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The Significance of Fuvidence-based Reasoning in Mathematics, Mathematics

Education, Philosophy, and the Natural Sciences

Distinguishing between what is believed to be true, what can be evidenced as true, and what
ought not to be believed as true

In this multi-disciplinary investigation, we address the philosophical challenge that arises when an intelligence—
whether human or mechanistic—accepts arithmetical propositions as true under an interpretation—either
axiomatically or on the basis of subjective self-evidence—without any specified methodology for objectively
evidencing such acceptance. We then show how an evidence-based perspective of quantification in terms of:

e algorithmic verifiability, and

e algorithmic computability
admits evidence-based definitions of:

o well-definedness, and

o cffective computability,

which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA—over the
structure N of the natural numbers—that are complementary, not contradictory:

e The first yields the weak, standard, interpretation Zpsn, sv) of PA over N, which is well-defined with
respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under
Tpa(, sv); and thus constitutes a constructively weak proof of consistency for PA.

e The second yields a strong, finitary, interpretation Zp 5(n, scy of PA over N, which is well-defined with
respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under
Tpa(, sc); and thus constitutes a constructively strong proof of consistency for PA.

We situate our investigation within a broad analysis of quantification vis a vis:

e Hilbert’s e-calculus e Godel’s w-consistency

e The Law of the Excluded Middle e Hilbert’s w-Rule

e An Algorithmic w-Rule e Gentzen’s Rule of Infinite Induction
e Rosser’s Rule C e Markov’s Principle

e The Church-Turing Thesis e Aristotle’s particularisation

e Wittgenstein’s constructive mathematics e FEvidence-based quantification

By showing how these are formally inter-related, we highlight the fragility of both:
e the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert’s e-calculus;
and

e the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer’s
belief that the Law of the Excluded Middle is non-finitary.

We then consider some consequences for mathematics, mathematics education, philosophy, and the natural
sciences, of an agnostic, evidence-based, finitary interpretation of quantification which challenges classical
paradigms in all these disciplines, and illuminates:

Why Fermat’s Last Theorem is pre-formally true
Why PA is finitarily consistent

Why ZF admits Goodstein’s Theorem

Why Dirichlet’s Theorem is true

Why P#£NP is pre-formally true

Why PA is categorical

Why PA may not admit Goodstein’s Theorem
Why there are an infinity of twin primes

BHUPINDER SINGH ANAND The author is an independent researcher reviewing classical interpretations
of Cantor’s, Gédel’s, Tarski’s and Turing’s reasoning, and addressing some grey areas in the foundations of
mathematics, logic, philosophy and computability.
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Dedicated to UNESCO’s 2nd World Logic Day
14th January 2020

With gratitude from one who has been privileged a life-time prancing on the shoulders of some—
occasionally indulgent, more often long-suffering—Giants.

Bernard of Chartres used to say that we are like dwarfs on the shoulders of giants, so that we can
see more than they, and things at a greater distance, not by virtue of any sharpness of sight on our
part, or any physical distinction, but because we are carried high and raised up by their giant size.
... John of Salisbury: Metalogica, 1159.
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World Logic Day

UNESCO

United Nations
Educational, Scientific
and

Cultural Organization

40th session, Paris, 2019

40C /74

13 November 2019
Original: English

Item 5.31 of the agenda

PROCLAMATION OF A WORLD LOGIC DAY
OUTLINE

Source: 207 EX/Decision 42.

Background: At its 207th session, in 207 EX/Decision 42, the Executive Board recommended
“that UNESCO’s General Conference, at its 40th session, proclaim 14 January “World Logic Day”,
in association with the International Council for Philosophy and Human Sciences (CIPSH)”.

Purpose: The report explains the historical, cultural and intellectual importance of logic for
philosophy and the sciences; argues that the proclamation of World Logic Day would contribute
to the development of logic, through teaching and research, as well as to public dissemination of
the discipline and to the promotion of international cooperation in the field; and offers a rationale
for UNESCO celebration of World Logic Day without financial implications, in close synergy with
World Philosophy Day, drawing on the commitment of existing academic networks, and working
in collaboration with the CIPSH.

Decision required: Paragraph 7.

1. The ability to think is one of the most defining features of humankind. In different cultures, the definition of
humanity is associated with concepts such as consciousness, knowledge and reason. According to the classic
western tradition, human beings are defined as “rational” or “logical animals”. Logic, as the investigation on
the principles of reasoning, has been studied by many civilizations throughout history and, since its earliest
formulations, logic has played an important role in the development of philosophy and the sciences.

2. Despite its undeniable relevance to the development of knowledge, sciences and technologies, there is little
public awareness on the importance of logic. The proclamation of World Logic Day by UNESCO, in association
with the International Council for Philosophy and Human Sciences (CIPSH), intends to bring the intellectual
history, conceptual significance and practical implications of logic to the attention of interdisciplinary science
communities and the broader public.

3. A dynamic and global annual celebration of World Logic Day aims at fostering international cooperation,
promoting the development of logic, in both research and teaching, supporting the activities of associations,
universities and other institutions involved with logic, and enhancing public understanding of logic and its
implications for science, technology and innovation. Furthermore, the celebration of World Logic Day can also
contribute to the promotion of a culture of peace, dialogue and mutual understanding, based on the advancement
of education and science.


https://unesdoc.unesco.org/ark:/48223/pf0000371483
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4. On 14 January 2019, the first World Logic Day was celebrated as an initiative of universities, research
institutes, foundations and associations active in the field of mathematics, philosophy, computer sciences,
engineering, economics and cognitive sciences. The existence of these networks, and their commitment to future
annual celebrations of World Logic Day, offer credible assurance that the proclamation of the Day by UNESCO,
in association with the relevant member organizations of the CIPSH, will lead to a solid action plan towards
impact and added value. UNESCO’s commitment to World Logic Day will ensure that it has a broader and
more geographically diverse orientation and connects organically to established programme priorities in the
humanities.

5. The initiative has no financial implications for UNESCO. Celebrations would be organized, drawing on their
own resources, by institutions in Member States and by international partners, including especially CIPSH
member organizations, in particular the Division for Logic, Methodology and Philosophy of Science and Tech-
nology of the International Union for History and Philosophy of Science and Technology (DLMPST/IUHPST).
The work of the Secretariat to coordinate World Logic Day would be absorbed within the human capacities
already assigned to development of humanities workstreams, in close synergy with the annual celebration of
World Philosophy Day. Coordinated planning of the two days will ensure a stronger presence of philosophy
throughout UNESCO’s calendar, consolidate relations with academic stakeholders through the association with
the CIPSH, and thus contribute to the strengthening of the humanities called for by the General Conference in
39 C/Resolution 29. Organization of specific activities by UNESCO, in particular at Headquarters, would be
conditional on extrabudgetary support.

6. The Executive Board considered the above matter at its 207th session and recommended, in 207 EX/Decision
42, that the General Conference proclaim 14 January “World Logic Day”, in association with CIPSH.

Proposed draft resolution

7. In light of the above, the General Conference may wish to adopt a resolution along the following lines:
The General Conference,
Having examined 40 C/74,
Noting the recommendation of the Executive Board as contaned in 207 EX/Decision 42,
Recalling UNESCQO’s mandate in education, sciences and culture,

Also recalling that logic, as a discipline that encourages rational and critical thinking, is of
paramount importance for the development of human knowledge, science and technology,

Further recalling that the dissemination of logic, a discipline that was developed by different
civilizations and is based on the virtues of discourse and argumentation, can contribute to the
achievement of a culture of peace, dialogue and mutual understanding among nations,

Noting that the proclamation of world logic day will have no financial implications for UNESCO,

Convinced that the proclamation of world logic day would contribute to the development of logic,
through teaching and research, as well as to public dissemination of the discipline and to the
promotion of international cooperation in the field,

1. Invites the Member States of UNESCO to celebrate world logic day every year, organizing
national events on 14 January with the active participation of governmental and non-
governmental, public and private institutions concerned, such as schools, universities, research
institutes, philosophical and scientific associations, and others,

2. Invites the Director-General to encourage and publicize initiatives taken in this regard at
the national, regional and international levels, working closely with the International Council
for Philosophy and Human Sciences (CIPSH),

3. Proclaims 14 January “World Logic Day”, in association with the International Council for
Philosophy and Human Sciences (CIPSH).

Additional reference:

Jean-Yves Beziau. 2019. 1st World Logic Day: 14 January 2019. In Logica Universalis, Volume 13, pp.1-20.
Springer Nature.

https://link.springer.com/article/10.1007/s11787-019-00221-5


https://link.springer.com/article/10.1007/s11787-019-00221-5

The heaviest burden a scholar carries is that of being right for the wrong reason.

. . . Anonymous.



B. S. Anand, The significance of evidence-based reasoning 9

“Whereof one cannot speak, thereof one must be silent.”
... Ludwig Wittgenstein: [Wi22], p.90..

Author’s Preface

This investigation seeks to caution about the consequences, and dangers, of preferring Plato’s knowledge
as justified true belief over Piccinini’s knowledge as factually grounded (evidence-based) belief, in an age of
alternative facts (whose social and political ramifications have been starkly highlighted by the unprecedented
influence, and power, of an emergent, yet unbridled, social media in the global responses to the 2020 COVID 19
pandemic) for which we—at least those of my ilk and generation (born circa 1940)—must shoulder the main
responsibility.

Dangers we may have unknowingly belittled—even if not denied outright—and counter-intuitive consequences
we may have not only uncritically welcomed, but passionately nurtured in our schools and universities, post
Cantor, by assuming in classical mathematics, logic, philosophy, and the natural sciences, that the unspecified
can be treated as specifiable without supporting evidence.

For the far-reaching significance of the qualification ‘unspecified’ see, for instance, §7., Definition 17; §8.G.,
Lemma 8.20; §8.G., Corollary 8.21; §14.H.h.; §14.H.j.; also §2., Definition 5.

Moreover the—arguably, misleading if not false—consequences of such a ‘faith-based’ philosophy are
highlighted in Section 5., ‘Three fragile Hilbertian, Brouwerian, and Godelian, dogmas’.

The challenge, in this investigation, is thus that of using Plato’s justified true beliefs, in what philosopher
Markus Pantsar calls pre-formal mathematics, in order to arrive at factually grounded (evidence-based) beliefs
in our usual systems of formal mathematics; beliefs which can then be treated as knowledge only if they can,
first, be interpreted as corresponding to Plato’s justified true belief under Tarski’s definitions of the satisfaction,
and truth, of the formulas of a formal language under a well-defined interpretation and, second, categorically
communicated.

Fittingly (see §28.), ALL the argumentation and formal conclusions in this book follow from just one—
seemingly trivial—distinction, between algorithmic verifiability and algorithmic computability, formalised in the
paper: The truth assignments that differentiate human reasoning from mechanistic reasoning: The evidence-based
argument for Lucas’ Gdodelian Thesis, which appeared in the December 2016 issue of Cognitive Systems Research.

Specifically, this investigation seeks to distinguish between what is believed to be true, what can be evidenced
as true, and what ought not to be believed as true, in the foundations of mathematics, philosophy, and the
natural sciences.

Accordingly, where authors have unequivocally stated what they believe to be true, I have (not invariably)
preferred quoting short passages—from their works—which I see as illuminating, or being illuminated by, the
evidence-based perspective of this investigations.

Where, however, authors have not explicitly stated their beliefs concerning the subject matter, and/or
where their works seem to me relevant to the evidence-based perspective of this investigation, I have preferred
to quote—often at considerable length—passages with minimum comment and/or interpretation, in order to
minimise inadvertently misrepresenting what the authors may believe to be true.

This investigation is intended (as I relate in the concluding paragraphs of the Acknowledgments section of
the Appendices) to be a personally—mnot professionally—motivated intellectual foray, rather than a definitive
scholarly exposition, seeking to identify what I believe can be evidenced, beyond mere justifiable belief, as
factually grounded ‘knowledge’ of selected issues. I have not—at least not wittingly—attempted, nor am I
equipped or competent, to do justice to all I have quoted by attempting to interpret and present a balanced
perspective of how academicians, and other equally respected scholars, perceive the subject matter.

Bhupinder Singh Anand

Mumbai
January 25, 2021
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Part 1
INTRODUCTION

PREFACE

In this multi-disciplinary investigation of the perception, and role, of quantification in formal
mathematical languages, and under their intended interpretations (in the sense of §7.K.), we
presume familiarity with the following, classical, foundations of current scientific paradigms, as
well as with where such, inherited, foundations are now sought to be challenged, and undermined,
by an evidence-based paradigm.

(1) Introductory-level texts on mathematical logic and computability?;

(2) David Hilbert’s, Luitzen Egbertus Jan Brouwer’s and Kurt Gédel’s deliberations? apropos
a constructive definition of quantification, over the domain N of the natural numbers,
which might yield a finitary proof of consistency for arithmetic;

and, most cructally, with:

(3) The following (amongst other; see §2.), paradigm challenging, consequences of the evidence-
based definitions of algorithmic verifiabilty, and algorithmic computability, introduced in
the relatively recent paper [An16], ‘ The Truth Assignments That Differentiate Human Rea-
soning From Mechanistic Reasoning: The Fvidence-Based Argument for Lucas’ Godelian
Thesis’, which appeared in the December 2016 issue of Cognitive Systems Research:

(a) The first-order Peano Arithmetic PA has two—hitherto unsuspected and unarguably
constructive—Tarskian (see §2.A.) interpretations over the domain N of the natural
numbers (compare [Art07]):

(i) The standard interpretation Zpa, sv)y of PA, which interprets quantification
weakly in terms of algorithmic verifiability ([An16], Theorem 5.6, p.40); whence
PA is constructively (weakly) consistent ([An16], Theorem 5.7, p.40);

(ii) A finitary interpretation Zpaw, scy of PA, which interprets quantification
strongly in terms of algorithmic computability ([Anl16], Theorem 6.7, p.41);
whence PA is finitarily (strongly) consistent ([An16], Theorem 6.8, p.41);

(b) PA is categorical ([Anl16], Corollary 7.2, p.41).
We shall situate our investigation within a broad analysis of quantification vis a vis:

e Hilbert’s e-calculus
e Godel’s w-consistency

e The Law of the Excluded Middle LEM

'We take Elliott Mendelson [Me64], George Boolos et al [BBJ03], and Hartley Rogers [Rg87], as
representative—in the areas that they cover—of standard expositions of classical first-order theory and of
computability (in particular, of the first-order Peano Arithmetic PA, and of classical Turing-computability).

2See, for instance, van Heijenoort: [Hei76]; Davis: [Da64]; Benacerraf, Putnam: [BPu64].
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Hilbert’s w-Rule

An Algorithmic w-Rule

Gentzen’s Rule of Infinite Induction
Rosser’s Rule C

Markov’s Principle

The Church-Turing Thesis CT

Aristotle’s particularisation (defined as the postulation that from the provability of
a formula [(Vz)F(z)] in a formal theory £, we may conclude the existence of some
unspecified object a, in the domain of any well-defined interpretation Z of L, for which
the interpretation F*(a) of [F'(a)] is true)

Wittgenstein’s perspective of constructive mathematics

An evidence-based perspective of quantification.

By showing how these are formally inter-related, we shall highlight the fragility of both:

the persisting, theistic (see §11.A.), classical/Platonic interpretation of quantification
grounded in Hilbert’s e-calculus; and the

persisting, atheistic (see §11.B.) constructive/Intuitionistic interpretation of quantification
rooted in Brouwer’s belief that the Law of the Excluded Middle LEM is non-finitary.

We shall then consider some consequences for:

Mathematics;
Mathematics education;
Philosophy; and the

Natural sciences;

of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical
paradigms in all these disciplines.

The ‘flavour’, and ultimate goal, of this evidenced-based, multi-disciplinary, investigation
of the perception, and role, of quantification in formal mathematical languages, and of its
‘truth” under their intended, Tarskian, interpretations, is aptly reflected in Markus Pantser’s
introductory remarks, in ‘Truth, Proof and Godelian Arguments: A Defence of Tarskian Truth
in Mathematics’, if we substitute ‘validating’ for ‘explaining’ in the concluding sentence below:

“In general, I think philosophers should be careful about telling mathematicians how to do their
jobs. This is not to say that the accepted results and methods of mathematics should be considered
sacrosanct. Nor is it to say that philosophy cannot offer anything of interest to mathematicians. I
disagree on both of these counts. There should always be room for healthy interaction between
mathematicians and philosophers of mathematics. Nevertheless, the philosophical disposition of
this work is definitely that of an anti-revisionist. After all, mathematical truth is the subject
matter, and philosophical accounts of it should be careful not to neglect the way mathematics is
actually practised. Here I am not interested in creating a new concept of mathematical truth as
much as I am in explaining the one most of us already have, whether implicitly or explicitly.”

... Pantsar: [Pan09], §1.1 General background.
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CHAPTER 1. INTRODUCTION

1. The Complementarity Thesis

The thesis of this investigation is that (as we shall argue in Part I1I, §12.) current mathematical
paradigms of what is entailed by David Hilbert’s development of proof theory®, and by L. E. J.
Brouwer’s development of constructive mathematics?, appear contradictory (see, for instance,
Barendregt [Brd13], Errett Bishop [Bil8], Gila Sher [Shr18], and Penelope Maddy [Mal§],
[Mal8a]) only because they fail to adequately accommodate that, as reportedly believed by
Hilbert prior to 1929 (see §9.A.a.):

Thesis 1. (Complementarity Thesis) Mathematical ‘provability” and mathematical ‘truth’
need to be interdependent and complementary, ‘evidence-based’, assignments-by-convention
towards achieving:

(1) The goal of proof theory, post Peano, Dedekind and Hilbert, which is:

— to uniquely characterise each informally defined mathematical structure S (e.g., the
Peano Postulates and their associated, classical, predicate logic),

— by a corresponding, formal, first-order language L, and a set P of finitary ax-
ioms/axiom schemas and rules of inference (e.q., the first-order Peano Arithmetic
PA and its associated first-order logic FOL),

- which assign unique provability values (provable/unprovable) to each well-formed
proposition of the language L without contradiction;

(2) The goal of constructive mathematics, post Brouwer and Tarski, which must be:

— to assign unique, evidence-based, truth values (true/false) to each well-formed propo-
sition of the language L,

— under an, unarguably constructive, well-defined interpretation I over the domain D
of the structure S,

- such that the provable formulas of L are true under the interpretation.
In other words (see Part I1I, §13.C.):

e Whilst the focus of proof theory may be viewed as seeking to ensure that any mathematical
language intended to represent our conceptual metaphors and their inter-relatedness is
unambiguous, and free from contradiction;

e The focus of constructive mathematics must be viewed as seeking to ensure that any such
representation does, indeed, uniquely identify and adequately represent such metaphors
and their inter-relatedness.

3 As surveyed, for instance, in Sieg: [Si12].
4 As covered, for instance, in Kleene: [K152] and Bauer: [Bal6].
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1.A. Pre-formal mathematics

The point is expressed emphatically, and unequivocally, by Markus Pantsar in his introduction
to ‘Truth, Proof and Godelian Arguments: A Defence of Tarskian Truth in Mathematics’:

“In this work I will argue that without any outer reference, mathematics as we know it could
simply not be possible: it could not have developed, and it could not be learnt or practised.
Sophisticated formal theories are the pinnacle of mathematics but, philosophically, they cannot be
studied separately from all the non-formal background behind them.

This way, what might seem like a completely formalist theory of mathematics turns out to be
nothing of the sort. It could not have existed without a wide pre-formal background, which
we will see when we examine mathematical practice in general.? Formal systems are not of the
self-standing type that extreme formalism seems to claim. My purpose in this work is to show
that the formalist program uses the actual practice of mathematics as a ladder that they later
discard. This by itself is of course perfectly acceptable, and it mirrors the way we strive for formal
axiomatic systems in mathematics. What is not acceptable is how they refuse using the ladder.

When it comes to the question of truth and proof, this could not be any more relevant. The
deflationist truth of extreme formalism equates mathematical truth with formal proof. However, as
we will see, that strategy requires that we take mathematics to concern only formal systems. Once
we look at the wider picture, we see that outer criteria are needed to avoid arbitrariness. Theory
choice must be explained, and this requires reference outside formal systems of mathematics.
Philosophers have tried to explain this by a wide array of concepts—usefulness, assertability, con-
sistency and conservativeness, to name a few—but ultimately none of them have been satisfactory.
The only plausible way to answer the problem of theory choice, I will argue, is by appealing to
truth.

Bl What I refer to as pre-formal mathematics in this work is more often discussed as informal mathematics in literature. The
choice of terminology here is based on two reasons. First, I want to stress the order in which our mathematical thinking develops.
‘We initially grasp mathematics through informal concepts and only later acquire the corresponding formal tools. Second, the term
“informal mathematics” seems to have an emerging non-philosophical meaning of mathematics in everyday life, as opposed to an
academic pursuit—which is not at all the distinction that I am after here4”

... Pantsar: [Pan09], §1.1 General background.

“(Exztreme) Formalism: to say that a mathematical sentence is true involves no reference to any entity outside
formal systems. Hence, a mathematical sentence is true in a formal system S if and only if it is provable in S, and
mathematical truth cannot be discussed in any other context.”

... Pantsar: [Pan09], §2.4 Formalism/nominalism.

In [Pdn15], erstwhile® philosopher and computer scientist Karlis Podnieks offers a lucid, and
compellingly empathetic, defence of what Pantsar terms as (extreme) Formalism, and Podnieks
terms as a ‘pure and extreme version of formalism’ which ‘is called by some authors “game
formalism”, because it is alleged to represent mathematics as a meaningless game with strings
of symbols’.

Podnieks seeks ‘to draw attention to some arguments in favour of game formalism as an
appropriate philosophy of real mathematics’ that ‘have not yet been used or were neglected in
past discussions’:

5Erstwhile’, since Professor Podnieks notes in a personal communication that: “I left the field of philosophy
of mathematics by publishing the farewell paper: Fourteen Arguments in Favour of a Formalist Philosophy of
Real Mathematics (2015)”. Accordingly, to respect Professor Podnieks’ intention, all citations and quotations
reflecting his philosophical proclivities, pronouncements, and perspectives—as evidenced in the various works
cited in this investigation—should be viewed more as faithfully illustrative of where he views the discipline he
addresses is ‘coming from’, rather than of where it is ‘headed’.
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“7 Game Formalism As a Philosophy of Real Mathematics

As a philosophy of real mathematics, game formalism allows mathematicians to postulate any
azioms that make sense, and explore the consequences that can be derived from these axioms (by
the application of some accepted means of reasoning, i.e., of some logic). Making sense (there may
be multiple ways to do so) is crucial here, of course. Mathematics has always contained elements
of gaming, but this was never a meaningless game.

The consequences obtained from a definite set of axioms are applicable to any structures that
satisfy these axioms. Thus, uninterpreted axioms are not meaningless, they are interpretable in
multiple ways. As expressed by one of the founders of category theory, Saunders Mac Lane (1986):

“Mathematics aims to understand, to manipulate, to develop, and to apply those
aspects of the universe which are formal.” (p. 456)

Argument 4. Uninterpreted axioms are not meaningless, they are interpretable in multiple ways.
The consequences of uninterpreted axioms are applicable to any structures that satisfy the azioms.

One cannot imagine working in the modern branches of mathematics for a long time without
knowing exactly which axioms one is using. The simplest example: when people are working in
group theory, their results will apply to all groups (or to some precisely defined subtypes of groups)
only if they deliberately keep themselves within the framework of the group axioms. Or, when
publishing in advanced set theory, people must indicate explicitly which large cardinal and/or
determinacy axioms they are using. This is mandatory even for the most devoted set theory
platonists. And, as mentioned above, people working in the old classical branches of mathematics
agree easily (when pressed) that they are working “within ZFC”. Those working in category
theory and other modern mathematical theories are aware that their work can be formalized in
ZFC extended by the axiom “there is a proper class of strongly inaccessible cardinals” (for details,
see C. McLarty (2010)).

Argument 5. In fact, real mathematics is developed within axiomatic frameworks. This is
why uninterpreted formal systems (formal languages, axioms and logics) can serve as a clean
representation of the real mathematics of modern times.

Stephen W. Hawking (2002): “...we are not angels, who view the universe from the outside.
Instead, we and our models are both part of the universe we are describing.”

Argument 6. Any formal system, after its definition is put on paper, becomes part of the physical
universe. Therefore, asking about the “unreasonable effectiveness of mathematics in the natural
sciences” (E. P. Wigner (1960)) is, in fact, asking about the applicability of a particular fragment
of the physical universe to other fragments. This rebuts the “applicability argument” raised by
Gottlob Frege against game formalism (for details, see A. Weir (2011)).”.

... Podnieks: [Pdn15], §7 Game Formalism As a Philosophy of Real Mathematics.

To the extent that academics indeed follow, and implement in their teaching and research,
Podnieks ‘game formalism’, his argumentation in [Pdn15] evidences—implicitly in practice even
if not explicitly in belief—both:

e preference for Plato’s perspective of knowledge as ‘Justified True Belief” over Piccinini’s
knowledge as ‘Factually Grounded Belief’ (see §5.A.; also the Author’s Preface); and

e Pantsar’s critical perspective that although ‘the formalist program uses the actual practice
of mathematics as a ladder that they later discard’, and is, by itself, ‘perfectly acceptable’
since ‘it mirrors the way we strive for formal axiomatic systems in mathematics’, what is
not acceptable is their disavowal of the use, and necessity, of such a ‘ladder’.
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Moreover, from the evidence-based perspective of the Complementarity Thesis (§1., Thesis
1), disavowal of the use, and necessity, of such a ‘ladder’ can—as we have argued in §7.B.5—lead
to interpretations of quantification (with seriously misleading consequences as detailed in
§5.7) that have ‘subsequently been sanctified by prevailing custom in published classical, and
constructivist /intuitionistic, literature and textbooks at such an early stage of any mathematical
curriculum, and planted so deeply into students’ minds, that thereafter most cannot even detect
its presence—Ilet alone need for justifying quantification—in a definition or a proof sequence!’

Amongst such misleading consequences—for which Podnieks (for reasons detailed in §14.A.8
§16.%, and §17.'%) ought not to be held accountable! when wearing his ‘erstwhile’ philosopher’s
hat (see §13.C.!1%)—is, for instance, the following inherited perspective—of Rosser’s claimed
‘extension’ of Godel’s Theorem (see [R036], and its putative entailments—that we could, from an
evidence-based perspective, term as part of Podnieks’ system of ‘Justified Axiomatic Beliefs!3—
i.e., part of Arguments 1-14 and supporting Theorems 1-5 in [Pdn15]—which Podnieks seemingly
treats as both a justification of, and a justified pathway to, a ‘knowledge’ of possible ‘Justified
True Beliefs’, rather than the converse (as, as argued in the concluding paragraph of §1.D.e.™,
ought to be the case in order to avoid, misleadingly, elevating Plato’s ‘Justified True Beliefs’ to
‘knowledge’ in the absence of Piccinini’s ‘Factually (evidence-based) Grounded Belief”):

“9 Godel’s First Incompleteness Theorem

The pure mathematical contents of Godel’s First Incompleteness Theorem, without any admixture
of philosophical assessment, is represented in the following formulation (the modern version as
improved by J. B. Rosser):

Theorem 1. Assume T is a formal system of azioms (formal theory) in which the basic theorems
about natural numbers (0,1,2,...) can be proved. Then there are two algorithms. The first one
builds, depending on the axioms of T, a formula G that expresses some definite statement about
natural numbers. The second allows for the conversion:

a) of any T-proof of Gt into a T-proof of =G (the negation of GT); and
b) of any T-proof of -G into a T-proof of Gr.

From this point on, one may start drawing philosophical consequences.

The most popular first step is the (seemingly harmless) re-formulation of the theorem given below.
If T is an inconsistent system, then T proves anything, G and ~Gr included. However, if T is a
consistent system, then T can prove neither G, nor -G7. Hence, the re-formulation:

687.B.: Faith-based quantification.

7§5.: Three fragile Hilbertian, Brouwerian, and Godelian, dogmas.

8§14.A.: The illusory significance of Godel 1931.

9§16.: The significance of evidence-based reasoning for Rosser’s ‘extension’ of Gédel’s Theorem.

10¢17.: The significance of evidence-based reasoning for non-standard models of PA.

HTike Wittgenstein, Lucas, Penrose and others of similar ilk (see [An07b], [An07c]), Podnieks too can, in
this instance, be excused for depending upon, and being constrained by, fallible classical and intuitionistic,
essentially inherited, wisdom (see also §5.) to the effect that a consistent Peano Arithmetic such as PA can
admit undecidable propositions by Rosser’s reasoning, and attendant entailments.

12613.C.: Mathematics must serve Philosophy and the Natural Sciences.

13As the anecdotal incident concerning Professor Huzurbazar (see §29.; also §7.B., fn.76) illustrates, one can
choose—for functional rather than epistemological reasons—to treat an ‘Axiomatic Belief’ as ‘Justified’, but not
amounting to ‘knowledge’, even in the absence of a ‘Justified True Belief’ that Plato treats as ‘knowledge’.

1481.D.e.: Conclusions: Fermat’s Lost Argument.
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Theorem 2. If T is a consistent formal theory in which the basic theorems about natural numbers
can be proved, then there is a definite statement about natural numbers that T can neither prove,
nor disprove.

In short, if T is a consistent formal theory proving the basic theorems about natural numbers,
then T is incomplete, hence, the term “incompleteness theorem”. This is still correct, but the next
step leads to confusion.

Is our theory T consistent? An easy theorem follows.

Theorem 3. If there is at least one consistent formal theory proving the basic theorems about
natural numbers, then there is no algorithm that makes it possible to decide, from the axioms of T,
whether or not T is consistent.

Hence, one cannot, simply staring at the axioms, decide, are they consistent, or not.
10 Is Arithmetic Consistent?

And, if so, which theory T do we have in mind? First-order arithmetic (also called PA)? Almost
all people believe, following their intuition of the natural number sequence 0,1, 2, ..., that the
axioms of PA are true for these numbers, and hence, “obviously”, PA is a consistent formal theory.
These people will not agree with the following argument.

Argument 7. The argument about the “obvious” consistency of first-order arithmetic returns us
to Argument 2 about the reliability of mathematical intuitions. Why should we regard our intuition
about the natural number sequence as absolutely reliable? As we know, until 1895, Cantor’s intuition
of infinite sets was widely regarded as “obviously true”, but then the “antinomies surrounding the
Russell-Zermelo paradox” appeared. The arithmetical intuition is likely more reliable than Cantor’s
intuition of infinite sets, but should it be regarded as absolutely reliable?

As a consequence of this argument, a philosophically neutral formulation of Godel’s First Incom-
pleteness Theorem should be symmetrical:

Theorem 4. If T is a formal theory in which the basic theorems about natural numbers can be
proved, then T is either inconsistent, or incomplete.

Working in T (for example, in PA; ZFC, or any more powerful theory), one will arrive inevitably
either at contradictions, or at unsolvable problems belonging to the scope of the competence of T.
The outcome of the process cannot be predicted in advance”.

... Podnieks: [Pdni5], §10 Is Arithmetic Consistent?.

However, from the evidence-based perspective of this investigation, Game Formalism as
exemplified by Podnieks’ ‘Justified Axiomatic Beliefs’ either contradicts, or is unable to admit,
that the first-order Peano Arithmetic PA has two, and only two, evidence-based Tarskian (see
§2.A.) interpretations over the domain N of the natural numbers:

(i) The standard interpretation Zpa, svy of PA, which interprets quantification weakly in
terms of algorithmic verifiability ([An16], Theorem 5.6, p.40); whence PA is constructively
(weakly) consistent ([An16], Theorem 5.7, p.40);

(i) A finitary interpretation Zpa, scy of PA, which interprets quantification strongly in
terms of algorithmic computability ([An16], Theorem 6.7, p.41); whence PA is finitarily
(strongly) consistent ([An16], Theorem 6.8, p.41).

Together, these entail:

(i) [Anl16], Theorem 6.8, p.41 (see also §2.C.a., Theorem 2.16): PA is consistent.
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(ii) [Anl16], Corollary 7.2, p.41 (see also §2.E.b., Corollary 2.18): PA is categorical with respect
to algorithmic computability;

(iii) [Anl16], Corollary 8.2, p.42 (see also §2.F., Corollary 2.20) The PA formula [-(Vz)R(z)]
defined in Lemma 8.1 is PA-provable;

(iv) [An16], Corollary 8.3, p.42 (see also §2.F., Corollary 2.21) In any model of PA, Gédel’s
arithmetical formula R(z) interprets as an algorithmically verifiable, but not algorithmically
computable, tautology over N;

(v) §8.D., Theorem 8.12: Aristotle’s particularisation does not hold in any finitary interpreta-
tion of PA under which the PA-axioms interpret as true, and the PA rules of inference
preserve such truth;

(vi) §8.G., Lemma 8.20: Rosser’s Rule C' entails Aristotle’s particularisation; and
(viii) §8.G., Corollary 8.21: Rosser’s Rule C' is stronger than Gddel’s w-consistency.

From the evidence-based perspective of the Complementarity Thesis (§1., Thesis 1)—and in
order to avoid the unintended misleading consequences highlighted above—both of Pantsar’s
pre-formal mathematics, and Podnieks’ formal mathematics, ought to, thus, be viewed more
appropriately as:

— merely a set of complementary, symbolic, languages (see §13.),
— intended to serve Philosophy and the Natural Sciences (see §13.C.),

— by seeking to provide the necessary tools for adequately expressing our sensory observations—
and their associated perceptions (and abstractions)—of a ‘common’ external world;

— corresponding to what some cognitive scientists, such as Lakoff and Nufiez in [LRO0](see
also §25.), term as primary and secondary ‘conceptual metaphors’,

— in a symbolic language of unambiguous expression and, ideally, categorical communication.

Further (see §13.E.), we may need to recognise explicitly in our basic mathematical education
(see §26.) that evidence-based reasoning:

(a) restricts the ability of highly expressive mathematical languages, such as the first-order
Zermelo-Fraenkel Set Theory ZF, to categorically communicate abstract concepts (corre-
sponding to Lakoff and Nunez’s conceptual metaphors in [LR00]; see also §25.) such as
those involving Cantor’s first limit ordinal w'®;

and:

(b) restricts the ability of effectively communicating mathematical languages, such as the
first-order Peano Arithmetic PA, to well-define infinite concepts such as w (see §17.A.a.).

In other words (as highlighted by §19.C., Cases 19.C.a. to 19.C.d., and §19.D., Case 19.D.c.),
from the evidence-based perspective of this investigation and, ideally, that of all disciplines
which appeal to currently accepted scientific methods:

15See [LRO0], Preface, p.wii-ziii: “How can human beings understand the idea of actual infinity?”
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— although ZF admits unique, set-theoretical, definitions of—and allows us to unambiguously
talk about the putative existence of—‘ideal’ real numbers as the putative limits of Cauchy
sequences of rational numbers, and their putative properties, in a mathematically defined,
albeit Platonically conceived, universe,

— only PA, by virtue of the Provability Theorem for PA (see §2.E.b., Theorem 2.17),
admits unique, algorithmically verifiable, number-theoretic definitions of—and allows
us to unambiguously talk about the categorical existence of (see §7.1.)—specifiable real
numbers (see §7.1., Theorem 7.5), and their properties, which can be communicated as
knowledge (in the sense of §5.A.) when describing the actual universe we inhabit.

Mathematics, therefore, needs to be treated as a sub-discipline of linguistics (as suggested
in §26.; §26.A.); and any ontological commitments associated with mathematical statements
pertain not to the language per se, but to the conceptual metaphors that the language is
intended to represent and communicate.

1.B. Logic as a methodological tool

Further, the epistemological perspective (compare Gila Sher [Shr18]) of the Complementarity
Thesis (§1., Thesis 1) is that (see §12. and §13.F.) logic, too, can be viewed as merely a
methodological tool that seeks to formalise an intuitive human ability that pertains not to the
language which seeks to express it formally, but to the cognitive sciences in which its study is
rooted:

Definition 1. (Well-defined logic) A finite set X of rules is a well-defined logic of a formal
mathematical language L if, and only if, A assigns unique, evidence-based, values:

(a) Of provability/unprovability to the well-formed formulas of L; and

(b) Of truth/falsity to the sentences of the Theory T'(U) which is defined semantically by the
A-interpretation of L over a given mathematical structure U that may, or may not, be
well-defined; such that

(¢c) The provable formulas interpret as true in T'(U).

