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Portfolio credit risk models estimate the range of potential losses due to defaults or deteriorations in credit quality. Most of these
models perceive default correlation as fully captured by the dependence on a set of common underlying risk factors. In light of
empirical evidence, the ability of such a conditional independence framework to accommodate for the occasional default clustering
has been questioned repeatedly. Thus, financial institutions have relied on stressed correlations or alternative copulas with more
extreme tail dependence. In this paper, we propose a different remedy—augmenting systematic risk factors with a contagious default
mechanism which affects the entire universe of credits. We construct credit stress propagation networks and calibrate contagion
parameters for infectious defaults.The resulting framework is implemented on synthetic test portfolios wherein the contagion effect
is shown to have a significant impact on the tails of the loss distributions.

1. Introduction

One of the main challenges in measuring the risk of a
bank’s portfolio is modelling the dependence between default
events. Joint defaults of many issuers over a fixed period of
timemay lead to extreme losses; therefore, understanding the
structure and the impact of default dependence is essential.
To address this problem, one has to take into consideration
the existence of two distinct sources of default dependence.
On the one hand, performance of different issuers depends
on certain common underlying factors, such as interest rates
or economic growth. These factors drive the evolution of a
company’s financial success, which ismeasured in terms of its
rating class or the probability of default. On the other hand,
default of an issuermay, too, have a direct impact on the prob-
ability of default of a second dependent issuer, a phenomenon
known as contagion. Through contagion, economic distress
initially affecting only one issuer can spread to a significant
part of the portfolio or even the entire system. A good
example of such a transmission of pressure is the Russian
crisis of 1998-1999 which saw the defaults of corporate and

subsovereign issuers heavily clustered following the sovereign
default [1].

Most portfolio credit risk models used by financial
institutions neglect contagion and rely on the conditional
independence assumption according to which, conditional
on a set of common underlying factors, defaults occur inde-
pendently. Examples of this approach include the Asymptotic
Single Risk Factor (ASRF) model [2], industry extensions
of the model presented by Merton [3] such as the KMV
[4, 5] and CreditMetrics [6] models, and the two-factor
model proposed recently by Basel Committee on Banking
Supervision for the calculation of Default Risk Charge (DRC)
to capture the default risk of trading book exposures [7]. A
considerable amount of literature has been published on the
conditional independence framework in standard portfolio
models; see, for example, [8, 9].

Although conditional independence is a statistically and
computationally convenient property, its empirical validity
has been questioned on a number of occasions, where
researchers investigated whether dependence on common
factors can sufficiently explain the default clustering which
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occurs from time to time. Schönbucher and Schubert [10]
suggest that the default correlations that can be achieved
with this approach are typically too low in comparison
with empirical default correlations, although this problem
becomes less severe when dealing with large diversified
portfolios. Das et al. [11] use data on US corporations from
1979 to 2004 and reject the hypothesis that factor correlations
can sufficiently explain the empirically observed default
correlations in the presence of contagion. Since a realistic
credit risk model is required to put the appropriate weight on
scenarios where many joint defaults occur, one may choose
to use alternative copulas with tail dependence which have
the tendency to generate large losses simultaneously [12]. In
that case, however, the probability distribution of large losses
is specified a priori by the chosen copula, which seems rather
unintuitive [13].

One of the first models to consider contagion in credit
portfolios was developed by Davis and Lo [14]. They suggest
a way of modelling default dependence through infection
in a static framework. The main idea is that any defaulting
issuer may infect any other issuer in the portfolio. Giesecke
and Weber [15] propose a reduced-form model for conta-
gion phenomena, assuming that they are due to the local
interaction of companies in a business partner network. The
authors provide an explicit Gaussian approximation of the
distribution of portfolio losses and find that, typically, conta-
gion processes have a second-order effect on portfolio losses.
Lando and Nielsen [16] use a dynamic model in continuous
time based on the notion ofmutually exciting point processes.
Apart from reduced-form models for contagion, which aim
to capture the influence of infectious defaults to the default
intensities of other issuers, structural models were devel-
oped as well. Jarrow and Yu [17] generalize existing models
to include issuer-specific counterparty risks and illustrate
their effect on the pricing of defaultable bonds and credit
derivatives. Egloff et al. [18] use network-like connections
between issuers that allow for a variety of infections between
firms. However, their structural approach requires a detailed
microeconomic knowledge of debt structure, making the
application of this model in practice more difficult than
that of Davis and Lo’s simple model. In general, since
the interdependencies between borrowers and lenders are
complicated, structural analysis has mostly been applied to
a small number of individual risks only.

Network theory can provide us with tools and insights
that enable us to make sense of the complex interconnected
nature of financial systems. Hence, following the 2008 crisis,
network-based models have been frequently used to measure
systemic risk in finance. Among the first papers to study
contagion using network models was [19], where Allen and
Gale show that a fully connected and homogeneous financial
network results in an increased system stability. Contagion
effects using network models have also been investigated
in a number of related articles; see, for example, [20–24].
The issue of too-central-to-fail was shown to be possibly
more important than too-big-to-fail by Battiston et al. in
[25], where DebtRank, a metric for the systemic impact of
financial institutions, was introduced. DebtRank was further
extended in a series of articles; see, for example, [26–28].

The need for development of complexity-based tools in
order to complement existing financialmodelling approaches
was emphasized by Battiston et al. [29], who called for a
more integrated approach among academics from multiple
disciplines, regulators, and practitioners.

Despite substantial literature on portfolio credit risk
models and contagion in finance, specifying models, which
take into account both common factors and contagion while
distinguishing between the two effects clearly, still proves
challenging. Moreover, most of the studies on contagion
using network models focus on systemic risk and the
resilience of the financial system to shocks. The qualitative
nature of this line of research can hardly provide quantitative
risk metrics that can be applied to models for measuring the
risk of individual portfolios. The aforementioned drawback
is perceived as an opportunity for expanding the current
body of research by contributing a model that would account
for common factors and contagion in networks alike. Given
the wide use of factor models for calculating regulatory
and economic capital, as well as for rating and analyzing
structured credit products, an extended model that can also
accommodate for infectious default events seems crucial.

