proof can be viewed putatively as logically true:

“It will therefore come as a surprise . . . to many philosophers, that truth is also a secondary issue in
mathematics. Of course we want to prove true theorems, but this is hardly an adequate or even useful
description of our objective. Mathematicians, and scientists for that matter, judge our peers not by the
truth of their work but by how interesting it is52. . . .

This point is hardly novel; Lévy-Leblond says something similar in IS (p. 39), and Dieudonné distinguishes
further between “mathématiques vides” and “mathématiques significatives.”54 But it is surprising to see
just how little we seem to be concerned with “truth” these days. Mathematicians rarely discuss founda-
tional issues any more55, so it was significant that an article by Arthur Jaffe and Frank Quinn, reaffirming
the importance of rigorous proof in the current context of strong interaction between physics and mathe-
matics, provoked no fewer than 16 responses by eminent mathematicians, physicists, and historians. No
two of the positions expressed were identical, which already should suggest caution in laying down the law
on rationality, as Sokal and Bricmont (and Lévy-Leblond, see note *) seem inclined to do. But for our
purposes here, what is remarkable is that almost none of the responses had much to say about “truth.”56

“Truth” was central, predictably, only to the responses of Chaitin and Glimm. Chaitin’s branch of mathe-
matics treats “truth” as a technical term, without metaphysical connotations, and Chaitin’s claim to have



B S Anand, Fermat’s Last Theorem 17B S Anand, Fermat’s Last Theorem 17

“found mathematical truths that are true for no reason at all” suggests that it may be harder than Fredkin
suspects to know just when to award his prize. Glimm’s brand of truth is quite the opposite: it “lies not
in the eye of the beholder, but in objective reality . . . It is thus reproducible across barriers of distance,
political boundaries and time.”57 Turning to the introduction to the book Quantum Physics, by Glimm
and Jaffe, one finds the unusual assertion that “mathematical analysis must be included in the list of
appropriate methods in the search for truth in theoretical physics.” Generally speaking, the mathematics
department may be the only spot on campus where belief in the reality of the external world is not only
optional but frequently an annoying distraction. But this patently does not apply to mathematical physi-
cists, and I can’t help thinking it’s not a coincidence that both Bricmont and Sokal are amply represented
in the Glimm-Jaffe bibliography.

Philosophers and philosophically-minded sociologists concerned with mathematics seem to think their job
is to explain mathematical truth. Edinburgh sociologist David Bloor and philosopher Philip Kitcher, cast
for science wars purposes as an irresponsible relativist and a moderate realist, respectively,58 have both
attempted to develop empiricist accounts of mathematical knowledge59. (Knowledge and truth are not
synonyms but they are on the same wavelength.60) They have their own (very different) reasons, but in
so doing I’m convinced they have missed the point of mathematics. As is typical in such discussions,
their examples are drawn either from mathematical logic or from mathematics no more recent than the
19th century. If the sociologist, at least, had done some field work, he couldn’t have helped observing
that what mathematicians seem to value most are “ideas” (not necessarily of the Platonic variety); the
most respected mathematicians are those with strong “intuition.” Now intuition, the philosopher assures
us, is philosophically indefensible; Sokal and Bricmont add that “intuition cannot play an explicit role in
the reasoning leading to the verification (or falsification) of these theories, since this process must remain
independent of the subjectivity of individual scientists.”61 Fredkin’s theorem-proving machine may see
things that way, but what are we [t]o make of Thurston’s emphasis on the “continuing desire for human
understanding of a proof, in addition to knowledge that the theorem is true”?62 We know what he means,
as we know what Robert Coleman means, when, having discovered a gap in Manin’s proof of Mordell’s
conjecture over function fields, he nevertheless writes “I believe that all this is testimony to the power and
depth of Manin’s intuition.”63 Is Coleman trying to slip a counterfeit coin between the context of discovery
and the context of justification? Do these offhand comments touch on something genuine and profound
about mathematics? Or is it just my indoctrination that makes me think so?”
. . .Harris: [13], Other publications, #2.