Comment: We note that although the question of whether or not A\ categorically defines a
unique Theory T'(U) is mathematical, the question of whether, and to what extent, any Theory
T(U) succeeds (in the sense of Carnap’s explicatum and explicandum in [Ca62a]) in faithfully
representing the structure U—which, from the evidence-based perspective of this investigation,
can be viewed as corresponding to Pantsar’s pre-formal mathematics in [Pan09] (§4. Formal and
pre-formal mathematics)—is a philosophical question for the cognitive sciences (cf. [LR00]; see
also §25.), where:

“By the procedure of explication we mean the transformation of an inexact, prescientific
concept, the explicandum, into a new exact concept, the explicatum. Although the
explicandum cannot be given in exact terms, it should be made as clear as possible
by informal explanations and examples. ...A concept must fulfill the following
requirements in order to be an adequate explicatum for a given explicandum: (1)
similarity to the explicandum, (2) exactness, (3) fruitfulness, (4) simplicity.”

... Carnap: [Ca62a], p.3 & p.5.
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In other words—a view that resonates with Ludwig Wittgenstein’s perspective in the
Tractatus (see Frascolla: [Fra94], § The “Knowledge” of Forms: Vision and Calculation, pp.24-
27)—a mathematical or logical truth is merely an assertion of the reliability of a mathematical
language to faithfully express that which is sought to be expressed formally within the language.
It has no bearing on the ontological status of that which is sought to be expressed within the
language.

The goals of proof theory and constructive mathematics'® ought to, thus (as argued in Part
I1I, §13.E.), be viewed as necessarily interdependent and complementing, rather than being
independent of, or in conflict with, each other as to which is more ‘foundational’.

A similar perspective towards the need for re-appraisal of the role of semantics in the
syntactical development of formal mathematical and, implicitly, pre-formal mathematical and

physical, structures and theories is recently argued for by philosophers Décio Krause and Jonas
R. B. Arenhart in [KA19]:

“...the central issue concerns whether scientific theories (specifically, empirical theories) are more
properly characterized as syntactical entities, in terms of formal languages and sets of axioms and
inference rules expressed in such formal language, or as semantic entities, in terms of classes of
models and/or structures (there is disagreement over whether structures and models are the same
kind of thing and about which is more appropriate for the semantic approach, as we shall see
soon). It is generally agreed that the semanticists have won the battle, and the semantic approach
is now considered as the new orthodoxy [Con.06]. Now, as we have remarked, it should come as
no surprise that the semantic view established itself, given that the syntactic view was seen as
unable to deal with its criticisms even before the semantic approach clearly emerged. Along with
the rise of the new orthodoxy, a less rigorous and less formal-friendly mood has dominated the
philosophical studies of scientific theories.

However, apart from how the story is usually told, new studies on the Received View are emerging
and along with them, a more faithful understanding of the characterization of scientific theories
by the Logical Empiricists is being achieved. With the publication of such works, we start to
understand that the debate is presented in such a way that is not favorable to the syntactical
approach; in fact, the Received View is generally presented as a caricature of a highly naive
and implausible view (see [Lut.12], [Hal.15] and the references in those works). The syntactic
approach, mainly identified with the approach advanced by some members of the Vienna Circle
such as Carnap and Hempel, was criticized in almost every aspect. As it was characterized by
its opponents, it really did suffer from profound difficulties as an approach to scientific theories.
Perhaps the heavier criticisms seem to be those accusing it of too radical deviance of actual
scientific practice, mainly due to its heavy reliance on first-order logic and axiomatization. As an
account of scientific theories, the Received View failed badly by distancing itself from real science
and by relying so heavily on formal tools and techniques (or, at least, so the argument goes).

The semantic view, on the other hand, seemed to be completely different from the syntactical
view in those aspects, keeping close to actual scientific practice and not requiring that scientific
theories be formulated in any specific language. In particular, the last feature was erected as a
great virtue of the view and defended by van Fraassen and his followers (see for instance [vanF.89,
pp-221, pp.225-6]). The so-called model revolution initiated by Patrick Suppes in the ’60s would be
reduced to nothing if language were allowed to play a substantial role in the formulation of a theory
(the claim is not from Suppes himself, but see [Sups.60, Sups.67]and [Mul.11, sec.6]). However, as
we shall discuss in what follows, it is perhaps this sole requirement of being ‘language free’ that
makes the semantic approach almost senseless, while at the same time it is this requirement that
allegedly marks a radical divide between both approaches nowadays. Leave that requirement out
and we have a position that can, perhaps, be made compatible with a syntactical approach too.

16Corresponding to what Gila Sher terms in [Shr18] as ‘proof-theoretic’ and ‘truth-theoretic’ approaches to
the classical perspective of ‘logic’.
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We shall not attempt to present here a revision of the literature about the whole dispute. However,
given that the following chapters will deal with issues that are related to both the semantic and the
syntactic approaches, and references shall be made to those approaches, we shall give here to the
reader a brief summary of the debate and present reasons for its seemingly going out of the tracks.
Our aim is not to promote one of the approaches as superior, but rather to argue that scientific
theories may be profitably studied by the philosopher and by those interested in foundations from
many distinct points of view. Instead of a competition between distinct approaches, we propose
that they do complement each other. This kind of claim will involve another revision of the attitude
towards the relation between theories in real scientific practice and our rational reconstruction of
them for philosophical purposes. As we shall argue, our constructs may employ distinct technical
resources, and it is not clear that they should reproduce in every detail their informal counterparts.
Perhaps formalized theories (be it in a formal language or some set theory) gain a life of their
own, helping us to understand their informal counterparts; that is their purpose.”

... Krause/Arenhart: [KA19], Chapter 1, The Quandary on the Characterization of Scientific Theories, pp.2-3.

Comment: The significance of Krause and Arenhart’s remark that it ‘is generally
agreed that the semanticists have won the battle’ is seen in the following comment
made by Professor Leo Harrington, during a brief 10 minute meeting in his office at UC,
Berkeley, in the summer of 1996, when the author brought to his attention that the
Deduction Theorem in first-order logic implicitly favoured a particular interpretation
of quantification:

“Now you’ve got me worried. That’s why I tell my students to avoid arguing
in the formal theory, and to argue only in the model”.

... Harrington: Anecdotal comment, 1996

Nearly 25 years on, in a remarkably candid, humble and humbling, admission of a
learned lesson, (now emeritus) Professor Harrington not only confirms, and endorses,
his 1996 remark as reflective of his preference towards interpreting quantification
semantically, despite an inability to communicate the semantics categorically, but—
implicitly echoing Krause and Arenhart’s perspective—remarks that the price paid
for such a ‘valuable insight’ (presumably of a putative barrier towards categorical
communication that might be unsurmountable, and not merely a personal limitation)
may involve having ‘lost touch with something also valuable’:

“After almost 25 years, I do not recall the 10 minute meeting, but I can
definitely validate my philosophic concerns about quantification. When
teaching undergraduate mathematical logic, I have been acutely aware of the
divide in the class between those who understood the semantic approach, and
those who did not; and I have been acutely aware of being unable to actually
explain it to those who did not, since any explanation was dependent on the
presumption that the English language already entailed the mathematical
meaning of quantification.

I am also acutely aware that during the course of the twentieth century
mathematicians have lost something, we no longer know how to fully feel a
verification from within—we only believe in external universally recognizable
proofs. We have learned an extremely valuable insight, but thereby also lost
touch with something also valuable.

I recently made contact with someone who I believe would be extremely
interested in your book. I have the urge to forward him the link you sent;
but am checking with you first to see if that is acceptable to you, or should
I instead just inform him of your book’s upcoming appearance.”

... Harrington: Personal communication, 1st November 2020.

From the evidence-based perspective of this investigation, however, we would view
such a putative inability to communicate the semantics of quantification categorically
as merely reflecting (see also §13.E.):
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(a) in the first-order Set Theory ZF an implicit commitment to an in-principle un-
verifiable, faith-based (as detailed in §7.B.), interpretation of formal quantification
that is essentially as defined by Hilbert in his e-calculus (which can be viewed as
uncritically treating the mathematical meaning of formal quantification as entailed by
any language of common discourse in which it is sought to be interpreted);

(b) in the first-order Peano Arithmetic PA an absence of the distinction between
algorithmic computability (when interpreting, for instance, the universal quantifier as
"For all 2’ as detailed in §7.C.), and algorithmic verifiability (when interpreting, for
instance, the universal quantifier as 'For any specified z’ as detailed in §7.C.).

As expressed also in [BKPS| by Samuel R. Buss (albeit obliquely in his perspective on the
significance of Proof Theory for the mathematical sciences in general, and computer science
in particular) in the context of the development of a mechanical intelligence (Al) that can be
respected on a par with human intelligence (compare the Turing Test detailed in §20.E., Query
21):

“I wish to avoid philosophical issues about consciousness, self-awareness and what it means to
have a soul, etc., and instead seek a purely operational approach to artificial intelligence. Thus,
I define artificial intelligence as being constructed systems which can reason and interact both
syntactically and semantically. To stress the last word in the last sentence, I mean that a true
artificial intelligence system should be able to take the meaning of statements into account, or
at least act as if it takes the meaning into account. There is some debate about whether logic is
really a possible foundation for artificial intelligence. The idea that logic should be the foundation
for AI has fallen out of favor; indeed, much of the work of artificial intelligence today is done with
non-discrete systems such as neural nets, which would not count as part of proof theory. To the
best of my knowledge, there is only one large-scale present-day attempt to build an Al system
based on logic, namely the Cyc system, and this so far has not reported significant success in
spite of a massive effort. Nonetheless, it is my opinion that purely analog systems such as neural
nets will not provide a complete solution of the AI problem; but rather, that discrete processing,
including proof theoretic aspects, will be needed for constructing Al systems.”

... Buss: [BKPS], §3, Proof Theory and Logic for Computer Science, p.8.

1.C. The foundational significance of the Complementarity Thesis
and of evidence-based reasoning

The foundational significance of the Complementarity Thesis (§1., Thesis 1) for the physical
sciences (see Query 17) is highlighted in Part IV, §19.C., Cases 19.C.a. to 19.C.d.; and its
paradigm-challenging consequences in §22.

Comment: For instance, one could interpret the first order Peano Arithmetic PA so that the
numeral [1] interprets as a grain of sand, and the numeral [n] interprets as a heap of n grains of
sand. By the Provability Theorem for PA (see §2.E.b., Theorem 2.17), the theorems of PA then
interpret as:

e all the possible arithmetically definable—in classical mechanics—properties of, and relations
between, heaps of sand located anywhere in the universe that, by Definition 7, we can
evidence as algorithmically computable truths which are both determinate and predictable;

as well as:
e all the possible arithmetically definable—in quantum mechanics—properties of, and relations

between, accessible heaps of sand in the universe that, by Definition 4, we can only evidence
as algorithmically verifiable truths which are determinate but not necessarily predictable.
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Finally, the foundational significance of evidence-based reasoning and the Complementarity
Thesis (§1., Thesis 1) for mathematics education, and the philosophy of mathematics education,
is addressed in §26.; albeit briefly, since doing justice to the subject of what mathematics is
(see, for instance, §13.), and how mathematics and the philosophy of mathematics, respectively,
ought to be taught as suggested by Thesis 1, is outside the ambit and competence of this
investigation.

We note that the above, evidence-based-by-consensual methodology, perspective of this
investigation is nothing new. For instance, knowledge as Gualtiero Piccinini’s factually grounded
belief (see [Picl9]) rather than as Plato’s justified true belief, seemed natural to ensure the
certitude that—given the limitations of languages of common discourse for expressing conceptual
metaphors unambiguously and communicating them categorically—early Indian mathematicians
(like those elsewhere) sought in both their deliberations and practice. As P. P. Divakaran
observes in [Dvk18]:

“As a general rule practising mathematicians in India, like those elsewhere, did not mix their
science with its metaphysical and logical foundations, with one fortunate exception. When someone
as articulate and as deeply reflective about his vocation as Nilakantha speaks about how we acquire
new knowledge and how we are to know it to be true (the three wise books, Chapter 9.2), we have
to listen. It is more than likely that his thoughts are not just personal but mirror the epistemic
ethos of his time and place and perhaps that of Indian mathematics as a whole from the time
of Aryabhata; after a thousand years, the insistence on the supremacy of the intellect (mati)
continues to echo in these pronouncements. In slightly oversimplified terms, here is the model
he proposes (a more analytic account in the canonical philosophical language will be found in
Narasimha, cited above, and references therein).

The primary instrumentality of our apprehension of the world is our senses, not only of the
astronomical world but even of the mathematical (visual geometry such as in cut-and-shift proofs,
3-dimensional geometric versions of algebraic identities, etc.). The sense data are to be subjected
to analysis and tentative inferences drawn by means of our mental faculties, our ability to compute
included. These are then exposed to scrutiny by the knowledgeable, debated and revisions made
if necessary, and shared with pupils, thus sustaining a living chain of continuity. Nilakantha
would not go out of his way to run down revealed wisdom, §ruti, (his remote predecessors from
9th century Mahodayapuram in Kerala had already done that with their derisive remarks about
pauranika $ruti, the supposed revelations of the Puranas) and he has reverence for the words of the
great teachers from the past. But he is uncompromising about the need to subject prior knowledge,
whether revealed or merely uttered by mortals and lodged in an abstract communal memory
(smrti), to the tests of observation and logical inference and rejected if found wanting. In an
uncanny paraphrase of Aryabhata’s “svamatinava”, but more modestly, he says: “Everything here
(the proof of the theorem of the diagonal) is rooted in yukti (about which, see below) alone, not in
the beliefs and practices of yore (agama)”. And, as for the primacy of observation, he practised
what he preached, taking upon himself the mission of campaigning for his teacher Parameshvara’s
Drgganita revision, forced by fresh data, of the planetary model of Aryabhata, no less.

The principles on which the practice of mathematics in India was grounded were not, thus, very
rigid or ‘theoretical’ (Nilakantha says that theories are unending and inconclusive) and they could
not have been more different from the inflexible frame in which Euclid’s austere axiomatic-deductive
system was confined. There were no unquestionable first principles to help choose, once and for
all, a set of postulates and rules of logic, or to decide what objects needed to be defined. Instead
we have a more dynamic and fluid foundation that was built from intelligent, rigorously exercised
common sense so to say, and responsive to accumulated experience. The idea of an infallible set
of axioms leading, by equally infallible logic, to mathematical truths of unquestionable certitude
would not have been given a hearing: if all knowledge is contingent, how can it be otherwise for
metaknowledge, the knowledge that some part of that knowledge is (or is not) true? How then did
Indian mathematicians know or decide that their mathematical insights were indeed true?
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The evidence-based-by-consensual methodology perspective of mathematical ‘truth’; implicit
in the Complementarity Thesis (§1., Thesis 1) of this investigation, is also reflected in Giovanni
lorio Giannoli’s more contemporary 1997 analysis, in [Gia97], of how mathematical truth has
been, still is, and ought to be, perceived. When viewed from an Al perspective!” of Lucas’ and

The answer, the only satisfactory one given their philosophical stance, is in the last two of
Nilakantha’s tests of validation: there is no absolute criterion but only a convergence towards
a consensus; the search for the infallible proof is ultimately a futile search, “unending and
inconclusive” like all theorising. In practice most mathematicians seem to have been happy to leave
the judgement to their peers, as Bhaskara II suggests in his comparison of a putative proposition
whose upapatti does not get the approval of the assembly of the learned to rice without butter,
unpalatable. The miracle is that the mathematics that this philosophical openness produced is
true (and interesting) mathematics by contemporary axiomatic-deductive standards. Or, perhaps,
there is no miracle; perhaps the universal and immutable truths of mathematics are open to all
gifted and prepared minds—even of those who never heard of Plato and Aristotle.”

... Divakaran: [Dvk18], Chapter 15.1, pp.402-403

Penrose’s Godelian arguments (see §20.), Giannoli cogently argues that:

since:

“If one conceives “reductionism” in its current epistemological meaning, i.e. as a fact of interthe-
oretic reduction® (or at most as a fact of psychophysiological and psychophysical parallelism),
rather than as the turning of some ontological level (some substance) into other “fundamental”
levels (into primary substances), there is no need for a dodge like “Strong AI” to provide models
of mental activity. In this framework, one can perfectly well admit that every model constructed
is a mere conjecture, even if one is trying to reduce certain mental activities to physical laws, to
quantitative relationships, in a suitable formal language.

Obviously, seeking to reduce some “mental powers” to intentional stances is not at all identical or
equivalent to reduce these “powers” to functional states, or to physical quantities, or to biological
processes, or to configurations in a logical network. In fact, all these different attempts refer to
specific “ontological” commitments, if we accept Quine’s suggestion® that the use of quantifiers
in scientific theories compels the theoretician to believe that the “universe” he is defining is not
empty. But this is not relevant to the present discussion. As a matter of fact, here it suffices
to admit that reductionism is consistent with a hypothetico-deductive conception of scientific
theorizing, whatever “universe” the theorist prefers. Therefore, it is not shocking to maintain that
even the attempt to show that machines are able to solve certain semantic problems is inevitably
supported by preliminary conjectures and theoretical conventions.”

... Giannoli: [Gia97], §1. Preliminary Remarks.

“any semantic interpretation can be represented as a functional relation between the

input and the output of a suitable transducer; ...

semantics and syntax do not constitute separate and opposite logical fields, since every
semantic relation, between different terms of the given object language, is established

within an appropriate syntactical meta-language; . ..

“truth” can be asserted only in terms of conventional assumptions, which apply equally

to the “mind” as to any other machine.”

17 A perspective which, from the evidence-based perspective of this investigation, is however critically weakened
by uncritical, and unnecessary, appeal to Godel’s—albeit arguably—misleading (see §14.A.; also §14.C.)
interpretations of his own formal argumentation in [Go31].
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“Many critics of Al contend that the proof of the “stupidity” of machines was established in the
thirties, on account of the famous “limitative theorems” of Godel, Turing, Tarski, and others. Being
endowed with strictly syntactical ability, machines would by nature be incapable of “understanding”.
More specifically, they would be unable to evaluate the truthfulness of certain propositions. The
following work shows that: — any semantic interpretation can be represented as a functional
relation between the input and the output of a suitable transducer; therefore, the ability to
“understand” banally depends on the interface with the environment; — semantics and syntax do
not constitute separate and opposite logical fields, since every semantic relation, between different
terms of the given object language, is established within an appropriate syntactical meta-language;
— precisely in the light of the work done in the thirties, “truth” can be asserted only in terms of
conventional assumptions, which apply equally to the “mind” as to any other machine.”

... Giannoli: [Gia97], Abstract.

Giannoli argues that ‘the presumption that the reference of an interpretation should appear
clothed as a concept, or a “mental state”’, ignores that ‘in fact the nervous system, from the
peripheral sensors to the cerebral cortex, is nothing but a sophisticated network of transducers’:

“In an elementary sense, it can be said that syntax is concerned with the purely formal structure
of language, entirely leaving apart interpretation. To semantics, on the other hand, is assigned
the field of meaning (the signified); that is—schematically—the area of relationships between
symbols, objects, and concepts. Roughly speaking, syntax has the role of dictating the rules of
formation and derivation of the sentences within a given language, while semantics is concerned
with reference between symbols and other symbols, entities, or values, defined within particular
codomains. Traditionally, following the schema of Frege, one can restrict his consideration to a
codomain made up of only two elements: the “truth-values”, true and false. Note that these logical
values are in their turn simply symbols within a formal language, and it is entirely improper to
evoke any ontological significance.

In fact, even though the truth-values are entirely neutral with respect to ontological questions,
when one refers to semantics one alludes in some way to a close relationship between the plane of
expression, the plane of material things, and the plane of concepts. Semantics is thus given a role
that is clearly overdetermined with respect to the faculties of reason, which can only conjecture
about such relationships. In a more rigorous conception, a “flatter” conception of the semantic
relationship is needed, in which symbols, material things and thoughts have the same generic
status as “entities”, that is, abstract nodes of multiple relationships, each capable of being at
the same time both signified and signifier of another. If one then admits that for every “mental
state” there is a corresponding physical, cerebral state, since it is quite feasible to express things
and material symbols in a physicalistic language, all the entities that semantics treats could be
described as signals, as simply differences of physical quantities in space-time.

In any case, whatever language is chosen to describe the objects proper to a semantic relationship,
one must admit that such a relation, from a more abstract and elementary point of view, consists
simply in a correspondence between entities, formally expressible as a function that maps a given
domain onto a given codomain; nothing more seems to be required to achieve an interpretation.

Looked at this way, and granted that a semantic interpretation defines nothing more than a
functional relation between entities, one might ask why a transducer shouldn’t be considered to
be a system endowed with semantics, however elementary: a dynamo is the site of a functional
relation between a velocity and an intensity of electric current; a microphone transforms pressure
into a variation of electrical resistance; a photo-cell causes a current to correspond to an intensity
of light. Probably the reluctance to consider such objects as the sites of true semantic relationships
comes from the presumption that the reference of an interpretation should appear clothed as a
concept, or a “mental state”. As a rule, one tends to reject the idea that the correspondent of
any concept is only a given physical configuration, or activity, of the cerebral system; in fact the
nervous system, from the peripheral sensors to the cerebral cortex, is nothing but a sophisticated
network of transducers.”

... Giannoli: [Gia97], §3. Syntaz and Semantics.
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Thus Giannoli’s thesis is that ‘mathematics is not self-expressive about truthfulness, nor are
mathematical truths apodictical: we have to reach some kind of agreement about them’:

“Preliminary to discussing what amount of conventional agreement is unavoidable in treating
mathematical “Truth”, let us briefly consider the problem of semantic interpretation. In what
follows, I will assume the familiar (long-standing) schema that “to give an interpretation” means
“to refer something to some other thing”, i.e. “to fix a relationship between domain and codomain’
in a suitable universe. In keeping with the reductionistic attitude of the present paper, I will take
the “domain” and “codomain” as “input” and “output” of a suitable transducer, which I conceive
of as a “device” engaged in interpretation. No doubt some readers will be utterly skeptical about
the possibility of such a “device”. A further treatment is given in a previous paper of mine (and
in Section 3 below); for the moment it is enough to say that this flat conception of semantics finds
its main purpose in rejecting all Platonic approaches to the problem of “meaning”. As concerns
the interpretation of statements in arithmetic, for instance, I will admit that the semantic referent
of a certain formula written on a piece of paper could be found in physical states of some brain, or
perhaps in the vibrations produced by my voice stating that formula, or perhaps in some graphs
drawn on another piece of paper, and so on; I only exclude that it is possible to look for this
referent in some “Hyperuranium”. That is all.

i

Connected with the foregoing is the problem of “mathematical truth”, which is the main theme of
the present paper.

It is well known that every term of a formalized language—before any interpretation—has its own
preliminary “definition” (more precisely: it is “introduced”) on account of the conditions (list
of symbols and rules) of the language itself. According to D. Hilbert (and to the great Italian
mathematicians who grappled with the foundations of mathematics and geometry at the beginning
of this century, such as G. Veronese, F. Enriques, G. Peano and C. Burali-Forti), these “implicit
definitions” constitute a sort of “implicit meaning”, which provides a full, preliminary semantics
to the language (to geometry, for instance), even if further interpretations (associating numbers
to points, or dots, or tomatoes, or whatever) are still not given. But this full, implicit semantics
is completely useless for the problem of “Truth”. In fact, as will be better recalled in Section 5,
below, no sufficiently rich formalized language is semantically complete, so in these languages it is
not possible to provide adequate definitions of many semantic concepts (such as “Truth”). In short,
mathematics is not self-expressive about truthfulness, nor are mathematical truths apodictical: we
have to reach some kind of agreement about them.”

... Giannoli: [Gia97], §1. Preliminary Remarks.
Compelling arguments for:
— Pantsar’s perspective of pre-formal mathematics that:

— ‘without any outer reference, mathematics as we know it could simply not be
possible’;

— Giannoli’s perspective that:
— ‘semantics and syntax do not constitute separate and opposite logical fields’;
— and, as is implicit in the Complementarity Thesis (§1., Thesis 1), that:

— whereas a formal proof is necessary to validate the ‘truth’ of evidence-based reasoning,
the latter is the raison d’étre for, and must illuminate the significance of, a formal
proof;

are highlighted pictorially by:
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(i) §21.A., Proposition 21.2 (Prime independence), which entails Proposition 21.5 (P # NP

by Eratosthenes sieve)'®; and

(ii) §1.D.c., Proposition 1.1, which seeks to show that representing FLT as a putative,
hyper-geometric, LEGO blocks puzzle for n = 2,3 could be viewed as yielding ‘a truly
marvelous’ pre-formal, pictorial, proof of FLT by evidencing that if, for some natural
numbers x,y, z,n, we can well-define unique hypercubes z™, y™, 2" which entail, under a
well-defined interpretation, that ™ + y™ = 2", then n < 3.

Comment: More precisely, we show how Fermat’s ‘truly marvelous proof’ could have been
the argument that: (a) as easily demonstrated by experiment, for ALL natural numbers
y < z, we can cut a length y from a string of length z, where what remains can be rearranged
to form a string of length « € N; (b) as entailed by Pythagoras’ Theorem, for SOME
natural numbers y < z, we can design a jigsaw puzzle such that removing a square tile of
side y from a square tile of side z, will leave a configuration of regular 2-D tiles that can
always be rearranged to form a square tile of side € N; and (c) as entailed by FLT, for
NO natural numbers y < z, can we design a LEGO blocks puzzle such that removing a
LEGO cube of side y from a LEGO cube of side z, will leave a configuration of regular
3-D objects that can always be rearranged to form a LEGO cube of side x € N. More
generally, we show that: if 2™ + y" = 2" and z = y + 2(k + %), then FLT is equivalent
to proving the necessary and sufficient conditions which would admit the representation
" =" =yt =2"Cr(k+ 5 Yyl 42270y (k + ﬁ)Qy"_2 + ...+ 2"(k + ;%)™ Moreover, if
™, y", 2™ denote corresponding n-dimensional hyper-cubes such that the configuration of n-D
hyper-objects corresponding to z™ — y™, denoted by C(zP — yP) =, 2.PCy(k + ]%)y(p_l) +u

22.PCy(k + p%)Qy(P_Q)—i—H. - Fu 2P (k + J5)P @™, can be well-defined uniquely upto isomorphism,
then this would entail that ™ + y™ = 2™ if, and only if, n < 3.

1.D. A pictorial, pre-formal, proof of Fermat’s Last Theorem

Fermat’s Last Theorem FLT states that no three positive integers x, y, z satisfy the equation
2™ 4+y™ = 2" for any integer value of n greater than 2. FLT has been made famous, literally and
literarily'® beyond it’s innate challenge for mathematicians, by Pierre de Fermat’s posthumously
revealed remarks, written around 1637 in the margin of his copy of Diophantus’ major work,
Arithmetica:

“It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers,
or in general, any power higher than the second, into two like powers. I have discovered a truly
marvelous proof of this, which this margin is too narrow to contain”.

... Fermat: Wikipedia, Fermat’s Last Theorem.

For 358 years, FLT remained an unsolved problem in the theory of numbers; until a 108-page
proof of FLT using hitherto unproven—and essentially unknown to Fermat—mathematical
techniques was published in 1995 by Andrew Wiles in the Annals of Mathematics. It proved
an equivalence between the genera of elliptic curves and modular forms—an equivalence that
entails FLT:

“...If somebody could prove that every elliptic curve is modular, then this would imply that
Fermat’s equation had no solutions, and immediately prove Fermat’s Last Theorem.”

...Singh: [Sng97], p.222.

18As also §21.C.b., Theorem 21.37 (Dirichlet’s Theorem); and §21.D., Theorem 21.45 (Twin Prime Theorem).
19See Wikipedia: Fermat’s Last Theorem in fiction; also [Sng97], p.73.
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What yet remains unanswered, though, is whether, and if so what, Fermat might have
‘realised’ he had ‘briefly deluded himself’ as having solved ‘with an irretrievable idea’ (see also
[Sng97], p.128):

“It is not known whether Fermat had actually found a valid proof for all exponents n, but it
appears unlikely. Only one related proof by him has survived, namely for the case n = 4, as
described in the section Proofs for specific exponents. While Fermat posed the cases of n = 4
and of n = 3 as challenges to his mathematical correspondents, such as Marin Mersenne, Blaise
Pascal, and John Wallis, he never posed the general case. Moreover, in the last thirty years of
his life, Fermat never again wrote of his “truly marvelous proof” of the general case, and never
published it. Van der Poorten suggests that while the absence of a proof is insignificant, the lack
of challenges means Fermat realised he did not have a proof; he quotes Weil as saying Fermat
must have briefly deluded himself with an irretrievable idea.

The techniques Fermat might have used in such a “marvelous proof”’ are unknown.
... Wikipedia: hittps://en.wikipedia.org/wiki/Fermat%27s_Last-Theorem, accessed 10th October 2020.

Comment: The collateral significance of Fermat’s unrecorded deliberations is reflected in Richard
P. Feynman’s wry observation:

“We have a habit in writing articles published in scientific journals to make the work
as finished as possible, to cover up all the tracks, to not worry about the blind alleys
or describe how you had the wrong idea first, and so on. So there isn’t any place to
publish, in a dignified manner, what you actually did in order to get to do the work

”

... Feynman: In his Nobel Lecture, 1966, hitps://www.nobelprize.orq/prizes/physics/1965/feynman/lecture/.

That, then, is the issue we shall seek here to illuminate by a putative reconstruction—from
a pre-formal perspective—of:

(i) What argument or technique might Fermat have used that led him to, even if only briefly,
believe he had ‘discovered a truly marvelous proof’ of FLT?

“Wiles’s proof of Fermat’s Last Theorem relies on verifying a certain conjecture born in
the 1950s. The argument exploits a series of mathematical techniques developed in the
last decade, some of which were invented by Wiles himself. The proof is a masterpiece of
modern mathematics, which leads to the inevitable conclusion that Wiles’s proof of the Last
Theorem is not the same as Fermat’s. Fermat wrote that his proof would not fit into the
margin of his copy of Diaphantus’s Arithmetica, and Wiles’s 100 pages of dense mathematics
certainly fulfills this criterion, but surely the Frenchman did not invent modular forms, the
Taniyama-Shimura conjecture, Galois groups, and the Kolyvagin-Flach method centuries
before anyone else.

If Fermat did not have Wiles’s proof, then what did he have?”

... Singh: [Sng97], p.307.
(i) Why is 2" + y" = 2" solvable only for n = 272

A curious feature (see [Dck20], Chapter XXVI, pp.731-776; [Bel61], pp.303-304; [Sng97],
pp-115-117, 126-127, & 251-252; [LbP10], p.657, §3.1 Germain’s plan for proving Fermat’s
Last Theorem; [CCZ15], Abstract) of recorded, post-Fermat, attempts to prove FLT has
been the, seemingly universal, focus on seeking a formal proof, and understanding, of

20The Diophantine equation is, of course, trivially solvable for n = 1; and Pythagoras’ Theorem evidences
that it is solvable for n = 2.


https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem
https://www.nobelprize.org/prizes/physics/1965/feynman/lecture/

36 1.. The Complementarity Thesis

only why x™ + y™ = z" is unsolvable for both specific, and general, values of n > 2 when
x,1y, z,n € N. Despite Wiles” acknowledged proof, such an understanding yet remains as
elusive as was reflected in Keith Devlin’s 1994 observation:

“Wiles made his claim at the end of a series of three lectures he gave at a small meeting
of number-theorists at the Isaac Newton Institute at Cambridge, England. The powerful
new techniques he outlined in his proof, together with his own track record as a research
mathematician, were enough to convince the audience that the new proof was probably
correct. And, since that audience included many of the world’s most highly qualified experts
in the area, that was good enough for everyone else. Such was the complexity of Wiles’
argument that, even with a copy of his 200-page proof, most of us would in any case have to
rely on the judgement of these experts.”

... Devlin: [Dev9/].

The significance of Devlin’s acceptance of ‘sociological validation of proofs’ is highlighted
by Henk Barendregt and Freek Wiedijk in [BWO05]*!:

“During the course of history of mathematics proofs increased in complexity. In particular in
the 19-th century some proofs could no longer be followed easily by just any other capable
mathematician: one had to be a specialist. This started what has been called the sociological
validation of proofs. In disciplines other than mathematics the notion of peer review is quite
common. Mathematics for the Greeks had the ‘democratic virtue’ that anyone (even a slave)
could follow a proof. This somewhat changed after the complex proofs appeared in the 19-th
century that could only be checked by specialists. Nevertheless mathematics kept developing
and having enough stamina one could decide to become a specialist in some area. Moreover,
one did believe in the review by peers, although occasionally a mistake remained undiscovered
for many years. This was the case with the erroneous proof of the Four Colour Conjecture by
Kempe [1879].

In the 20-th century this development went to an extreme. There is the complex proof of
Fermat’s Last Theorem by Wiles. At first the proof contained an error, discovered by Wiles
himself, and later his new proof was checked by a team of twelve specialist referees’. Most
mathematicians have not followed in detail the proof of Wiles, but feel confident because of
the sociological verification.

T One of these referees told us the following. “If an ordinary non-trivial mathematical paper contains an interesting idea and
. . . . ”
its consequences and obtains ‘measure 1’, then Wiles’ proof can be rated as having measure 156.”

... Barendregt and Wiedijk: [BWO05], 1. The Nature of Mathematical Proof.

Moreover, if FLT is an arithmetical proposition that can be expressed in the language of
the first-order Peano Arithmetic PA, but one which is not provable in PA, there would be no
deterministic algorithm TM that, for any specified n > 2, could evidence that x™ + y" = 2" is
unsolvable.

In which case, even if—as entailed by Wiles’ proof—FLT is provable as numeral-wise true
under a well-defined interpretation of PA over N?2, seeking to understand why 2" + y" = 2" is
unsolvable for all n > 2 may be futile. Instead, one could reasonably expect a better insight
(see §1.D.d.) by seeking why =™ + y™ = 2" is solvable only for n = 2 (and trivially for n = 1),
but not for n = 3.

21 Also by Melvyn B. Nathanson in [Na08], ‘Desperately Seeking Mathematical Truth’ (see §19.).
22In other words, for any specified n > 2, there may be some deterministic algorithm TM,, which could
evidence x™ + y"™ = 2™ as unsolvable for only that specified value of n; or, equivalently, for all values < n.
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1.D.a. Could this have been Fermat’s Lost Insight?

Some insight into why ™ 4 y™ = 2™ is true only for n = 2 (and trivially for n = 1) follows if we
note that, if 2" 4+ y™ = 2" and z = y + 2(k + %) (see Figs.1-3), we have:

(i) a" = (y+2(k+;5)" —y"
(i) 2" =2."Cy(k+ Z)y" '+ 22Co(k + %)%y 2+ + 20k + %)"

FLT is then equivalent to proving the necessary and sufficient conditions (see §1.D.d.(b))
that, for any specified n > 1 € N, admit some y,z > 1 € N which yield a unique representation
of ™ as (ii) above.

Moreover, even if FLT were PA-unprovable, we could yet view Fermat’s Last Theorem
as a formal proposition concerning the arithmetical and geometrical properties of recursively
well-defined n-D hyper-geometric objects in the structure, say H,, of n-D hyper-objects® in a
n-dimensional Euclidean space which includes the cases where n = 2, 3—corresponding to the
arithmetical and geometrical properties in physical space of the familiar LEGO blocks when
n=2,3.

An insight that could be viewed informally as yielding ‘a truly marvelous’, pictorially-
grounded-in-our-intuition, proof of FLT by evidencing that if, for some natural numbers
x,y,z,n, we can well-define unique n-D hyper-cubes 27, y™, 2z which entail that 2™ + y" = 2",
then n = 2.

‘Pre-formal’; as detailed by Markus Pantsar in [Pan09]:

“What I refer to as pre-formal mathematics in this work is more often discussed as informal
mathematics in literature. The choice of terminology here is based on two reasons. First, I want
to stress the order in which our mathematical thinking develops. We initially grasp mathematics
through informal concepts and only later acquire the corresponding formal tools. Second, the term
“informal mathematics” seems to have an emerging non-philosophical meaning of mathematics in
everyday life, as opposed to an academic pursuit—which is not at all the distinction that I am
after here.”

... Pantsar: [Pan09], §1.1 General background.