Our paper takes up this challenge by introducing a
portfolio credit risk model that can account for two channels
of default dependence: common underlying factors and
financial distress propagated from sovereigns to corporates
and subsovereigns. We augment systematic factors with a
contagion mechanism affecting the entire universe of credits,
where the default probabilities of issuers in the portfolio are
immediately affected by the default of the country where
they are registered and operating. Our model allows for
extreme scenarios with realistic numbers of joint defaults,
while ensuring that the portfolio risk characteristics and the
average loss remain unchanged. To estimate the contagion
effect, we construct a network using credit default swaps
(CDS) time series. We then use CountryRank, a network-
based metric, introduced in [30] to quantify the impact of
a sovereign default event on the credit quality of corporate
issuers in the portfolio. In order to investigate the impact of
ourmodel on credit losses, we use synthetic test portfolios for
which we generate loss distributions and study the effect of
contagion on the associated riskmeasures. Finally, we analyze
the sensitivity of the contagion impact to rating levels and
CountryRank. Our analysis shows that credit losses increase
significantly in the presence of contagion. Our contributions
in this paper are thus threefold: First, we introduce a portfolio
credit risk model which incorporates both common factors
and contagion. Second, we use a credit stress propagation
network constructed from real data to quantify the impact of
deterioration of credit quality of the sovereigns on corporates.
Third, we present the impact of accounting for contagion
which can be useful for banks and regulators to quantify
credit, model, or concentration risk in their portfolios.

The rest of the paper is organized as follows. Section 2
provides an overview of the general modelling framework.
Section 3 presents the portfolio model with default contagion
and illustrates the networkmodel for the estimation of conta-
gion effects. In Section 4 we present empirical analysis of two
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synthetic portfolios. Finally, in Section 5, we summarize our
findings and draw conclusions.

2. Merton-Type Models for Portfolio
Credit Risk

Most financial institutions use models that are based on
some form of the conditional independence assumption,
according to which issuers depend on a set of common
underlying factors. Factormodels based on theMertonmodel
are particularly popular for portfolio credit risk. Our model
extends the multifactor Merton model to allow for credit
contagion. In this section, we present the basic portfolio
modelling setup, outline the model of Merton, and explain
how it can be specified as a factor model. A more detailed
presentation of themultivariateMertonmodel is provided by
[9].

2.1. Basic Setup andNotations. This subsection introduces the
basic notation and terminology that will be used throughout
this paper. In addition, we define themain risk characteristics
for portfolio credit risk.

The uncertainty of whether an issuer will fail to meet
its financial obligations or not is measured by its probability
of default. For comparison reasons, this is usually specified
with respect to a fixed time interval, most commonly one
year. The probability of default then describes the probability
of a default occurring in the particular time interval. The
exposure at default is a measure of the extent to which one
is exposed to an issuer in the event of, and at the time of, that
issuer’s default. The default of an issuer does not necessarily
imply that the creditor receives nothing from the issuer. The
percentage of loss incurred over the overall exposure in the
event of default is given by the loss given default. Typical
values lie between 45% and 80%.

Consider a portfolio of𝑚 issuers, indexed by 𝑖 = 1, . . . , 𝑚,
and a fixed time horizon of 𝑇 = 1 year. Denote by 𝑒𝑖 the
exposure at default of issuer 𝑖 and by 𝑝𝑖 its probability of
default. Let 𝑞𝑖 be the loss given default of issuer 𝑖. Denote by𝑌𝑖
the default indicator, in the time period [0, 𝑇]. All issuers are
assumed to be in a nondefault state at time 𝑡 = 0. The default
indicator 𝑌𝑖 is then a random variable defined by

𝑌𝑖 = {{{
1 if issuer 𝑖 defaults
0 otherwise

(1)

which clearly satisfies P(𝑌𝑖 = 1) = 𝑝𝑖. The overall portfolio
loss is defined as the random variable

𝐿 fl
𝑚∑
𝑖=1

𝑞𝑖𝑒𝑖𝑌𝑖. (2)

With credit risk in mind, it is useful to distinguish poten-
tial losses in expected losses, which are relatively predictable
and thus can easily be managed, and unexpected losses, which
are more complicated to measure. Risk managers are more
concernedwith unexpected losses and focus on riskmeasures
relating to the tail of the distribution of 𝐿.

2.2.TheModel ofMerton. Credit riskmodels are typically dis-
tinguished in structural and reduced-formmodels, according
to their methodology. Structural models try to explain the
mechanism by which default takes place, using variables such
as asset and debt values. The model presented by Merton in
[3] serves as the foundation for all these models. Consider an
issuer whose asset value follows a stochastic process (𝑉𝑡)𝑡≥0.
The issuer finances itself with equity and debt. No dividends
are paid and no new debt can be issued. InMerton’smodel the
issuer’s debt consists of a single zero-coupon bond with face
value𝐵 andmaturity𝑇.The values at time 𝑡 of equity and debt
are denoted by 𝑆𝑡 and 𝐵𝑡 and the issuer’s asset value is simply
the sum of these; that is,

𝑉𝑡 = 𝑆𝑡 + 𝐵𝑡, 𝑡 ∈ [0, 𝑇] . (3)

Default occurs if the issuer misses a payment to its debthold-
ers, which can happen only at the bond’s maturity 𝑇. At time𝑇, there are only two possible scenarios:

(i) 𝑉𝑇 > 𝐵: the value of the issuer’s assets is higher than its
debt. In this scenario the debtholders receive 𝐵𝑇 = 𝐵,
the shareholders receive the remainder 𝑆𝑇 = 𝑉𝑇 − 𝐵,
and there is no default.

(ii) 𝑉𝑇 ≤ 𝐵: the value of the issuer’s assets is less than
its debt. Hence, the issuer cannot meet its financial
obligations and defaults. In that case, shareholders
hand over control to the bondholders, who liquidate
the assets and receive the liquidation value in lieu
of the debt. Shareholders pay nothing and receive
nothing; therefore we obtain 𝐵𝑇 = 𝑉𝑇, 𝑆𝑇 = 0.

For these simple observations, we obtain the below relations:

𝑆𝑇 = max (𝑉𝑇 − 𝐵, 0) = (𝑉𝑇 − 𝐵)+ , (4)

𝐵𝑇 = min (𝑉𝑇, 𝐵) = 𝐵 − (𝐵 − 𝑉𝑇)+ . (5)

Equation (4) implies that the issuer’s equity at maturity 𝑇 can
be determined as the price of a European call option on the
asset value 𝑉𝑡 with strike price 𝐵 and maturity 𝑇, while (5)
implies that the value of debt at 𝑇 is the sum of a default-free
bond that guarantees payment of 𝐵 plus a short European put
option on the issuer’s assets with strike price 𝐵.