3.A. A putative resolution of the persisting ambiguity in current paradigms on
the nature of, and relation between, mathematical truth and mathematical
proof

If so, although Harris’ perspective faithfully reflects the persisting ambiguity in current paradigms on
the nature of, and relation between, mathematical truth and mathematical proof, it may also need to
accommodate a putative resolution of such ambiguity that appears sympathetic to his argumentation,
such as:

“Thesis 1. (Complementarity Thesis) Mathematical ‘provability’ and mathematical ‘truth’ need to be
interdependent and complementary, ‘evidence-based’, assignments-by-convention towards achieving :

(1) The goal of proof theory, post Peano, Dedekind and Hilbert, which is:

— to uniquely characterise each informally defined mathematical structure S (e.g., the Peano Pos-
tulates and their associated, classical, predicate logic),

– by a corresponding, formal, first-order language L, and a set P of finitary axioms/axiom
schemas and rules of inference (e.g., the first-order Peano Arithmetic PA and its associated
first-order logic FOL),

- which assign unique provability values (provable/unprovable) to each well-formed proposition of
the language L without contradiction;

(2) The goal of constructive mathematics, post Brouwer and Tarski, which must be:

— to assign unique, evidence-based, truth values (true/false) to each well-formed proposition of the
language L,

– under an, unarguably constructive, well-defined interpretation I over the domain D of the struc-
ture S,
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- such that the provable formulas of L are true under the interpretation.”
. . .Anand: [2], §1.

In other words:

� Whilst the focus of a formal theory may be viewed as seeking to ensure that any mathematical
language intended to represent our conceptual metaphors and their inter-relatedness is unam-
biguous, and free from contradiction;

� The focus of pre-formal mathematics must be viewed as seeking to ensure that any such rep-
resentation does, indeed, uniquely identify and adequately represent such metaphors and their
inter-relatedness.

Further, the epistemological perspective of the Complementarity Thesis is that logic, too, can
be viewed as merely a methodological tool that seeks to formalise an intuitive human ability that
pertains not to the language which seeks to express it formally, but to the cognitive sciences in which
its study is rooted:

“Definition 1 (Well-defined logic) A finite set λ of rules is a well-defined logic of a formal mathematical
language L if, and only if, λ assigns unique, evidence-based, values:

(a) Of provability/unprovability to the well-formed formulas of L; and

(b) Of truth/falsity to the sentences of the Theory T (U) which is defined semantically by the λ-interpretation
of L over a given mathematical structure U that may, or may not, be well-defined; such that

(c) The provable formulas interpret as true in T (U).

Comment: We note that although the question of whether or not λ categorically defines a unique Theory
T (U) is mathematical, the question of whether, and to what extent, any Theory T (U) succeeds (in the
sense of Carnap’s explicatum and explicandum in [6]) in faithfully representing the structure U—which,
from the evidence-based perspective of this investigation, can be viewed as corresponding to Pantsar’s
pre-formal mathematics in [18] (§4. Formal and pre-formal mathematics)—is a philosophical question for
the cognitive sciences (cf. [14]; see also [2], §25), where:

“By the procedure of explication we mean the transformation of an inexact, prescientific con-
cept, the explicandum, into a new exact concept, the explicatum. Although the explicandum
cannot be given in exact terms, it should be made as clear as possible by informal explanations
and examples. . . . A concept must fulfill the following requirements in order to be an adequate
explicatum for a given explicandum: (1) similarity to the explicandum, (2) exactness, (3)
fruitfulness, (4) simplicity.” . . .Carnap: [6], p.3 & p.5.”
. . .Anand: [2], §1.B.

Thus, from the evidence-based perspective of [1] and [2], both pre-formal mathematics, and formal
mathematics, ought to be viewed more appropriately as (see [2], §1.A):

— merely a set of complementary, symbolic, languages (see [2], §13),

— intended to serve Philosophy and the Natural Sciences (see [2], §13.C),

— by seeking to provide the necessary tools for adequately expressing our sensory observations—
and their associated perceptions (and abstractions)—of a ‘common’ external world;

— corresponding to what some cognitive scientists, such as Lakoff and Núñez in [14] (see also [2],
§25), term as primary and secondary ‘conceptual metaphors’,

— in a symbolic language of unambiguous expression and, ideally, categorical communication.