Moreover, we interpret Pantsar’s ‘pre-formal mathematics’ here as evidencing the philos-
ophy that mathematical truth is a necessarily transparent, evidence-based, prerequisite for
determining—in a formal proof theory—which axiomatic assumptions of a formal theory under-
lie the truth of pre-formal, evidence-based, reasoning. ‘Evidence-based’, in the sense of Gualtiero
Piccinini’s knowledge as factually grounded belief (see [Pic19]), rather than Plato’s knowledge
as justified true belief.

In a recent paper [Mur20] on Proof vs Truth in Mathematics, Roman Murawski too em-
phasises the critical role that “informal proofs” (which could be viewed as corresponding to
Pantsar’s pre-formal proofs) variously play in ‘mathematical research practice’ for not only the
understanding, but also the verification and justification, of formal proofs:

“2. Proof in Mathematics: Formal vs Informal

Mathematics was and still is developed in an informal way using intuition and heuristic reasonings—
it is still developed in fact in the spirit of Euclid (or sometimes of Archimedes) in a quasi-axiomatic

2See Wikipedia: Hypercube.
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way. Moreover, informal reasonings appear not only in the context of discovery but also in the
context of justification. Any correct methods are allowed to justify statements. Which methods
are correct is decided in practice by the community of mathematicians. The ultimate aim of
mathematics is “to provide correct proofs of true theorems” [2, p. 105]. In their research practice
mathematicians usually do not distinguish concepts “true” and “provable” and often replace them
by each other. Mathematicians used to say that a given theorem holds or that it is true and not
that it is provable in such and such theory. It should be added that axioms of theories being
developed are not always precisely formulated and admissible methods are not precisely described.?

Informal proofs used in mathematical research practice play various roles. One can distinguish
among others the following roles (cf. [4], [7]):

(1) verification,

(2) explanation,

(3) systematization,

(4) discovery,

(5) intellectual challenge,

(6) communication,

(7) justification of definitions.

The most important and familiar to mathematicians is the first role. In fact only verified statements
can be accepted. On the other hand a proof should not only provide a verification of a theorem
but it should also explain why does it hold. Therefore mathematicians are often not satisfied by a
given proof but are looking for new proofs which would have more explanatory power. Note that a
proof that verifies a theorem does not have to explain why it holds. It is also worth distinguishing
between proofs that convince and proofs that explain. The former should show that a statement
holds or is true and can be accepted, the latter—why it is so. Of course there are proofs that
both convince and explain. The explanatory proof should give an insight in the matter whereas
the convincing one should be concise or general. Another distinction that can be made is the
distinction between explanation and understanding. In the research practice of mathematicians
simplicity is often treated as a characteristic feature of understanding. Therefore, as G.-C. Rota
writes: “[i]t is an article of faith among mathematicians that after a new theorem is discovered,
other, simpler proof of it will be given until a definitive proof is found” [23, p. 192].

It is also worth quoting in this context Aschbacher who wrote:

The first proof of a theorem is usually relatively complicated and unpleasant. But
if the result is sufficiently important, new approaches replace and refine the original
proof, usually by embedding it in a more sophisticated conceptual context, until the
theorem eventually comes to be viewed as an obvious corollary of a larger theoretical
construct. Thus proofs are a means for establishing what is real and what is not, but
also a vehicle for arriving at a deeper understanding of mathematical reality [1, p.
2403).

As indicated above a concept of a “normal” proof used by mathematicians in their research practice
(we called it “informal” proofs) is in fact vague and not precise.
... Murawski: [Mur20], §2. Proof in Mathematics: Formal vs Informal, pp.11-12.

1.D.b. Could this have been Fermat’s Lost Argument?

Thus, it is conceivable Fermat argued with himself (without making his proof explicit) that?,
for any pair of natural numbers z > y:

24T am indebted to my erstwhile classmate—and ex-Professor of Geo-sciences at the Indian Institute of
Technology, Mumbai—Chetan Mehta for his critical comments that suggested the need for such a reconstruction
of Fermat’s putative Lost Argument.
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(1) We can take a string (see Fig.1), say Z, of length z units, cut off a central section 7 of
length y units, and we will always (courtesy human self-evidence) have a 1-dimensional
object consisting of two separated pieces of length & + a units each, say Z — g, which can
be uniquely defined upto isomorphism (under a change of scale):

z Not to scale
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zZ—7 k+a
Fig.1

e by cutting into smaller, whole number of units, a string T of length x units, where x
is also a natural number,

e and re-assembling the smaller lengths to form the configuration C(z —3) = 2k + a,

e such that any two such re-assemblies are isomorphic (as defined below);

(2) We can take a square tile (see Fig.2), say 22, of side z and area 22, cut off a central square
tile y2 of side y and area y?, and we will sometimes (courtesy Pythagoras’ Theorem) have

a 2-dimensional object, say 22 — y2 (shaded area in Fig.2), which can be uniquely defined
upto isomorphism (under a change of scale):
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e by cutting into smaller square tiles a square tile 22 of side x and area x?, where z is
also a natural number,

e and re-assembling the smaller square tiles to form the configuration C(22 — y2) =
Ak + %)y + 4k + )%, of 22 — 42,

e such that any two such re-assemblies are isomorphic (as defined below);

Comment: In other words, by Pythagoras’ Theorem we can always design a jigsaw puzzle
for some y,z € N such that any configuration C(y2) of y2, along with any configuration

which is isomorphic to C(22 — y?) = 4(k + %)y + 4(k + )2, could be assembled into the
square 22,
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(3) We can take a cube (see Fig.3), say 23, of side z and volume 2%, cut off a central cube 3 of
side y and volume 3?3, but we will never (courtesy Fermat’s insight) have a 3-dimensional

object, say 23 — 3, which can be uniquely defined upto isomorphism (under a change of
scale):

Not to scale

e

Fig.3

e by cutting into smaller cubes a cube 3 of side x and volume 2?®, where z is also a
natural number,

e and re-assembling the smaller cubes to form the configuration C(23 — 33) = 6(k + 3)y*+
12(k + %)%y + 8(k + )3, of 23 — 43,

e such that any two such re-assemblies are isomorphic (as defined below);

Comment: In other words, Fermat’s insight entails that we can never design a LEGO
blocks puzzle for any y,z € N such that any configuration C(y3) of the cube y3, along

with any configuration of LEGO blocks which is isomorphic to C(z3 — y3) = 6(k + 35)Y? +
12(k + %)2y + 8(k + =)3, could be assembled into a cube 23.

We note that all three are particular instances of a n-dimensional mathematical object, say
z" — y™, which is uniquely defined upto isomorphism by the following configuration C(2" — y™)
of z" —y™ if, and only if, 2" — y™ = 2™ for some particular set of natural numbers z,y, x:

Cz" —ym) =2."Ch(k + %)y + 22 7Cy(k + % )2y=2 + .+ 2" (k + %),

where?®:

Definition 2. (Isomorphic configuration) Any two ‘configurations’ of a n-D hyper-object

7™ € H,, denoted by 3 ai(TTr—, wax) and 3 bi(TT1—, vix) where az, b € N and ([[1—, i), ([[1— vir) €
H,,, are defined as isomorphic if, and only if, b; = r"a; and ([];_, wir) = r"([ 14—, vix) for any
rational r >0 € Q* and 1 <i<jeN.

251 am indebted to Professor Markus Pantsar for his critical comments that suggested the necessity for such
definitions when extrapolating the pictorial reconstruction of Fermat’s putative Lost Argument to any value of
n > 3.

26QQ is the structure of the rational numbers.
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Definition 3. (Uniqueness) A n-D hyper-object x™ is uniquely defined upto isomorphism if,
and only if, for all1 < i < j € N, either a;|b; or b;|a; in any two ‘configurations” 7 a;(][}_; wir)
and Y 1 bi(TTh_, vik) of @™ that are isomorphic.

For 2™ to, then, admit a configuration that will uniquely define 2™ — y™ (and vice versa), we
must have that each of the terms in the above configuration (which are also n-D objects) must
be uniquely defined upto isomorphism under any change of scale.

However, we argue in §1.D.c. that, for any natural numbers z,y, z which claim to yield a
solution of 2" — y"™ = x™, such isomorphism is only possible for n < 3.

1.D.c. Could this be viewed pre-formally as a ‘truly marvelous proof’ of Fermat’s
Last Theorem?

Proposition 1.1. (Fermat’s Last Theorem) If 2P + y? = 2P, where 1 <z <y < z € N
and p € N is a prime, then p = 2.

Proof. 1. Consider the three, symmetrically positioned, squares (2-D hypercubes) with sides
x,v, z in Fig.4 for any specified natural numbers 1 < x < y < z which are co-prime.

Then Fig.4 is a pictorial proof (compare [Sng97], p.29, Fig. 4) that 2 + y* = 2% if, and
only if, we can physically construct (assemble uniquely) a 2-D LEGO blocks (tiles) puzzle
for k > 0 and a € {0, 1,2, 3}, where k + 55 > 0, such that:

Not to scale
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(a) one square block (tile) of side v,
(b) plus 4 rectangular blocks (tiles) with dimensions y x (k + 3%),
(c) and 4 square blocks (tiles) of side (k + 57),

must combine to well-define a square block (tile) denoted by, say, 22, of side z, where

the 2-D ‘hyper-object’ denoted by, say (shaded area), 22 — 42, is uniquely defined upto
isomorphism by the ‘configuration’ of 2-D LEGO blocks (tiles):

(i) C(22 —y?) =4k + 55)y +4(k + 5)*.

2. Similarly, Fig.5 is a pictorial proof (compare [Sng97], p.31, Fig.5; also p.255, Fig.23) that
23 4+ y® = 23 if, and only if, we can physically construct (assemble uniquely) a 3-D LEGO
blocks puzzle for £ > 0 and a € {0,1,2,...,26}, where k 4 g5 > 0, such that:
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Not to scale

AR

Fig.5

(a) one cube block of side y,
(b) plus 6 parallelepiped blocks with base y* and height (k + ),

(c) plus 12 parallelepiped blocks with base (k + %)2 and height v,
(d) plus 8 cube blocks of side (k + £5),

must combine uniquely to well-define a cube block denoted by 23, of side z, where

the 3-D ‘hyper-object’ denoted by 23 — 43 isuniquely defined upto isomorphism by the
‘configuration’ of 3-D LEGO blocks:

(i) C(z3—y?) =6(k+ 5)y2 + 12(k + 2)2y + 8(k + )3

. In the general case, if 2 + y? = 2P for p > 2, and z =y + 2(k + }%), a not unreasonable

appeal to a principle of symmetry such as Curie’s (see [BC05], §2.2, Curie’s principle)
suggests that the p-D hyper-object denoted by 2P — yP must then be well-defined uniquely
upto isomorphism by the ‘configuration’ of p-D hyper-objects denoted informally by:

(i) C(zP —yP) = 2PC1(k + 5 )y®=1) + 22PCy(k + 5)2y =D + ...+ 20(k + )P,

“2.2 Curie’s principle

Pierre Curie (1859-1906) was led to reflect on the question of the relationship between
physical properties and symmetry properties of a physical system by his studies on the
thermal, electric and magnetic properties of crystals, since these properties were directly
related to the structure, and hence the symmetry, of the crystals studied. More precisely,
the question he addressed was the following: in a given physical medium (for example, a
crystalline medium) having specified symmetry properties, which physical phenomena (for
example, which electric and magnetic phenomena) are allowed to happen? His conclusions,
systematically presented in his 1894 work ‘Sur la symétrie dans les phénomenes physiques’,
can be summarized as follows:3

(a1) When certain causes produce certain effects, the symmetry elements of the causes must
be found in their effects.

(a2) When certain effects show a certain dissymmetry, this dissymmetry must be found in
the causes which gave rise to them.*
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(as) In practice, the converses of these two propositions are not true, i.e., the effects can be
more symmetric than their causes.

(b) A phenomenon may exist in a medium having the same characteristic symmetry or the
symmetry of a subgroup of its characteristic symmetry. In other words, certain elements
of symmetry can coexist with certain phenomena, but they are not necessary. What
is necessary, is that certain elements of symmetry do not exist. Dissymmetry is what
creates the phenomenon.

Conclusion (a1) is what is usually called Curie’s principle in the literature. Conclusion
(az2) is logically equivalent to (a1); the claim is that symmetries are necessarily transferred
from cause to effect, while dissymmetries are not. Conclusion (a3) clarifies this claim,
emphasizing that since dissymmetries need not be transferred from cause to effect, the effect
may be more symmetric than the cause.’ Conclusion (b) invokes a distinction found in
all of Curie’s examples, between the ‘medium’ and the ‘phenomena’. We have a medium
with known symmetry properties, and Curie’s principle concerns the relationship between
the phenomena that can occur in the medium and the symmetry properties—or rather,
‘dissymmetry’ properties—of the medium. Conclusion (b) shows that Curie recognized the
important function played by the concept of dissymmetry—of broken symmetries in current
terminology—in physics.

In order for Curie’s principle to be applicable, various conditions need to be satisfied: the
cause and effect must be well-defined, the causal connection between them must hold good,
and the symmetries of both the cause and the effect must also be well-defined (this involves
both the physical and the geometrical properties of the physical systems considered). Curie’s
principle then furnishes a necessary condition for given phenomena to happen: only those
phenomena can happen that are compatible with the symmetry conditions stated by the
principle. Curie’s principle has thus an important methodological function: on the one hand,
it furnishes a kind of selection rule (given an initial situation with a specified symmetry, only
certain phenomena are allowed to happen); on the other hand, it offers a falsification criterion
for physical theories (a violation of Curie’s principle may indicate that something is wrong in
the physical description).”

... Brading/Castellani: [BC05], §2.2, Curie’s principle
4. If we, therefore, represent:

— the concept ‘physically construct’ mathematically by the concept ‘well-define’ (in
the usual sense of deterministically assigning an unambiguous ‘configuration’, which
need not, however, be unique); and

— the concept ‘pictorial’ by ‘formal’;
we can uniquely correspond:

— the relation 2P — y? = 2 in a formal Peano Arithmetic (such as PA); and

— the relation, C(2? —, y?) =, C(2F)—in any putative, formal, theory Ty, (of the
structure Hl, of p-D hyper-objects in a p-dimensional Euclidean space which includes
the cases where p = 2, 3)—between the p-D hyper-objects denoted by 2P —, yP and
2P, that are well-defined uniquely upto isomorphism by the ‘configuration’ of p-D
hyper-objects:

() C(F =, 37) = 27Ci{k + S)y D +,222Co(k + Py D+, ...+, 2k + Z)P.

Of course we assume here as intuitively evident that we could formally define ‘configuration
C(zP) of a p-D hyper-object aP’; ‘isomorphic configurations of a p-D hyper-object P’
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P4 A

‘hyper-volume V(2?) of a p-D hyper-object 27", ‘—.", ‘=_", ‘4+,” and ‘=, in Ty, so as to
admit the pictorial interpretations §1.D.c.1 and §1.D.c.2 when p = 2, 3 respectively, such
that §1.D.c.(4(i)) interprets as:

(ii) 2P —, yP denotes a p-D hyper-object that is well-defined uniquely upto isomorphism
in H, by the ‘configuration’ of:

(a) the 27Cy p-D hyper-objects, each denoted by (k + %) X y(»—1) with hyper-

dimensions
(k—l—ﬁ)x\yxyx...xy/;
(1:1)
(b) the 22.PC, p-D hyper-objects, each denoted by (k + )2 % y(P=2) with hyper-
dimensions
(k+5) X (k+5) xyxyx...xXy;
(pt2)

(c) the 27 p-D hypercubes, each denoted by (k + =) with sides (k + %);
and where, in the usual arithmetic of the natural numbers:
(i) 27 = 2PCy(k + 5)y~ 1 + 22PCo(k + %)%y P2 + .+ 2°(k + 5P

5. Since z —y = 2(k + ;5) € N, each term of §1.D.c.(4(iii)) admits only those values of
a € N that yield a natural number. We thus have that if §1.D.c.(4(iii)) well-defines a
p-D hypercube denoted by 27 in the theory Ty, of p-D hyper-objects, then this would
correspond to the ‘configuration’ of p-D hyper-objects well-defined only upto isomorphism
by:

(i) C@P) =, 27Ci(k+ )y @V (u)p+, 227 Calk+ 52y D (WP, 4, 2 (ki 55)7 ()P

where (u)P denotes the p-D wunit hypercube.

6. However, for 1 < < p, the p-D hyper-objects defined in §1.D.c.(4(ii)(a))-§1.D.c.(4(ii)(c))
must further be well-defined uniquely upto isomorphism at any rational scale 0 < s <1
of scaled down p-D hyper-objects denoted by:

(i) 27.PC,(k + I%)ry(p—r) = S%_Zr.pcr«k i ]%)S)r(ys)(p_r)_

7. In particular, since z —y = 2(k + ﬁ) € N, the p-D hyper-object well-defined uniquely
upto isomorphism by the ‘configuration’ of p-D hyper-objects denoted by:

(i) the 27 p-D hypercubes (k + -%)? with hyper-dimensions denoted by (k + -5), and
cumulative p-D hyper-volume 2P(k + ]%)p , in a p-dimensional Euclidean space;

must be capable of also being well-defined uniquely upto isomorphism by the ‘configuration’
of p-D hyper-objects denoted by:

(ii) the p? scaled down p-D hypercubes ((k + I%)IZ—))P with hyper-dimensions denoted by
((k+ z%)(%»p’ and cumulative p-D hyper-volume p?((k + z%)(%))p =27(k + 5)".
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8. Moreover, since Ty, must admit the pictorial interpretations §1.D.c.1 and §1.D.c.2 when
p = 2, 3 respectively—as detailed in §1.D.d.(a) and §1.D.d.(b)—then the p-D hyper-object
denoted by 2P —, y? is well-defined uniquely upto isomorphism under interpretation in
H, by the ‘configuration’ of p-D hyper-objects §1.D.c.(4(i)) if, and only if, each term in
§1.D.c.(4(1)) is well-defined uniquely upto isomorphism under any change of scale.

9. Consequently, if 27 —_ y? denotes a p-D hyper-object that is well-defined uniquely upto
isomorphism under interpretation in H,, by the ‘configuration’ of p-D hyper-objects
§1.D.c.(4(i)), by Definition 3 we cannot have that both:

(i) C(2P —, yP) =, 2PCi(k + 5)y@ ) +, 22PCh(k + 5)%y P2 4+, .+, 2(k + 5P

and:

(i) C(2P —, yP) =, 2.PC1(k + 5)ye=D +, 2220y (k + 5)2yP=2 4+ pP((k+ 5)2)P;
satisfy C(2P —p yP) =, C(2P), and thereby entail 2P — y? = 2P, if 2P f pP.

10. Hence, if the p-D hyper-object denoted by 2P —, y? is well-defined uniquely upto isomor-
phism under interpretation in H, by the ‘configuration’ of p-D hyper-objects §1.D.c.(4(i)),
then pP = 2P and p = 2.

11. Further (see §1.D.d.(a) below), since 22 = 2.2C) = 22.2C5, the p-D hyper-object sought to
be well-defined uniquely upto isomorphism in §1.D.c.(4(i)) by the ‘configuration’ of p-D
hyper-objects:

(i) C(2P —, yP) =, 2PCi(k + 5)y@ D +, 22PCo(k + 5)%y P2 4, .+, 2(k + 5P,

where y, 2 € N, does uniquely well-define a p-D hypercube denoted by zP under change of
scale, where x € N, for p = 2.

The proposition follows. O
Corollary 1.2. If2"4+y" =2", wherel <x <y <z €N, and 1 <n €N, thenn = 2.

Corollary 1.2 follows since, as noted by Simon Singh in [Sng97] (p.98), by showing that
2%+ y* = 2* is unsolvable for z,y, z € N, Fermat had ‘given mathematicians a head start’ in
proving FLT since, additionally:

“To prove Fermat’s Last Theorem for all values of n, one merely has to prove it for the prime values
of n. All other cases are merely multiples of the prime cases and would be proved implicitly.”

... Singh: [Sng97], p.99.

The significance of showing we cannot well-define the n-D hyper-object denoted by x™
uniquely upto isomorphism, for n > 2, such that C(z" —g y™) =, C(z") in Ty, if, and only if,
2" —y™ = 2" in PA| is that it circumvents any implicit appeal (see [Sng97], p.126) to unique
factorisation ‘in number systems that extend beyond the ordinary integers’:

“In the 1840’s, several mathematicians worked on a general proof which, like Miyaoka’s, foundered
on an unwarranted assumption: they had assumed that the unique factorization of integers into
primes (such as 60 = 2 x 2 x 3 x 5) would hold for number systems that extend beyond the ordinary
integers. In actuality, unique factorization is rather rare. For instance, 2 x 3 and 1+ /— 5 and
1 — 4/ — 5 are distinct factorizations of 6 in a number system that treats / — 5 as an integer.”
... Cipra: [Cipss].
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1.D.d. Why is 2" + y" = 2" solvable for n = 2, but not for n =3

We consider the cases n = 2 and n = 3 to illustrate why =™ + y" = 2™ can be argued nformally
as solvable for n = 2, but unsolvable for n > 2; where we note that for any specified natural
numbers x,vy, 2, k,a € N as defined in §1.D.c., Proposition 1.1:

(a)

If2?+y?=22and z —y =2(k + %) then, for instance:

(i) the 2.2C} 2-D hyper-objects denoted by (k4 &%) x y, with hyper-dimensions (k +
%) % y, and cumulative 2-D hyper-volume 2.2Cy.(k + 3y,

defined in §1.D.c.(4(i)) are well-defined uniquely upto isomorphism by (assembled uniquely
from):

(ii) the 2* scaled down 2-D hyper-objects denoted by (k+ )3 X y(3), with hyper-
dimensions (k + &)1 x y(3), and cumulative 2-D hyper-volume 2*.(k + %)iy(3) =
22C.(k+ £ )v;

whilst:

(iii) the 22.2C5 2-D hypercubes denoted by (k + )2, with hyper-dimensions (k + &) x
(k+ %), and cumulative 2-D hyper-volume 2> 2C.(k + )2,

are also well-defined uniquely upto isomorphism by (assembled uniquely from):

(iv) the 2* scaled down 2-D hypercubes denoted by ((k + %)(3))? with hyper-dimensions
((k+£)(3)) % ((k+ $%)(3)), and cumulative 2-D hyper-volume 2*.((k + £)(5))* =
222Cy.(k + %)?

09, 52 )"

However, if 2 + 3y = 2° and z —y = 2(k 4 &), then:

(i) the 2° 3-D hypercubes denoted by (k + % )3, with hyper-dimensions (k + 45) % (k +
&) % (k+ %), and cumulative 3-D hyper-volume 2°.(k + %),

are capable of being well-defined upto isomorphism, but not capable of being well-defined
uniquely upto isomorphism by (assembled uniquely from):

(ii) the 3* scaled down 3-D hypercubes denoted by ((k + £)(2))?, with hyper-dimensions
(k4 %)(3) x ((k+ %)(3)) x ((k+ %)(3)) and cumulative 3-D hyper-volume
3.((k + 5)(3))° = 2.(k + %)%

in a 3-D LEGO blocks puzzle which evidences C(2% —g %) =, C(2?) as well-defined
uniquely upto isomorphism in §1.D.c.(4(i)), since we cannot assemble the 3-D hypercube
denoted by 23 in the puzzle by replacing 2% identical 3-D hypercubes (as defined in (i)),
with 32 scaled down, identical, 3-D hypercubes (as defined in (ii)).
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Comment: In other words, we can never design a LEGO blocks puzzle for any y,z € N
such that any configuration C(y?) of the cube y3, along with any configuration of LEGO

blocks which is isomorphic to C(23 — y?) = 6(k + %&)y? + 12(k + 2% )2y + 8(k + =%)3, could
be assembled into a cube z3.

Reason: If, in the above LEGO blocks puzzle, > 7 a;([ 15—, wix) and > 1 b;(IT_, vir) are any
two uniquely well-defined configurations upto isomorphism of the hypercube 2™, each of
which, along with any configuration of the hypercube y”, could be assembled uniquely into a
hypercube 2", then it is:

e necessary, but not sufficient, that Ejl a;(ITh—; uir) and Ejl bi(ITh—; vir) are isomorphic;

e necessary, and sufficient, that 2]1 a;(ITh_; wir) and Zjl bi(ITh_ vik) are isomorphic;
and, for all 1 < < j, either a;|b; or b;|a;.

1.D.e. Conclusions: Fermat’s Lost Argument

In conclusion, we note §1.D.c. and §1.D.d. argue the pre-formal perspective that FLT is
a true proposition concerning ‘arithmetical’ properties of hyper-geometric, n-dimensional,
mathematical objects z™, y™, z" such that:

(a)

(b)

()

(d)

Fermat’s Last Theorem can be interpreted as an assertion concerning properties of
the hyper-geometric objects sought to be well-defined uniquely upto isomorphism in
§1.D.c.(4(i)); where

If z,y,2,n,€ N, and 2" = 2" 4+ 4", the n-D hyper-object denoted by z" —, y", and sought
to be well-defined uniquely upto isomorphism in §1.D.c.(4(i)), is well-defined uniquely
only if n < 2; and

The n-D hyper-object denoted by 2™, and sought to be well-defined uniquely upto isomor-
phism in §1.D.c.(5(1)), is also well-defined uniquely only if n < 2, since C(z" —, y") =,
C(z™); whence

For any specified y, z, € N, ™ cannot be well-defined uniquely in N by 2.°Cy (k+ I%)y(p_l) +
222Cy(k + ﬁ)zy(p*m +...+2P(k+ )P such that there is a deterministic algorithm which
will verify 2" 4+ y" = 2" for n > 2.

It is an insight which could, conceivably, have been shared by Fermat, and viewed initially by
him as a ‘truly marvelous proof’; but perhaps one whose ‘truth’ in the general case he doubted
just enough—in the absence of sufficient special cases—to have subsequently ‘believed’ he
might have ‘briefly deluded himself’ as having solved ‘with an irretrievable idea’—bequeathing
posterity the question:

“If Fermat did not have Wiles’s proof, then what did he have?”

Mathematicians are divided into two camps. The hardheaded skeptics believe that Fermat’s Last
Theorem was the result of a rare moment of weakness by the seventeenth century genius. They
claim that, although Fermat wrote ‘I have discovered a truly marvellous proof,” he had in fact
found only a flawed proof. The exact nature of this flawed proof is open to debate, but it is quite
possible that it may have been along the same lines as the work of Cauchy or Lamé.

Other mathematicians, the romantic optimists, believe that Fermat may have had a genuine proof.
Whatever this proof might have been, it would have been based on seventeenth-century techniques,

R

... Singh: [Sng97], pp.307-308.
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We note, further, that:

(i)

In any physical interpretation of FLT, say as three water tanks of volumes x°L, v3L
and 2°L (in litres), with z,y,2z € N, FLT entails that we cannot fill the volume 2L
completely—and without overspill—with water volumes 23L and L.

This would also hold in the particular physical interpretation in §1.D.c., Fig.5, for the
volume of the ‘space’ defined ‘between’ % and 23.

Even if the hyper-volume V(z" —_ y7), sought to be well-defined uniquely upto isomor-
phism in the particular configuration §1.D.c.(4(i)) by the n-D hyper-object denoted by
z" —. y", could be platonically assumed as being capable of being ‘filled” with unit n-D
hypercubes of total hyper-volume V(z7), it could not even platonically be assumed as
capable of being ‘filled” with n-D hypercubes of side %, of total hyper-volume V(z7), if n
is a prime greater than 2 (an eventuality that would not arise with a continuous measure).

Moreover, even if the putative hyper-volume V(2" —_ y™) ‘between’ the n-D hypercubes
denoted by y™ and 2™ in such a platonic configuration could always be assumed as capable
of being platonically ‘filled’ with a continuous measure (such as that of, say, flowing water)
so as to satisfy z™ + y" = 2", even platonically this cannot always be done with discrete
measures (say water frozen as blocks of ice) if n > 2.

Any proof of FLT within a putative, formal, theory such as Ty, could, then, be interpreted
as a formal expression of this, pre-formal, distinction between properties of continuous
and discrete measures that must be reflected in the theory.

Comment: A distinction that could conceivably have significance for the physical sciences,
which appeal to interpretations of well-defined, formal, mathematical systems (such as string
theories in particle physics) that admit n-dimensional objects in quantized mathematical
structures.

In the absence of such an informal interpretation, it is not obvious why, and in what sense,
Andrew Wiles proof of FLT can be treated as entailing a true arithmetical proposition
under a well-defined interpretation of the first-order Peano Arithmetic PA.

Reason: As argued in §19.C. (§19.C.a., Case 1, to 19.D.c., Case 5) any well-defined, set-
theoretical, interpretation of a formal number-theoretic argument—such as, for instance,
that of Wiles which must, presumably, implicitly appeal to the limits of Cauchy sequences
as well-defined, set-theoretical, real numbers—need not be true pre-formally in the
arithmetic of the natural numbers (as highlighted in the—albeit distinctly different—case
of Goodstein’s Theorem in §18., Theorem 18.1).

From the evidence-based perspective of this investigation, the significance of §1.D.c., Propo-
sition 1.1, for the Complementarity Thesis (§1., Thesis 1), is that it illustrates the symbiotic
inter-dependence of formal provability and evidence-based, pre-formal, truth, since it is the lack
of uniqueness of the well-defined, evidence-based, arithmetical property §1.D.c.(4(i)), in the
hyper-geometric representation §1.D.c.(4), of the formal arithmetical relation ™ + y™ = 2",
which yields the pre-formal, transparent, proof of Fermat’s Last Theorem in §1.D.c..

In other words, one could conjecture that the challenges in, and illusory barriers to,
formulating a formal proof of Fermat’s Last Theorem (as also that of the PuNP problem
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as evidenced pictorially by §21.A., Proposition 21.5), and in reconstructing Fermat’s putative
‘Lost Proof’, has been rooted in a philosophy that views interpreted mathematical truth as an
adjunct entailment of mathematical provability, rather than as a necessarily transparent, and
equal, evidence-based prerequisite for determining in a formal proof theory which axiomatic
assumptions underlie the truth of pre-formal, evidence-based, reasoning.
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CHAPTER 2. INTRODUCTION

2. Revisiting an evidence-based paradigm

To place this investigation in its appropriate, evidence-based, perspective we first revisit
the evidence-based paradigm introduced in [Anl12] and the paper [Anl6]; a paradigm whose
philosophical significance is that it pro-actively addresses the challenge?” which arises when an
intelligence:

— whether human or mechanistic,

— accepts arithmetical propositions as true under an interpretation,

— either axiomatically or on the basis of subjective self-evidence,

— without any specified methodology for objectively evidencing such acceptance,
— in the sense of, for instance, Chetan Murthy and Martin Lob:

“It is by now folklore ...that one can view the values of a simple functional language as
specifying evidence for propositions in a constructive logic ...”
... Murthy: [Mu91], §1 Introduction.

“Intuitively we require that for each event-describing sentence, ¢,.n, say (i.e. the concrete
object denoted by n, exhibits the property expressed by ¢,.), there shall be an algorithm
(depending on I, i.e. M*) to decide the truth or falsity of that sentence.”

... Léb: [Lob59], p.165.

The foundational significance of the evidence-based definitions of arithmetical truth, intro-
duced in [An12], lies in the fact that the first-order Peano Arithmetic PA—which, by [An16],
Theorem 6.7 (p.41), is finitarily consistent (see also §2.C.a., Theorem 2.16)—forms the bedrock
on which all formal mathematical languages that admit rational and real numbers are founded
(see, for instance, Edmund Landau’s classically concise exposition [La29] on the foundations of
analysis; see also §22.C.c.).

Axioms and rules of inference of the first-order Peano Arithmetic PA

PA, [(z1=122) = (21 = 23) — (22 = 73))];
PA; [(z1 = z2) — (2] = 2)];

PA; [0 # 2];

PA, [(z] = z3) = (21 = 22));

PA; [(z1+0) =x];

PAg [(z1+23) = (21 + 22)'];

PA; [(z1x0)=0];

PAg [(x1 x2) = ((x1 * x2) + x1)];

PAgy For any well-formed formula [F(z)] of PA:
[F(0) = ((Va)(F(z) = F(2)) = (V&) F(2))].

2TFor a brief review of such challenges, see Feferman: [Fe06] and [Fe08]; also [An04] and [Frel8].
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Generalisation in PA If [A] is PA-provable, then so is [(Vx)A].

Modus Ponens in PA If [4] and [A — B] are PA-provable, then so is [B].

Hence the reliability of any conceptual metaphors of our observations of physical phenomena
which appeal—in their mathematical representations—to mathematical definitions of real
numbers (in the sense of [LRO0]; see also §25.) must be circumscribed by whether, or not, PA
can be interpreted categorically, in some practicable sense (see [Anl16], Corollary 7.2 (p.41);
also §2.E.b., Corollary 2.18) over the domain N of the natural numbers.

Now conventional wisdom, whilst accepting Alfred Tarski’s classical definitions of the
satisfiability and truth of the formulas of a formal language, under a well-defined interpretation,
as adequate to the intended purpose, postulates that under the classical putative standard
interpretation Zp(n, g) of the first-order Peano Arithmetic PA over the domain N of the natural
numbers:

(i) The satisfiability /truth of the atomic formulas of PA can be assumed as uniquely decidable
under Zp 4, s);

(ii) The PA axioms can be assumed to uniquely interpret as satisfied/true under Zpa, s);

(iii) The PA rules of inference—Generalisation and Modus Ponens—can be assumed to uniquely
preserve such satisfaction/truth under Zpa, s);

(iv) Aristotle’s particularisation can be assumed to hold under Zp AN, S)-

Comment. In [Anl16], Aristotle’s particularisation (see also §7., Definition 17) is treated as
the implicit, non-finitary, assumption that the classical first-order logic FOL?® is w-consistent;
and so we may always interpret the formal expression ‘(3z)F(z)?° of a formal language
under any well-defined interpretation of FOL as ‘There exists an object s in the domain of the
interpretation such that F*(s)’, where the formula [F'(z)] of the formal language interprets
as F*(x).

w-consistent. A formal system S is w-consistent if, and only if, there is no S-formula [F(z)]
for which, first, [-(Vz)F (z)] is S-provable and, second, [F'(a)] is S-provable for any specified
S-term [a].

However, we shall see that the seemingly innocent and self-evident assumptions of uniqueness
in (i) to (iii) conceals an ambiguity with far-reaching consequences; as, equally if not more so,
does the seemingly innocent assumption in (iv) which, despite being obviously non-finitary, is
unquestioningly (see §7.B.) accepted in classical literature as equally self-evident under any
logically unexceptionable interpretation of the classical first-order logic FOL.

The ambiguity is revealed if we note that Tarski’s classic definitions (see [Anl16], §3, p.37;
also §2.A. and §2.A.a.) permit both human and mechanistic intelligences to admit finitary, i.e.,

28For purposes of this investigation we take FOL to be a first-order predicate calculus such as the formal
system K defined in [Me64], p.57.

29We note that, in a formal language, the formula ‘[(3x)F(x)] is merely an abbreviation of the formula
‘[=(Vx)—~F(z)]. Moreover, that we shall use square brackets to differentiate between a symbolic expression—such
as [F(z)]—which denotes a formula of a formal language L (treated syntactically as a string of symbols without
any associated meaning), and the symbolic expression—such as F*(z)—which denotes its meaning under a
well-defined (in the sense of §7.F., Definition 23) interpretation; we find such differentiation useful in order to
avoid the possibility of conflation between the two, particularly when (as is not uncommon) the same symbolic
expressions are used to denote—or are common to—the two.



52 2.. Revisiting an evidence-based paradigm

evidence-based, definitions of the satisfaction and truth of the atomic formulas of PA over the
domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways:

(1a) In terms of classical algorithmic verifiability (see §2., Definition 4); and

Comment: ‘Classical’ since, as we shall argue in §2.A.b., the classical, standard
(intuitively-defined) interpretation Zp 4w, sy of PA (see [Me64], p.107) can be viewed
as implicitly appealing to the algorithmic verifiability of PA-formulas under the (well-
defined) interpretation Zp sy, svy (as detailed in [An16], §5, p.38; see also §2.B.).

(1b) In terms of finitary algorithmic computability (see §2., Definition 7);
where we introduce the following evidence-based (finitary) definitions:

Definition 4. (Algorithmic verifiability) A number-theoretical relation F(x) is
algorithmically verifiable if, and only if, for any specifiable natural number n, there is
a deterministic algorithm AL g, »y which can provide objective evidence for deciding
the truth/falsity of each proposition in the finite sequence {F(1), F(2),...,F(n)}.