It is assumed that under the physical probability measure
P the process (𝑉𝑡)𝑡≥0 follows a geometric Brownianmotion of
the form

𝑑𝑉𝑡 = 𝜇𝑉𝑉𝑡𝑑𝑡 + 𝜎𝑉𝑉𝑡𝑑𝑊𝑡, 𝑡 ∈ [0, 𝑇] , (6)

where 𝜇𝑉 ∈ R is the mean rate of return on the assets,𝜎𝑉 > 0 is the asset volatility, and (𝑊𝑡)𝑡≥0 is a Wiener process.
The unique solution at time 𝑇 of the stochastic differential
equation (6) with initial value 𝑉0 is given by

𝑉𝑇 = 𝑉0 exp((𝜇𝑉 − 𝜎2𝑉2 )𝑇 + 𝜎𝑉𝑊𝑇) (7)

which implies that

ln𝑉𝑇 ∼ N(ln𝑉0 + (𝜇𝑉 − 𝜎2𝑉2 )𝑇, 𝜎2𝑉𝑇) . (8)
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Hence, the real-world probability of default at time 𝑇,
measured at time 𝑡 = 0, is given by

P (𝑉𝑇 ≤ 𝐵) = P (ln𝑉𝑇 ≤ ln𝐵)
= Φ( ln (𝐵/𝑉0) − (𝜇𝑉 − 𝜎2𝑉/2) 𝑇

𝜎𝑉√𝑇 ) . (9)

A core assumption of Merton’s model is that asset returns are
lognormally distributed, as can be seen in (8). It is widely
acknowledged, however, that empirical distributions of asset
returns tend to have heavier tails; thus, (9) may not be an
accurate description of empirically observed default rates.

2.3. The Multivariate Merton Model. Themodel presented in
Section 2.2 is concerned with the default of a single issuer. In
order to estimate credit risk at a portfolio level, a multivariate
version of the model is necessary. A multivariate geometric
Brownian motion with drift vector 𝜇𝑉 = (𝜇1, . . . , 𝜇𝑚)󸀠, vector
of volatilities 𝜎𝑉 = (𝜎1, . . . , 𝜎𝑚), and correlation matrix Σ,
is assumed for the dynamics of the multivariate asset value
process (V𝑡)𝑡≥0 with V𝑡 = (𝑉𝑡,1, . . . , 𝑉𝑡,𝑚)󸀠, so that for all 𝑖

𝑉𝑇,𝑖 = 𝑉0,𝑖 exp((𝜇𝑖 − 12𝜎2𝑖 )𝑇 + 𝜎𝑖𝑊𝑇,𝑖) , (10)

where the multivariate random vector W𝑇 with W𝑇 =(𝑊𝑇,1, . . . ,𝑊𝑇,𝑚)󸀠 is satisfyingW𝑇 ∼ 𝑁𝑚(0, 𝑇Σ). Default takes
place if 𝑉𝑇,𝑖 ≤ 𝐵𝑖, where 𝐵𝑖 is the debt of company 𝑖. It
is clear that the default probability in the model remains
unchanged under simultaneous strictly increasing transfor-
mations of 𝑉𝑇,𝑖 and 𝐵𝑖. Thus, one may define

𝑋𝑖 fl ln𝑉𝑇,𝑖 − ln𝑉0,𝑖 − (𝜇𝑖 − (1/2) 𝜎2𝑖 ) 𝑇
𝜎𝑖√𝑇 ,

𝑑𝑖 fl ln𝐵𝑖 − ln𝑉0,𝑖 − (𝜇𝑖 − (1/2) 𝜎2𝑖 ) 𝑇
𝜎𝑖√𝑇

(11)

and then default equivalently occurs if and only if 𝑋𝑖 ≤𝑑𝑖. Notice that 𝑋𝑖 is the standardized asset value log-return
ln𝑉𝑇,𝑖 − ln𝑉0,𝑖. It can be easily shown that the transformed
variables satisfy (𝑋1, . . . , 𝑋𝑚)󸀠 ∼ 𝑁𝑚(0, Σ) and their copula
is the Gaussian copula. Thus, the probability of default for
issuer 𝑖 is satisfying 𝑝𝑖 = Φ(𝑑𝑖), where Φ(⋅) denotes the
cumulative distribution function of the standard normal
distribution. A graphical representation of Merton’s model is
shown in Figure 1. In most practical implementations of the
model, portfolio losses are modelled by directly considering
an 𝑚-dimensional random vector X = (𝑋1, . . . , 𝑋𝑚)󸀠 with
X ∼ 𝑁𝑚(0, Σ) containing the standardized asset returns
and a deterministic vector d = (𝑑1, . . . , 𝑑𝑚) containing
the critical thresholds with 𝑑𝑖 = Φ−1(𝑝𝑖) for given default
probabilities 𝑝𝑖, 𝑖 = 1, . . . , 𝑚. The default probabilities
are usually estimated by historical default experience using
external ratings by agencies or model-based approaches.
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Figure 1: In Merton’s model, default of issuer 𝑖 occurs if at time 𝑇
asset value 𝑉𝑇,𝑖 falls below debt value 𝐵𝑖, or equivalently if 𝑋𝑖 fl(ln𝑉𝑇,𝑖 − ln𝑉0,𝑖 − (𝜇𝑖 − (1/2)𝜎2𝑖 )𝑇)/𝜎𝑖√𝑇 falls below the critical
threshold 𝑑𝑖 fl (ln𝐵𝑇,𝑖 − ln𝑉0,𝑖 − (𝜇𝑖 − (1/2)𝜎2𝑖 )𝑇)/𝜎𝑖√𝑇. Since𝑋𝑖 ∼ N(0, 1), 𝑖’s default probability, represented by the shaded area
in the distribution plot, is satisfying 𝑝𝑖 = Φ(𝑑𝑖). Note that default
can only take place at time 𝑇 does not depend on the path of the
asset value process.