Moreover, we may need to recognise explicitly that evidence-based reasoning (see [2], §13.E):
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(a) restricts the ability of highly expressive mathematical languages, such as the first-order Zermelo-
Fraenkel Set Theory ZF, to categorically communicate abstract concepts corresponding to Lakoff
and Núñez’s secondary conceptual metaphors in [14] (such as those involving Cantor’s first limit
ordinal ω20);

and:

(b) restricts the ability of effectively communicating mathematical languages, such as the first-order
Peano Arithmetic PA, to well-define infinite concepts (such as ω).

3.B. The significance of evidence-based reasoning for Wiles’ proof

Consequently, from the perspective of any discipline which claims (whether explicitly or implicitly) to
appeal only to evidence-based reasoning, any claim that Wiles’ proof can be treated as a categorically
communicable logical truth may necessarily require its validation as a finite sequence of formal propo-
sitions, each of which is necessarily algorithmically verifiable (in the sense of [1], Definition 1), for any
specified instantiation, as a logically true proposition under a well-defined Tarskian interpretation of
some recursively well-defined set of axioms/axiom schemata and rules of deduction.

Such validation would also validate the status of Wiles’ proof as pre-formally justified, evidence-
based, reasoning that is a legitimate contender, even if not a claimant, to being treated as a logically
true, rather than a questionably true, arithmetical proposition:

“. . . How do we know Wiles’ proof of Fermat’s Last Theorem, completed by Taylor and Wiles, is correct?
Although this particular theorem, better publicized than any in history, has been treated with unusual
care by the mathematical community, whose “verdict” is developed at length in a graduate textbook of
exceptionally high quality, I’d guess that no more than 5% of mathematicians have made a real effort
to work through the proof64. Some scientists (and some mathematicians as well) apparently view Wiles
and his proof as an “anachronism.”65 The general public is not entirely convinced. Why are we? Can
a sociologist study this question without knowing the proof? Can mathematicians pose the question in
terms sociologists would find meaningful? Knowing the truth of the matter is obviously of no help, and
relativism is not the issue: it’s not clear what kind of “reality” would be relevant to settling the question,
but the fact that no one has found a counterexample is certainly not a good candidate. . . .

Few of us would choose to treat our belief that Wiles proved Fermat’s last theorem as “a mythical and
false ideology,” but is it possible that our attempts to justify this belief always involve an element of self-
delusion? And how are we to convince a skeptical outsider that this is not the case? The only reasonable
answers that come to mind are empirical in nature, and specifically historical and sociological, rather than
philosophical.111 We would have to pay attention to the question of how knowledge is transmitted among
mathematicians. Fermat’s last theorem provides a particularly good test case. Wiles’ proof generated an
unprecedented112 number of reports, survey articles, colloquium talks, working seminars, graduate courses,
and mini-conferences, as well as books, newspaper and magazine articles, television reports, and other
forms of communication with non-mathematicians. Not to mention the spate of announcements, designed
to impress public policy-makers and the public at large, citing Wiles’ work as proof that mathematics
“has never been healthier.**” Has anyone been keeping track of all these incitements to belief formation,
checking them for contamination by myth and false ideology?

Studying questions like these provides a second answer to the thought experiment proposed above, com-
plementary to the answer we would naturally provide based on our experience as mathematicians, and
potentially just as interesting. Leaving aside romantic rhetoric, these two answers are not in competition,
much less on opposite sides of a battlefield. Arriving at the second answer would be the work of sociolo-
gists. For this, full cooperation with mathematicians would be necessary. The examples just cited provide
hope that such cooperation may be possible.”
. . .Harris: [13], Other publications, #2.