Definition 5. (Integer specifiability) An unspecified natural number n in N is
specifiable if, and only if, it can be explicitly denoted as a PA-numeral by a PA-
formula that interprets as an algorithmically computable constant (natural number)

i N.

Comment: The significance of Definition 5 is highlighted in §10.C.a., Theorem 10.3.

Definition 6. (Deterministic algorithm) A deterministic algorithm is a well-
defined mechanical method, such as a Turing machine, that computes a mathematical
function which has a unique value for any input in its domain, and the algorithm is
a process that produces this particular value as output.

Comment: By ‘deterministic algorithm’ we mean a ‘realizer’ in the sense of the
Brouwer-Heyting-Kolmogorov rules (see Stephen Cole Kleene’s [K152], p.503-505).

Definition 7. (Algorithmic computability) A number theoretical relation F(x)
is algorithmically computable if, and only if, there is a deterministic algorithm ALp
that can provide objective evidence for deciding the truth/falsity of each proposition
in the denumerable sequence {F(1), F'(2),...}.

Comment: In §7.G., Theorem 7.2 (corresponding to [An16], Theorem 2.1, p.37),
we shall show that there are well-defined number theoretic Boolean functions that
are algorithmically verifiable but not algorithmically computable; and consider some
consequences for the classical Church-Turing Thesis in §7.H.b.
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2.A. Reviewing Tarski’s inductive assignment of truth-values under
an interpretation
The paper [Anl6] essentially follows standard expositions (such as [Me64]; see §27.) of Tarski’s

inductive definitions on the ‘satisfiability’ and ‘truth’ of the formulas of a formal language under
an interpretation where:

Definition 8. If [A] is an atomic formula [A(xy, xa, ..., x,)] of a formal language S, then the
denumerable sequence (a1, as, . ..) in the domain D of an interpretation Tgmy of S satisfies [A]

if, and only if:

(i) [A(z1,22,...,2,)] interprets under Zgmy as a unique relation A*(x1, 22, ..., T,) in D for
any witness Wy of D;

11 ere 1s a oatisfaciion etno at proviaes ovjeclive evl encet which any witness D
1) there is a Satisfaction Method that des objecti dence®® by which any wit W

of D can objectively define for any atomic formula [A(x1,xa, ..., x,)] of S, and any given
denumerable sequence (b1, b, ...) of D, whether the proposition A*(by,bs, ..., b,) holds or
not in D;

(111) A*(a1,as,...,a,) holds in D for any Wp.

Witness: From an evidence-based perspective, the existence of a ‘witness’ as in (i) above is
implicit in the usual expositions of Tarski’s definitions.

Satisfaction Method: From an evidence-based perspective, the existence of a Satisfaction
Method as in (ii) above is also implicit in the usual expositions of Tarski’s definitions.

An evidence-based perspective: We highlight the word ‘define’ in (ii) above to emphasise the
evidence-based perspective underlying this paper; which is that the concepts of ‘satisfaction’ and
‘truth’ under an interpretation are to be explicitly viewed as objective assignments by a convention
that is witness-independent. A Platonist perspective would substitute ‘decide’ for ‘define’, thus
implicitly suggesting that these concepts can ‘exist’, in the sense of needing to be discovered by
some witness-dependent means—eerily akin to a ‘revelation’—if the domain D is N.

2.A.a. Tarski’s inductive definitions

Moreover, the truth values of ‘satisfaction’, ‘truth’, and ‘falsity’ are assignable inductively—
whether finitarily or non-finitarily—to the compound formulas of a first-order theory S under
the interpretation Zg(p) in terms of only the satisfiability of the atomic formulas of S over D as
usual3!:

Definition 9. A denumerable sequence s of D satisfies [ A] under Zgmy if, and only if, s does
not satisfy [A];

Definition 10. A denumerable sequence s of D satisfies [A — B] under Zgmy if, and only if,
either it is not the case that s satisfies [A], or s satisfies [B];

Definition 11. A denumerable sequence s of D satisfies [(Va;)A] under Zswy if, and only if,
giwen any denumerable sequence t of D which differs from s in at most the i ’th component, t
satisfies [A];

30In the sense of [Mu91] and [Lob59] (see §2.).
31See [Me64], p.51; [Mu91].
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Definition 12. A well-formed formula [A] of D is true under Zgmy if, and only if, given any
denumerable sequence t of D, t satisfies [A];

Definition 13. A well-formed formula [A] of D is false under Zsmy if, and only if, it is not
the case that [A] is true under Zgm).

The implicit assumption of Aristotle’s particularisation in current mathematical paradigms
is evidenced in (V)(ii) of Mendelson’s assertion—following his formulation of Tarski’s definitions
(essentially as above)—that:

“Verification of the following consequences of the definitions above is left to the reader. (Most of
the results are also obvious if one wishes to use only the ordinary intuitive understanding of the
notions of truth and satisfaction). ...

(V) (i) A sequence s satisfies A A B if and only if s satisfies A and s satisfies B. A sequence s
satisfies A Vv B if and only if s satisfies A or s satisfies B. A sequence s satisfies A = B if and only
if s satisfies both A and B or s satisfies neither .4 nor .

(ii) A sequence s satisfies (Fx;)A if and only if there is a sequence s’ which differs from s in at
most the 7" place such that s’ satisfies A.”
... Mendelson: [Me64], pp.51-52.

2.A.b. The ambiguity in the classical standard interpretation of PA over N

Now, the classical standard interpretation Zps(y, sy of PA over the domain N of the natural
numbers (as detailed in [Me64], p.107) is obtained if, in Zg(p):

(a) we define S as PA with the standard first-order predicate calculus FOL as the underlying
logic3?;

(b) we define D as the set N of natural numbers;

(c) we assume for any atomic formula [A(xy,2s,...,2,)] of PA, and any given sequence
(b3, 05, ...,b%) of N, that the proposition A*(b3,b5,...,b%) is decidable in N;

(d) we define the witness W, ) informally as the ‘mathematical intuition’ of a human
intelligence for whom, classically, (c) has been implicitly accepted as ‘objectively decidable’
in N.

(e) we postulate that Aristotle’s particularisation®® holds over N.

Comment: Clearly, (e) (which, in [Me64], is implicitly entailed by [Me64], para (V)(ii), p.52) does not
form any part of Tarski’s inductive definitions of the satisfaction, and truth, of the formulas of PA under
the above interpretation. Moreover, its inclusion makes Zp 4(n, ) extraneously non-finitary3* (see also
§7.B.).

We shall show that the implicit acceptance in (d) conceals an ambiguity that needs to be
made explicit since:

32Where the string [(3...)] is defined as—and is to be treated as an abbreviation for—the PA formula
[=(V...)m]. We do not consider the case where the underlying logic is Hilbert’s formalisation of Aristotle’s logic
of predicates in terms of his e-operator ([Hi27], pp.465-466).

33See §7., Definition 17; which postulates that a PA formula such as [(3z)F ()] can always be taken to
interpret under Zpa(n, sy as ‘There is some natural number n such that F'(n) holds in N.

34As argued by Brouwer in [Br08].
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Lemma 2.1. Under the interpretation Ipaw, sy, an atomic formula A*(z1, 22, ..., xy) is both
algorithmically verifiable and algorithmically computable in N by W, ).

Proof. (i) It follows from the argument in §2.B., Theorem 2.3, that A*(z1,xs,...,z,) is algo-
rithmically verifiable in N by Wy, g).

(ii) It follows from the argument in §2.C., Theorem 2.9, that A*(z1, xo, ..., z,) is algorithmically
computable in N by Wiy, ). The lemma follows. O

2.B. The weak, algorithmically verifiable, standard interpretation
Tpa, sv) of PA

We note that conventional wisdom considers the weak, algorithmically verifiable, interpretation
Ipa, svy of PA, detailed in [Anl16], §5, p.38, as the classical standard interpretation Zpa, s
of PA (see [Me64], p.107), since it implicitly defines:

Definition 14. An atomic formula [A] of PA is satisfiable under the interpretation Tpaw, sv)
if, and only if, [A] is algorithmically verifiable under Tpa, sv).-

We note that:

Theorem 2.2. The atomic formulas of PA are algorithmically verifiable as true or false under
the algorithmically verifiable interpretation Lpan, sv).

Proof. Tt follows by Godel’s definition of the primitive recursive relation x By**—where z is the
Godel number of a proof sequence in PA whose last term is the PA formula with Gédel-number
y—that, if [A] is an atomic formula of PA, we can algorithmically verify which one of the PA
formulas [A] and [—~A] is necessarily PA-provable and, ipso facto, true under Zpay, sv). O

Comment: We note that the interpretation Zp 4y, sv) cannot claim to be finitary3®, since it
follows from §7.G., Theorem 7.2, that we cannot conclude finitarily from Tarski’s Definition 8
(in §2.A.), and Definitions 9 to 13 (in §2.A.a.), whether or not a quantified PA formula [(Vz;)R)]
is algorithmically verifiable as true under Zpa(n, sv), if [R] is algorithmically verifiable but not
algorithmically computable under Zp 4(n, sv)

2.B.a. The PA axioms are algorithmically verifiable as true under Zp,, sv)

The significance of defining satisfaction in terms of algorithmic verifiability under Zp, svy is
that:

Lemma 2.3. The PA axioms PA; to PAg are algorithmically verifiable as true over N under
the interpretation Ipa, sv)-

35[Go31], p. 22(45).

36Since it defines a model of PA if, and only if, PA is w-consistent and so we may always non-finitarily
conclude from [(3z)R(z)] the existence of some numeral [n] such that [R(n)].

37 Although a proof that such a PA formula exists is not obvious, by [An16], Corollary 8.3, p.42 (see also
§2.F., Corollary 2.21), Godel’s ‘undecidable’ arithmetical formula [R(z)] is algorithmically verifiable, but not
algorithmically computable, under the interpretation Zp s(n, sv)-
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Proof. Since [z + y], [x*y], [x = y], [¢/] are defined recursively®®, the PA axioms PA; to PAg
(see §2.) interpret as recursive relations that do not involve any quantification. The lemma
follows from §2.B., Theorem 2.2, Tarski’s Definition 8 (in §2.A.), and Tarski’s Definitions 9 to
13 (in §2.A.a.). O

Lemma 2.4. For any given PA formula [F(x)], the Induction aziom schema [F(0) — (((Vx)(F(x)
— F(a"))) — (VYa)F(x))] interprets as an algorithmically verifiable true formula under Tpan, sv).

Proof. We note that, by Tarski’s Definition 8 (in §2.A.), and Definitions 9 to 13 (in §2.A.a.):

(a) If [F(0)] interprets as an algorithmically verifiable false formula under Zpa, sv), the
lemma is proved.

Reason: Since [F(0) — ((Vx)(F(z) — F(2'))) — (Va)F(z))] interprets as an algorithmically
verifiable true formula under Zp 4w, gv) if, and only if, either [F'(0)] interprets as an algo-
rithmically verifiable false formula, or [((Vz)(F(z) — F(z'))) — (Vz)F(x)] interprets as an
algorithmically verifiable true formula, under under Zp o(n, sv)-

(b) If [F(0)] interprets as an algorithmically verifiable true formula, and [(Vz)(F(z) — F(2'))]
interprets as an algorithmically verifiable false formula, under Zp sy, sv), the lemma is
proved.

(c) If [F(0)] and [(Vz)(F(x) — F(2'))] both interpret as algorithmically wverifiable true
formulas under Zp 4w, sv) then, for any specified natural number n, there is an algorithm
which (by Definition 4) will evidence that [F(n) — F(n')] is an algorithmically verifiable
true formula under Zp, sv).

(d) Since [F(0)] interprets as an algorithmically verifiable true formula under Zpa, sv),
it follows, for any specified natural number n, that there is an algorithm which will
evidence that each of the formulas in the finite sequence {[F'(0), F(1), ..., F(n)}] is an
algorithmically verifiable true formula under the interpretation.

(e) Hence [(Vx)F(x)] is an algorithmically verifiable true formula under Zpan, sv).

Since the above cases are exhaustive, the lemma follows. O

Comment: We note that if [F'(0)] and [(Vz)(F(x) — F(z'))] both interpret as algorithmically
verifiable true formulas under Zp 4, sv), then we can only conclude that, for any specified natural
number n, there is an algorithm, say TMr ), which will give evidence for any m < n that the
formula [F'(m)] is true under Zp 4w, 5)-

We cannot conclude that there is an algorithm TMp which, for any specified natural number n,
will give evidence that the formula [F'(n)] is true under Zp zn, s)-

Lemma 2.5. Generalisation preserves algorithmically verifiable truth under Ip s, sv-

Proof. The two meta-assertions:
‘[F(x)] interprets as an algorithmically verifiable true formula under Zpan, s>’

and

38¢f. [Go31], p.17.
39See Definition 12 (in §2.A.a.)
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‘[(Vo)F(x)] interprets as an algorithmically verifiable true formula under Zpaw, svy’
both mean:

[F(x)] is algorithmically verifiable as always true under Zpa, sv). O

It is also straightforward to see that:
Lemma 2.6. Modus Ponens preserves algorithmically verifiable truth under Ip s, sv- O
We thus have that:

Theorem 2.7. The axioms of PA are always algorithmically verifiable as true under the inter-
pretation Tpa, sv), and the rules of inference of PA preserve the properties of algorithmically
verifiable satisfaction/truth under Ipan, sv)- O

By §2.B., Theorem 2.2 we further conclude that PA is weakly consistent:

Theorem 2.8. Ifthe PA formulas are algorithmically verifiable as true or false under Tp s, sv),
then PA is consistent. O

Comment: We note that, unlike Gentzen’s argument*°, which appeals to debatably ‘constructive’
properties of set-theoretically defined transfinite ordinals, such a—strictly arithmetical—weak
proof of consistency is unarguably ‘constructive’; however it is not ‘finitary’ since we cannot
conclude from §2.B., Theorem 2.2 that the quantified formulas of PA are ‘finitarily’ decidable as
true or false under the interpretation Zp gy, sv)-

2.C. The strong, algorithmically computable, interpretation Zp,x, sc)
of PA

The paper [An16] considers next a strong, algorithmically computable, interpretation Zpa, sc)
of PA, under which we define:

Definition 15. An atomic formula [A] of PA is satisfiable under the interpretation Tpaw, sc)
if, and only if, [A] is algorithmically computable under Tpaw, sc)-

We note that:

Theorem 2.9. The atomic formulas of PA are algorithmically computable as true or as false
under the algorithmically computable interpretation Ipa, sc)-

Proof. 1f [A(x1, %2, ..., %,)] is an atomic formula of PA then, for any given sequence of numerals
(b1, b, ..., by], the PA formula [A(by,bs, ...,b,)] is an atomic formula of the form [c¢ = d],
where [¢] and [d] are atomic PA formulas that denote PA numerals. Since [¢] and [d] are
recursively defined formulas in the language of PA, it follows from a standard result*! that, by
§2., Definition 7, [¢ = d] is algorithmically computable as either true or false in N since there is

an algorithm that, for any given sequence of numerals [by, bs, ..., b,], will give evidence (in the
sense of [Mu91] and [Lob59]) whether [A(by, by, ..., b,)] interprets as true or false in N. The
lemma follows. a

10See [Meb4], pp.258-271.
41For any natural numbers m, n, if m # n, then PA proves [~(m = n)] ([Me64], p.110, Proposition 3.6). The
converse is obviously true.
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We note that the interpretation Zp4(n, sc) is finitary since:

Lemma 2.10. The formulas of PA are algorithmically computable finitarily as true or as false
under Lpa, sc)-

Proof. The Lemma follows by finite induction from by §2., Definition 7, Tarski’s Definition 8
(in §2.A.), and Definitions 9 to 13 (in §2.A.a.), and Theorem 2.9. a

2.C.a. The PA axioms are algorithmically computable as true under Zp,y, sc)

The significance of defining satisfaction in terms of algorithmic computability under Zpax, sc)
as above is that:

Lemma 2.11. The PA axioms PA to PAg are algorithmically computable as true under the
interpretation Ipan, sc)-

Proof. Since [z +y], [zxy], [x = y], [] are defined recursively??, the PA axioms PA; to PAg
(see §2.) interpret as recursive relations that do not involve any quantification. The lemma
follows from §2.B., Theorem 2.2 and Tarski’s Definition 8 (in §2.A.), and Definitions 9 to 13 (in
§2.A.a.). O

Lemma 2.12. For any given PA formula [F(z)], the Induction axiom schema [F(0) —
((Vz)(F(z) — F(2)) — (Vx)F(x))] interprets as an algorithmically computable true for-
mula under Ipa, sc)-

Proof. By Tarski’s Definition 8 (in §2.A.), and Definitions 9 to 13 (in §2.A.a.):

(a) If [F(0)] interprets as an algorithmically computable false formula under Zpawn, scy the
lemma is proved.

Reason: Since [F(0) — ((Vz)(F(z) = F(2'))) — (Va)F(z))] interprets as an algorithmically
computable true formula if, and only if, either [F(0)] interprets as an algorithmically com-
putable false formula, or [((Vz)(F(x) — F(2'))) — (Vz)F(z)] interprets as an algorithmically
computable true formula, under Zp 4, s¢)-

(b) If [F(0)] interprets as an algorithmically computable true formula, and [(Vx)(F(z) —
F(a'))] interprets as an algorithmically computable false formula, under Zpan, scy, the
lemma is proved.

(c) If [F(0)] and [(Vx)(F(xz) — F(2'))] both interpret as algorithmically computable true
formulas under Zpa(, sc), then by Definition 7 there is an algorithm which, for any
natural number n, will give evidence (in the sense of [Mu91] and [Lob59]) that the formula
[F(n) — F(n')] is an algorithmically computable true formula under Zpan, sc)-

(d) Since [F(0)] interprets as an algorithmically computable true formula under Zpa, sc, it
follows that there is an algorithm which, for any natural number n, will give evidence
that [F(n)] is an algorithmically computable true formula under the interpretation.

(e) Hence [(Vx)F'(z)] is an algorithmically computable true formula under Zpaw, sc.-

42¢f. [Go3l], p.17.
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Since the above cases are exhaustive, the lemma follows. a
Lemma 2.13. Generalisation preserves algorithmically computable truth under Lpa, sc)-

Proof. The two meta-assertions:

‘[F'(x)] interprets as an algorithmically computable true formula under Zpaw, scy*’
and

‘[(Vx)F(x)] interprets as an algorithmically computable true formula under Zpan, sc)’
both mean:

[F(x)] is algorithmically computable as always true under Zpa, s)- O
It is also straightforward to see that:

Lemma 2.14. Modus Ponens preserves algorithmically computable truth under Zpaw, scy. O
We thus have that**:

Theorem 2.15. The azioms of PA are always algorithmically computable as true under the in-
terpretation Ipan, scy, and the rules of inference of PA preserve the properties of algorithmically
computable satisfaction/truth under Ipa, scy.- O

We thus have a finitary proof that:

Theorem 2.16. PA is strongly consistent. O

2.D. Dissolving the Poincaré-Hilbert debate

The significance of evidence-based reasoning is also highlighted in the case of the Poincaré-
Hilbert debate*® on whether the PA Axiom Schema of Induction can be labelled ‘finitary’ or
not.

It turns out that the debate dissolves since the Axiom Schema is:

(a) Algorithmically verifiable as true under the weak standard interpretation of PA by §2.B.a.,
Lemma 2.4;

(b) Algorithmically computable as true under a strong finitary interpretation of PA by §2.C.,
Lemma 2.12.

In other words:

43Gee §2.A.a, Definition 12
44Without appeal, moreover, to Aristotle’s particularisation.
45See [Hi27], p.472; also [Br13], p.59; [We27], p.482; [Pa71], p.502-503.
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(i) The algorithmically werifiable, non-finitary, interpretation Zpa(y, sv) of PA validates
Poincaré’s argument that the PA Axiom Schema of Finite Induction could not be justified
finitarily with respect to algorithmic verifiability under the classical standard interpretation
of arithmetic*®, as any such argument would necessarily need to appeal to some form of
infinite induction®”; whilst

(i) The algorithmically computable finitary interpretation Zpa, sc) of PA validates Hilbert’s
belief that a finitary justification of the Axiom Schema was possible under some finitary
interpretation of an arithmetic such as PA.

2.E. Bridging PA Provability and Turing Computability

Moreover, we now show how ewvidence-based reasoning allows us to bridge arithmetic provability
and arithmetic computability in the sense expressed by Christian S. Calude, Elena Calude and
Solomon Marcus in [CCSO1]:

“Classically, there are two equivalent ways to look at the mathematical notion of proof: logical, as
a finite sequence of sentences strictly obeying some axioms and inference rules, and computational,
as a specific type of computation. Indeed, from a proof given as a sequence of sentences one can
easily construct a Turing machine producing that sequence as the result of some finite computation
and, conversely, given a machine computing a proof we can just print all sentences produced
during the computation and arrange them into a sequence.”

... Calude, Calude and Marcus: [CCS01].

where the authors seem to hold that Turing-computability of a ‘proof’, in the case of a mathe-
matical proposition, ought to be treated as equivalent to the provability of its representation in
the corresponding formal language.

2.E.a. Preamble
In a 2003 paper [WGO03], Peter Wegner and Dina Goldin argue the thesis that:

“A paradigm shift is necessary in our notion of computational problem solving, so it can provide a
complete model for the services of today’s computing systems and software agents.”
... Wegner and Goldin: [WG03].

We note that Wegner and Goldin’s arguments, in support of their above thesis, seem to
reflect an extraordinarily eclectic view of mathematics, combining both an implicit acceptance of,
and implicit frustration at, the standard interpretations and dogmas of classical mathematical
theory:

“...Turing machines are inappropriate as a universal foundation for computational problem solving,
and ...computer science is a fundamentally non-mathematical discipline. ...

(Turing’s) 1936 paper . ..proved that mathematics could not be completely modeled by computers.

... the Church-Turing Thesis ... equated logic, lambda calculus, Turing machines, and algorithmic
computing as equivalent mechanisms of problem solving.

46See [Me64], p.107.

47Such as, for instance, in Gerhard Gentzen’s non-finitary proof of consistency for PA, which involves a
non-finitary Rule of Infinite Induction (see [Me64], p.259(IT)(e).) that appeals to the well-ordering property of
transfinite ordinals.
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Turing implied in his 1936 paper that Turing machines ... could not provide a model for all forms
of mathematics. ...

... Godel had shown in 1931 that logic cannot model mathematics . ..and Turing showed that
neither logic nor algorithms can completely model computing and human thought.”
... Wegner and Goldin: [WG03].

These remarks vividly illustrate the dilemma with which not only theoretical computer
sciences, but all applied sciences that depend on mathematics for providing a verifiable, evidence-
based, language to express their observations precisely, are faced:

Query 1. Are formal classical theories essentially unable to adequately express the extent and
range of human cognition, or does the problem lie in the way formal theories are classically
interpreted at the moment?

The former addresses the question of whether there are absolute limits on our capacity to
express human cognition unambiguously; the latter, whether there are only temporal limits—mnot
necessarily absolute—to the capacity of classical interpretations to communicate unambiguously
that which we initially intended to capture within our formal expression.

Prima facie, applied science continues, perforce, to interpret mathematical concepts Platoni-
cally*®, whilst waiting for mathematics to provide suitable, and hopefully reliable, answers as
to how best it may faithfully express its observations wverifiably.

This dilemma is also reflected in Lance Fortnow’s on-line rebuttal [Frt03] of Wegner and
Goldin’s thesis, and of their reasoning

Thus Fortnow divides his faith between the standard interpretations of classical mathematics
(and, possibly, the standard set-theoretical models of formal systems such as standard Peano
Arithmetic), and the classical computational theory of Turing machines.

He relies on the former to provide all the proofs that matter:
“Not every mathematical statement has a logical proof, but logic does capture everything we can
prove in mathematics, which is really what matters”;
... Fortnow: [Frt03].

and, on the latter to take care of all essential, non-provable, truth:

“...what we can compute is what computer science is all about”.

... Fortnow: [Frt03].

However, as we shall argue in §7.H.a., Fortnow’s faith in a classical Church-Turing Thesis
that ensures:

“...Turing machines capture everything we can compute”
)
... Fortnow: [Frt03].

48¢.g., Lakoff and Nufiez’s debatable (as argued by James J. Madden in [Md01]; see also §25.) argument in
[LROO] that—even though not verifiable in the sense of having an evidence-based interpretation—set theory is
the appropriate language for expressing the ‘conceptual metaphors’ by which an individual’s ‘embodied mind
brings mathematics into being’.
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may be as misplaced as his faith in the infallibility of standard interpretations of classical
mathematics.

In other words, the evidence-based perspective introduced in [Anl12] and [Anl6] argues
cogently for a Kuhnian paradigm shift; not, as Wegner and Goldin believe, in the notion of
computational problem solving, but in the standard interpretations of classical mathematical
concepts.

Wegner and Goldin could, though, be right in arguing that the direction of such a shift
must be towards the incorporation of non-algorithmically computable effective methods into
classical mathematical theory; presuming, from the following remarks, that this is, indeed, what
‘external interactions’ are assumed to provide beyond classical Turing-computability:

“...that Turing machine models could completely describe all forms of computation ... contradicted
Turing’s assertion that Turing machines could only formalize algorithmic problem solving ...and
became a dogmatic principle of the theory of computation. ...

...interaction between the program and the world (environment) that takes place during the
computation plays a key role that cannot be replaced by any set of inputs determined prior to the
computation. ...

...a theory of concurrency and interaction requires a new conceptual framework, not just a
refinement of what we find natural for sequential [algorithmic] computing. ...

... the assumption that all of computation can be algorithmically specified is still widely accepted.”
... Wegner and Goldin: [WG03].

A widespread notion of particular interest, which seems to be recurrently implicit in Wegner
and Goldin’s assertions too, is that mathematics is a dispensable tool of science, rather than its
indispensable mother tongue (as argued in §13. and §13.C.).

However, the roots of such beliefs may also lie in ambiguities, in the classical definitions of
foundational elements, that allow the introduction of non-constructive—hence non-verifiable,
non-computational, ambiguous, and essentially Platonic—elements into the standard interpre-
tations of classical mathematics.

For instance, in a 1990 philosophical reflection, Elliott Mendelson’s following remarks
implicitly imply that classical definitions of various foundational elements can be argued as
being either ambiguous, or non-constructive, or both:

“Here is the main conclusion I wish to draw: it is completely unwarranted to say that CT is
unprovable just because it states an equivalence between a vague, imprecise notion (effectively
computable function) and a precise mathematical notion (partial-recursive function). ...The
concepts and assumptions that support the notion of partial-recursive function are, in an essential
way, no less vague and imprecise than the notion of effectively computable function; the former are
just more familiar and are part of a respectable theory with connections to other parts of logic and
mathematics. (The notion of effectively computable function could have been incorporated into an
axiomatic presentation of classical mathematics, but the acceptance of CT made this unnecessary.)
... Functions are defined in terms of sets, but the concept of set is no clearer than that of function
and a foundation of mathematics can be based on a theory using function as primitive notion
instead of set. Tarski’s definition of truth is formulated in set-theoretic terms, but the notion
of set is no clearer than that of truth. The model-theoretic definition of logical validity is based
ultimately on set theory, the foundations of which are no clearer than our intuitive understanding

of logical validity. ...The notion of Turing-computable function is no clearer than, nor more
mathematically useful (foundationally speaking) than, the notion of an effectively computable
function.”

... Mendelson: [Me90].
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Consequently, standard interpretations of classical theory may, inadvertently, be weakening a
desirable perception of mathematics as the lingua franca of scientific expression by ignoring the
possibility that, since mathematics is indisputably accepted as the language that most effectively
expresses and communicates semantic truth, the chasm between—at the least—semantic
arithmetical truth and syntactic arithmetical provability must, of necessity, be bridgeable
explicitly.

Of interest in this context is Martin Davis’ argument that an unprovable truth may, indeed,
be arrived at ‘algorithmically’:

“Is Mathematical Insight Algorithmic?

Roger Penrose replies “no,” and bases much of his case on Gddel’s incompleteness theorem: it is
insight that enables to see that the Gédel sentence, undecidable in a given formal system is actually
true; how could this insight possibly be the result of an algorithm? This seemingly persuasive
argument is deeply flawed. To see why will require looking at Godel’s theorem at a somewhat
more microscopic level than Penrose permits himself. ...

... Godel’s incompleteness theorem (in a strengthened form based on work of J. B. Rosser as well
as the solution of Hilbert’s tenth problem) may be stated as follows:

There is an algorithm which, given any consistent set of axioms, will output a
polynomial equation P = 0 which in fact has no integer solutions, but such that this
fact can not be deduced from the given axioms.

Here then is the true but unprovable Godel sentence on which Penrose relies and in a simple form
at that. Note that the sentence is provided by an algorithm. If insight is involved, it must be in
convincing oneself that the given axioms are indeed consistent, since otherwise we will have no
reason to believe that that the Godel sentence is true.”

... Davis: [Da95].

Now, what Davis is essentially critiquing here—albeit unknowingly—is Penrose’s failure
to recognise that Godel’s true but unprovable sentence interprets as a quantified arithmetical
proposition over N whose truth is, weakly, algorithmically verifiable (Definition 4), but not,
strongly, algorithmically computable (Definition 7), in N.

However, it can be argued ([An07b], [An07c]) that Penrose—as well as other philosophers
and scientists such as, for instance, Lucas ([Lu61]), Wittgenstein ([Wi78]) and [Bul0]—should
not be held to serious account for such lapse, since, as illustrated by Jeff Buechner’s fallacious
(in view of §2.C.a., Theorem 2.16, and §20.D., Theorem 20.1) argument, it merely reflects their
unquestioning faith in standard expositions of classical theory which, too, can be critiqued
similarly for failing to make this distinction explicit:

“In 1984, Putnam proposed an ingenious argument, which he claimed avoided Penrose’s error and
which restored the Godel incompleteness theorems as limitative results in psychology. That his
argument is invalid is argued in detail in my book Gédel, Putnam and Functionalism [20]. As we
shall see below, even if human beings could prove the consistency of any formal system strong
enough to express the truths of arithmetic, the Gédel ncompleteness theorems could not be used
as limitative results in psychology. The reason is straightforward, but it has eluded most thinkers
who have weighed in on the role of the Gédel theorems as limitative results in psychology.

What eluded Hilary Putnam, philosophers, mathematicians, cognitive scientists, and neuroscientists
is that the Godel theorems show that no one—whether the Godel theorems apply to them or
not—can finitistically prove the consistency of Peano arithmetic with mathematical certainty.
They do not show that one cannot prove the consistency of Peano Arithmetic with less than
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mathematical certainty. The proof relation of a formal system confers mathematical certainty
upon everything that is proved in it. This importantly qualifies any claim about what can and
cannot prove in a formal system. The only way finitary beings can achieve mathematical certainty
in what they prove is to prove it in a finitary formal system. There are few results in mathematics
that are proved with mathematical certainty since few mathematicians prove their results in a
finitary formal system (such as first-order logic). No being—not even God—could prove a Godel
sentence with mathematical certainty in a finitary formal system. The only way to prove a Godel
sentence with mathematical certainty is to either use a stronger finitary formal system—in which
case there will be a new Godel sentence that cannot be proved in it—or to employ an infinitary
system in which one constructs infinitary proofs. The latter is within the powers of God, but it is
not within the powers of finitary human beings. We cannot construct infinitary proof trees.

The upshot is that no finitary human being can use the Godel incompleteness theorems to show
there are proof-theoretic powers human cognition has that no computational device intended to
simulate it can capture.”

... Buechner: [Bul0], p.12.

We also note that, in a survey of the foundations of mathematics in the 20" century,
V. Wictor Marek and Jan Mycielski emphasise the significance of bridging the gap between
computability and provability:

“Finally let us formulate three open problems in logic and foundations which seem to us of special
importance.

1. To develop an effective automatic method for constructing proofs of mathematical conjectures,
when these conjectures have simple proofs! Interesting methods of this kind already exist but,
thus far, “automated theorem proving procedures” are not dynamic in the sense that they
do not use large lists of axioms, definitions, theorems and lemmas which mathematicians
could provide to the computer. Also, the existing methods are not yet powerful enough to
construct most proofs regarded as simple by mathematicians, and conversely, the proofs
constructed by these methods do not appear simple to mathematicians.

2. Are there natural large cardinal ezistence axioms LC such that ZFC + LC implies that all
OD sets X of infinite sequences of O0s and 1s satisfy the aziom of determinacy AD(X)? This
question is similar to the continuum hypothesis in the sense that it is independent of ZFC
plus all large cardinal axioms proposed thus far.

3. Is it true that PTIME # NPTIME, or at least, that PTIME # PSPACE? An affirmative
answer to the first of these questions would tell us that the problem of constructing proofs
of mathematical conjectures in given axiomatic theories (and many other combinatorial
problems) cannot be fully mechanized in a certain sense.”

... Marek and Mycielski: [MMO01], p.467.

In his critical review [Krpl13] of the Church-Turing Thesis, Saul A. Kripke too argues that
any mathematical computation can, quite reasonably under an unarguable ‘Hilbert’s thesis’, be
corresponded to a deduction in a first-order theory:

“My main point is this: a computation is a special form of mathematical argument. One is
given a set of instructions, and the steps in the computation are supposed to follow—follow
deductively—from the instructions as given. So a computation is just another mathematical
deduction, albeit one of a very specialized form. In particular, the conclusion of the argument
follows from the instructions as given and perhaps some well-known and not explicitly stated
mathematical premises. I will assume that the computation is a deductive argument from a finite
number of instructions, in analogy to Turing’s emphasis on our finite capacity. It is in this sense,
namely that I am regarding computation as a special form of deduction, that I am saying I am
advocating a logical orientation to the problem
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Now I shall state another thesis, which I shall call “Hilbert’s thesis” ,21 namely, that the steps of
any mathematical argument can be given in a language based on first-order logic (with identity).
The present argument can be regarded as either reducing Church’s thesis to Hilbert’s thesis, or
alternatively as simply pointing out a theorem on all computations whose steps can be formalized
in a first-order language.

Suppose one has any valid argument whose steps can be stated in a first-order language. It is an
immediate consequence of the Godel completeness theorem for first-order logic with identity that
the premises of the argument can be formalized in any conventional formal system of first-order
logic. Granted that the proof relation of such a system is recursive (computable), it immediately
follows in the special case where one is computing a function (say, in the language of arithmetic)
that the function must be recursive (Turing computable).

21 Martin Davis originated the term “Hilbert’s thesis”; see Barwise (1974, 41). Davis’s formulation of Hilbert’s thesis, as stated
by Barwise, is that “the informal notion of provable used in mathematics is made precise by the formal notion provable in
first-order logic (Barwise, 41). The version stated here, however, is weaker. Rather than referring to provability, it is simply
that any mathematical statement can be formulated in a first-order language. Thus it is about statability, rather than
provability. For the purpose of the present paper, it could be restricted to steps of a computation.

Very possibly the weaker thesis about statability might have originally been intended. Certainly Hilbert and Ackermann’s
famous textbook (Hilbert and Ackermann, 1928) still regards the completeness of conventional predicate logic as an open
problem, unaware of the significance of the work already done in that direction. Had Go&del not solved the problem in the
affirmative a stronger formalism would have been necessary, or conceivably no complete system would have been possible. It
is true, however, that Hilbert’s program for interpreting proofs with e-symbols presupposed a predicate calculus of the usual
form. There was of course “heuristic” evidence that such a system was adequate, given the experience of Frege, Whitehead
and Russell, and others.

Note also that Hilbert and Ackermann do present the “restricted calculus”, as they call it, as a fragment of the second-order
calculus, and ultimately of the logic of order w. However, they seem to identifyeven the second-order calculus with set
theory, and mentionthe paradoxes. Little depends on these exact historical points.”

... Kripke: [Krp13], pp.80-81 € 94.

We shall therefore attempt to build such a bridge explicitly, since a significant consequence
of §2.C.a., Theorem 2.15, for constructive mathematics is that it justifies the belief expressed
in [CCS01], where the authors seem to argue (see §2.E.) that Turing-computability of a ‘proof’,
in the case of a mathematical proposition, ought to be treated as equivalent to the provability
of its representation in the corresponding formal language.

We contrast this with the perspective in a 2017 on-line article by Wilfried Sieg and Patrick
Walsh on the verifiability of formalizations of the Cantor-Bernstein Theorem in ZF—via the
proof assistant AProS which ‘allows the direct construction of formal proofs that are humanly
intelligible’.