2.4.MertonModel as a FactorModel. Thenumber of parame-
ters contained in the correlationmatrixΣ grows polynomially
in𝑚, and thus, for large portfolios it is essential to have amore
parsimonious parametrization which is accomplished using
a factor model. Additionally, factor models are particularly
attractive due to the fact that they offer an intuitive interpre-
tation of credit risk in relation to the performance of industry,
region, global economy, or any other relevant indexes that
may affect issuers in a systematic way. In the following we
show how Merton’s model can be understood as a factor
model. In the factormodel approach, asset returns are linearly
dependent on a vector F of 𝑝 < 𝑚 common underlying
factors satisfying F ∼ 𝑁𝑝(0, Ω). Issuer 𝑖’s standardized
asset return is assumed to be driven by an issuer-specific
combination 𝐹𝑖 = 𝛼󸀠𝑖F of the systematic factors

𝑋𝑖 = √𝛽𝑖𝐹𝑖 + √1 − 𝛽𝑖𝜖𝑖, (12)

where 𝐹𝑖 and 𝜖1, . . . , 𝜖𝑚 are independent standard normal
variables and 𝜖𝑖 represents the idiosyncratic risk. Conse-
quently, 𝛽𝑖 can be seen as a measure of sensitivity of 𝑋𝑖
to systematic risk, as it represents the proportion of the 𝑋𝑖
variation that is explained by the systematic factors. The
correlations between asset returns are given by

𝜌 (𝑋𝑖, 𝑋𝑗) = cov (𝑋𝑖, 𝑋𝑗) = √𝛽𝑖𝛽𝑗cov (𝐹𝑖, 𝐹𝑗)
= √𝛽𝑖𝛽𝑗𝛼󸀠𝑖Ω𝛼𝑗

(13)

since 𝐹𝑖 and 𝜖1, . . . , 𝜖𝑚 are independent and standard normal
and var(𝑋𝑖) = 1.
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Figure 2: Under the standard Merton model, the default threshold 𝑑𝐶𝑖 for corporate issuer 𝐶𝑖 is set to be equal to Φ−1(𝑝𝐶𝑖 ). Under the
proposed model, the threshold increases in the event of sovereign default, making 𝐶𝑖’s default more likely as the contagion effect suggests.

3. A Model for Credit Contagion

In the multifactor Merton model specified in Section 2.4, the
standardized asset returns 𝑋𝑖, 𝑖 = 1, . . . , 𝑚, are assumed to
be driven by a set of common underlying systematic factors,
and the critical thresholds 𝑑𝑖, 𝑖 = 1, . . . , 𝑚, are satisfying𝑑𝑖 = Φ−1(𝑝𝑖) for all 𝑖. The only source of default dependence
in such a framework is the dependence on the systematic
factors. In themodel we propose, we assume that, in the event
of a sovereign default, contagion will spread to the corporate
issuers in the portfolio that are registered and operating in
that country, causing default probability to be equal to their
CountryRank. In Section 3.1, we demonstrate how to calibrate
the critical thresholds so that each corporate’s probability
of default conditional on the default of the corresponding
sovereign equals its CountryRank, while its unconditional
default probability remains unchanged. In Section 3.2, we
show how to construct a credit stress propagation network
and estimate the CountryRank parameter.

3.1. Incorporating Contagion in Factor Models. Consider a
corporate issuer 𝐶𝑖 and its country of operation 𝑆. Denote
by 𝑝𝐶𝑖 the probability of default of 𝐶𝑖. Under the standard
Mertonmodel, default occurs if𝐶𝑖’s standardized asset return𝑋𝐶𝑖 falls below its default threshold 𝑑𝐶𝑖 .The critical threshold𝑑𝐶𝑖 is assumed to be equal to Φ−1(𝑝𝐶𝑖) and is independent
of the state of the country of operation 𝑆. In the proposed
model, a corporate is subject to shocks from its country of
operation; its corresponding state is described by a binary
state variable. The state is considered to be stressed in the
event of sovereign default. In this case, the issuer’s default
threshold increases, causing it more likely to default, as
the contagion effect suggests. In case the corresponding

sovereign does not default, the corporates liquidity state is
considered stable. We replace the default threshold 𝑑𝐶𝑖 with𝑑∗𝐶𝑖 , where
𝑑∗𝐶𝑖
= {{{

𝑑sd
𝐶𝑖

if the corresponding sovereign defaults

𝑑nsd
𝐶𝑖

otherwise

(14)

or equivalently

𝑑∗𝐶𝑖 = 1{𝑌𝑆=1}𝑑sd
𝐶𝑖

+ 1{𝑌𝑆=0}𝑑nsd
𝐶𝑖

. (15)

We denote by 𝑝𝑆 the probability of default of the country
of operation and by 𝛾𝐶𝑖 the CountryRank parameter which
indicates the increased probability of default of 𝐶𝑖 given the
default of 𝑆. An example of the new default thresholds is
shown in Figure 2. Our objective is to calibrate 𝑑sd

𝐶𝑖
and 𝑑nsd

𝐶𝑖
in such way that the overall default rate remains unchanged
and P(𝑌𝐶𝑖 = 1 | 𝑌𝑆 = 1) = 𝛾𝐶𝑖 . Denote by

𝜙2 (𝑥, 𝑦; 𝜌) fl 1
2𝜋√1 − 𝜌2 exp(−𝑥2 + 𝑦2 − 2𝜌𝑥𝑦

2 (1 − 𝜌2) ) ,

Φ2 (ℎ, 𝑘; 𝜌) fl ∫ℎ
−∞

∫𝑘
−∞

𝜙2 (𝑥, 𝑦; 𝜌) 𝑑𝑦 𝑑𝑥
(16)

the density and distribution function of the bivariate standard
normal distribution with correlation parameter 𝜌 ∈ (−1, 1).
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Note that 𝑑∗𝐶𝑖(𝜔) = 𝑑sd
𝐶𝑖
for 𝜔 ∈ {𝑌𝐶𝑖 = 1, 𝑌𝑆 = 1} ⊂ {𝑌𝑆 = 1},

and 𝑑∗𝐶𝑖(𝜔) = 𝑑nsd
𝐶𝑖

for 𝜔 ∈ {𝑌𝐶𝑖 = 1, 𝑌𝑆 = 0} ⊂ {𝑌𝑆 = 0}. We
rewrite P(𝑌𝐶𝑖 = 1 | 𝑌𝑆 = 1) in the following way:

P (𝑌𝐶𝑖 = 1 | 𝑌𝑆 = 1)
= 1
P (𝑌𝑆 = 1)P (𝑌𝐶𝑖 = 1, 𝑌𝑆 = 1)

= 1𝑝𝑆P [𝑋𝐶𝑖 < 𝑑sd
𝐶𝑖
, 𝑋𝑆 < 𝑑𝑆]

= 1𝑝𝑆Φ2 (𝑑
sd
𝐶𝑖
, 𝑑𝑆; 𝜌𝑆𝐶𝑖) .