Moreover, the need for such rigour—in any proof of number-theoretic propositions that, explicitly
or implicitly, appeals essentially to set-theoretical reasoning—is that (see [2], §1.A) it would also ad-

20See [14], Preface, p.xii-xiii : “How can human beings understand the idea of actual infinity?”
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dress an earlier issue raised by Harris in [12], concerning the epistomological status of set-theoretically
defined real numbers:

“More interestingly, one can ask what kind of object π was before the formal definition of real numbers. To
assume the real numbers were there all along, waiting to be defined, is to adhere to a form of Platonism.34

Dedekind wouldn’t have agreed.35 In a debate marked by the accusation that postmodern writers deny
the reality of the external world, it is a peculiar move, to say the least, to make mathematical Platonism a
litmus test for rationality.36 Not that it makes any more sense simply to declare Platonism out of bounds,
like Lévy-Leblond, who calls Stephen Weinberg’s gloss on Sokal’s comment “une absurdité, tant il est
clair que la signification d’un concept quelconque est évidemment affectée par sa mise en œuvre dans un
contexte nouveau!”37 Now I find it hard to defend Platonism with a straight face, and I prefer to regard
formula π2 = 6ζ(2) as a creation rather than a discovery. But Platonism does correspond to the familiar
experience that there is something about mathematics, and not just about other mathematicians, that
precisely doesn’t let us get away with saying “évidemment”!38 This experience is clearly captured by Alain
Connes, a selfavowed Platonist, in his dialogue with neurobiologist J.-P. Changeux, who (to oversimplify)
expects to find mathematical structures in the brain.39 I don’t think Connes (or Roger Penrose, another
prominent Platonist) is confused about reality, and I have a hard time imagining a neuronal representation
that does justice to the concept of π. But the ontological issues are far from settled, and while there is no
reason to assume they will ever be settled, the important point is that this situation is not an obstacle to
mathematics, much less to rationality.40 The real absurdity is to claim otherwise.”
. . .Harris: [12], Other publications, #2.

Thus, from an evidence-based perspective, set-theoretically defined real numbers exist merely
as axiomatically postulated mathematical objects21 only within any first-order set theory such as
ZF; whilst those of such numbers that can further be defined arithmetically exist as axiomatically
postulated mathematical objects22 (symbols) only within any first-order arithmetic such as PA.

Moreover, only the latter have the evidence-based properties that can be communicated under a
finitary interpretation of PA (as detailed in [1], §6, p.40), as algorithmically verifiable (i.e., logical)
truths which can, then, be treated as factually grounded knowledge (in the sense of [2], §5.A) when
describing properties of the actual universe we inhabit.

In other words:

— although ZF admits unique, set-theoretical, definitions of—and allows us to unambiguously talk
about the putative existence of—‘ideal ’ real numbers as the putative limits of Cauchy sequences
of rational numbers in a mathematically well-defined, albeit Platonically conceived, putative
set-theoretical universe, ZF has no well-defined Tarskian interpretation that would necessarily
evidence a ZF theorem over the finite ordinals as an algorithmically computable truth over the
natural numbers in the interpretation23;

— only PA, by virtue of the Provability Theorem for PA (see [1], Theorem 7.1, p.41), admits unique,
algorithmically verifiable, number-theoretic definitions of—and allows us to unambiguously talk
about the categorical existence of (see [2], §7.1)—specifiable real numbers (see [2], Theorem 7.5),
and their properties which, under a finitary interpretation of PA (as detailed in [1], §6, p.40),
can be communicated as algorithmically verifiable (i.e., logical) truths which can be treated as

21More specifically, as symbols corresponding to what George Lakoff and Rafael Núñez describe as secondary con-
ceptual metaphors in [14] (see also [2], §13.F, Three categories of information, and [2], §25.F, The Veridicality of
Mathematical Propositions).

22ibid.
23A striking example is that of Goodstein’s Theorem, where it can be argued that, although the finite ordinals can

be meta-mathematically put into a 1-1 correspondence with the natural numbers:

“Goodstein’s sequence Go(mo) over the finite ordinals in any putative model M of ACA0 terminates with
respect to the ordinal inequality ‘>o’ even if Goodstein’s sequence G(m) over the natural numbers does not
terminate with respect to the natural number inequality ‘>’ in M.” . . .Anand: [2], §18, Theorem 18.1.
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factually grounded knowledge (in the sense of [2], §5.A) when describing properties of the actual
universe we inhabit.
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