Sieg and Walsh briefly reaffirm conventional wisdom by emphasising the need to distinguish
between proof sequences of formal mathematical languages that are computable as ‘formal
derivations in particular calculi’, and their interpretations which are ‘the informal arguments
given in mathematics’; hinting obliquely that the crucial problem is finding a faithful mathemat-
ical representation of the logical inferences in informal arguments that involve ‘not surprisingly,
the introduction and elimination rules for logical connectives, including quantifiers’:

“The objects of proof theory are proofs, of course. This assertion is however deeply ambiguous.
Are proofs to be viewed as formal derivations in particular calculi? Or are they to be viewed as the
informal arguments given in mathematics?—The contemporary practice of proof theory suggests
the first perspective, whereas the programmatic ambitions of the subject’s pioneers suggest the
second. We will later mention remarks by Hilbert (in sections 5 and 7) that clearly point in that
direction. Now we refer to Gentzen who inspired modern proof theoretic work; his investigations
and insights concern prima facie only formal proofs. However, the detailed discussion of the proof
of the infinity of primes in his [Gentzen, 1936, pp. 506-511] makes clear that he is very deeply
concerned with formalizing mathematical practice. The crucial problem is finding the atomic
inference steps involved in informal arguments. The inference steps Gentzen brings to light are,
perhaps not surprisingly, the introduction and elimination rules for logical connectives, including
quantifiers.”

... Sieg and Walsh: [SW17].
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The authors note further that:

“When extending the effort from logical to mathematical reasoning one is led to the task of devising
additional tools for the natural formalization of proofs. Such tools should serve to directly reflect
standard mathematical practice and preserve two central aspects of that practice, namely, (1) the
axiomatic and conceptual organization in support of proofs and (2) the inferential mechanisms
for logically structuring them. Thus, the natural formalization in a deductive framework verifies
theorems relative to that very framework, but it also deepens our understanding and isolates core
ideas; the latter lend themselves often, certainly in our case, to a diagrammatic depiction of a
proof’s conceptual structure. ...”

... Sieg and Walsh: [SW17].

Without addressing here the larger dimensions of the authors’ argument which implicitly—
and debatably (see §8.C., Thesis 3)—sanctifies Gentzen’s use of transfinite, set-theoretical,
reasoning in formal proofs, and is critically based on the arguable (see §13.E.) thesis that:

“The language of set theory is, however, the lingua franca of contemporary mathematics and ZF
its foundation.”
... Sieg and Walsh: [SW17].

we conclude from the following (§2.E.b., Theorem 2.17) that although set theory may be the
appropriate language for the symbolic expression of Lakoff and Nunez’s ‘conceptual metaphors’,
by which an individual’s ‘embodied mind brings mathematics into being’ (see [LR00]; see also
§25.), it is the strong finitary interpretation of the first-order Peano Arithmetic PA (see §2.C.a.,
Theorem 2.15) that makes PA a stronger contender for the role of the lingua franca of adequate
expression and effective communication for contemporary mathematics and its foundations.

2.E.b. A Provability Theorem for PA

Moreover, the Provability Theorem for PA in [An16] (Theorem 7.1, p.42) shows that PA can
have no non-standard model*”, since it is ‘computably’ complete semantically, in the sense
that™:

Theorem 2.17. (Provability Theorem for PA) A PA formula [F(x)] is PA-provable if,
and only if, [F(x)] is algorithmically computable as always true in N.

Proof. We have by definition that [(Vz)F(z)] interprets as true under the interpretation
Tpaw, sc if, and only if, [F(z)] is algorithmically computable as always true in N.

By §2.C.a., Theorem 2.15, Zpan, sc) defines a finitary model of PA over N such that:

(a) If [(Vz)F(z)] is PA-provable, then [F(z)] interprets as an arithmetic relation F*(x) which
is algorithmically computable as always true in N;

(b) If [=(Vz)F(z)] is PA-provable, then it is not the case that [F'(z)] interprets as an arithmetic
relation F*(x) which is algorithmically computable as always true in N.

Now, we cannot have that both [(Vz)F(z)] and [~(Vz)F(z)] are PA-unprovable for some
PA formula [F'(z)], as this would yield the contradiction:

4Contradicting current paradigms as detailed in §17.
50We note that Theorem 2.17 (Provability Theorem for PA) offers a solution to Barendregt and Wiedijk’s:
‘The challenge of computer mathematics’ [BW05].
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(i) There is a finitary model—say T}, gcoy—of PA+[(Vz)F(z)] in which [F(z)] interprets
as an arithmetic relation F*(x) that is algorithmically computable as always true in N.

(ii) There is a finitary model—say Tp, 4y gcy—0f PA+[=(Vz)F(x)] in which it is not the case
that [F'(z)] interprets as an arithmetic relation F*(z) that is algorithmically computable
as always true in N.

The theorem follows. O

We note the immediate consequence that, contradicting current paradigms:
Corollary 2.18. PA is categorical. O

Before considering further (in §2.F.) the immediate, formal, consequences—as detailed in
[An16]—of the Provability Theorem for PA, we briefly preview in §3. its far-reaching conse-
quences that highlight the significance of evidence-based reasoning for interpreting mathematical
propositions as ‘true’ in number-theory, computability, philosophy and the natural sciences.

2.F. Godel’s ‘undecidable’ formula [-(Vz)R(x)] is provable in PA
We note that the argumentation in §3. reflects the conclusion in [An16], Lemma 8.1, p.42, that:

Lemma 2.19. If Tpanw, vy defines a model of PA over N, then there is a PA formula [F]
which is algorithmically verifiable as always true over N under Zpaw, ay even though [F| is not
PA-provable.

Proof. Godel has shown how to construct an arithmetical formula with a single variable—
say [R(x)]*'—such that, if PA is consistent, then [R(z)] is not PA-provable®®, but [R(n)] is
instantiationally PA-provable for any given PA numeral [n]. Since PA is consistent by §2.C.a.,
Theorem 2.16, for any given numeral [n|, Godel’s primitive recursive relation zB™[R(n)] ™3
must hold for some x. The lemma follows. O

By the argument in Theorem 2.17 it further follows that, contradicting current paradigms:
Corollary 2.20. The PA formula [-(Vz)R(z)| defined in Lemma 2.19 is PA-provable. O

Corollary 2.21. In any well-defined model of PA, Gédel’s arithmetical formula [R(x)] in-
terprets as an algorithmically verifiable, but not algorithmically computable, tautology over

N.

Proof. Gddel has shown that [R(z)]?* always interprets as an algorithmically verifiable tautology
over N°°. By Corollary 2.20 [R(x)] is not algorithmically computable as always true in N. O

Corollary 2.22. PA is not w-consistent.

51Godel refers to the formula [R(z)] only by its Gédel number r ([Go31], p.25(12)).

52Godel’s aim in [Go31] was to show that [(Vz)R(x)] is not P-provable; by Generalisation it follows, however,
that [R(x)] is also not P-provable.

53Where T[R(n)]” denotes the Gédel-number of the PA formula [R(n)].

54Godel refers to the formula [R(x)] only by its Gédel number r; [Go31], p.25, eqn.12.

%5[Go31], p.26(2): “(n)~(nBk(17Gen r)) holds”
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Proof. Godel has shown that if PA is consistent, then [R(n)] is PA-provable for any given PA
numeral [n]°°. By Corollary 2.20 and the definition of w-consistency, if PA is consistent then it
is mot w-consistent. a

Comment: We prove Corollary 2.22 independently in §12.A.f., Theorem 12.6. We note that this
conclusion is contrary to accepted dogma. See, for instance, Davis’ remarks in [Da82], p.129(iii)
that “...there is no equivocation. Either an adequate arithmetical logic is w-inconsistent (in which
case it is possible to prove false statements within it) or it has an unsolvable decision problem and
is subject to the limitations of Gddel’s incompleteness theorem”.

Corollary 2.23. The classical standard interpretation Ipaw, sy of PA does not well-define a
model of PA.

Comment: Well-define in the sense of §7.F., Definition 23. We note that ‘finitists’ of all hues—
ranging from Brouwer [Br08], to Wittgenstein [Wi78], to Alexander Yessenin-Volpin [He04]—have
persistently questioned the assumption that the classical standard interpretation Zp 4y, s (see
[Me64], p.107) can be treated as well-defining a model of PA; see also [Brm07].

Proof. If PA is consistent but not w-consistent, then Aristotle’s particularisation does not hold
over N. Since the classical standard interpretation of PA appeals to Aristotle’s particularisation,
the lemma follows. a

2.F.a. An evidence-based perspective of Lucas’ Godelian argument

The paper [An16] concludes from this that Lucas’ Godelian argument ([Anl16], Thesis 1, p.42;
see also §20.) can validly claim (as validated in §20.D., Theorem 20.1) that:

Thesis 2. (Godelian Thesis) There can be no mechanist model of human reasoning if the
assignment Lpaw, svy can be treated as circumscribing the ambit of human reasoning about
‘true’” arithmetical propositions, and the assignment Ipa, sc) can be treated as circumscribing
the ambit of mechanistic reasoning about ‘true’ arithmetical propositions.

Argument: Godel has shown how to construct an arithmetical formula with a single variable—
say [R(z)]°"—such that [R(x)] is not PA-provable, but [R(n)] is instantiationally PA-provable
for any given PA numeral [n|. Hence, for any given numeral [n|, Gédel’s primitive recursive
relation x B™[R(n)]™® must hold for some natural number m.

If we assume that any mechanical witness can only reason finitarily then although, for any
given numeral [n], a mechanical witness can give evidence under the assignment Zpa, sc) that
the PA formula [R(n)] holds in N, no mechanical witness can conclude finitarily under the
assignment Zpa(n, sc) that, for any given numeral [n], the PA formula [R(n)] holds in N.

However, if we assume that a human witness can also reason non-finitarily, then a human
witness can conclude under the assignment Zpa, svy that, for any given numeral [n], the PA
formula [R(n)] holds in N. O

The above distinction illuminates the argument in [An13] and [An15], where we suggest how
such a perspective offers a resolution to the EPR paradox, by recognising that (see also §22.):

56[Go31], p.26(2).

5TGodel refers to this formula only by its Godel number r ([Go31], p.25(12)).

58Where 2By denotes Godel’s primitive recursive relation ‘z is the Godel-number of a proof sequence in
PA whose last term is the PA formula with Godel-number y’ ([Go31], p. 22(45)); and "[R(n)]" denotes the
Godel-number of the PA formula [R(n)].
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(i)

(iii)

the assignment Zpan, svy can be viewed as corresponding to the way human intelligence
conceptualises, symbolically represents, and logically reasons about, those sensory percep-
tions that are triggered by physical processes which are representable—mnot necessarily
finitarily—Dby algorithmically verifiable formulas;

the assignment Zp4(n, sc¢) can be viewed as corresponding to the way human intelligence
conceptualises, symbolically represents, and logically reasons about, only those sensory
perceptions that are triggered by physical processes which are representable—finitarily—by
algorithmically computable formulas;

there are physical processes of a quantum nature that are representable only by deter-
minate, algorithmically verifiable, mathematical functions, but not by any predictable,
algorithmically computable, mathematical function.
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CHAPTER 3. INTRODUCTION

3. The significance of the Provability Theorem for PA
for number theory and computability

From the evidence-based perspective of this investigation (see §1., Thesis 1), the significance of
the Provability Theorem for PA (§2.E.b., Theorem 2.17) for number theory is that:

(a) although (see §14.H.), there can be no PA formula that interprets over N as the meta-
statement ‘PA is consistent’” without inviting the paradoxes (see §19.) of impredicativity;

(b) we can interpret the number-theoretic expression Wid(PA) = (3x)[Form(x) & Bew,, ,(z)]
(see [Go31], p.36) over N as asserting: ‘There is a PA-formula that is not PA-provable’,
which is equivalent to asserting that ‘PA is consistent’.

Its corresponding significance for computability theory is that:

(c) whilst (see [Tu36], p.134 and [Me64], p.256) there can be no Turing machine U which,
given the ‘standard description’ of any ‘arbitrary’ Turing machine 7" and any instantaneous
tape description «, can determine whether or not there is a computation of 7" beginning
with a (see §20.F.a., Query 25, Halting-decidability problem for T'), without inviting the
paradoxes (see §19.) of impredicativity;

(d) there is a PA formula that will determine whether or not 7" halts on « (see §20.F.b.,
Theorem 20.3 and Corollary 20.4).

In other words:

e we can express properties about the natural numbers in the language of recursive functions
that cannot be expressed in the language of arithmetic; and

e we can express properties about the natural numbers in the language of arithmetic that
cannot be expressed in the language of recursive functions.
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CHAPTER 4. INTRODUCTION

4. The significance of the Provability Theorem for PA
for the PvINP problem

From the evidence-based perspective of this investigation (see §1., Thesis 1), the significance of
the Provability Theorem for PA (§2.E.b., Theorem 2.17) for the PuNP problem is that (compare
§2.F., Corollary 2.21):

Theorem 4.1. (First Tautology Theorem) There is no deterministic Turing-machine that
evidences Gadel’s tautology R*(n)—when treated as a Boolean function—as an algorithmically
computable truth.

Proof. In his seminal 1931 paper [Go31], Godel has constructed a PA-formula [R(n)] that is
PA-provable for any specified PA-numeral [n]. Hence, under any well-defined interpretation
of PA over N, [R(n)] interprets as a tautological arithmetical relation R*(n) since it is true
for any specified natural number n, but — since the corresponding PA-formula [R(x)]* is not
PA-provable (cf. [Go31], p25(1))—it follows from the Provability Theorem for PA that there
is no deterministic Turing-machine that evidences R*(n) as a tautology (i.e., as true for any
specified natural number n). O

Comment: By Generalisation®, stating that the PA-formula [R(x)] is not PA-provable is
equivalent to stating that the PA-formula [(Vz)R(x)]%! is not PA-provable; the latter is what
Godel actually proved in [Go31].

We also have, further, that:

Theorem 4.2. (Second Tautology Theorem) Gddel’s tautology R*(n) is algorithmically
verifiable as true.

Proof. Godel has defined a primitive recursive relation, xBpay that holds if, and only if, y
is the Godel-number of a PA-formula, say [R], and x the Gédel-number of a PA-proof of [R]
([Go31], p22, dfn. 45).

Since every primitive recursive relation is Turing-computable (when treated as a Boolean
function), xBpay defines a Turing-machine TMp that halts on any specified natural number
values of x and y.

Now, if gira)), 9ir(2); - - - are the Gédel-numbers of the PA-formulas [R(1)], [R(2)], ..., it
follows that, for any specified natural number n, when the natural number value gr(,) is input
for y, the Turing-machine TM g must halt for some value of z—which is the Gédel-number of
some PA-proof of [R(n)]—since Gddel has shown ([Go31], p25(1)) that [R(n)] is PA-provable
for any specified numeral [n].

Hence R*(n) is algorithmically verifiable as true for any specified natural number n. a

%9 Godel defines, and refers to, this formula by its Gédel-number 7 (cf. [Go31], p25, eqn.12).
60 Generalisation in PA: [(Vx)A] follows from [A].
61Godel defines, and refers to, this formula by its Godel-number 17Gen 7 (cf. [Go31], p25, eqn.13).
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4.A. The PvNP problem

We note that the standard definition of the classes P and NP is the one provided by Stephen
Cook to the Clay Mathematical Institute in a 2000 paper, [Cook], which has come to be widely
accepted as the official description of the PuNP problem; where Cook admits a number-theoretic
function F—viewed set-theoretically as extensionally defining (and being defined by) a unique
subset L of the set X* of finite strings over some non-empty finite alphabet set >—in P if, and
only if, some deterministic Turing machine TM accepts L and runs in polynomial time:

“The computability precursors of the classes P and NP are the classes of decidable and c.e.
(computably enumerable) languages, respectively. We say that a language L is c.e. i.e. (or semi-
decidable) iff L = L(M) for some Turing machine M. We say that L is decidable iff L = L(M)
for some Turing machine M which satisfies the condition that M halts on all input strings w. ...

Thus the problem Satisfiability is: Given a propositional formula F', determine whether F is
satisfiable. To show that this is in NP we define the polynomial-time checking relation R(x,y),
which holds iff = codes a propositional formula F' and y codes a truth assignment to the variables
of F which makes F' true.”

... Cook: [Cook].

In this evidence-based investigation, however, we shall—for reasons detailed in §4.B.—prefer
to interpret number-theoretic functions and relations over an infinite domain D as pre-Cantorian
computational instructions that, for any specified sequence of permissible values to the variables
in the function/relation, determine how the function/relation is to be evaluated—and whether,
or not, the result of such evaluation yields a value (or values)—in the domain D.

We shall not assume—as is the case in Cantorian set theories such as the first-order set
Theory ZF, or the second-order Peano Arithmetic ACAq (see §18.A.)—that the evaluations
always determine a completed infinity (set) which can be referred to as a unique mathematical
constant that identifies the function/relation in a mathematical language (or its interpretation)
outside of the set theory in which the function/relation is defined.

We shall, instead, address the PuUNP problem here from the logical perspective of the paper
[Ra02] presented to ICM 2002 by Ran Raz, where he notes that:

“A Boolean formula f(z1,...,2,) is a tautology if f(z1,...,2,) = 1 for every z1,...,2,. A
Boolean formula f(z1,...,z,) is unsatisfiable if f(x1,...,2,) = 0 for every x1,...,x,. Obviously,
f is a tautology if and only if —f is unsatisfiable.

Given a formula f(z1,...,2,), one can decide whether or not f is a tautology by checking all
the possibilities for assignments to x1,...,z,. However, the time needed for this procedure is
exponential in the number of variables, and hence may be exponential in the length of the formula
I

... P#NP is the central open problem in complexity theory and one of the most important open
problems in mathematics today. The problem has thousands of equivalent formulations. One of
these formulations is the following:

Is there a polynomial time algorithm A that gets as input a Boolean formula f and outputs 1 if
and only if f is a tautology?

P#NP states that there is no such algorithm.”
... Raz: [Ra02].

We note that a propositional logic formula, also called Boolean expression, is built from
variables, operators AND (conjunction, also denoted by A), OR (disjunction, V), NOT (negation,
—), and parentheses. A formula is said to be satisfiable if it can be made TRUE by assigning
appropriate logical values (i.e. TRUE, FALSE) to its variables. The SAT problem is then:
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Definition 16. (SAT) The Boolean satisfiability problem (SAT) is, given a formula, to check
whether it is satisfiable.

4.A.a. SAT is not deterministically ‘polynomial time’

Clearly, the issue of whether, or not, there is a polynomial time ‘algorithm A that gets as input
a Boolean formula f and outputs 1 if, and only if, f is a tautology’ is meaningful only if we
can evidence that there is, in fact, an ‘algorithm A that gets as input a Boolean formula f and
outputs 1 if and only if f is a tautology’.

So, if the Godelian relation R(n) defined in §4. is algorithmically verifiable as a tautology,
but not recognisable as a tautology by any Turing-machine, then it is trivially true logically
that P#£NP since:

Theorem 4.3. (SAT is not in P or NP) SAT is not in P or NP since there is an arithmeti-
cal formula that is algorithmically verifiable as a tautology, but not recognisable as a tautology
by any Turing-machine.

Proof. The Theorem follows immediately from §4., Theorem 4.1 and Theorem 4.2. O

Comment: See also:

e §4.B.b., Corollary 4.5 (P#£NP by separation), for an independent, evidence-based, proof that
if P is the class of problems that admit algorithmically computable solutions, and NP is the
class of problems that admit algorithmically wverifiable solutions, then P # NP.

e §21.A., Proposition 21.5 (P#NP by Eratosthenes sieve), for an independent, pictorial proof
that the prime divisors of an integer are mutually independent by §21.A., Proposition 21.2;
whence the Prime Number Theorem and Mertens’ Theorem further entail that P#NP.

e §21.Af., Theorem 21.16 (FACTORISATION is not in P), for an independent, evidence-based,
arithmetical proof that P£NP, since factorisation is not deterministically ‘polynomial time’.

4.B. An implicit ambiguity in the ‘official’ definition of P

We note that, in a 2009 survey [Frt09] of the status of the PuNP problem, Lance Fortnow
despairs that ‘we have little reason to believe we will see a proof separating P from NP in the
near future’ since ‘[njone of us truly understand the P versus NP problem’:

“...in the mid-1980’s, many believed that the quickly developing area of circuit complexity would
soon settle the P versus NP problem, whether every algorithmic problem with efficiently verifiable
solutions have efficiently computable solutions. But circuit complexity and other approaches to
the problem have stalled and we have little reason to believe we will see a proof separating P from
NP in the near future.

... As we solve larger and more complex problems with greater computational power and cleverer
algorithms, the problems we cannot tackle begin to stand out. The theory of NP-completeness
helps us understand these limitations and the P versus NP problems begins to loom large not just
as an interesting theoretical question in computer science, but as a basic principle that permeates
all the sciences.

... None of us truly understand the P versus NP problem, we have only begun to peel the layers
around this increasingly complex question.”
... Fortnow: [Frt09].
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In this investigation we shall argue that Fortnow’s pessimism reflects the circumstance that
standard, set-theoretical, interpretations—such as the following®—of the formal definitions of
the classes P and NP in [Cook] can be seen to admit an implicit ambiguity:

“The computability precursors of the classes P and NP are the classes of decidable and c.e.
(computably enumerable) languages, respectively. We say that a language L is c.e. i.e. (or semi-
decidable) iff L = L(M) for some Turing machine M. We say that L is decidable iff L = L(M)
for some Turing machine M which satisfies the condition that M halts on all input strings w.”
... Gook: [Cook].

Comment: For instance, it is not clear from the above whether (a) S € P iff S is
decidable and S € NP iff S is c.e, in which case the separation between the two classes
would be qualitative; or whether (b) both P and NP are decidable classes, in which
case (following contemporary wisdom) the separation between the two classes can be
assumed to be only quantitative.

Specifically, from the evidenced based perspective of this investigation as reflected in the
Complementarity Thesis (see §1., Thesis 1), and argued in §13.E.—concerning the relative
strengths and limitations of first order set theories and first order arithmetics—set-theoretical
interpretations of the PuNP problem are essentially unable to recognise that the assignment of
satisfaction and truth values to number-theoretic formulas, under a well-defined (in the sense
of §7.F.) interpretation, can be defined in two, distinctly different, evidence-based ways®3:

(a) in terms of algorithmic verifiability (see §2., Definition 4);

It immediately follows from this definition that a number-theoretical formula F' is
algorithmically verifiable under an interpretation (and should therefore be defined
in NP) if, and only if, we can define a checking relation R(x,y)%—where z codes a
propositional formula F' and y codes a truth assignment to the variables of F—such
that, for any given natural number values (m,n), there is a deterministic algorithm
which will finitarily decide whether or not R(m,n) holds over the domain N of the
natural numbers.

(b) in terms of algorithmic computability (see §2., Definition 7).

It immediately follows from this definition that a number-theoretical formula F' is
algorithmically computable under an interpretation (and should therefore be defined
in P) if, and only if, we can define a checking relation R(z,y)%—where x codes a
propositional formula F' and y codes a truth assignment to the variables of F'—such
that there is a deterministic algorithm which, for any given natural number values
(m,n), will finitarily decide whether or not R(m,n) holds over the domain N of the
natural numbers.

62See also [Mor12].

63The distinction is explicitly introduced, and its significance in establishing a finitary proof of consistency for
the first order Peano Arithmetic PA highlighted, by Theorem 6.8, p.41, in [An16] (see also §2.C., Theorem 2.16).

64Tf I is a formula of the first order Peano Arithmetic PA, the existence of such a checking relation is assured
by Theorem 5.1, p.38, in [Anl6] (see also §2.B., Theorem 2.2).

65If F is a PA formula, the existence of such a checking relation is assured by Theorem 6.1, p.40, in [An16]
(see also §2.C., Theorem 2.9).
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Consequently, standard, set-theoretical, interpretations of the formal definitions of the
classes P and NP which do not admit the relative strengths and limitations of first order set
theories and first order arithmetics (as argued in §13.E.), are liable to implicitly assume that
every propositional formula which is algorithmically verifiable is necessarily algorithmically
computable.

It would then follow that the differentiation between the classes P and NP is only quantitative,
and can therefore be adequately expressed in terms of computational complexity; i.e., whether
or not the class P can be defined as consisting of all, and only, those problems that can be
solved in polynomial time by a deterministic Turing machine, and the class NP as consisting
of all, and only, those problems that can be solved in polynomial time by a non-deterministic
Turing machine.

However, we shall argue that—since the two concepts §4.B.(a) and §4.B.(b) are well-defined®®,
and there are classically defined arithmetic formulas—such as Godel’s ‘undecidable’ formula
[R(1)]®"—which are algorithmically verifiable but not algorithmically computable (see [An16],
Corollary 8.3, p.42; also §2.F., Corollary 2.21), the differentiation between the classes P and
NP is also qualitative, and cannot be adequately expressed in terms of only computational
complexity.

4.B.a. The PvNP Separation Problem
In his 2009 survey [Frt09], Fortnow describes the PuNP problem informally as follows:

“In 1965, Jack Edmonds .. .suggested a formal definition of “efficient computation” (runs in time
a fixed polynomial of the input size). The class of problems with efficient solutions would later
become known as P for “Polynomial Time”.

... But many related problems do not seem to have such an efficient algorithm.

... The collection of problems that have efficiently verifiable solutions is known as NP (for
“Nondeterministic Polynomial-Time” ...).

So P=NP means that for every problem that has an efficiently verifiable solution, we can find that
solution efficiently as well.

... If a formula ¢ is not a tautology, we can give an easy proof of that fact by exhibiting an
assignment of the variables that makes ¢ false. But if ... there are no short proofs of tautology
that would imply P#£NP.”

... Fortnow: [Frt09].

From the evidence-based perspective of this investigation we shall, however, address the
following, implicitly set-theoretical, formulation of the PuNP Separation Problem:

Query 2. (Efficient PoUNP Separation) Is there an arithmetical formula F that is effi-
ciently verifiable and not efficiently computable?

by considering a more precise formulation in arithmetic.

In other words, we shall avoid the ambiguity—in the meaning of Edmonds’ concept of
‘efficient’—which is admitted by asymmetrically defining ‘efficient computation’ as computation

66Tn the sense of §7.F.. We note informally in [An13a] how the distinction between the two concepts may have
far-reaching and significant consequences not only for the foundations of mathematics, logic and computability,
but also for our perspective on the underlying structure of the laws of nature.

6"Which Gédel defines and refers to only by its Gédel number r in [Go31], p.25, eqn.12.
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by a deterministic Turing machine in polynomial time, and ‘efficient verification” as computation
by a non-deterministic Turing machine in polynomial time.

We shall, instead, define Edmonds’ ‘efficient computation’ as ‘algorithmic computation’, and
efficiently wverifiable’ as ‘algorithmically verifiable’; whence an affirmative answer to Query 2
would entail, and be entailed by, an affirmative answer to:

4

Query 3. (Algorithmic PoINP Separation) Is there an arithmetical formula F that is al-
gorithmically verifiable but not algorithmically computable?

We shall now show that Query 3 not only removes the ambiguity in the standard, set-
theoretical, asymmetrical definitions of the classes P and NP, but it also admits of an affirmative
answer.

We shall first show how Godel’s S-function (see §15.A.) uniquely corresponds each classically
defined real number to an algorithmically verifiable arithmetical formula.

Since classical theory admits the existence of real numbers that are not algorithmically
computable®® we shall conclude that classical theory must also admit the existence of arithmetical
formulas that are algorithmically verifiable but not algorithmically computable.

We note, first, that every atomic number-theoretical formula is algorithmically verifiable®?;
further, by Tarski’s definitions™, the algorithmic verifiability of the compound formulas of
a formal language (which contain additional logical constants) can be inductively defined—
under a well-defined (see §7.F.) interpretation—in terms of the algorithmic verifiability of the
interpretations of the atomic formulas of the language (see, for instance, [Anl6], §3, p.37; also
§2.A.).

In particular, by [An16], §5, Theorems 5.6 and 5.7 (p.40; see also §2.B., Corollary 2.7 and
Theorem 2.8), the formulas of the first order Peano Arithmetic PA are decidable under the
weak, standard (see §2.B.), algorithmically verifiable interpretation Zpa, svy of PA over the
domain N of the natural numbers if, and only if, they are algorithmically verifiable under the
interpretation.

Similarly, every atomic number-theoretical formula is algorithmically computable™; further,
by Tarski’s definitions™, the algorithmic computability of the compound formulas of a formal
language (which contain additional logical constants) can be inductively defined—under a well-
defined (see §7.F.) interpretation—in terms of the algorithmic computability of the interpretations
of the atomic formulas of the language (see, for instance, [An16], §3, p.37; also §2.A.).

In this case, however, by [Anl6], Corollary 7.2 (p.41; see also §2.E., Corollary 2.18) the
PA-formulas are always decidable under the strong, finitary, algorithmically computable in-
terpretation Zpaw, sc) of PA over N, since PA is categorical with respect to algorithmic
computability.

We also note that, by [An16], Theorem 2.1 (p.37; see also §7.G., Theorem 7.2), there are
algorithmically verifiable number theoretical formulas which are not algorithmically computable.

%8 As detailed in [Tu36].

%9 An immediate consequence of [Tu36].

700n the inductive assignment of satisfaction and truth values to the formulas of a formal language under an
interpretation; [Ta35].

™ An immediate consequence of [Tu36].

"20n the inductive assignment of satisfaction and truth values to the formulas of a formal language under an
interpretation; [Ta35].
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We note that algorithmic computability implies the existence of a deterministic algorithm
that can finitarily decide the truth/falsity of each proposition in a well-defined denumerable
sequence of propositions™, whereas algorithmic verifiability does not imply the existence of
a deterministic algorithm that can finitarily decide the truth/falsity of each proposition in a

well-defined denumerable sequence of propositions™.

From the point of view of a finitary mathematical philosophy, the significant difference
between the two concepts could be expressed by saying that we may treat the decimal repre-
sentation of a real number as corresponding to a physically measurable limit—and not only
to a mathematically definable limit—if and only if such representation is definable by an
algorithmically computable function.”™

4.B.b. An arithmetical perspective on the PvNP Separation Problem
We finally argue that Gédel’s S-function (see §15.A.) entails:

Theorem 4.4. There is an arithmetical formula that is algorithmically verifiable, but not
algorithmically computable, under any evidence-based interpretation of PA.

Proof. Let {r(n)} be the denumerable sequence defined by the denumerable sequence of digits
in the decimal expansion Y ;- 7(i).107% of a putatively well-defined real number R in the
interval 0 <R < 1.

By §15.A., Lemma 15.1, for any specified natural number k, there are natural numbers by, ¢
such that, for any 1 <n < k:

B(bk, cx,n) =r(n).
By §15.A., Lemma 15.2, f(x1, 29, x3) is strongly represented in PA by [Bt(x1, xa, 3, 24)] such
that, for any 1 < n < k:

If B(by, cx,n) = r(n) then PA proves [Bt(b, cx,n,r(n))].
We now define the arithmetical formula [R(b, ¢k, n)] for any 1 < n < k by:

[R(b,, c,,n) = r(n)] if, and only if, PA proves [Bt(b, cx,n,r(n))].

Hence every putatively well-defined real number R in the interval 0 < R < 1 uniquely
corresponds to an algorithmically verifiable arithmetical formula [R(x)] since:

For any k, the primitive recursivity of [B(bg,cx,n) yields a deterministic algo-
rithm AL@gry) that can provide evidence (in the sense of [Mu91] and [Lob59];
see §2.) for deciding the unique value of each formula in the finite sequence
{[R(1),R(2),...,R(k)]} by evidencing the truth under an evidence-based interpre-
tation of PA for:

™Which is why (see §2.D.) the PA Axiom Schema of Finite Induction can be finitarily verified as true (see
§2.C.a., Lemma 2.12) under the strong, finitary, algorithmically computable interpretation Zp s, sc) of PA,
over N, with respect to ‘truth’ as defined by the algorithmically computable formulas of PA.

"Which is why, in this case (see §2.D.), the PA Axiom Schema of Finite Induction cannot be finitarily verified
as true—but only algorithmically verified as true (see §2.B.a., Lemma 2.4)—under the weak, standard (see
§2.B.), algorithmically verifiable interpretation Zpa(n, sv) of PA, over N, with respect to ‘truth’ as defined by
the algorithmically verifiable formulas of PA.

"5The significance of this for the natural sciences is highlighted in §19.C.: Mythical ‘set-theoretical’ limits of
fractal constructions.
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[R<k) - R(bk, Cr, k)]
[R(by, cx, k) = r(k)].

The correspondence is unique because, if R and S are two different putatively well-defined reals
in the interval 0 < R, S < 1, then there is always some m for which:

r(m) # s(m).
Hence the corresponding arithmetical formulas [R(n)] and [S(n)] are such that:

[R(n) =r(n)] for all 1 <n < m.

[S(n) = s(n)] for all 1 <n < m.

[R(m) # S(m)].
By [An16], §2, Theorem 2.1 (p.37; see also §7.G., Theorem 7.2), there is an algorithmically
uncomputable real number R such that the corresponding PA formula [(Jy)(R(z) = y)] is

also algorithmically uncomputable, but algorithmically verifiable, under any evidence-based
interpretation of PA over N.

The theorem follows. O

We conclude that if we were to unambiguously separate the classes P and NP as in §4.B.a.,
then it would follow that:

Corollary 4.5. (P#NP by separation) If P is the class of problems that admit algorithmi-
cally computable solutions, and NP is the class of problems that admit algorithmically verifiable
solutions, then P # NP. O

Comment: See also:

e §4.A.a., Theorem 4.3 (SAT is not in P or NP), for an independent, evidence-based, arithmetical
proof that SAT is not in P or NP since there is an arithmetical formula that is algorithmically
verifiable as a tautology, but not recognisable as a tautology by any Turing-machine.

e §21.A., Proposition 21.5 (P#NP by Eratosthenes sieve), for an independent, pictorial proof
that the prime divisors of an integer are mutually independent by §21.A., Proposition 21.2;
whence the Prime Number Theorem and Mertens’ Theorem further entail that P#NP.

e §21.Af., Theorem 21.16 (FACTORISATION is not in P), for an independent, evidence-based,
arithmetical proof that P£NP, since factorisation is not deterministically ‘polynomial time’.

4.B.c. Why the class NP is not well-defined

We can now see why the classical definition of NP cannot claim to be well-defined:

Theorem 4.6. (NP is algorithmically verifiable) If a number-theoretical formula [F(n)]
is in NP, then it is algorithmically verifiable.
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Proof. By the classical definition of NP (in [Cook]), if [F/(n)] is in NP, then it is classically
computable by a non-deterministic Turing machine, say NDTM, in polynomial time. Hence,
for any specified natural number k, NDTM computes the sequence {[F(1), F(2),..., F(k)]}
in polynomial time. By Gddel’s S-function (see §15.A.), we can define a primitive recursive
function [Gk(n)] such that [Gx(i) = F(i)] for all 1 < i < k. By §2., Definition 7, [Gk(n)] is
algorithmically computable. The theorem follows. a

Thus, for NP to be a well-defined class we would—in view of §4.A.a., Theorem 4.3 (SAT is
not in P or NP), and §21.A.f., Theorem 21.16 (FACTORISATION is not in P)—mneed to prove,
conversely, that if [F'(n)] is algorithmically verifiable, then it must be classically computable by
a non-deterministic Turing machine in polynomial time.

Prima facie, such a proof is neither obvious, nor intuitively plausible from the ewvidence-based
perspective of this investigation, as there seems to be no conceivable reason why—even in
principle since evidence-based reasoning treats a formula that is not algorithmically verifiable
as ill-defined (see §7.F.)—every well-defined number-theoretic formula must, necessarily, be
classically computable by a non-deterministic Turing machine in polynomial time.

However, such a putative proof seems precisely what is implicitly appealed to in the 2019
claim [AAB19]7 by a 78 member team of researchers, to have successfully reached the threshold
of quantum supremacy by building”” at Google AI Quantum, Mountain View, California, USA,
a:

‘... high-fidelity processor capable of running quantum algorithms in an exponentially large
computational space ...’
... Arute, Arya, Babbush, et al: [AAB19], § The future.