(17)

Using the above representation and given 𝑑𝑆 = Φ−1(𝑝𝑆) and𝜌𝑆𝐶𝑖 , one can solve the equation

P (𝑌𝐶𝑖 = 1 | 𝑌𝑆 = 1) = 𝛾𝐶𝑖 (18)

over 𝑑sd
𝐶𝑖
. We proceed to the derivation of 𝑑nsd

𝐶𝑖
in such way

that the overall default probability remains equal to 𝑝𝐶𝑖 . This
constraint is important, since contagion is assumed to have
no impact on the average loss. Clearly,

𝑝𝐶𝑖 = P (𝑌𝐶𝑖 = 1)
= P (𝑌𝐶𝑖 = 1, 𝑌𝑆 = 1) + P (𝑌𝐶𝑖 = 1, 𝑌𝑆 = 0)
= P (𝑌𝐶𝑖 = 1 | 𝑌𝑆 = 1)P (𝑌𝑆 = 1)

+ P (𝑌𝐶𝑖 = 1, 𝑌𝑆 = 0)
(19)

and thus

P (𝑌𝐶𝑖 = 1, 𝑌𝑆 = 0) = 𝑝𝐶𝑖 − 𝛾𝐶𝑖 ⋅ 𝑝𝑆. (20)

The left-hand side of the above equation can be represented
as follows:

P (corp.def ∩ nosov.def) = P [𝑋𝐶𝑖 < 𝑑nsd
𝐶𝑖

, 𝑋𝑆 > 𝑑𝑆]
= P [𝑋𝐶𝑖 < 𝑑nsd

𝐶𝑖
] − P [𝑋𝐶𝑖 < 𝑑nsd

𝐶𝑖
, 𝑋𝑆 < 𝑑𝑆]

= Φ (𝑑nsd
𝐶𝑖

) − Φ2 (𝑑nsd
𝐶𝑖

, 𝑑𝑆; 𝜌𝑆𝐶𝑖) .
(21)

By use of the above and given 𝑑𝑆 = Φ−1(𝑝𝑆) and 𝜌𝑆𝐶𝑖 , one can
solve the previous equation over 𝑑nsd

𝐶𝑖
.

3.2. Estimation of CountryRank. In this section, we elaborate
on the estimation of the CountryRank parameter [30], which
serves as the probability of default of the corporate condi-
tional on the default of the sovereign. In addition, we provide
details on the construction of the credit stress propagation
network.

3.2.1. CountryRank. In order to estimate contagion effects
in a network of issuers, an algorithm such as DebtRank

[31] is necessary. In the DebtRank calculation process, stress
propagates even in the absence of defaults and each node
can propagate stress only once before becoming inactive.The
level of distress for a previously undistressed node is given
by the sum of incoming stress from its neighbors with a
maximum value of 1. Summing up the incoming stress from
neighboring nodes seems reasonable when trying to estimate
the impact of one node or a set of nodes to a network of
interconnected balance sheets where links represent lending
relationships. However, when trying to quantify the prob-
ability of default of a corporate node given the infectious
default of a sovereign node, one has to consider that there is
significant overlap in terms of common stress, and thus, by
summingwemay be accounting for the same effectmore than
once. This effect is amplified in dense networks constructed
from CDS data. Therefore, we introduce CountryRank as an
alternative measure which is suited for our contagion model.

We assume that we have a hypothetical credit stress
propagation network, where the nodes correspond to the
issuers, including the sovereign, and the edges correspond
to the impact of credit quality of one issuer on the other.
The details of the network construction will be presented in
Section 3.2.2. Given such a network, the CountryRank of the
nodes can be defined recursively as follows:

(i) First, we stress the sovereign node and as a result its
CountryRank is 1.

(ii) Let 𝛾𝑆 be the CountryRank of the sovereign and let𝑒(𝑗,𝑘) denote the edge weight between nodes 𝑗 and 𝑘.
Given a node 𝐶𝑖, let 𝑝 = 𝑆𝐶1𝐶2 ⋅ ⋅ ⋅ 𝐶𝑖−1𝐶𝑖 be a path
without cycles from the sovereign node 𝑆, to the node𝐶𝑖. The weight of the path 𝑝 is defined as

𝑤 (𝑝) = 𝛾𝑆𝑒(1,2) ⋅ ⋅ ⋅ 𝑒(𝑖−1,𝑖), (22)

where 𝑒(𝑗,𝑘) are the respective edge weights between
nodes 𝑗 and 𝑘 for 𝑗 ∈ {1, . . . , 𝑖 − 1} and 𝑘 ∈ {2, . . . , 𝑖}.
Let 𝑝1, . . . , 𝑝𝑚 be the set of all acyclic paths from
the sovereign node to the corporate node 𝐶𝑖 and let𝑤(𝑝1), . . . , 𝑤(𝑝𝑚) be the correspondingweights.Then
the CountryRank of node 𝐶𝑖 is defined as

𝛾𝐶𝑖 = max
1≤𝑗≤𝑚

𝑤(𝑝𝑗) . (23)

In order to compute the conditional probability of default
of a corporate given the sovereign default analytically, we
would need the joint distribution of probabilities of default
of the nodes, which has an exponential computational com-
plexity, and it is therefore intractable. Thus, we approximate
the conditional probability by choosing the path with the
maximum weight in the above definition for CountryRank.

The example in Figure 3 illustrates calculation of Coun-
tryRank for a hypothetical network. The network consists
of a sovereign node 𝑆 and corporate nodes 𝐶1, 𝐶2, 𝐶3, 𝐶4.
The edge labels indicate weights in network between two
nodes. We initially stress the sovereign node which results in
a CountryRank of 1 for node 𝑆. In the next step, the stress
propagates to node 𝐶1 and as a result its CountryRank is 0.9.
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Figure 3: Illustration of the CountryRank parameter using a hypothetical network. The subfigures (a)–(e) show the propagation of stress in
the network starting from the sovereign node to corporate nodes. At each step, the stress spreads to a node using the path with the maximum
weight from the sovereign node.