4.B.d. An evidence-based separation of computational complexity

The preceding argumentation of §4.B.a. suggests that a more natural separation of computational
complexity—that takes into account aspects of human mathematical cognition which, even if
admitted as capable of being evidenced in what Markus Pantsar terms as ‘preformal mathematics’
in [Pan09], may not be formalisable mathematically in terms of provable formulas—could be to
distinguish between:

(i) all that is algorithmically computable by a deterministic Turing machine in polynomial
time; which does not include FACTORISATION (see §21.A.f., Theorem 21.16) and SAT
(see §4.A.a., Theorem 4.3);

(ii) all that is algorithmically computable by a deterministic Turing machine in ezponential
time; which includes FACTORISATION but does not include SAT;

(iii) all that encompasses evidencing algorithmically verifiable truths by meta-reasoning in
finite time; which includes SAT), since a human intelligence can evidence the algorithmically
verifiable truth of the Godel sentence R(x) (see [An16], Corollary 8.3, p.42; see also §2.F.,
Corollary 2.21) by meta-reasoning in finite time; reasoning which, however, by §20.E.,
Query 21, is not admitted by any mechanistic intelligence whose architecture admits the
classical Church-Turing thesis.

76 Already cogently challenged on the basis of competing experimental data by competing industry researchers,
and on the basis of theoretical considerations in §23..
"TStructured, prima facie, essentially as in Deutsch, [Deu85] (see also Fiske, [Fil19]; §20.G.).
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We conclude by noting that, prima facie, referencing a Turing Test such as §20.E., Query 21
(Are you a man or a machine?), in para (iii) above, could admit aspects of human mathematical
cognition such as those addressed by Pantsar in [Pan19]; doing justice to these considerations,
however, lies outside the scope and competence of this evidence-based investigation:

“...In a purely computational-level approach it is natural to assume that human competence
can be modeled by optimal algorithms for solving mathematical problems, rather than studying
empirically what kind of problem solving algorithms actual human reasoners use.

While this computational-level approach has clear advantages, I submit that there should be limits
to how strong and wide the application of the a priori computational methodology should be. As
fruitful as the computational complexity paradigm may be, we should not dismiss the possibility
that human competence in mathematical problem solving may indeed differ in important and
systematic ways from the optimal algorithms studied in the computational complexity approach.
In the rest of this paper, I will argue that by including considerations on the algorithmic level, we
can get a more informative framework for studying the actual human problem solving capacity.
Furthermore, I will show that the algorithmic-level approach does not move the discussion from
competence to performance. Instead, we get a theoretical framework that is better-equipped for
explaining human competence by including considerations of the algorithms that are cognitively
optimal for human reasoners.”

... Pantsar: [Pan19], §5, Complexity Within P and the Computational Paradigm.



B. S. Anand, The significance of evidence-based reasoning 81

CHAPTER 5. INTRODUCTION

5.

Three fragile Hilbertian, Brouwerian, and Godelian,
dogmas

We note that [An16] highlights the fragility of three Hilbertian, Brouwerian, and Godelian
mathematical and philosophical dogmas by showing that, from an—unarguably constructive—
evidence-based perspective:

(1)

Since PA is not w-consistent ([Anl6], Corollary 8.4, p.42; see also §2.F., Corollary
2.22; §12.Af., Theorem 12.6), we cannot unrestrictedly conclude from the provability of
[(3z)F(2)]™ that [F(n)] is PA-provable for some unspecified numeral [n], since such a
putative numeral may not always be specifiable by the rules that determine the formation
of PA-terms.

Hence evidence-based reasoning does not admit the standard—albeit faith-based (see
§7.B.)—classical interpretation of quantification that Hilbert sought to formalise in his
e-calculus (see §7.);

The classical first-order logic FOL—in which the Law of the Excluded Middle (LEM)
is the theorem [A V = A]—is finitarily consistent (an immediate consequence of [An16],
Theorem 6.7, p.41; see also §2.C.a., Theorem 2.15; §8.D., Theorem 8.13).

Thus evidence-based reasoning does not admit Brouwer’s belief that LEM—which he
apparently conflated with Hilbert’s ‘principle of excluded middle’ (see §7.)—is non-
constructive. We note that whereas Hilbert’s ‘principle of excluded middle” entails LEM,
the converse does not hold;

PA is categorical ([Anl16], Corollary 7.2, p.42; see also §2.E.b., Corollary 2.18); whence
there are no formally undecidable arithmetical propositions definable over the numerals
in PA.

Comment: However, in his sketch of his proof of undecidability in the system PM on pp.7-8
of [Go31], Godel does implicitly—perhaps unconsciously—prove that if ZF is consistent, then
there are formally undecidable arithmetical propositions definable over the finite ordinals in
ZF (see §14.C.).

We note, though, that by by §14.C., Lemma 14.1 (as well as by §18.A., Corollary 18.3,
and independently by §18.A., Theorem 18.4), the structure of the finite ordinals under any
putative well-defined interpretation of ZF is not isomorphic to the structure N of the natural
numbers; whence the subsystem ACA, of second-order arithmetic (see §18.A.) is not a
conservative extension of PA. Hence arithmetical undecidability over the finite ordinals in ZF
does not entail arithmetic undecidability over the numerals in PA.

Thus evidence-based reasoning does not admit Godel’s belief that his formal reasoning in
[Go31] entails non-standard models of PA (see also §17.).

The above three examples highlight the significance of evidence-based reasoning for asserting
any piece of information as knowledge (see also §13.F.).

®We note that [(Jz)F(z)] is merely an abbreviation for the formula [~(Vz)—=F(z)], i.e., [32)F(x) =
—(Va)-F(z)].
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5.A. What is knowledge?

The point is currently sought to be codified as FGB by philosopher and neuroscientist Gualtiero
Piccinini in his thesis [Pic19], where he argues that any piece of information should be treated

as knowledge:

e only if it is ‘factually grounded belief’ (FGB),

e and not if it is only a ‘justified true belief’ (JTB);

and where we treat his phrase ‘a truthmaker’ to correspond to a ‘methodological evidence-based

assignment of a truth-value by a witness’ in the Tarskian sense (see §2.A.):

“According to the traditional analysis, to know that p is to have a justified true belief (JTB)
that p (Plato, Meno 98). This traditional analysis seems to be missing something: beliefs can be
both true and justified, yet fail to be knowledge. This is the Gettier problem (Gettier 1963). For
example, consider someone who looks at a broken clock that displays 4:39 when, coincidentally,
it is 4:39 (Russell 1948). Their belief that the time is 4:39 is true and justified; yet it does not
amount to knowledge.

Gettier problem notwithstanding, some maintain that knowledge is justified true belief—or
something close (e.g., Sellars 1975, p. 99; Hetherington 1999, 2011, 2016; Weatherson 2003; Turri
2012a, Kern 2017; see also Shope 1983, Turri 2012b, Olsson2015, and Ichikawa and Steup 2017).
Even virtue epistemology may be summarized as the claim that, in spite of Gettier, knowledge is
virtuously produced true belief (Greco 1993, p. 413). This is not far from the traditional analysis.

I will argue that this allegiance is correct to this extent: the traditional analysis has the right
ingredients but misses the right connection between them. The traditional analysis and cognate
views endure despite the Gettier problem because they are tantalizingly close to the correct
account.

In order for belief, justification, and truth to constitute knowledge, they must be mutually
connected as follows: justification must tie a belief to the facts. Accordingly, I will argue that
knowledge is factually grounded belief—Dbelief grounded in the facts. This account explains why
Gettierized beliefs do not count as knowledge, illuminates the sensitivity of knowledge attributions
to epistemic standards, and suggests an improved reply to the skeptic.

A few caveats before we begin. First, I take “fact” as primitive. Second, I take a truthmaker to be
whatever fact makes something true. Third, I assume truthmaker maximalism: every truth has
a truthmaker. My proposal does not depend on truthmaker maximalism; I assume it because it
makes the exposition easier. Fourth, for present purposes, grounding is an epistemically normative
relation between a belief and the facts—grounding in this epistemic sense should not to be confused
with grounding as ontological dependence.”

... Piccinini: [Pic19] (preamble).

Piccinini apparently seeks to distinguish between:

— providing justification for a piece of informtion that is already accepted as an infallible
truth™ (a contentious—albeit inherited, and seemingly ‘ Platonian’—attitude in the sense

and

of §13.F.(1), which is only too familiar in day to day human conflict);

™See, for instance, Oswaldo Chateaubriand: [Cha05], Chapter 24, Knowledge and Justification, pp.398-414.
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— providing justification for a piece of information that admits labeling it consequently as a
fallible truth (the ideal attitude sought in any scientific enquiry in the sense of §13.F.(3)):

“1. Knowledge is Factually Grounded Belief

Gettier “successfully refuted the traditional analysis of knowledge as justified true belief” (Sosa et
al. 2009, p. 189). Given that Gettier’s refutation is widely acknowledged, why have epistemologists
continued to tiptoe around the traditional analysis? It’s because the traditional analysis has all
the right ingredients. It just doesn’t connect them in the right way.

The flaw in the traditional analysis derives from what I call Plato’s procedure. Plato starts with
true belief and tries to improve it; his proposal is to improve true belief by adding justification
(Plato, Meno 98 and Theaetetus 201). Taking true belief as the starting point results both in the
traditional analysis and an immediate dilemma: either justification entails truth, or it doesn’t.

If justification entails truth, then justified beliefs are infallible. As Julien Dutant (2015) argues,
some version of infallibilism about justification was widely held until the 1950s. The problem is
that, on the face of it, few if any of our beliefs have any kind of justification that entails their
truth. Therefore, infallibilism about justification begets skepticism.

To avoid skepticism, many philosophers argued that at least some beliefs about our mental states
are justified in the right way. In an effort to preserve knowledge, they attempted to reduce the
external world to (bundles of) mental states. Prominent examples of this program are idealism
and phenomenalism. When those efforts collapsed, infallibilism about justification collapsed with
them. The historical outcome was precisely the fallibilist view that knowledge is JTB even though
justification does not entail truth (Malcolm 1952; Chisholm 1956, 1957; Ayer 1956).

This is the view that Gettier refuted: if justification does not entail truth, then JTB falls short
of knowledge. Any attempt to patch up the traditional analysis by adding conditions that do
not entail truth is bound to encounter the same problem (Zagzebski 1994). To summarize the
dialectic, infallibilism about justification is a dead end that ultimately leads either to skepticism
or to fallibilism, and fallibilist versions of JTB face the Gettier problem (though see Dodd 2011,
Littlejohn 2012, Schroeder 2015, Booth 2017, and Kern 2017 for recent efforts to revive versions of
infallibilism).

The Gettier problem is so intractable that some have despaired of analyzing knowledge at all, or
at least of analyzing knowledge as a kind of true belief (Williamson 2000). One radical departure
from the JTB tradition is due to John Hyman (1999, 2006, 2015). He argues that knowledge is
the ability to be guided by the facts in our actions, thoughts, and feelings. Although Hyman’s
proposal is unviable, it contains a crucial insight that I will incorporate in my proposal.

Having the ability to be guided by the facts is neither necessary nor sufficient for knowledge. It is
unnecessary because sometimes we know things without having the ability to be guided by what
we know. For instance, someone might know that fire is hot but lack the ability to be guided
by that fact in thinking or acting, perhaps because they are in a minimally conscious state. It
is insufficient because there are situations in which we are guided by a fact without knowing
that fact. For instance, someone’s typing might be guided by the relative positions of the keys
on the keyboard absent any knowledge that the keys are in certain positions. In other words,
someone may be guided by the fact that p simply because they know how to respond to p; they
may not know that p (cf. Hughes 2014). Another limit of Hyman’s account is that it calls for an
explanation of how we are guided by the facts. In many cases, the explanation involves our ability
to represent knowledge in our minds, which pushes us back towards JTB accounts.

Even though knowledge is not the ability to be guided by the facts, there is something right about
Hyman’s proposal: knowledge is partially constituted by an agent’s relation to the facts. I will
graft Hyman’s insight onto the traditional analysis of knowledge.

The solution is to abandon Plato’s starting point. Instead of starting with true belief and trying
to improve on true belief, as Plato and his many followers do, let’s start with belief alone. A first
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improvement to belief is justification: a justified belief is better than a belief without justification.
To avoid some of the internalist connotations of the term “justification,” I use the term “grounding”
instead. Thus, a first improvement over belief alone is that a belief be grounded. A second
improvement connects the belief to the facts. As I use the term, a belief is factually grounded if
and only if that belief’s grounding connects it with its truthmaker and other relevant facts. Please
note that although for simplicity I will write that having knowledge that p amounts to having a
belief grounded in the fact that p, grounding a belief in its truthmaker may require connecting
it to other facts besides its truthmaker. When a belief is thus grounded in the facts, it amounts
to knowledge. The result is an account of knowledge as belief grounded in the facts—factually
grounded belief.

More explicitly:

Factually Grounded Belief (FGB)
An agent A knows that p if and only if:

(1) A believes that p
(2) A’s belief that p is grounded
(3) A’s belief that p is grounded in the fact that p.

Compare this to the traditional analysis:

JTB
An agent A knows that p if and only if:

(4) pis true
(5) A believes that p
(6) A’s belief that p is justified.

(1) is the same as (5) and, setting aside the terminological difference, (2) plays the same role as
(6). The main difference between the two accounts is that (3) entails (4) but not vice versa.

Requiring that knowledge be grounded in the facts meets Stephen Hetherington’s (2016) challenge
of explaining why Getterized beliefs do not count as knowledge even though they are justified,
true, and yet possibly false—that is, explaining why Gettierized beliefs are not knowledge without
presupposing any implicit infallibilism. The explanation is that Gettierized beliefs are grounded to
a degree—a degree that varies from Gettier case to Gettier case—but they are not fully grounded
in the facts. That’s also why Gettierized beliefs could easily have been false: since they are not
fully grounded in the facts, minor departures from the alignment of factors that conspires to make
them both justified and true would result in their being false.”

... Piccinini: [Pic19], §1.

Piccinini’s further analysis of ‘ Factually Grounded Belief’ suggests we can cogently argue
that:

e Hilbert’s (§5., 1),
e Brouwer’s (§5., 2), and
e Godel’s (85., 3),

mathematical and philosophical dogmas are fragile because although, prima facie, they appear
acceptable as ‘Justified True Beliefs’, they cannot claim further to ensure their categorical
communication—as they ought to—in order to be treated as ‘Factually Grounded Beliefs’:
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“2. Factually Grounded Belief

Knowledge is factually grounded belief. A belief is an agent’s cognitive state that represents things
as being one way or another and guides the agent, whether consciously or unconsciously. Cognitive
states are part of an agent’s cognitive economy—they interact with other cognitive states and
sensory inputs to form new cognitive states and guide actions. A belief in this sense may guide
the agent’s action in some circumstances but not others.

Knowledge is factually grounded belief. “Factually” refers first and foremost to the specific fact a
true belief is about—a true belief’s truthmaker. It also refers to other facts that must be taken into
account to fully ground a belief. Knowledge is factive because the beliefs that partially constitute
it represent facts. By the same token, false beliefs cannot be knowledge because they do not
represent facts.”

... Piccinini: [Pic19], §2.

Moreover, the fragility of Hibert’s and Brouwer’s dogmatic beliefs (identified in §11.)
illustrates Piccinini’s argument that:

e although ‘a true belief is a belief with the property of being true’ in current paradigms such
as those admitting Justified True Belief as the norm (e.g., in Chateaubriand [Cha05]);

e such a ‘belief’ may not necessarily be ‘true’ to the ‘facts’—in which it implicitly claims to
be ‘grounded’—according to Piccinini’s suggested paradigm, where Factually Grounded
Belief is the norm:

“A true belief is a belief with the property of being true. Being true is being in accordance with the
facts—at least on a correspondence theory of truth. So on a JTB account, the facts are relevant
to being true, but the facts themselves may not be constitutive of truth, and therefore of being a
true belief. In other words, while requiring that a belief be true does relate a belief to the facts,
it need not include the facts as a constituent of a true belief. Being grounded in the facts does
include the facts as a constituent.

The fact that makes a belief true is that belief’s truthmaker. According to the present proposal, a
belief amounts to knowledge just in case it’s grounded in its truthmaker. Thus, the FGB account
is similar to the truthmaker account of knowledge proposed by Adrian Heathcote in a series of
recent papers (2006, 2012, 2014a, 2014b, 2016). Heathcote argues that Gettier’s counterexamples
can be addressed by distinguishing the truthmaker for the belief from the proposition that justifies
the belief, showing that these two come apart in Gettier cases, and then requiring that they not
come apart in cases of knowledge. In other words, Heathcote argues that in order to constitute
knowledge, it’s not enough that a belief be true and justified—in addition, the truthmaker for the
belief and the “state of affairs from which the evidence for the belief is drawn” (2006, 151) must
be identical.

In his official formulation, Heathcote requires that the justification agents have for their belief
must be evidence of the fact that makes the belief true. He adds this as a fourth condition to
JTB: “the evidence that [the agent] has which constitutes the justification is evidence of the very
state of affairs that makes [the belief] true” (2006,p. 165). In Heathcote’s usage, evidence of a
fact should not be confused with evidence for a fact. Unlike evidence for, evidence of is factive
(2014a, p. 3); so, having evidence of p entails that p. This makes the requirement that the belief
be true redundant. If we eliminate this redundancy, Heathcote’s truthmaker account overlaps the
JTB account in a way that parallels the FGB account:

Truthmaker Account An agent A knows that p if and only if:
(5) A believes that p
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(6) A’s belief that p is justified
(7) A’s belief that p is justified by evidence of p.

By requiring that the evidence justifying a belief be of the belief’s truthmaker, Heathcote can
elegantly address those Gettier cases in which the truthmaker for the belief is different from the
proposition that justifies the belief. His truthmaker account does not accommodate Gettier cases
in which a belief is justified by evidence of its truthmaker.”

... Piccinini: [Pic19], §2.

The significance of Piccinini’s argument that any piece of information should be treated as
knowledge:

e only if it is ‘factually grounded belief’ (FGB),
e and not if it is only a ‘justified true belief’ (JTB);

is itself grounded in the findings of contemporary research ‘on the capacity to understand others’
minds’, where Jonathan Phillips et al contend that:

“Research on the capacity to understand others’ minds has tended to focus on representations
of beliefs, which are widely taken to be among the most central and basic theory of mind
representations. Representations of knowledge, by contrast, have received comparatively little
attention and have often been understood as depending on prior representations of belief. After
all, how could one represent someone as knowing something if one doesn’t even represent them as
believing it? Drawing on a wide range of methods across cognitive science, we ask whether belief
or knowledge is the more basic kind of representation. The evidence indicates that nonhuman
primates attribute knowledge but not belief, that knowledge representations arise earlier in human
development than belief representations, that the capacity to represent knowledge may remain
intact in patient populations even when belief representation is disrupted, that knowledge (but not
belief) attributions are likely automatic, and that explicit knowledge attributions are made more
quickly than equivalent belief attributions. Critically, the theory of mind representations uncovered
by these various methods exhibit a set of signature features clearly indicative of knowledge:
they are not modality-specific, they are factive, they are not just true belief, and they allow
for representations of egocentric ignorance. We argue that these signature features elucidate
the primary function of knowledge representation: facilitating learning from others about the
external world. This suggests a new way of understanding theory of mind—one that is focused on
understanding others’ minds in relation to the actual world, rather than independent from it.”
... Phillips et al: [PBC20], Long Abstract.

From the evidence-based perspective of the Complementarity Thesis (§1., Thesis 1), ‘knowl-
edge’ in the sense of Phillips et al can be corresponded to our sensory observations and their
associated perceptions of a ‘common’ external world’—that are termed as a natural scientist’s
‘primary’ and ‘secondary’ conceptual metaphors (see §13.C.)—which we:

e first seek to represent unambiguously as ‘beliefs’ (that—as argued in §7.B.—may be
faith-based rather than evidence-based) in a language of adequate expression (such as,
say, the first-order Zermelo-Fraenkel Set Theory ZF when expressing our ‘mathematical’
conceptual metaphors; see §13.E.);

e and then seek to communicate as ‘factually grounded beliefs’ to another in a language
of categorical communication (such as, say, the first-order Peano Arithmetic PA when
expressing our ‘mathematical’ conceptual metaphors; see §13.E.); categorical in the sense
that what is eventually communicated can be corresponded unequivocally back to our
original sensory observations—and their associated perceptions of a ‘common’ external
world’—and, thereby, be termed as ‘knowledge’ which can then be treated as ‘factually
grounded belief’.



B. S. Anand, The significance of evidence-based reasoning 87

5.B. A removable ambiguity in Brouwer-Heyting-Kolmogorov real-
izability

We note [Anl6] also highlights that the roles of classical and constructive mathematics are

interdependent and complementary; as evidenced, for instance (see also §2.D., Poincaré-Hilbert

debate), by the Provability Theorem for PA (see §2.E.b., Theorem 2.17), which bridges formal

arithmetical provability and its interpreted, evidence-based, arithmetical truth under the finitary
interpretation Zp 4y, scy of PA.

The far-reaching consequences of such complementarity for mathematics, mathematics
education, philosophy and the natural sciences, are appreciated once we identify, and remove, the
root of a critical ambiguity in interpreting quantification constructively (see §7.C.)—essentially
an ambiguity in Brouwer-Heyting-Kolmogorov realizability—which seems to have, for instance,
inhibited the recognition of (see §13.E.):

(a) The role of a first-order set theory such as ZFC in identifying those of our mathematical
metaphors (as detailed, for instance, in [LRO0]; see also §25.) which can be defined
unambiguously;

vis a vis:

(b) The role of a first-order Peano Arithmetic such as PA in identifying those of our mathe-
matical metaphors which can, further, be well-defined and communicated categorically.

We identify the root of the ambiguity as lying in the postulation of an unspecified value
in classical, faith-based (see §7.B.), existential quantification—e.g., by appeal to Hilbert’s
e-function (see §10.A.), or to Rosser’s Rule C (see §8.G.)—without evidencing that such an
unspecified value is specifiable—i.e., well-defined (see §7.F.; also Theorem 7.5)—by the rules
that circumscribe the domain of the quantifier.

5.B.a. Paradigm challenging consequences

It is an ambiguity which, further, by failing to differentiate that:
(a) algorithmic verifiability (§2., Definition 4); and
(b) algorithmic computability (§2., Definition 7);

are distinct, but constructive, concepts (as is the concept algorithmic ‘undecidability’; see [Fe94],
p.6), has far-reaching consequences for varied logical, mathematical, philosophical and scientific
paradigms (as detailed in Part IV, §15. to §26.).

Paradigms which, we shall argue, have hitherto tolerated unsustainable, faith-based, beliefs
whose illusory ‘self-evidentiary’ appeal (for instance, the ‘obviousness’ of an isomorphism
between the structure of the natural numbers and that of the finite ordinals in Goodstein’s
curious argumentation highlighted in Part IV, §18.) could, reasonably, be viewed as owing more
to psychological factors than to mathematical ones—as Andrej Bauer ([Bal6]) suggests from a
classically constructive perspective (or to theological ones, as Stanislaw Krajewski argues in

[Kr16)).
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CHAPTER 6. INTRODUCTION

6. Overview

To situate our thesis in an appropriate perspective vis a vis current mathematical beliefs and
practices, we shall begin our investigation (in Part II) by a broad analysis of quantification vis
a vis:

1. Hilbert’s e-function (§7.);
2. Hilbert’s principle of excluded middle (§7.);
3. Aristotle’s particularisation (§7., Definition 17);

4. An evidence-based perspective of quantification (§2., Definitions 4, 7, and §7.C., Definitions
18 to 21);

5. Wittgenstein’s perspective of constructive mathematics (§7.J.);
6. An evidence-based definition of effective computability (§7.H.b., Definition 25);

The Church-Turing Thesis (§7.H.b., Theorem 7.3, and §10.C., Theorem 10.3);

S

Cantor’s diagonal argument (§7.1.a.);
9. An Algorithmic w-Rule (§8.);
10. Hilbert’s w-Rule (§8.C., Lemma 8.5);
11. Gentzen’s Rule of Infinite Induction (§8.B., Thesis 3);
12. Godel’s w-consistency (§8.D., Corollary 8.10);
13. The Law of the Excluded Middle (§8.D., Corollary 8.15);
14. Markov’s Principle (§8.E., Corollary 8.16);
15. The Axiom of Choice (§8.F., Lemma 8.18);
16. Rosser’s Rule C' (§8.G., Corollary 8.21);

17. Hilbert’s purported ‘sellout’ of finitism (§9.).

By showing how these are formally inter-related, we shall highlight (in §11.A.) the fragility
of both the persisting, theistic, classical/Platonic interpretation of quantification grounded
in Hilbert’s e-calculus; and the persisting, atheistic (see §11.B.), constructive/Intuitionistic
interpretation of quantification rooted in Brouwer’s unjustifiable belief that the Law of the
Excluded Middle (LEM) is not finitary.

We shall then consider (in §11.C.) an agnostic, evidence-based interpretation of quantification
that:
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(a) admits evidencing the satisfaction and truth of the quantified formulas of the first-order
Peano Arithmetic PA, over the domain N of the natural numbers, in two, hitherto unsus-
pected and essentially different, ways: namely, in terms of weak algorithmic verifiabilty
(§2., Definition 4) and strong algorithmic computability (§2., Definition 7);

(b) yields (see §2.C.a., Theorem 2.16) a finitary proof of consistency for PA, as sought by
Hilbert in the second of his twenty three Millenium 1900 Problems (see [Hi00]); an
immediate consequence of which is that the classical first-order logic FOL—in which LEM
is a theorem—too is finitarily consistent (see §8.D., Theorem 8.13).

In Part III, §12. we shall consider some consequences—for mathematics, mathematics
education, philosophy, and the natural sciences—of formalising a Wittgensteinian perspective of
constructive mathematics; and in §14.C. consider the questions of whether, to what extent, and
how, Godel could be held guilty of implicit obfuscation in the conclusions he draws from his
formal reasoning in his seminal paper [Go31] on formally undecidable arithmetical propositions.

In Part IV, §15. to §26., we shall conclude this investigation by analysing the arguments
where evidence-based reasoning challenges current paradigms in mathematics, mathematics
education, philosophy, and the natural sciences, apropos:

e Cantor’s Continuum Hypothesis (§15.);

e Godel’s and Rosser’s proofs of ‘undecidability’ (§16.);
e Non-standard models of PA (§17.);

e Goodstein’s argument (§18.);

e The logical and semantic paradoxes (§19.);

— The mythical ‘set-theoretical” limits of fractal constructions (§19.C.);

— The mythical completability of metric spaces (§19.D.b.);
e Lucas’ and Penrose’s Godelian Arguments (§20.);

— A Definitive Turing Test (§20.E.);
— Turing’s Halting problem (§20.F.);
— The Mind-Body problem (§20.J.a.);

e Prime divisibility and integer factorisation (§21.);

— The mutual independence of prime divisors (§21.A.);
The PuNP problem (§21.A.f.);

— Estimating primes in an arithmetical progression (§21.C.);

— Estimating twin primes (§21.D.);

e The EPR paradox (§22.A.);
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The Bohr-Einstein debate (§22.B.);

— Dimensionless constants (§22.D.);

— Conjugate properties (§22.D.1f.);

— Entangled particles (§22.D.g.);
Schrodinger’s cat ‘paradox’ (§22.D.h.).

The Church-Turing Thesis and quantum computing (§23.);

The search for extra-terrestrial intelligence, SETI/METT (§24.);
e The Cognitive Sciences (§25.);

e The philosophy of mathematics education (§26.).

In the concluding Part V we append standard definitions and evidence-based perspectives of
some concepts to which this investigation critically appeals.
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Part 11

SOME MATHEMATICAL
CONSEQUENCES OF
EVIDENCE-BASED REASONING

CHAPTER 7. MATHEMATICAL CONSEQUENCES

7. Both Hilbert’s e-calculus and Brouwer’s Intuitionism
are fragile

We begin our investigation by noting that Hilbert formalised quantification in his e-calculus as
follows:

“Hilbert’s formalisation of quantification in his e-calculus:

IV. The logical e-axiom
13. A(a) — A(e(4))

Here £(A) stands for an object of which the proposition A(a) certainly holds if it holds of any
object at all; let us call € the logical e-function.

1. By means of €, “all” and “there exists” can be defined, namely, as follows:
(i) (Va)A(a) < A(e(—A))
(ii) (Fa)A(a) < A(e(A))...

On the basis of this definition the e-axiom IV(13) yields the logical relations that hold for
the universal and the existential quantifier, such as:

(Va)A(a) — A(D) ... (Aristotle’s dictum),
and:

—((Va)A(a)) — (3a)(—A(a)) ... (principle of excluded middle).”

... Hilbert: [Hi27].

We further note that (see §10.A.), in any formal first order language whose logic subsumes
Hilbert’s e-calculus, Hilbert’s ‘principle of excluded middle’ is an intended formalisation of (and
interprets as):

Definition 17. (Aristotle’s particularisation) If the formula [~(Vx)—F(x)] of a formal
first order language L is defined as ‘true’ under an interpretation, then we may always conclude
unrestrictedly that there must be some well-definable, albeit unspecified, object s in the domain
D of the interpretation such that, if the formula [F(z)] interprets as the relation F*(z) in D,
then the proposition F*(s) is ‘true’ under the interpretation.
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Notation: We shall use square brackets to differentiate between a symbolic expression—such
as [F'(z)]—which denotes a formula of a formal language L (treated syntactically as a string of
symbols without any associated meaning), and the symbolic expression—denoted by F'*(z)—that
denotes its meaning under a well-defined interpretation; we find such differentiation useful in order
to avoid the possibility of conflation between the two, particularly when (as is not uncommon) the
same symbolic expressions are used to denote—or are common to—the two.

Comment: The significance of the qualification ‘unrestrictedly’ is that it admits the possibility
where an unspecified instantiation may sometimes be unspecifiable— in the sense of §10.C., Defini-
tion 5—within the parameters of a formal system S that subsumes the classical first-order logic FOL
(thereby implicitly admitting non-standard models of S) which, under its classical interpretation,
is uncritically (see §7.B.) assumed to admit Aristotle’s particularisation unrestrictedly.

Non-standard model: A non-standard model of a formal system S is a model of S that admits
objects in the domain D of the interpretation defining the model if, and only if, there is some
object in D which is not definable in S.

We note that (compare with §8.G., Corollary 8.20)

Theorem 7.1. Hilbert’s ‘principle of excluded middle’ is ‘stronger’ than Aristotle’s particular-
1sation.

Comment: ‘Stronger’ in the sense that a formal mathematical theory S is ‘stronger’ than a theory
T if every provable formula of T is provable in S. The two are ‘equivalent in strength’ if T is also
‘stronger’ than S.

Proof. If the formula [~(Va)—F(x)] is provable in a formal first order language L that admits
Hilbert’s e-calculus then:

e in any well-defined interpretation of L over a domain D that admits Aristotle’s particular-
isation,

e there is the possibility that, if [F'(z)] interprets as F*(z),
e there may be an unspecified instantiation F*(s) in D

— where s is an element of D

— that is unspecifiable as an L-term (in a ‘broader’ sense of §10.C., Definition 5).

However, Hilbert’s ‘principle of excluded middle” entails that the unspecified instantiation
in Aristotle’s particularisation must correspond to an unspecified—but specifiable—term of L.
The theorem follows. a

Comment: The significance of Theorem 7.1 is highlighted from a phenomenological perspective
by Stathis Livadas in [Lvd16], where he notes—in the context of Paul Cohen’s forcing argument in
[Co63] (see also §13.E.b. to §13.E.e.)—an implicit circularity in ignoring that ‘in particularizing a
formal individual from a universal sentence of a general form in order to fulfill another predicative
sentence or formula we may be subject to the requirement of confirmation by a continuous
connection of actual and possible intuitions’:

80As is also postulated by Rosser’s Rule C; see §8.G., Corollary 8.21.
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“In regarding self-constituting temporality as the ultimate common ground of all
phenomenologically motivated analysis of logical-mathematical concepts and meanings
(which is my position), the issue of the inverse procession, namely that of passing from a
general pure concept to its pure possibilities as its particularizations is also conditioned
on the phenomenological notion of time. More specifically the logical requirement
of individuality in the sense, for instance, of positing an object-individual as the
identical substrate of predicates and logical truths is not just a particularization of the
universal concept individual in general but may be bound to the conditions of temporal
constitution. This means that in particularizing a formal individual from a universal
sentence of a general form in order to fulfill another predicative sentence or formula we
may be subject to the requirement of confirmation by a continuous connection of actual
and possible intuitions. In turn, the possibility of a continuous connection of actual
and possible intuitions is conditioned on the existence of a subjectively generated
continuous unity and is associated with a sense of inner temporality, one that is not
rooted in the ‘external’ objective temporality. For instance to check that a subset
A of a partially ordered space (X, <) is dense in X we must take a random element
x € X and prove the existence of another element y, possibly fulfilling some other
property, to satisfy the formula (Vo € X)(Jy < x)[y € A] (1). In case such an element
y is a free or bounded variable of a second formula its identification as the particular
element that fulfills the definition formula (1) of density presupposes the confirmation
of all actual and possible intuitions relative to its place in the second formula which is
conditioned in turn on the continuous (immanent) unity of all possible connections
establishing its prior ontological status (see for some technical details “Appendix 2”).”

... Livadas: [Lvd16], §4 The Question of Universal-Ezistential Quantification ..., para (d), pp.20-21.

The implicit circularity is evident when interpreting ‘a second-order universal quantification over
all subsets of the power-set of the set of natural numbers P(N)’ since, as Livadas notes further,
‘any universal quantification over such sets, regardless of any temporal or constitutional concerns
for this quantification, already establishes their de facto acceptance as completed totalities’:

“I complete this section with a review of the role of universal-existential quantification
over an indefinite horizon in formulas with ontological claims, in particular, in the proof-
theoretic process of generation of Godel’s incompleteness results. In fact, universal
quantification over an indefinite horizon plays a major part in the proof of almost all
significant infinity results in foundational mathematics, e.g., in certain well-known
independence results as it is the Continuum Hypothesis (CH) and its generalized
form GCH. In this case one has to go a step further and apply a second-order
universal quantification over all subsets of the power-set of the set of natural numbers
P(N), a process considered as as presupposing a concept of completed totality for
the uncountably infinite set P(N) and therefore as losing contact with ‘real-world’
intuition.® Any statement (or relation) expressed by applying universal quantification
over sets such as P(N) or even P(P(N)) is normally taken as a definite one with
legitimate ontological claims which is evidently a circular interplay since any universal
quantification over such sets, regardless of any temporal or constitutional concerns
for this quantification, already establishes their de facto acceptance as completed
totalities.”

Consequently any universal-existential quantification over an indefinite horizon, and
a fortiori a second-order one clearly presupposes a notion of complete totality for
the intended scope of its quantifiers which, in view of the previous discussion at the
level of constitutional-temporal processes, reduces to the constitution of infinite sets
of any order in the form of the continuous unity of completed wholes in presentational
immediacy. In turn, this kind of actual infinity far from being a spatio-temporal and
causality-generated one, insofar as it is immanent to the self-constituting temporal
consciousness, conditions in one way or another not only the already established key
foundational results of K. Godel and P. Cohen but also more recent attempts to achieve
enlargements of inner models so as to be consistent with all known large cardinal
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axioms.”
... Livadas: [Lvd16], §4 The Question of Universal-Ezistential Quantification ..., pp.21-22.

From the evidence-based perspective of this investigation we note that we can interpret Livadas’
stipulation that:

“in particularizing a formal individual from a universal sentence of a general form
in order to fulfill another predicative sentence or formula we may be subject to
the requirement of confirmation by a continuous connection of actual and possible
intuitions”

as requiring that even any intuitive ontological commitment, consequent to the ‘particularizing of
a formal individual from a universal sentence’, must, even if only in principle, necessitate:

— algorithmic verifiability of ‘actual intuitions’ in some sense of §2., Definition 4, and §7.C.,
Definition 18;

and:

— algorithmic computability of ‘possible intuitions’ in some sense of §2., Definition 7 and §7.C.,
Definition 20;

in order to claim—in a next ‘second-order’ level’, as clarified by Livadas®'—‘a continuous connec-
tion of actual and possible intuitions’.

We shall further see that, from an evidence-based perspective of the Complementarity Thesis
1 (see §1.), both Hilbert’s e-calculus and Brouwer’s Intuitionism are fragile since:

(a) On the one hand—as L. E. J. Brouwer had protested (see §10.B.)—Hilbert’s intended
interpretation of his e-calculus does not admit (see §8.D., Theorem 8.12), or even seek to
admit, a finitary interpretation;

(b) On the other hand, whereas Aristotle’s particularisation entails the classical Law of the
Excluded Middle LEM (see §10.A., Lemmas 10.1 and 10.2), intuitionistic perspectives—
following Brouwer—unjustifiably (see §8.D., Theorem 8.12 and §8.D., Corollary 8.15)
believe that the converse must also be true, thereby failing to recognise LEM as finitary.