Then, node𝐶2 gets stressed giving it aCountryRank value 0.8.
For node 𝐶3, there are two paths from node 𝑆, so we pick the
path through node𝐶2 having a higher weight of 0.48. Finally,
there are three paths from node 𝑆 to node 𝐶4, and the path
with maximum weight is 0.27.

3.2.2. Network Construction. Credit default swap spreads are
market-implied indicators of probability of default of an
entity. A credit default swap is a financial contract in which
a protection seller A insures a protection buyer B against the
default of a third party C. More precisely, regular coupon
payments with respect to a contractual notional 𝑁 and a
fixed rate 𝑠, the CDS spread, are swapped with a payment of𝑁(1 − RR) in the case of the default of C, where RR, the so-
called recovery rate, is a contract parameter which represents
the fraction of investment which is assumed be recovered in
the case of default of C.

Modified 𝜖-Draw-Up. We would like to measure to what
extent changes in CDS spreads of different issuers occur
simultaneously. For this, we use the notion of a modified𝜖-draw-up to quantify the impact of deterioration of credit
quality of one issuer on the other. Modified 𝜖-draw-up is an
alteration of the 𝜖-draw-ups notion which is introduced in
[32]. In that article, the authors use the notion of 𝜖-draw-
ups to construct a network which models the conditional
probabilities of spike-like comovements among pairs of CDS
spreads. A modified 𝜖-draw-up is defined as an upward
movement in the time series in which the amplitude of the
movement, that is, the difference between the subsequent
local maxima and current local minima, is greater than a
threshold 𝜖. We record such local minima as the modified 𝜖-
draw-ups. The 𝜖 parameter for a local minima at time 𝑡 is set
to be the standard deviation in the time series between days𝑡 − 𝑛 and 𝑡, where 𝑛 is chosen to be 10 days. Figure 5 shows
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the time series of Russian Federation CDS with the calibrated
modified 𝜖-draw-ups using a history of 10 days for calibra-
tion.

Filtering Market Impact. Since we would like to measure the
comovement of the time series 𝑖 and 𝑗, we exclude the effect
of the external market on these nodes as follows.We calibrate
the 𝜖-draw-ups for the CDS time series of an index that does
not represent the region in question; for instance, for Russian
issuers we choose the iTraxx index which is the composite
CDS index of 125 CDS referencing European investment
grade credit. Then, we filter out those 𝜖-draw-ups of node𝑖 which are the same as the 𝜖-draw-ups of the iTraxx index
including a time lag 𝜏.That is, if iTraxx has amodified 𝜖-draw-
up on day 𝑡, thenwe remove themodified 𝜖-draw-ups of node𝑖 on days 𝑡, 𝑡 + 1, . . . , 𝑡 + 𝜏. We choose a time lag of 3 days for
our calibration based on the input data which is consistent
with the choice in [32].

Edges. After identifying the 𝜖-draw-ups for all the issuers and
filtering out the market impact, the edges in our network are
constructed as follows. The weight of an edge in the credit
stress propagation network from node 𝑖 to node 𝑗 is the
conditional probability that if node 𝑖 has an epsilon draw-up
on day 𝑡, then node 𝑗 also has an epsilon draw-up on days𝑡, 𝑡 + 1, . . . , 𝑡 + 𝜏, where 𝜏 is the time lag. More precisely,
let 𝑁𝑖 be the number of 𝜖-draw-ups of node 𝑖 after filtering
using iTraxx index and𝑁𝑖𝑗 epsilon draw-ups of node 𝑖 which
are also epsilon draw-ups for node 𝑗 with the time lag 𝜏.
Then, the edge weight𝑤𝑖𝑗 between nodes 𝑖 and 𝑗 is defined as𝑤𝑖𝑗 = 𝑁𝑖/𝑁𝑖𝑗. Figure 6 shows the minimum spanning tree of
the credit stress propagation network constructed using the
CDS spread time series data of Russian issuers.

Uncertainty in CountryRank. We test the robustness of our
CountryRank calibration by varying the number of days
used for 𝜖-parameter. The figure in Appendix B shows that
the 𝜖-parameter for Russian Federation CDS time series
remains stable when we vary the number of days. We initially
obtain time series of 𝜖-parameters by calculating standard
deviation in the last 𝑛 = 10, 15, and 20 days on all local
minima indices of Russian Federation CDS. Subsequently, we
calculate the mean of the absolute differences between the
epsilon time series calculated and express this in units of the
mean of Russian Federation CDS time series. The percentage
difference is 1.38% between the 10-day 𝜖-parameter and 15-
day 𝜖-parameter and 2.22% between the 10-day and 20-day𝜖-parameters.

Further, we quantify the uncertainty in CountryRank
parameter as follows. For an corporate node, we calculate the
absolute difference in CountryRank calculated using 𝑛 = 15
and 20 days with CountryRank using 𝑛 = 10 days for the 𝜖-
parameter. We then calculate this difference as a percentage
of the CountryRank calculated using 10 days for 𝜖-parameter
for all corporates and then compute their mean. The mean
difference between CountryRank calibrated using 𝑛 = 15
days and 𝑛 = 10 days is 6.84% and 𝑛 = 20 days and 𝑛 = 10
days is 9.73% for the Russian CDS data set.

Table 1: Systematic factor: index mapping.

Factor Index
Europe MSCI EUROPE
Asia MSCI AC ASIA
North America MSCI NORTH AMERICA
Latin America MSCI EM LATIN AMERICA
Middle East and Africa MSCI FM AFRICA
Pacific MSCI PACIFIC
Materials MSCI WRLD/MATERIALS
Consumer products MSCI WRLD/CONSUMER DISCR
Services MSCI WRLD/CONSUMER SVC
Financial MSCI WRLD/FINANCIALS
Industrial MSCI WRLD/INDUSTRIALS

Government ITRAXX SOVX GLOBAL LIQUID
INVESTMENT GRADE

4. Numerical Experiments

We implement the framework presented in Section 3 to
synthetic test portfolios and discuss the corresponding risk
metrics. Further, we perform a set of sensitivity studies and
explore the results.