Classical Law of the Excluded Middle LEM (cf., [Me64], p.4): For any well-formed formula
[P] of a formal system S that subsumes the first-order logic FOL, [P v —P] is a theorem of S.

7.A. Godel’s w-consistency too is fragile

We note further that, in order to avoid intuitionistic objections to his reasoning in his seminal
1931 paper on formally undecidable arithmetical propositions, Kurt Godel did not assume that,
for instance, the classical ‘standard’ interpretation Zpan, svy of PA® must be semantically
well-definable—essentially since unbounded quantification in arithmetic may not be definable
recursively®, as noted by Gédel when defining his number-theoretical relation ‘Bew(z)’, which
asserts that z is the Godel-number of a provable formula of Gédel’s formal system P in [Go31]:

81In a private correspondence on 14th April 2020.

82 As defined in [Me64], p.107; see also §27.(16)/(17).

83 A consequence of a, subsequent, seminal theorem by Alfred Tarski in [Ta35]:
Tarski’s Theorem: The set Tr of Godel numbers of wfs of S which are true in the standard model is not
arithmetical, i.e., there is no wf A(z) of S such that Tr is the set of numbers k for which A(k) is true in the
standard model. ... Mendelson: [Me64), p.151, Corollary 3.38.
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“46. Bew(z) = (Fy)y B x

x is a PROVABLE FORMULA. [Bew(z) is the only one of the concepts 1-46 which cannot be
asserted to be recursive.]”
... Gédel: [Go31], p.22.

Instead, Godel introduced the syntactic property of w-consistency as an explicit assumption
in his formal reasoning ([Go31], p.23 and p.28).

w-consistency: A formal system S is w-consistent if, and only if, there is no S-formula [F(x)] for
which, first, [-(Va)F(x)] is S-provable and, second, [F'(a)] is S-provable for any specified S-term

[a].

Godel explained that his reason for introducing w-consistency as an explicit assumption
in his intended, strictly syntactical, reasoning was to avoid appealing to the semantic concept
of classical arithmetical truth®-—a concept based on an intuitionistically objectionable logic
which implicitly® assumes that Aristotle’s particularisation (see §7., Definition 17) holds over
the domain N® of the natural numbers.

“The method of proof which has just been explained can obviously be applied to every formal
system which, first, possesses sufficient means of expression when interpreted according to its
meaning to define the concepts (especially the concept “provable formula”) occurring in the above
argument; and, secondly, in which every provable formula is true. In the precise execution of the
above proof, which now follows, we shall have the task (among others) of replacing the second of
the assumptions just mentioned by a purely formal and much weaker assumption.”

... Gddel: [Go31], p.9.

We shall see (§8.D., Corollary 8.10) that Godel’s assumption is ‘weaker’ in the sense that:

e [f Tarski’s inductive definitions (see §2.A.) of the satisfaction and truth of existen-
tially quantified PA formulas under the standard interpretation Zpa, svy assume that
Aristotle’s particularisation is valid over N,

Comment: ‘Assume’, since the following is not unrestrictedly entailed by Tarski’s inductive
definitions:

“A sequence s satisfies (Fz,)A if and only if there is a sequence s’ which differs from s in at
most the " place such that s’ satisfies A.”

... Mendelson: [Me64], p.52, V(ii).

e Then PA is consistent if, and only if, it is w-consistent.

Comment: It is also ‘weaker’ in the more formal sense that a formal mathematical theory S is
‘weaker’ than a theory T if every provable formula of S is provable in T. The two are ‘equivalent
in strength’ if T is also ‘weaker’ than S.
Now, if there were a finitary proof that PA is w-consistent, it would follow that Godel’s
formula [(Vx)R(z)] (see §2.F., Lemma 2.19) would be formally undecidable in PA by [Go31],
Theorem VI, p.24.

However, since [=(Vz)R(z)] is PA-provable (§2.F., Corollary 2.20), we conclude that Godel’s
assumption of w-consistency for arithmetic is fragile (§2.F., Corollary 2.22; see also §12.A.f.,
Theorem 12.6).

84To which Gédel implicitly appeals in his semantic—set-theoretical and debatably (see §14.C.) constructive—
proof of the existence of a formally undecidable proposition in Russel and Whitehead’s Principia Mathematica
(PM); which he defines therein as [R(q); q] ([Go31], pp.7-8).

85 And invalidly, by §8.D., Theorem 8.12.

86We take N to be the classical mathematical structure of the natural numbers that is uniquely defined by
Dedekind’s second order formalisation of the Peano Postulates.
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7.B. Faith-based quantification

We note that, unusually for a mathematical assertion, Aristotle’s particularisation (§7., Defini-
tion 17) is not offered in classical mathematics—which subsumes the first-order logic FOL—as
an axiom or a thesis, but as a belief that is not unequivocally self-evident, and must be appealed
to as an article of unquestioning faith.

A faith which explicitly avoids, yet implicitly follows in essence (see §10.), Hilbert’s formali-
sation of quantification in terms of his e-operator in [Hi25].

A faith that has subsequently been sanctified by prevailing custom in published classical,
and constructivist/intuitionistic, literature and textbooks®” at such an early stage of any
mathematical curriculum, and planted so deeply into students’ minds®®, that thereafter most
cannot even detect its presence—let alone need for justifying quantification—in a definition or
a proof sequence®!

A faith, moreover, whose absurdity is illustrated starkly (see [BP14]; [Kr19]) not only in
the admittance of a mathematical definition of the most unarguable concept of ‘God’—as
an ‘existence’ of which nothing can be greater—but in purported mathematical proofs of the
existence of such a Deity!

7.C. Fwvidence-based quantification

The significance of Aristotle’s particularisation for Gédel’s assumption of w-consistency—and,
as we shall see, for Hilbert’s Program (see [Zac07]) in particular and constructive mathematics
(see [KI52], [Bal6]) in general—is highlighted when contrasted (see §2.) with a constructive
perspective of quantification that admits evidencing the satisfaction and truth of the quantified
formulas of the first-order Peano Arithmetic PA, over the domain N of the natural numbers, in
two, hitherto unsuspected and essentially different, ways:

(1) in terms of weak algorithmic verifiabilty (see §2., Definition 4); and
(2) in terms of strong algorithmic computability (see §2., Definition 7).

The distinction between (1) and (2) illuminates the Brouwerian perspective of quantification
that, we argue in §11.B., could be appropriately labeled as ‘atheistic’ vis a vis the classical,
Hilbertian, ‘theistic’ (see §11.A.) perspective of quantification.

87 See, for instance: Whitehead/Russell: [WR10], p.20; Hilbert: [Hi25], p.382; Hilbert/Ackermann [HA28],
p.48; Skolem: [Sk28], p.515; Godel: [Go31], p.32; Carnap: [Ca37], p.20; Kleene: [K152], p.169; Mostowski:
[Mo52], p.18; Rosser: [Ro53], p.90; Bernays/Fraenkel: [BF58], p.46; Beth: [Be59], pp.178 & 218; Suppes: [Su60],
p.3; Luschei: [Lus62], p.114; Wang: [Wa63], p.314-315; Quine: [Qu63], pp.12-13; Kneebone: [Kn63], p.60;
Mendelson: [Me64], pp.4-5, V(ii) (op. cit.); Novikov: [Nv64], p.92; Lightstone: [Li64], p.33; Cohen: [Co66],
p.4; Shoenfield: [Sh67], p.13; Davis: [Da82], p.xxv; Rogers: [Rg87], p.xvii; Epstein/Carnielli: [EC89], p.174;
Murthy: [Mu91]; Smullyan: [Sm92], p.18, Ex.3; Karlis Podnieks: [Pdn92], p.102; Cook/Urquhart: [CU93],
p.105; Awodey/Reck: [AR02b], p.94, Appendix, Rule 5(i); Boolos/Burgess/Jeffrey: [BBJ03], p.102; Crossley:
[Cr05], p.6; Hedman: [HdO06], p.54; Srivastava: [Sri08], p.3 & p.18; Voevodsky, [Vol10]; Aschieri/Zorzi: [AsZ12],
p.8, Din.7; Smith, [Smil3], p.39(4); Detlovs/Podnieks: [DP17], p.17; Cho, [Chol8].

88Friend and Molinini anecdotally highlight the pernicious influence of such faith-based reasoning on the
perspective—and understanding—of even seasoned scholars (see [FM15], pp.201-202). The remarkable anecdote
about Professor Manohar S. Huzurbazar offers, however, a contrasting example in §29.

89See, for instance, Mendelson: [Me64], p.52, V(ii) (op. cit.); [Chol8]; [Dvd19]!
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In evidence-based reasoning, for instance, if the PA formula [(Vz)F(z)]? is intended (see
also §10.C.) to be read weakly as ‘For any specified x, F*(x) is decidable as true’ under an
interpretation, where the formula [F'(x)] interprets as the arithmetical relation F*(x), then it
must be consistently interpreted weakly in terms of algorithmic verifiability as follows:

Definition 18. (Weak quantification) A PA formula [(Vx)F (z)] is algorithmically verifiable
as true under an interpretation if, and only if, F*(x) is algorithmically verifiable as always true.

Moreover, the PA formula [—(Vx)F(z)], if intended to be read weakly as ‘It is not the case
that, for any specified x, F*(x) is true’ must be consistently interpreted weakly in terms of
algorithmic verifiability as:

Definition 19. (Weak negation) The PA formula [-(Vz)F(x)] is algorithmically verifiable
as true under an interpretation if, and only if, there is no algorithm which will evidence that
[(Vx)F(z)] is algorithmically verifiable as always true under the interpretation.

Comment: We note that weak negation implies that [(Va)F(z)] is not provable in PA; it does
not, however, entail that F*(z) is not algorithmically verifiable as always true.

Similarly, if [(Vz)F'(z)] is intended to be read strongly as ‘For all x, F*(x) is decidable as
true’, then it must be consistently interpreted strongly in terms of algorithmic computability as
follows:

Definition 20. (Strong quantification) A PA formula [(Vz)F(x)] is algorithmically com-
putable as true under an interpretation if, and only if, F*(x) is algorithmically computable as
always true.

Whilst the PA formula [-(Vz)F(z)], if intended to be read strongly as ‘It is not the case
that, for all x, F*(z) is true’ must be consistently interpreted strongly in terms of algorithmic
computability as:

Definition 21. (Strong negation) The PA formula [~(Yx)F(x)] is algorithmically com-
putable as true under an interpretation if, and only if, there is no algorithm which will evidence
that (V) F(x)] is algorithmically computable as always true under the interpretation.

Comment: We note that strong negation, too, implies that [(Va)F(x)] is not provable in PA. By
§2.E.b., Theorem 2.17 (Provability Theorem for PA), it does, however, entail that F*(x) is not
algorithmically computable as always true.

We note that strong algorithmic computability implies the existence of an algorithm that can
finitarily decide the truth/falsity of each proposition in a well-defined denumerable sequence
of number-theoretical propositions, whereas weak algorithmic verifiability does not imply the
existence of an algorithm that can finitarily decide the truth/falsity of each proposition in a
well-defined denumerable sequence of number-theoretical propositions.

Comment: Classically, the concepts ‘well-defined’ and ‘effectively computable’ are treated as
intuitive, and not expressible formally in a manner subject to verification by a Turing machine.
However we show, in §7.F. and §7.H.b., that both concepts can be defined in terms of weak
algorithmic verifiability, even when they are not subject to verification by a Turing machine in
terms of strong algorithmic computability.

90For ease of exposition we consider, without loss of generality, only the case of a PA-formula with a single
variable.
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7.D. Quantification in constructive mathematics is ambiguous

The distinction between the concepts of weak ‘algorithmic verifiability’ and strong ‘algorithmic
computability’ seeks to eliminate an implicit ambiguity in the classical concept of ‘realizability’
(see §7.E.; also [Bal6], p.5; [K152], p.503-505).

Comment: Although the conventional set-theoretical terminology of constructive mathematics—
as detailed in [Bal6]—may prefer that §2., Definitions 4, 7, and §7.C., Definitions 18 to 21, be
expressed in terms, for instance, of ‘verifiable realizability’ and ‘computable realizability’ instead of
‘algorithmic verifiability’ and ‘algorithmic computability’, we have preferred the latter terminology
as more illuminating from the perspective of this introductory investigation into the philosophical
and mathematical significance of post-computational, evidence-based and purely arithmetical,
reasoning (see §11.C.).

That such an ambiguity needs elimination in other areas of constructive mathematics too
is evidenced by Jakob Grue Simonsen’s implicit definitions in his 2005 revisitation of Specker
sequences:

“We expect the reader to have a working knowledge of BISH, cf. [BB85, BR87], and of either Russian
constructive mathematics or computable analysis [Abe80, Ko91, Wei98]; the well-known Blum-
Shub-Smale framework for computable analysis [BCSS97] is quite different from the aforementioned
notions and will not be treated here. Terminology will be that of constructive mathematics; the
reader with background in computer science will thus be well-advised to interpret every statement
(“there is X”) in this paper as “there is a program computing X” and “countable” as “recursively
enumerable”. Definitions of standard concepts from classical mathematics, e.g. convergence of
sequences and (sequential) continuity carry over to the constructive setting mutatis mutandis,
unless otherwise noted.”

... Simonsen: [Smn05], §2, Preliminaries.

We shall see that the distinction between the concepts of weak ‘algorithmic verifiability’
and strong ‘algorithmic computability’ was also anticipated by both Brouwer (see §7.L.) and
Hilbert (see §8.B.).

Moreover, the significance of the Complementarity Thesis (§1., Thesis 1) is highlighted if
we note that the distinction between ‘any’ and ‘all’ sought to be made in §7.C.; Definitions 18
to 21, pertains to the assignment of truth-values to the formulas of a formal theory under an
interpretation of the universal quantifier over a well-defined domain of interpretation.

It is to be distinguished from the distinction Bertrand Russell sought to make in [Rus08]
(pp.156-163; see also [Fe02], pp.3-4) between ‘all’ and ‘any’ with respect to the assignment of
provability-values to the formulas of a formal theory that admits ‘apparent’ and ‘real” variables
in a proof sequence.

The distinction between the concepts of weak ‘algorithmic verifiability” and strong ‘algorith-
mic computability’ also illuminates the illusory barriers faced by formal theories of constructive
mathematics which seek to interpret formal existential quantification constructively in terms of
only algorithmic computability or Kleene’s recursive realizability (see §7.E.a.).

«

For instance, as observed by E. B. Davies in his defense of pluralism in mathematics, “and

in particular Errett Bishop’s constructive approach to mathematics”:
“1. Introduction

Errett Bishop’s book ‘Foundations of Constructive Analysis’ appeared in 1967 and started a new
era in the development of constructive mathematics. His account of the subject was entirely
different from, and far more systematic than, Brouwer’s programm of intuitionistic mathematics.
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Briefly, I defend what I call pluralism in mathematics—the view that classical mathematics, con-
structive mathematics, computer assisted mathematics and various forms of finitistic mathematics
can coexist. I revive Carnap’s dictum that one must decide the framework of discourse before
questions about existence and truth make sense; see Carnap (1950). In different frameworks the
answer to a question may be different, but this in no way implies that one or the other is ‘right’.
This position is anti-Platonistic.”

... Davies: [Dav05].

From the evidence-based perspective of quantification in §7.C., the Complementarity Thesis 1
(in §1.) can be viewed as the ‘pluralism’ and ‘constructivism’ that Davies seeks, but apparently
views as in need of defense since it seemingly limits the classical theorems that can be accepted
as constructive.

In other words, Davies seems to be of the view that although every theorem in Bishop’s
constructive mathematics—in which the existential quantifier ‘3’ is interpreted in terms of
algorithmic computability only—is a theorem in classical mathematics, not every theorem of
classical mathematics can be interpreted constructively under Aristotle’s particularisation (see
§7., Definition 17):

“2. What is constructive mathematics?

It has often been said that Bishop rejected the law of the excluded middle, but a more useful
description of the situation is that he gave the symbol 3 a different meaning from the usual
one. In classical mathematics J refers to Platonic existence, but Bishop used it to refer to the
production of an algorithm for constructing the relevant quantity. In classical mathematics 3
may be defined in terms of V: the expression JzxA is logically equivalent to =(VYa—A) [sic]. In
constructive mathematics, 3 is a new quantifier with stricter conditions for its application. All
of the differences between classical and constructive mathematics follow from the new meaning
assigned to the new symbol. We wish to emphasize that every theorem in Bishop’s constructive
mathematics is also a theorem in classical mathematics. Constructive mathematicians have to
work harder to prove theorems, because their criteria for existence are stricter; the pay-off is that
the statements of the theorems contain more information.”

... Davies: [Dav05].

Moreover, Davies ascribes more to Bishop’s interpretation of the existential quantifier ‘3" in
terms of algorithmic computability (or of Kleene’s recursive realizability) as the characteristic
feature of Bishop’s constructivism, rather than to the latter’s rejection of the classical Law of
the Excluded Middle (LEM) & la Brouwer (see §11.B.a.).

He thus implicitly accepts Bishop’s constructive analysis as a formal mathematical system
that has a classical interpretation under which ‘3’ entails Aristotle’s particularisation—a concept
that is not ‘intelligible’ to a machine—and a constructive interpretation under which ‘3’ entails
algorithmic computability—a concept that s ‘intelligible’ to a machine:

“The use of a formal mathematical system as a programming language presupposes that the system
has a constructive interpretation. Since most formal systems have a classical, or nonconstructive,
basis (in particular, they contain the law of the excluded middle), they cannot be used as
programming languages.

The role of formalisation in constructive mathematics is completely distinct from its role in
classical mathematics. Unwilling—indeed unable, because of his education—to let mathematics
generate its own meaning, the classical mathematician looks to formalism, with its emphasis on
consistency (either relative, empirical, or absolute), rather than meaning, for philosophical relief.
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For the constructivist, formalism is not a philosophical out; rather it has a deeper significance,
peculiar to the constructivist point of view. Informal constructive mathematics is concerned with
the communication of algorithms, with enough precision to be intelligible to the mathematical
community at large. Formal constructive mathematics is concerned with the communication of
algorithms with enough precision to be intelligible to machines.”

... Bishop: [Bil8], pp.1-2.

From the evidence-based perspective of quantification in §7.C., however, Bishop’s above
notion of ‘formal constructive mathematics’ implicitly admits an ambiguity that could be viewed
as the barrier which constrains recognising:

— that PA is a categorical language (see §2.E.b., Corollary 2.18)

— which can communicate ‘algorithms with enough precision to be intelligible to machines’.
Such a perspective would reflect that:

— a formal system can admit a constructive, evidence-based, algorithmically wverifiable
interpretation of PA (see §2.B.a., Theorem 2.7),

— that admits a ‘truth’ assignment which is not ‘intelligible’ to a machine (see §20.E.,
Query 21),

— where ‘Jx A’ (treated as an abbreviation for ‘=(Vz—A)’) entails only a weak algorith-
mic verifiability (by §7.C., Definition 19),

— which, in turn, entails strong algorithmic computability (by §7.C., Definition 21);
— and, moreover, by:

— the finitary proof of consistency for PA (§2.C.a., Theorem 2.16),
— the Provability Theorem for PA (§2.E.b., Theorem 2.17),
— and its immediate corollary (§2.E.b., Corollary 2.18),

— the system:

— can admit the classical Law of the Excluded Middle (see §8.D., Corollary, 8.14),
— without entailing Aristotle’s particularisation (see §8.D., Corollary 8.15),

- which entails w-consistency if the system is consistent (see §8.D., Corollary 8.10);
and

- which is entailed by Rosser’s Rule C (see §8.G., Lemma 8.20).

7.E. Where realizability in constructive mathematics is ambiguous

We briefly outline the—albeit explicitly unrecognised—ambiguity as highlighted further, for
instance, by Bauer’s argumentation in [Bal6], where he characterises classical mathematics, vis
a vis current paradigms of constructive mathematics, as a compromise on the intuitive notion
of ‘truth’
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“Classical mathematical training plants excluded middle so deeply into young students’ minds
that most mathematicians cannot even detect its presence in a proof. In order to gain some sort of
understanding of the constructivist position, we should therefore provide a method for suspending
belief in excluded middle.

If a geometer tried to disbelieve Euclid’s fifth postulate, they would find helpful a model of
non-Euclidean geometry—an artificial world of geometry whose altered meanings of the words
‘line” and ‘point’ caused the parallel postulate to fail.

Our situation is comparable, only more fundamental because we need to twist the meaning of
‘truth’ itself. We cannot afford a full mathematical account of constructive worlds, but we still can
distill their essence, as long as we remember that important technicalities have been omitted.”

... Bauer: [BalG], p.6.

He then claims that:

“It is well worth pointing out that constructive mathematics is a generalization of classical
mathematics, as was emphasized by Fred Richman, for a proof which avoids excluded middle and
choice is still a classical proof. However, trying to learn constructive thinking in the classical world
is like trying to learn noncommutative algebra by studying abelian groups.”

...Bauer: [Bal6], p.6.

Bauer expands on the need of constructive mathematics to ‘twist’ the meaning of ‘truth’
as necessitated by the differing modes of truth-assignments required by the gamut of differing
constructive worlds which—Bauer ruefully notes—a constructive mathematics that claims to
generalise classical mathematics is compelled to accommodate.

He then addresses two such assignments, the first of which appeals to the computable
properties of realisability.

“In our first honestly constructive world only that is true which can be computed. Let us imagine,
as programmers do, that mathematical objects are represented on a computer as data, and that
functions are programs operating on data. Furthermore, a logical statement is only considered
valid when there is a program witnessing its truth. We call such programs realizers, and we say
that statements are realized by them. The Brouwer-Heyting-Kolmogorov rules explain when a
program realizes a statement:

(1) falsehood L is not realized by anything;

(2) truth T is realized by a chosen constant, say *;

(3) PV Q is realized by a pair (p, ¢) such that p is a realizer of P and ¢ of Q;

(4) P A Q is realized either by (0,p), where p realizes P, or by (1, q), where ¢ realizes Q;

(5) P = @ is realized by a program which maps realizers of P to realizers of Q;

(6) Vo € A.P(x) is realized by a program which maps (a representation of) any a € A to a

realizer of P(a);
(7) 3z € A.P(x) is realized by a pair (p,q) such that p represents some a € A and g realizes
P(a);
(8) a =10 is realized by a p which represents both a and b.
The rules work for any reasonable notion of ‘program’. Turing machines would do, but so would

quantum computers and programs actually written by programmers in practice.”

... Bauer: [Bal6], pp.6-7.
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As examples of the use of realizers, Bauer first offers an example of a universally quantified
‘for all’ (cf. §10.C.(b)) proposition that, by §2., Definition 7, is algorithmically computable
under interpretation:

“For every natural number there is a prime larger than it.

This is a ‘for all’ statement, so its realizer is a program p which takes as input a natural number
n and outputs a realizer for ‘there is a prime larger than n’, which is a pair (m, q) where m is
again a number and ¢ realizes ‘m is prime and m > n’. If we forget about ¢, we see that p is
essentially a program that computes arbitrarily large primes. Because such a program exists, there
are arbitrarily large primes in the computable world.”

... Bauer: [Bal6], p.7.

He then proffers, as a more interesting example, a universally quantified ‘for any’ (cf.
§10.C.(a)) proposition that, by Definitions 4 and 7, is algorithmically werifiable but not
algorithmically computable (see §7.G., Theorem 7.2) under interpretation:

“Q)Vee Rxe=0Vaz #0.

If we define real numbers as the Cauchy completion of rational numbers, then a real number z € R
is represented by a program p which takes as input k¥ € N and outputs a rational number r, such
that |z —r, | < 27", Thus a realizer for (1) is a program g which accepts a representation p for any
x € R and outputs either (0, s) where s realizes x = 0, or (1,t) where ¢ realizes x # 0. Intuitively
speaking, such a ¢ should not exist, for however good an approximation r, of x the program ¢
calculates, it may never be sure whether z = 0. To make a water-tight argument, we shall use ¢ to
construct the Halting oracle, which does not exist. (The usual proof of nonexistence of the Halting
oracle is yet another example of a constructive proof of negation.) Given a Turing machine T and
an input n, define the sequence r,,r,,r,, ... of rational numbers by

er, =2 if T(n) halts at step j and j < k,

k

—k .
e =2 otherwise.

k

—min(k,m)

This is a Cauchy sequence because | r, —r  [< 2 for all k,m € N, and it is computable
because the value of r, may be calculated by a simulation of at most k steps of execution of T'(n).
The limit x = lim, r, satisfies

ez=2"> 0, if T(n) halts at step j,

e x =0, if T'(n) never halts.

The program p which outputs r, on input k represents x because |z —r,| < 2" for all k € N.
We may now decide whether T'(n) halts by running ¢(p): if it outputs (0, s), then T'(n) does not
halt, and if it outputs (1,t), then T'(n) halts.”

... Bauer: [Bal6], pp.7-8.
Bauer notes that although the above argument needs:

“_.. the following (valid) instance of excluded middle: for every k € N, either r, =2 " orr, =2’
for some j < k”
...Bauer: [Bal6], p.8.

the statement (1) is an instance of excluded middle which is not realized.

He concludes with an anti-mechanist thesis that echoes—albeit for debatable reasons—the
concluding thesis of [An16] (Lucas’ Gédelian Thesis, see §2.F., Thesis 2):
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“The strategy to place constructivism inside a box is working! If one takes the limited view that
everything must be computed by machines, then excluded middle fails because machines cannot
compute everything. Our excluded middle is not affected because we are not machines.”

...Bauer: [Bal6], p.8.

Bauer uses the computable world to further explain why the following instance of ‘subsets
of finite sets are finite’ is not realized:
“(2) All countable subsets of 0,1 are finite.

In computable mathematics a finite set is represented by a finite list of its elements, and a countable
set by a program which enumerates its elements, possibly with repetitions. The subsets {}, {0},
{1} and {0,1} are all countable and finite, so (2) looks pretty true. Remember though that
in the computable world ‘for all’ means not ‘it holds for every instance’ but rather ‘there is a
program computing witnesses from instances’. A realizer for (2) is a program ¢ which takes as
input a program p enumerating the elements of a subset of {0, 1} and outputs a finite list of all
the elements so enumerated.”

... Bauer: [Bal6], p.8.

Bauer argues that:

“To see intuitively where the trouble lies, suppose p starts enumerating zeroes:
0,0,0,0,0,0,...

The output list should contain 0, but should it contain 1?7 However long a prefix of the enumeration
we investigate, if it is all zeroes, then we cannot be sure whether 1 will appear later. For an actual
proof we use the same trick as before: with g in hand we could construct the Halting oracle. Given
any Turing machine 7" and input n, consider the program p which works as follows:

e p(k) = 1if T'(n) halts in fewer than k steps,

e p(k) = 0 otherwise.
The subset S C {0,1} enumerated by p is constructed so that

e 1€ S if T(n) halts,
e 1¢ S if T'(n) does not halt.

Now scan the finite list computed by ¢(p): if it contains 1, then T'(n) holds, otherwise it does not.”

... Bauer: [Bal6], p.8.

From the evidence-based perspective of §7.C., however, we can ‘see intuitively where the
trouble lies’ in the above examples if we recognise that:

e the Law of the Excluded Middle (LEM) is finitarily valid (an immediate consequence of
§2.C.a., Theorem 2.16); and,

e by unnecessarily disallowing appeal to LEM, the Brouwer-Heyting- Kolmogorov rules

— are unable to accommodate

« algorithmic verifiability (i.e., evidencing each specified instance by some algo-
rithm), and
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x algorithmic computability (i.e., evidencing all intended instances by a single
algorithm),

— as distinct, but constructive, concepts.

The Brouwer-Heyting-Kolmogorov rules are, thus, unable to offer a resolution of the query
raised in Bauer’s second, more interesting, example, which is essentially whether:

Halting problem for 7' (§20.F.a., Query 25): Given a Turing machine 7', can one
effectively decide, given any instantaneous description alpha, whether or not there
is a computation of T" beginning with alpha?

That the underlying issue is not restricted to Bauer’s specific example is seen if we note
that, from an evidence-based perspective:

e the Halting problem for 7" (§20.F.a., Query 25)
e is not only answerable in the affirmative (see §20.F.b., Corollary 20.4),

e but is conflated (see §20.F.a.), in current paradigms of both constructive and classical
mathematics,

e with Turing’s Halting problem (§20.F., Query 24),

e which admits a negative answer (see §20.F.b., Corollary 20.5).

Turing’s Halting problem (§20.F., Query 24) Is it always decidable by a Turing
machine whether or not a partial recursive function is total?

7.E.a. Recursive realizability and the Law of the Excluded Middle

The inability of Brouwer-Heyting-Kolmogorov rules to accommodate:

e algorithmic verifiability (i.e., evidencing each specified instance by some algorithm), and

e algorithmic computability (i.e., evidencing all intended instances by a single algorithm),

as distinct, but constructive, concepts reflects, prima facie, the perception that treating
‘realizability’ as only ‘recursive realizability’ should suffice in intuitionistic argumentation.

For instance, as detailed by Stephen Cole Kleene:

“Realizability is intended as an intuitionistic interpretation of a formula; and to say intuition-
istically that A(xi,...,X,,y) is realizable should imply its being intuitionistically true, i.e.
that the proposition A(z1,...,%,,y) constituting its intuitionistic meaning holds. The formula
JyA(zq,...,n,y) asserts the existence, for every z1,...,z,, of a y depending on z1, ..., z,, such
that A(z1,...,2,,y); or in other words, the existence of a function y = ¢(x1,...,xz,) such that,
for every x1,...,&n, A(Z1, ..., Tn, d(T1,...,Tp)).

The formula JyA(zy,...,2,,y) does not assert the uniqueness of the function y = ¢(z1,...,x,)
such that A(z1,...,zn, ¢(x1,...,2,)); for this we need IlyA(z1,...,2,,y) (§841).
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Classically, given the existence of some function ¢ such that, for all z1, ..., z,, A(x1, ..., Tn, d(x1, ..., Ty)),
the least number principle provides formally a method of describing a particular one (*149 §

40, *174b § 41). While we do not have the least number principle intuitionistically, we do

know by Corollary 2 that, whenever a particular intuitionistic proof of a formula of the form
JyA(xy,...,2Tn,y) is given, we can on the basis of that proof describe informally a particular
general recursive function ¢(x1,...,x,) such that, or all x1, ..., 2z, A(z1,. .., Zn, d(T1,. .., 2p)).”

... Kleene: [KI52], pp.509-510.

However, a consequence for constructive mathematics of limiting the concept of ‘realizability’
to only ‘recursive realizability’ (what we have termed as ‘algorithmic computability) is that—
misleadingly in view of §8.D., Theorem 8.13—it does not admit the Law of the Excluded
Middle:

“The formula Va(A(z) V ~A(z)) is classically provable, and hence under classical interpretations
true. But it is unrealizable. So if realizability is accepted as a necessary condition for intuitionistic
truth, it is untrue intuitionistically, and therefore unprovable not only in the present intuitionistic
formal system, but by any intuitionistic methods whatsoever.

This incidentally implies that our classical formal system reinforced by an intuitionistic proof of
simple consistency cannot serve as an instrument of intuitionistic proof, as suggested in §14, except
of formulas belonging to a very restricted class (including those of the form B(x) and VB(x) end §
42, but not the present formula Va(A(x) V ~A(z))).

The negation -V (A(z) V —A(z)) of that formula is classically untrue, but (by the corollary)
realizable, and hence intuitionistically true, if we accept realizability (intuitionistically established)
as sufficient for intuitionistic truth.

So the possibility appears of asserting the formula —Vz(A(z) V —A(x)) intuitionistically. Thus we
should obtain an extension of the intuitionistic number theory, which has previously been treated
as a subsystem of the classical, so that the intuitionistic and classical number theories diverge,
with =Va(A(x) V ~A(z)) holding in the intuitionistic and Vz(A(z) V -A(x)) in the classical.”

... Kleene: [KI52], pp.518-514.

‘Misleadingly’, since the finitary interpretation of PA in [An16], Theorem 6.7 (p.41; see also
§8.D., Theorem 8.13), entails that the first-order logic FOL, in which the classical Law of the
Excluded Middle [(Vz)(A(z) V —~A(z))] is a theorem, is also finitarily consistent.

We can no longer, thus, admit the ‘possibility’ entertained by Kleene that the formula
‘=Vz(A(x) V -A(z))” could be asserted intuitionistically; nor the further argument that a
‘strengthened’ intuitionistic system denying ‘Vx(A(x)V—A(x))’ could be ‘shown by interpretation
to be simply consistent’:

“Not only is the formula —Va(A(x) V —A(x)) itself realizable, but by Theorem 62 (a) (taking it
as the I'), when we add it to the present intuitionistic formal system, only realizable formulas
become provable in the enlarged system. So then every provable formula will be true under the
realizability interpretation. In particular, the strengthened intuitionistic system is thus shown by
interpretation to be simply consistent.”

... Kleene: [KI52], p.514.

Moreover, by failing to recognise that algorithmic wverifiability is not only constructive,
but the ‘truth’ assignment that yields the weak, standard interpretation of PA in classical
mathematics, intuitionistic perspectives uncritically accept that, if A,(p) corresponds to Godel’s
formula 17 Gen r ([Go31], p.25, eqn. 13), then:
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“...we can interpret the formula A, (p) from our perspective of the Gédel numbering as expressing
the proposition that A,(p) is unprovable, i.e. it is a formula A which asserts its own provability.”
... Kleene: [KI152], p.207.

The fallacy in the—mnot uncommon—conclusion that A,(p) ‘is a formula A which asserts
its own provability’ is highlighted in §14.H..

7.F. Well-definedness

We note that the distinction between §2., Definition 4, and §2., Definition 7, now allows us to
define:

Definition 22. (Well-defined sequence) A Boolean number-theoretical sequence { F*(1), F'*(2),
...} is well-defined if, and only if, the number-theoretical relation F*(x) is algorithmically veri-
fiable.

Moreover, by insisting that, for any specified natural number:, there be a deterministic
algorithm that computes F*(j) as either 0 or 1 for all j <4 in a Boolean sequence, Definition
22 essentially restricts the introduction of putative, set-theoretically postulated, unspecified
real numbers into any evidence-based reasoning (see §7.1.; Theorem 7.5) unless their binary
representations are presumed well-defined.

Comment: The significance of Definition 22 for the natural sciences is seen in the putative
resolution that it admits of the EPR paradox in [Anl15] (see §22.).

In this investigation we shall, accordingly, assume the following definition that, no matter
how imprecise, seeks to capture at least the essence of what we intuitively mean by ‘well-defined’:

Definition 23. (Well-definedness) A mathematical concept is well-defined if, and only if, it
can be defined in terms of algorithmic verifiability.

7.G. Algorithmically verifiable but not algorithmically computable

The following argument (see also [An16], Theorem 2.1, p.37) illustrates that although every
algorithmically computable relation is algorithmically verifiable (hence well-defined), the converse
is not true:

Theorem 7.2. There are well-defined number theoretic functions that are algorithmically
verifiable but not algorithmically computable.

Proof. We note that:

(a) Since any putative, set-theoretically postulated, real number R = Lt, 2" (7(i).27
in binary notation is mathematically definable by a correspondingly unique Cauchy

sequence’!:

{3 or(i).27:n=0,1,...;r(i) € {0,1}}

91Cauchy sequence: A sequence x,,,,Z,, ... of real numbers is a Cauchy sequence if, and only if, for every
real number € > 0, there is a an integer N > 0 such that, for all natural numbers m,n > N, |z, —z | <e.
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of rational numbers in binary notation, it follows that:

(i) If r(n) denotes the n'™ digit in the decimal expression of the real number R in binary
notation;

(ii) Then, for any specified natural number n, Goédel’s primitive recursive S-function
defines an algorithm AL ) that can verify the truth/falsity of each proposition in
the finite sequence:

{r(0) =0,r(1) =0,...,r(n) =0}.

Hence, for any real number R, the relation r(x) = 0 is algorithmically verifiable (hence
well-defined) trivially by §2., Definition 4.

(b) Since it follows from Alan Turing’s Halting argument ([Tu36], p.132, §8) that there are
algorithmically uncomputable real numbers:

et r(n) denote the n** digit in the decimal expression of an algorithmically uncom-
i) Let denote the n' digit in the decimal i f lgorithmicall
putable real number R in binary notation.