4.1. FactorModel. Wefirst set up amultifactorMertonmodel,
as it was described in Section 2. We define a set of systematic
factors thatwill represent region and sector effects.We choose
6 region and 6 sector factors, for which we select appropriate
indexes, as shown in Table 1. We then use 10 years of index
time series to derive the region and sector returns 𝐹𝑅(𝑗),𝑗 = 1, . . . , 6 and 𝐹𝑆(𝑘), 𝑘 = 1, . . . , 6, respectively, and obtain
an estimate of the correlation matrix Ω, shown in Figure 7.
Subsequently, we map all issuers to one region and one sector
factor, 𝐹𝑅(𝑖) and 𝐹𝑆(𝑖), respectively. For instance, a Dutch bank
will be associated with Europe and financial factors. As a
proxy of individual asset returns, we use 10 years of equity
or CDS time series, depending on the data availability for
each issuer. Finally, we standardize the individual returns
time series (𝑋𝑖,𝑡) and perform the following Ordinary Least
Squares regression against the systematic factor returns

𝑋𝑖,𝑡 = 𝛼𝑅(𝑖)𝐹𝑅(𝑖),𝑡 + 𝛼𝑆(𝑘)𝐹𝑆(𝑘),𝑡 + 𝜖𝑖,𝑡 (24)

to obtain 𝛼̂𝑅(𝑖), 𝛼̂𝑆(𝑖), and 𝛽𝑖 = 𝑅2, where𝑅2 is the coefficient of
determination, and it is higher for issuers whose returns are
largely affected by the performance of the systematic factors.

4.2. Synthetic Test Portfolios. To investigate the properties of
the contagion model, we set up 2 test portfolios. For these
portfolios, the resulting risk measures are compared to those
of the standard latent variable model with no contagion.
Portfolio A consists of 1 Russian government bond and 17
bonds issued by corporations registered and operating in the
Russian Federation. As it is illustrated in Table 2, the issuers
are of medium and low credit quality. Portfolio B represents
a similar but more diversified setup with 4 sovereign bonds
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Table 2: Rating classification for the test portfolios.

Rating Portfolio A Portfolio B
Issuers % Issuers %

AAA - 0.00% 3 3.75%
AA - 0.00% 3 3.75%
A - 0.00% 22 27.50%
BBB 1 5.56% 39 48.75%
BB 15 83.33% 9 11.25%
B 2 11.11% 3 3.75%
CCC/C - 0.00% 1 1.25%

Table 3: Sector classification for the test portfolios.

Sector Portfolio A Portfolio B
Issuers % Issuers %

Materials 5 27.78% 12 15.00%
Consumer products - 0.00% 12 15.00%
Services 3 16.67% 19 23.75%
Financial 7 38.89% 25 31.25%
Industrial - 0.00% 6 7.50%
Government 3 16.67% 6 7.50%

issued by Germany, Italy, Netherlands, and Spain and 76 cor-
porate bonds by issuers from the aforementioned countries.
The sectors represented in Portfolios A and B are shown in
Table 3. Both portfolios are assumed to be equally weighted
with a total notional of €10 million.

4.3. Credit Stress Propagation Network. We use credit default
swap data to construct the stress propagation network. The
CDS raw data set consists of daily CDS liquid spreads for
different maturities from 1 May 2014 to 31 March 2015
for Portfolio A and 1 July 2014 to 31 December 2015 for
Portfolio B. These are averaged quotes from contributors
rather than exercisable quotes. In addition, the data set also
provides information on the names of the underlying refer-
ence entities, recovery rates, number of quote contributors,
region, sector, average of the ratings from Standard & Poor’s,
Moody’s, and Fitch Group of each entity, and currency of the
quote. We use the normalized CDS spreads of entities for the
5-year tenor for our analysis. The CDS spreads time series of
Russian issuers are illustrated in Figure 4.

4.4. Simulation Study. In order to generate portfolio loss
distributions and derive the associated risk measures, we
perform Monte Carlo simulations. This process entails gen-
erating joint realizations of the systematic and idiosyncratic
risk factors and comparing the resulting critical variableswith
the corresponding default thresholds. By this comparison,
we obtain the default indicator 𝑌𝑖 for each issuer and this
enables us to calculate the overall portfolio loss for this
trial. The only difference between the standard and the
contagion model is that in the contagion model we first
obtain the default indicators for the sovereigns, and their
values determine which default thresholds are going to be
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Table 4: Portfolio losses for the test portfolios and additional risk due to contagion.

(a) Panel 1: Portfolio A

Quantile Loss standard model Loss contagion model Contagion impact

99% 1,115,153 1,162,329 47,176 4%
99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,258,857 4,968,393 2,709,536 120%
99.99% 3,543,441 5,713,486 2,170,045 61%

Average loss 71,807 71,691

(b) Panel 2: Portfolio B

Quantile Loss standard model Loss contagion model Contagion impact

99% 373,013 379,929 6,915 2%
99.50% 471,497 520,467 48,971 10%
99.90% 775,773 1,009,426 233,653 30%
99.99% 1,350,279 1,847,795 497,516 37%

Average loss 44,850 44,872
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Figure 5: Time series for Russian Federation with local minima,
local maxima, and modified 𝜖-draw-ups.

used for the corporate issuers. The quantiles of the generated
loss distributions as well as the percentage increase due to
contagion are illustrated in Table 4. A liquidity horizon of 1
year is assumed throughout and the figures are based on a
simulation with 106 samples.

For Portfolio A, the 99.90% quantile of the loss distri-
bution under the standard factor model is €2,258,857, which
corresponds to approximately 23% of the total notional. This
figure jumps to €4,968,393 (almost 50% of the notional)
under the model with contagion. As shown in Panel 1,
contagion has a minimal effect on the 99% quantile, while
at 99.5%, 99.90%, and 99.99% it results in an increase of
108%, 120%, and 61%, respectively. This is to be expected

as the probability of default for Russian Federation is less
than 1% and thus, in more than 99.9% of our trials, default
will not take place and contagion will not be triggered. For
Portfolio B, the 99.90% quantile is considerably lower under
both the standard and the contagion model, at €775,773 or
8% of the total notional and €1,009,426 or 10% of the total
notional, respectively, reflecting lower default risk. One can
observe that the model with contagion yields low additional
losses at 99% and 99.5% quantiles, with a more significant
impact at 99.90% and 99.99% (30% and 37%, respectively).
An illustration of the additional losses due to contagion is
given by Figure 8.

4.5. Sensitivity Analysis. In the following, we present a series
of sensitivity studies and discuss the results. To achieve a
candid comparison, we choose to perform this analysis on the
single-sovereign Portfolio A.We vary the ratings of sovereign
and corporates, as well as the CountryRank parameter, to
draw conclusions about their impact on the loss distribution
and verify the model properties.

4.5.1. Sovereign Rating. We start by exploring the impact of
the credit quality of the sovereign. Table 5 shows the quantiles
of the generated loss distributions under the standard latent
variable model and the contagion model when the rating of
the Russian Federation is 1 and 2 notches higher than the
original rating (BB). It can be seen that the contagion effect
appears less strong when the sovereign rating is higher. At
the 99.9% quantile, the contagion impact drops from 120%
to 62% for an upgraded sovereign rating of BBB. The drop
is even higher, when upgrading the sovereign rating to A,
with only 11% additional losses due to contagion. Apart from
having a less significant impact at the 99.9% quantile, it is
clear that, with a sovereign rating of A, the contagion impact
is zero at the 99% and 99.5% levels, where the results of the
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Figure 8: Additional losses due to contagion for Portfolios A and B.

Table 5: Varying the sovereign rating.

Sovereign rating Quantile Loss
standard model

Loss
contagion model

Contagion impact

BB

99% 1,115,153 1,162,329 47,176 4%
99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,258,857 4,968,393 2,709,536 120%
99.99% 3,543,441 5,713,486 2,170,045 61%

BBB

99% 1,115,153 1,115,153 - 0%
99.50% 1,443,009 1,490,755 47,746 3%
99.90% 2,229,742 3,613,625 1,383,883 62%
99.99% 3,496,264 5,432,236 1,935,972 55%

A

99% 1,114,583 1,114,583 - 0%
99.50% 1,443,009 1,443,009 - 0%
99.90% 2,229,737 2,469,922 240,185 11%
99.99% 3,455,199 5,056,639 1,601,439 46%

contagion model match those of the standard model. This is
to be expected since a rating of A corresponds to a probability
of default less than 0.01%, and as explained in Section 4.4,
when sovereign default occurs seldom, the contagion effect
can hardly be observed.

4.5.2. Corporate Default Probabilities. In the next test, the
impact of corporate credit quality is investigated. As Table 6
illustrates, contagion has smaller impact when the corporate
default probabilities are increased by 5%, which is in line
with intuition since the autonomous (not sovereign induced)
default probabilities are quite high, meaning that they are
likely to default whether the corresponding sovereign defaults
or not. For the same reason, the impact is even less significant
when the corporate default probabilities are stressed by 10%.

4.5.3. CountryRank. In the last test, the sensitivity of the con-
tagion impact to changes in the CountryRank is investigated.
In Table 7, we test the contagion impact when CountryRank
is stressed by 15% and 10%, respectively. The results are
in line with intuition, with a milder contagion effect for
lower CountryRank values and a stronger effect in case the
parameter is increased.

5. Conclusions

In this paper, we present an extended factor model for
portfolio credit risk which offers a breadth of possible
applications to regulatory and economic capital calculations,
as well as to the analysis of structured credit products. In the
proposed framework, systematic risk factors are augmented
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Table 6: Varying corporate default probabilities.

Corporate default probabilities Quantile Loss
standard model

Loss
contagion model

Contagion impact

Unstressed

99% 1,115,153 1,162,329 47,176 4%
99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,258,857 4,968,393 2,709,536 120%
99.99% 3,543,441 5,713,486 2,170,045 61%

Stressed by 5%

99% 1,115,153 1,250,570 135,417 12%
99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,333,935 4,968,393 2,634,458 113%
99.99% 3,584,506 5,713,486 2,128,979 59%

Stressed by 10%

99% 1,162,329 1,260,422 98,093 8%
99.50% 1,503,348 3,003,949 1,500,602 100%
99.90% 2,375,570 4,968,393 2,592,823 109%
99.99% 3,642,099 5,713,486 2,071,387 57%

Table 7: Varying CountryRank.

CountryRank Quantile Loss
standard model

Loss
contagion model

Contagion impact

Unstressed

99% 1,115,153 1,162,329 47,176 4%
99.50% 1,443,579 3,003,949 1,560,370 108%
99.90% 2,258,857 4,968,393 2,709,536 120%
99.99% 3,543,441 5,713,486 2,170,045 61%

Stressed by 5%

99% 1,115,153 1,162,329 47,176 4%
99.50% 1,443,579 3,196,958 1,753,379 121%
99.90% 2,258,857 5,056,634 2,797,777 124%
99.99% 3,543,441 5,713,495 2,170,054 61%

Stressed by 10%

99% 1,115,153 1,162,329 47,176 4%
99.50% 1,443,579 3,389,398 1,945,818 135%
99.90% 2,258,857 5,296,249 3,037,392 134%
99.99% 3,543,441 5,801,727 2,258,286 64%

with an infectious default mechanism which affects the
entire portfolio. Unlike models based on copulas with more
extreme tail behavior, where the dependence structure of
defaults is specified in advance, our model provides an
intuitive approach, by first specifying the way sovereign
defaults may affect the default probabilities of corporate
issuers and then deriving the joint default distribution. The
impact of sovereign defaults is quantified using a credit stress
propagation network constructed from real data. Under this
framework, we generate loss distributions for synthetic test
portfolios and show that the contagion effect may have a
profound impact on the upper tails.

Our model provides a first step towards incorporating
network effects in portfolio credit riskmodels.Themodel can

be extended in a number of ways such as accounting for stress
propagation from a sovereign to corporates even without
sovereign default or taking into consideration contagion
between sovereigns. Another interesting topic for future
research is characterizing the joint default distribution of
issuers in credit stress propagation networks using Bayesian
network methodologies, which may facilitate an improved
approximation of the conditional default probabilities in
comparison to the maximum weight path in the current
definition of CountryRank. Finally, a conjecture worthy of
further investigation is that a more connected structure for
the credit stress propagation network leads to increased
values for the CountryRank parameter, and, as a result, to
higher additional losses due to contagion.
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Figure 9: Time series of CDS spreads ofDutch andGerman entities.

Appendix

A. CDS Spread Data

The data used to calibrate the credit stress propagation
network for European issuers is the CDS spread data of
Dutch, German, Italian, and Spanish issuers as shown in
Figures 9 and 10.

B. Stability of 𝜖-Parameter

The plot in Figure 11 shows the time series of the epsilon
parameter for different number days used for 𝜖-draw-up
calibration.
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Figure 10: Time series of CDS spreads of Spanish and Italian
entities.
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Figure 11: Stability of 𝜖 parameter for Russian Federation CDS.
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