(ii) By (a), the relation r(z) = 0 is algorithmically verifiable trivially.

(iii) However, by definition there is no algorithm ALg that can decide the truth/falsity
of each proposition in the denumerable sequence:

{r(0)=0,r(1) =0,...}.

Hence, although the relation r(x) = 0 is algorithmically verifiable (hence well-defined), it is
not algorithmically computable by §2., Definition 7. a

Godel’s p-function Lemma: If f is an arbitrary sequence of natural numbers and k is an

arbitrary natural number, then there exists a pair of natural numbers n, d such that f ™9 and f

coincide in their first k terms. ([Go31], Theorem VII, Lemma 1, p.31).

Comment: The significance of the Lemma is that if f is a function defined by primitive recursion
on a parameter n, say by f(0) = c and f(n+ 1) = g(n, f(n)), then to express f(n) =y one would
like to say: there exists a sequence a,,a,,...,a, such that a, = ¢, a, = y and for all ¢ < n one
has g(i,a,) = a, + 1. While that is not possible directly, one can say instead: there exist natural
numbers a, b, and a primitive recursive function 3(b, ¢, %), such that 3(a,b,0) = ¢, B(a,b,n) =y
and for all ¢ < n one has ¢(i, 5(a,b,7)) = B(a,b,i+ 1) (see also [Me64], p.131).

Although a proof that some number-theoretic relation instancing §7.G., Theorem 7.2 can
be well-defined (in the sense of §7.F., Definition 22) is not obvious, §2.F., Corollary 2.21 shows
that Godel’s meta-mathematically defined formula [R(z)] is algorithmically verifiable as always
true under the weak, standard, interpretation Ipa(n,svy of PA (see §2.B.), hence well-defined
(in the sense of Definition §7.F., 22), but not algorithmically computable as always true under
the strong, finitary, interpretation Ipa(n,sc) of PA (see §2.C.).

We note that a definition of a set of computationally significant, well-defined, number-
theoretic functions which are algorithmically verifiable, but not algorithmically computable, was
also given by Gregory Chaitin in [Ct75].

He defined a class of 2 constants such that, if C'(n) is the n'* digit in the decimal expression
of an 2 constant, then the function C'(z) is algorithmically verifiable but not algorithmically
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computable; where  is Chaitin’s Halting Probability given by 0 < Q = >>27Pl < 1, the
summation is over all self-delimiting programs p that halt, and |p| is the size in bits of the
halting program p (see [Ct82]).

Comment: We note that Specker sequences (see [Smn05]; also §7.1.; §19.D.) do not instance
§7.G., Theorem 7.2, since they are algorithmically computable, monotonically increasing, bounded
sequences of rational numbers.

Theorem 7.2 now admits a formal definition of relative randomness:

Definition 24. (Relative randomness) A number-theoretic sequence is relatively random
if, and only if, it is algorithmically verifiable, but not algorithmically computable.

Comment: The significance of Definition 24 for the mathematical representation of quantum
phenomena is highlighted in §22.D. by Thesis 16, and in §22.D.d. by Thesis 20.

A relatively random number-theoretic sequence cannot thus be represented—mnor defined—as
a partial recursive function; since the latter always defines, and is defined by, some deterministic
Turing machine (see [Me64], p.237; [K152], p.373).

However, complementing the Provability Theorem for PA which models algorithmically
computable number-theoretic functions arithmetically (see §3.), any relatively random sequence
can be defined within PA in terms of Godel’s f-functions (as detailed in §15.A. and §15.B.).

7.H. The classical Church-Turing Thesis
We note that classical theory holds (see also §20.F.):

(a) Every Turing-computable function F'(x1,...,x,) is partial recursive, and, if F'(z1,...,z,)
is total, then F'(zq,...,x,) is recursive (see [Me64], p.233, Corollary 5.13).

(b) Every partial recursive function F(zy,...,z,) is Turing-computable (see [Me64], p.237,
Corollary 5.15).

From this, classical theory concludes that the following, essentially unverifiable (since it
treats the notion of ‘effective computability’ as intuitive, and not definable formally) but
refutable, theses (informally referred to as the Church-Turing Thesis CT) are equivalent (see
[Me64], p.237):

Church’s Thesis: A number-theoretic function F(zy,...,z,) is effectively computable
if, and only if, F'(z1,...,x,) is recursive (see [Me64], p.227).

Turing’s Thesis: A number-theoretic function F(zy,...,z,) is effectively computable
if, and only if, F'(z1,...,x,) is Turing-computable (see [BBJ03], p.33).

Comment: From the evidence-based perspective of this investigation, §7.H.a., Definition 25,
justifies Paula Quinon’s insightful argument that although Church’s and Turing’s theses can be
treated as functionally equivalent, their original intentions are sufficiently distinguishable so as to
cast doubt on their having—between them—captured the notion of ‘effective computability’:
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“Mathematicians’ project of formalizing the concept of effective computability in the
1930s had various motivations. Turing wanted to solve the Entscheidungsproblem—the
decision problem regarding provability of first-order sentences—formulated by Hilbert
and Ackermann (1928). Godel and Church were interested in specifying the concept
of formal system and therefore needed a sharp concept of effective method to account
for finite reasoning in such systems. In particular, Church and his group searched
for effective methods of defining functions on natural numbers, and thereby, a way of
singling out the class of functions that can be effectively computed.®

Various models of computation were formulated in response to these objectives.
Church’s thesis, formulated in 1936, identifies the pre-systematic concept of “ef-
fectively computable” or “calculable” with the property of “being generally recursive”
defined for functions on natural numbers.? Turing’s thesis, formulated in the same
year, translates this pre-systematic concept into “being computable by a Turing ma-
chine”. The two definitions were soon shown to be extensionally equivalent. Hence,
the “Church-Turing thesis”.?

However, the fact that general recursiveness and Turing computability are extensionally
equivalent does not mean that they capture the same properties. This raises the
question of which of the two accounts, Church’s or Turing’s, if any, provides an
adequate conceptual analysis of the concept of effective computability, where by
“conceptual analysis” I mean an attempt to clarify a given concept by identifying
its conceptual parts. On this understanding the two theses differ significantly in
many aspects. For instance, Church’s thesis states that effective computability can be
analyzed in terms of properties of functions defined on natural numbers understood as
abstract objects. Turing’s thesis, by contrast, expresses that effective computability
can be analyzed in terms of properties of functions defined on strings of symbols.
Thus, the two theses provide very different analyses of the concept in question. If one
assumes, as is often tacitly done, that only one analysis of a given concept can be
correct, once the latter has been properly disambiguated, then Church’s analysis and
Turing’s analysis cannot both be adequate.”

... Quinon: [Qunl19], §Introduction.

It is significant that both Gédel (initially) and Alonzo Church (subsequently—possibly under
the influence of Godel’s disquietude) enunciated Church’s formulation of ‘effective computability’
as a Thesis because Godel was instinctively uncomfortable with accepting it as a definition that
minimally captures the essence of intuitive effective computability (see [Si97]).

Godel’s reservations seem vindicated if we accept that a number-theoretic function can be
effectively computable instantiationally (in the sense of being algorithmically verifiable), but
not by a uniform method (in the sense of being algorithmically uncomputable).

That arithmetical ‘truth’ too can be effectively decidable instantiationally, but not by a
uniform method, under an appropriate interpretation of PA is speculated upon by Goédel in his
famous 1951 Gibbs lecture, where he remarks®?:

“I wish to point out that one may conjecture the truth of a universal proposition (for example,
that I shall be able to verify a certain property for any integer given to me) and at the same time
conjecture that no general proof for this fact exists. It is easy to imagine situations in which both
these conjectures would be very well founded. For the first half of it, this would, for example, be
the case if the proposition in question were some equation F(n) = G(n) of two number-theoretical
functions which could be verified up to very great numbers N.”

.. Gédel: ([Go51]).

92Rohit Parikh’s paper [Pa71] on existence and feasibility can also be viewed as an attempt to investigate the
consequences of expressing the essence of Godel’s remarks formally.
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Such a possibility is also implicit in Turing’s remarks ([Tu36], §9(II), p.139):

“The computable numbers do not include all (in the ordinary sense) definable numbers. Let P be
a sequence whose n-th figure is 1 or 0 according as n is or is not satisfactory. It is an immediate
consequence of the theorem of §8 that P is not computable. It is (so far as we know at present)
possible that any assigned number of figures of P can be calculated, but not by a uniform process.
When sufficiently many figures of P have been calculated, an essentially new method is necessary
in order to obtain more figures.”

<« Turing: ([Tu36], §9(II), p.139).

The need for placing such a distinction®® on a formal basis has also been expressed explicitly
on occasion. Thus, Boolos, Burgess and Jeffrey ([BBJ03|, p. 37) define a diagonal function, d,
any value of which can be decided effectively, although there is no single algorithm that can
effectively compute d.

Now, the straightforward way of expressing this phenomenon informally should be to say that
there are constructively well-defined number-theoretic functions that are ‘effectively’ computable
‘instantiationally’, but not ‘algorithmically’. However, as the authors quizzically observe, such
functions are labeled as uncomputable!

“According to Turing’s Thesis, since d is not Turing-computable, d cannot be effectively computable.
Why not? After all, although no Turing machine computes the function d, we were able to compute
at least its first few values, For since, as we have noted, f; = fo = f3 = the empty function we
have d(1) = d(2) = d(3) = 1. And it may seem that we can actually compute d(n) for any positive
integer n—if we don’t run out of time.”

... Boolos/Burgess/Jeffrey: ([BBJ03], p.37).

The reluctance to treat a function such as d(n)—or the function Q(n) that computes the
n digit in the decimal expression of a Chaitin constant 2°*—as computable, on the grounds
that the ‘time’ needed to compute it increases monotonically with n, is curious?; the same
applies to any total Turing-computable function f(n).

The only difference is that, in the latter case, we ‘know’—or are willing to accept as
reasonable—that there exists”® a common ‘program’ of constant length that will compute
f(n) for any given natural number n; in the former, we know we may need distinctly different
programs for computing f(n) for different values of n, where the length of the program may,
sometime, reference n.

In a panel discussion on “The Prospects for Mathematical Logic in the Twenty-First Century”
at the annual meeting of the Association for Symbolic Logic held in Urbana-Champaign, June
2000, Richard A. Shore concluded his perspective with three ‘pie-in-the-sky, problems’, where
he argues for ‘a formal definition of algorithm and the appropriate analog of the Church-Turing
thesis’:

93Rohit Parikh’s distinction between ‘decidability’ and ‘feasibility’ in [Pa71] also appears to echo the need for
such a distinction.

94Chaitin’s Halting Probability Q is given by 0 < Q = >.27/Pl < 1, where the summation is over all
self-delimiting programs p that halt, and |p| is the size in bits of the halting program p; see [Ct75].

9The incongruity of this is addressed by Parikh in [Pa71].

96The issue here seems to be that, when using language to express the abstract objects of our individual,
and common, mental ‘concept spaces’, we use the word ‘exists’ loosely in three senses, without making explicit
distinctions between them (see [An07c]).
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“In a different direction, we return to the original language of computation. Here the beginnings
of recursion theory have already played an important role, e.g. the Turing machine model as a
basic one for computation and the A-calculus as one for programming languages both abstract
and actual. And so we come back to the beginnings of the study of the formal languages of
computation. Along these lines, I would like to close with three, certainly not original and probably
pie-in-the-sky, problems.

1. “Prove” the Church-Turing thesis by finding intuitively obvious or at least clearly acceptable
properties of computation that suffice to guarantee that any function so computed is recursive.
Turing [64] argues for the thesis that any function that can be calculated by an abstract human
being using various mechanical aids can be computed by a Turing machine (and so is recursive).
Gandy [24] argues that any function that can be calculated by a machine is also Turing computable.
Deutsch [14] approaches this issue from a more quantum mechanical perspective. Martin Davis
has pointed out (personal communication) that one can easily prove that computations as given
by deductions in first order logic relations from a finite set of sentences about numerals and the
function being defined are necessarily recursive. An analysis based on the view that what is to be
captured is human mechanical computability is given in Sieg [55].

Perhaps the question is whether we can be sufficiently precise about what we mean by computation
without reference to the method of carrying out the computation so as to give a more general or
more convincing argument independent of the physical or logical implementation. For example, do
we reject the nonrecursive solutions to certain differential equations as counterexamples on the
basis of our understanding of physics or of computability. Along these lines, we also suggest two
related questions.

2. What does physics have to say about computability (and provability or logic)? Do physical
restrictions on the one hand, or quantum computing on the other, mean that we should modify
our understanding of computability or at least study other notions? Consider Deutsch’s [14]
Church-Turing principle and arguments that all physically possible computations can be done by
a quantum computer analog of the universal Turing machine. He argues, in addition, that the
functions computable (in a probabilistic sense) by a quantum Turing machine are the same as the
ones computable by an ordinary Turing machine, but that there is, in principle, an exponential
speed-up in the computations. How do these considerations affect our notions of both computability
and provability? For some of the issues here see Deutsch et al. [15].

3. Find, and argue conclusively for, a formal definition of algorithm and the appropriate analog of
the Church-Turing thesis. Here we want to capture the intuitive notion that, for example, two
particular programs in perhaps different languages express the same algorithm, while other ones
that compute the same function represent different algorithms for the function. Thus we want a
definition that will up to some precise equivalence relation capture the notion that two algorithms
are the same as opposed to just computing the same function. Moschovakis [46] is an interesting
approach to this problem from the viewpoint that recursion, and an appropriate formal language
for it, should be taken as basic to this endeavor.”

... Shore: [BKPS], §2, Recursion Theory, pp.6-8

7.H.a. FEwvidence-based reasoning does not admit the classical Church-Turing The-
sis

If, however, we accept that algorithmically verifiable functions may be instantiationally com-
putable but not algorithmically computable then—since algorithmic wverifiability is defined
constructively (see §2., Definition 4)—§7.F., Definition 22 now admits an evidence-based def-
inition of ‘effective computability’ that violates the Church-Turing Thesis (see §27.(2); also
§20.F.):

Definition 25. (Effective computability) A number-theoretic function F*(xq,...,x,) is
effectively computable if, and only if, F*(xy,...,x,) is well-defined.
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Moreover, from the evidence-based perspective of [An16], the Provability Theorem for PA
(Theorem 7.1, p.41) could be viewed as:

— meeting Shore’s need for ‘a formal definition of algorithm’ in (3) above;
whilst §7.H.a., Definition 25 could be viewed as:
— ‘the appropriate analog of the Church-Turing thesis’ in evidence-based reasoning that:

— disproves the Church-Turing thesis as argued for in (1) above; and

— illuminates Deutsch’s, putatively physical, Church-Turing principle in (2) (as detailed
further in §20.H.).

That a paradigm shift may be involved in:

(1) defining algorithmic verifiability (§2., Definition 4) and algorithmic computability (§2.,
Definition 7) constructively; and

(2) accepting §7.H.a., Definition 25,

is suggested by Lézslé Kalmér’s reluctance to treat his—essentially similar—argument (see
§20.1.) against the plausibility of Church’s Thesis as a proof:

“...I shall not disprove Church’s Thesis. Church’s Thesis is not a mathematical theorem which
can be proved or disproved in the exact mathematical sense, for it states the identity of two
notions only one of which is mathematically defined while the other is used by mathematicians
without exact definition. Of course Church’s Thesis can be masked under a definition: we call an
arithmetical function effectively calculable if and only if it is general recursive, venturing however
that once in the future, somebody will define a function which is on one hand, not effectively
calculable in the sense defined thus, on the other hand, its value obviously can be effectively
calculated for any given arguments.”

... Kalmdr: [Km59], p.72.

Making the same point somewhat obliquely, the need for introducing a formally undefined
concept of effective computability into the classical Church-Turing thesis is also questioned
from an unusual perspective by Saul A. Kripke, who argues that, since any mathematical
computation can, quite reasonably under an unarguable ‘Hilbert’s thesis’, be corresponded to a
deduction in a first-order theory (see §2.E.a.), the Church-Turing ‘thesis’ ought to be viewed
more appropriately as an immediate corollary of Godel’s completeness theorem:

“So, to restate my central thesis: computation is a special form of deduction. If we restrict
ourselves to algorithms whose instructions and steps can be stated in a first-order language
(first-order algorithms), and these include all algorithms currently known, the Church-Turing
characterization of the class of computable functions can be represented as a special corollary of
the Godel completeness theorem.”

... Kripke: [Krp13], pp.80-81 € 9.
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7.H.b. Effective computability and the Church-Turing Thesis

We conclude that (see also §10.C., Theorem 10.3), contrary to current paradigms®” (see [OWJ06];
also [Picl1], [Tyl07]):

Theorem 7.3. The classical Church-Turing Thesis is false in any interpretation of the first-
order Peano Arithmetic PA that admits evidence-based quantification.

Proof. By §7.H.b., Definition 25 and [An16], Corollary 8.3 (p.42; see also §2.F., Corollary 2.21),
Godel’s meta-mathematically well-defined formula [R(z)] is algorithmically verifiable as always
true under Ip4(n,sv), but not algorithmically computable as always true under Ipa(n sc). Hence
it is not partial recursive. O

7.1. Every (evidence-based) eb-real number is specifiable in PA

The distinction between algorithmic wverifiability ([Anl6], Definition 1, p.37; see also §2.,
Definition 4), and algorithmic computability ([An16], Definition 2, p.37; see also §2., Definition
7), also allows us to place Cantor’s Theorem?®—namely that the domain R of set-theoretically
postulated stp-real numbers is algorithmically uncountable—into a coherent, evidence-based,
arithmetical perspective if we identify geometrical points on a line not with Platonically
postulated limits of set-theoretical Cauchy sequences of rationals under an interpretation, but
with the interpreted evidence-based sequences of rational numbers themselves:

Cauchy sequence (rationals): A sequencer,,r,,r,, ... of rational numbers is a Cauchy sequence
if, and only if, for every rational number ¢ > 0, there is a an integer N > 0 such that, for all
natural numbers m,n > N, |r,_ —r | <e.

Comment: We note that our consideration here is limited only to distinguishing the necessary,
evidence-based, arithmetical vis & vis the set-theoretical, properties of ‘real numbers’ that are
classically defined Platonically under interpretation as corresponding to the set-theoretical limits of
Cauchy sequences; not to the sufficiency of such properties for the classical theory of real analysis.

Definition 26. (eb-real numbers) A sequence of rational numbers is an eb-real number if,
and only if, it is either a Cauchy sequence or a monotonically increasing, bounded, sequence.

Comment: We note that:

— whereas the ‘value’ under interpretation of a classical, set-theoretically defined, stp-real
number is a postulated Platonic limit of an associated Cauchy sequence;

— an ewvidence-based eb-real number is a sequence that is an ‘eternal work-in-progress’ in
Brouwer’s sense (see §7.L.), and cannot be assumed to always have a specifiable ‘value’ under
interpretation.

97Challenged—albeit on different grounds—also by Selmer Bringsjord and Naveen Sundar Govindarajalu
in [BG11], [BG11la]: “One of us has previously argued that the Church-Turing Thesis (CTT), contra Elliot
Mendelson, is not provable, and is—in light of the mind’s ability to effortlessly hypercompute—moreover false”.

98 (lassically expressed as Ng </ 280, See, for instance, Walter Rudin [Ru53], §2.16, Theorem, p.23; [Ru53],
§2.40, Corollary, p.34; also [BBJ03], p.16.
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We note that Specker sequences (see [Smn05]; also §7.G.; §19.D.)—which do not instance
§7.G., Theorem 7.2, since they are algorithmically computable—are monotonically increasing,
bounded sequences of rational numbers that, by §7.1., Definition 26, are eb-real numbers; whilst
their supremum is taken to Platonically define putative, uncomputable, stp-real numbers—even
though the sequences themselves are not Cauchy sequences in the constructive (algorithmic)
sense (compare §7.1.a., Theorem 7.6).

Specker sequence: Let A be any recursively enumerable set of natural numbers that is not
decidable, and let (a;) be an algorithmically computable enumeration of A without repetition.
Define a sequence (g,) of rational numbers with the rule:

Gn =Yg 27 %N

Since Specker sequences are algorithmically computable, but not Cauchy sequences, we
conclude from §7.1., Definition 26, that evidence-based reasoning entails:

Corollary 7.4. Every eb-real number is not well-definable by a Cauchy sequence. a

Definition 27. (eb-real number specifiability) An eb-real number R in R is specifiable if,
and only if, it can be explicitly expressed as a PA-formula that is algorithmically verifiable.

In other words—as entailed by Cantor’s diagonal argument—there is no, algorithmically
computable, number-theoretic function C'(n) whose values can be put in a 1-1 correspondence
with all eb-real numbers that are definable as non-terminating Cauchy sequences.

From an evidence-based perspective we cannot, however, conclude from this that that there
are unspecifiable eb-real numbers, since:

Theorem 7.5. (Specifiability Theorem for Eb-reals) FEuvery eb-real number is specifiable
in PA.

Proof. Let {r(n)} be the denumerable sequence defined by the denumerable sequence of digits in
the binary decimal expansion . r(n).107" of a putatively well-defined (hence evidence-based)
eb-real number R in the interval 0 < R < 1 where, for any specified i, r(i) is either 0 or 1.

By a standard result ([Me64], p.131, Proposition 3.22), for any specified natural number k,
we can define natural numbers by, ¢ such that, for any 1 < n < k, we can define the primitive
recursive Godel S-function:

6(bka Ck, n) - T(’I’L)
Also by a standard result ([Me64], p.131, proposition 3.21), 5(b, ¢k, n) is uniquely repre-
sented in the first order Peano Arithmetic PA by [Bt(by, ¢k, n, )] such that, for any 1 < n < k:

If B(b, cx,n) = r(n) then PA proves [Bt(bg, cx,n,r(n))].
We now define the arithmetical formula [R(by, ¢k, n)] for any 1 < n < k by:
[R(b,, c,,n) = r(n)] if, and only if, PA proves [Bt(b, ¢, n,r(n))].

Hence every putatively well-defined eb-real number R in the interval 0 < R < 1 can be
uniquely corresponded to an algorithmically verifiable arithmetical formula [R(z)] since:
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For any k, the primitive recursivity of 8(by,c,n) yields an algorithm AL g k)
that provides objective evidence for deciding the unique value of each formula in
the finite sequence {[R(1), R(2),..., R(k)]} by evidencing the truth under a sound
interpretation of PA for:

[R(k) = R(b, cx, k)]
[R(be, cx, k) = (k).

The correspondence is unique because, if R and S are two unequal, putatively well-defined,
eb-reals in the interval 0 <R, & < 1, then there is always some m for which:

r(m) # s(m).
Hence we can always find corresponding arithmetical functions [R(n)] and [S(n)] such that:
[R(n) =r(n)] for all 1 <n <m.
[S(n) = s(n)] for all 1 <n < m.
[R(m) # S(m)].

The theorem follows. O

Comment: To place §7.1., Theorem 7.5 in an appropriate perspective, we note that, as Bauer
remarks:

“A cursory literature search reveals other bizarre statements considered in constructive
mathematics: ‘R has measure zero’ , ‘there is a bounded increasing sequence without an
accumulation point’, ‘ordinals form a set’, ‘there is an injection of N into N’ , and so on.”
... Bauer: [Bal6], p.6.

He defends such constructivist conclusions by arguing that:

“A constructivist might point out that what counts as bizarre is subjective and remind us
that once upon a time the discovery of non-Euclidean geometries was shelved in fear of
rejection, that Weierstraf3’s continuous but nowhere differentiable function was and remains
a curiosity, and that the Banach-Tarski theorem about conjuring two balls from one is even

N

today called a ‘paradox’.
...Bauer: [Bal6], p.6.

7.1.a. FEvidence-based reasoning does not admit Cantor’s theorem

We note that §7.1., Theorem 7.5, challenges current paradigms as to how stp-real numbers are
currently viewed ontologically and epistemologically.

For instance, the classical conclusion, expressed symbolically as Ry </+ 2%, reflects the
Platonic postulation/assumption that there exist ‘set-theoretically completed” Cauchy sequences
which cannot be expressed in PA.%

99Such a conclusion can also be viewed as illustrating Skolem’s cautionary remarks in [Sk22] (see also §7.K.)
about unrestrictedly corresponding putative mathematical entities across domains of different axiom systems.
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However, §7.1., Theorem 7.5 shows that the postulation/assumption is fragile both onto-
logically and epistemologically, since Cauchy sequences which are defined as algorithmically
verifiable, but not algorithmically computable, correspond to well-defined, ‘essentially incom-
pletable’; eb-real numbers whose Cauchy sequences cannot, in a sense, be known ‘completely’
even to Laplace’s vast intelligence:

“We ought then to regard the present state of the universe as the effect of its anterior state and
as the cause of the one which is to follow. Given for one instant an intelligence which could
comprehend all the forces by which nature is animated and the respective situation of the beings
who compose it—an intelligence sufficiently vast to submit these data to analysis—it would embrace
in the same formula the movements of the greatest bodies of the universe and those of the lightest
atom,; for it, nothing would be uncertain and the future, as the past, would be present to its eyes.
The human mind offers, in the perfection which it has been able to give to astronomy, a feeble
idea of this intelligence. Its discoveries in mechanics and geometry, added to that of universal
gravity, have enabled it to comprehend in the same analytic expressions the past and future stars
of the system of the world. Applying the same method to some other objects of its knowledge,
it has succeeded in referring to general laws observed phenomena and in foreseeing those which
given circumstances ought to produce. All these efforts in the search for truth tend to lead it
back continually to the vast intelligence which we have just mentioned, from which it will always
remain infinitely removed.”

... Laplace: [Lap02], p.4.

Comment: We note that Laplace’s conception of a ‘vast intelligence’ to which the ‘human mind
offers ...a feeble idea of this intelligence’ essentially articulates the Mechanist’s argument which
Lucas’s Godelian Thesis seeks to refute (see §20.A.a.). An argument echoed by in 2016 by Stephen
Hawking:

“I believe there is no deep difference between what can be achieved by a biological
brain and what can be achieved by a computer. It therefore follows that computers
can, in theory, emulate human intelligence—and exceed it.”

... Hawking: Stephen Hawking— Will Al kill or save humankind?

In other words we can, not unreasonably, argue as Brouwer does (see §7.L.) that the
numerical values of algorithmically verifiable, but not algorithmically computable, sequences
must be treated as well-defined, formally specifiable, first-order, non-terminating processes
which are ‘eternal work-in-progress’ in the sense of §7.1., Theorem 7.5.1%°

Thus, from an evidence-based perspective, §7.1., Theorem 7.5 implies that stp-real numbers
do not exist in some Platonic, set-theoretic, universe of points that constitute a line, but are
arithmetical constructs identifiable as number-theoretic definitions of specific points that are
algorithmically verifiable (hence well-defined), but not necessarily algorithmically computable.

The following theorem shows that such arithmetical constructs assume significance as eb-real
numbers which can, debatably, be termed as ‘existing’ mathematically as geometric points, only
when such a definition is made explicit formally in an argumentation.

Theorem 7.6. (Invalid Cauchy Limit Theorem) The values of n for which Gédel’s arith-
metic formula [R(x)], with Gédel number r as defined in [Go31], p.25, eqn.12, interprets as a
true arithmetic proposition R*(n) in N do not well-define the eb-real number ¢ =3 (1/10") =
0.c1Co ... Cy...; which is classically treated as defining/denoting the eb-real number 1/9.

100 A perspective suggested by the way dimensionless constants are viewed in the physical sciences, as highlighted
in [Anl5], §4. p.9, by Thesis 1: Some of the dimensionless physical constants are only representable in a
mathematical language as real numbers that are defined by functions which are algorithmically verifiable, but not
algorithmically computable.
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Proof. We note that:

(i) I e=>"",(1/10") = 0.cica ... ¢y - .. defines the eb-real number 1/9 then ¢, = 1is a
recursive relation that is algorithmically computable as always true in N*°* by a Turing
machine that computes the decimal representation of 1/9.

(ii) Hence it is expressible in PA by some PA-formula [C(x) = 1] such that, for any specified
n € N:

e If ¢, =1 holds in N, then [C(n) = 1] is PA-provable;
e If ¢, # 1 holds in N, then [=(C(n) = 1)] is PA-provable.
(iii) The PA-formula [C'(z) = 1] now interprets as an arithmetical relation C*(z) = 1 such

that C*(n) = 1 is an arithmetical relation which is also algorithmically computable as
always true in N since (C*(n) =1) = (¢, = 1).

(iv) Hence, by the Provability Theorem for PA ([Anl16], Theorem 7.1, p.41), the arithmetical
formula [C'(z) = 1] is PA-provable.

(v) Now, Godel has shown (see [Go31], p.26(2)) that, for any specified PA-numeral [n], the
PA-formula [R(n)] is PA-provable.

(vi) Moreover, since [R(x)] is a well-defined PA-formula, we can define a PA-formula [D(z)]
such that [(D(z) = 1) = R(x)].

(vii) Thus [D(z) = 1] interprets as an arithmetical relation D*(x) = 1 such that D*(n) =1
holds in N if, and only if, [R(n)] interprets as true in N.

(viii) Hence D*(n) = C*(n) = ¢, = 1 for any specified n in N.

(ix) If, now, d = 0.D*(1)D*(2) ... D*(n) ... were to define the real number ¢ = ) (1/10") =
0.cic2...¢p... = 0.D*(1)D*(2)...D*(n) ..., then D*(x) = 1 would be algorithmically
computable as always true in N.

(x) In which case, by the Provability Theorem for PA ([An16], Theorem 7.1, p.41), [D(x) = 1]
would be PA-provable;

(xi) Whence [R(z)]—and therefore [(Vx)R(z)] by Generalisation—would both be provable in
PA.

(xii) Since Godel has shown that [(Va)R(z)] is not PA-provable (see [Go31], p.25(1)), neither
[R(z)] nor [D(z) = 1] can be PA-provable.

(xiii) Hence d does not define an eb-real number, even though 0.D*(1)D*(2)...D*(n)...
defines/denotes the Cauchy sequence Y>>, (1/10™).

The theorem follows. [
101Gee §2.; also [Mu91], §1, Introduction.
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We conclude that whether or not a well-defined—hence algorithmically verifiable by §7.F.,
Definition 22—Cauchy sequence in a formal mathematical language can be treated as having
a classical, algorithmically computable, Cauchy limit that defines an eb-real number under a
well-defined interpretation depends not only on the terms of the sequence, but also on how the
terms of the sequence are defined within the formal language, and whether the language has a
well-defined interpretation.

Since the above distinction cannot be made in any set theory which admits an axiom of
infinity, and therefore defines sets extensionally in a Platonically conceived domain which cannot
claim to be well-defined (in the sense of §7.F., Definition 23), Theorem 7.6 shows that (compare
§7.1., Corollary 7.4):

Corollary 7.7. Every Cauchy sequence of rational numbers does not well-define an eb-real
number. a

The significance of Theorem 7.6 for the natural sciences is highlighted in §22.D. (see also
§20.G.a.).

Comment: The argument that ‘every Cauchy sequence of rational numbers cannot be postulated
as defining a real number by the usual set-theoretical arguments’ is implicit in physicist Nicolas
Gisin’s unusual, intuitionistic, interpretation of ‘real numbers’ as ‘the hidden variables of classical
physics’ in [Gil9]; where he argues (see also [Gi20]) that ‘real numbers should not be considered
as “physical real” and classical mechanics, like quantum physics, is indeterministic’:

“... At first sight, no doubts, quantum theory imposes limits to what can be known.
There are Heisenberg’s uncertainty relation and—Copenhagen obliged—Bohr’s com-
plementary principle. But is it scientific to believe that scientific theories limit human
knowledge? In particular, does quantum theory limit our knowledge or does it faithfully
describe an indeterministic world, a world in which objects do not have determined po-
sitions, momenta and further properties? In short, should one speak of the uncertainty
relation or of the indeterminacy relation?

For a realist, like myself, scientific theories describe what there is, not the limits of
our knowledge. One cannot simultaneously know with arbitrary precision the position
and momentum of particles not because of some fancy limitations to our knowledge,
but merely because particles do not have simultaneous precise positions and momenta.
Nevertheless, looking for additional variables is highly interesting, because it may
allow one to discover new physics. This implies that the hypothetical new variables
should not be hidden, at least not be hidden by essence for ever: they may be hidden
today, but the interest is to find and reveal them.! At least, this is the rough story. In
quantum theory, things are more complex, because of the locality issue, on one side,
and for historical reasons on the other side.”

... Gisin: [Gi19], Introduction.

We note that such an evidence-based perspective reflects Leopold Kronecker’s views on what
may be treated as a well-defined mathematical concept. As detailed by Sieg:

“Kronecker made restrictive demands on the formation of mathematical concepts, e.g., he insisted
on their decidability.® Being well aware of these demands, Dedekind attached the following footnote
to his remark that a system .S, as an object of our thinking, is completely determined as soon as
“of each thing it is determined, whether or not it is an element of S” (Dedekind 1888, p. 2):

How this determination is brought about, and whether we know of a way of deciding
upon it, is a matter of utter indifference for all that follows; the general laws to be
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developed in no way depend upon it; they hold under all circumstances. I mention
this expressly because Kronecker not long ago (in Kronecker 1886) has endeavored to
impose certain limitations upon the free formation of concepts in mathematics, which
I do not believe to be justified ...

This footnote is directed against one in (Kronecker 1886), where Kronecker argues not only against
Dedekind’s concepts like module or ideal, but also against a general concept of irrational number.
Explaining his rejection, Kronecker writes:

Even the general concept of an infinite series ...is in my opinion ...only admissible
on condition that in every special case, on the basis of the arithmetical law for the
formation of the terms (or of the coefficients), certain presuppositions are shown to
be satisfied, which permit the series to be applied like finite expressions, and which
consequently make it really unnecessary to go beyond the concept of a finite series.
(Kronecker 1886, p. 947)

The effect of such a finiteness condition on the concept of real number is stated in a letter Kummer
wrote to Schwartz on 15 March 1872. Kummer remarks that he and Kronecker share the conviction

that “the effort to create enough individual points to fill out a continuum, i.e., enough real numbers

to fill out a line, is as vain as the ancient efforts to prove Euclid’s parallel postulate”.”

If individual points can be created only in accord with Kronecker’s finiteness demand, then
Kummer’s observation is provable. One first notices that the system of real numbers thus created
is countable. Next one has to address the question, what is the geometric line that cannot be
filled by the individually created points? In 1872, the very year of Kummer’s letter, Dedekind had
characterized an arithmetical continuum as the system of all cuts of rational numbers.® As that
system is isomorphic to the continuous geometric line and is uncountable, Kummer’s observation
has been established. The argument I just sketched is, of course, anachronistic, but brings out
the strikingly different approaches to the arithmetization of the geometric continuum. In this
way, it makes evident the impact of broader foundational views on mathematical practice. At the
heart of the difference between these foundational positions is the freedom of introducing abstract
concepts—given by structural definitions.”

... Sieg: [Si12], pp. 10-11.

In other words, whereas expressing intuitive concepts in the language of a formal mathemat-
ical theory on the basis of structural definitions'"? have—following Dedekind—been considered
justified so long as the introduction of such definitions is consistent with the theory, the
interpretations of such concepts—according to Kronecker—are meaningful (in the sense of
accommodating §1., Thesis 1(1) and §1., Thesis 1(2); and justifiably so as demonstrated in
§19.D.d.) only if the definitions are well-defined over the domain of the interpretation in the
sense of §7.F., Definition 22.

7.J. Arithmetical truth from a Wittgensteinian perspective

We shall see that the significance of differentiating between:

(i) the strong, algorithmically computable, ‘truth’—of the provable formulas of a formal
mathematical language L—that follows by finitary mathematical reasoning from the
axioms and rules of inference of L under a well-defined interpretation; and

(ii) the weak, algorithmically verifiable, ‘truth’—of the provable formulas of L—that follows
by non-finitary meta-mathematical reasoning from the axioms and rules of inference of L
under a well-defined interpretation;

102]n the sense of [Si12], §4, Structural Definitions, p.11-14.
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is implicit in and, from the evidence-based perspective of this investigation, could be viewed as
illuminating (see §12.), Timm Lampert’s interpretation of Ludwig Wittgenstein’s objection—in
the latter’s ‘notorious’ paragraph in [Wi78] (see §12.A.)—to the, philosophically disquieting,
conclusions (see §14.C.) that Godel drew from his undifferentiated mathematical and meta-
mathematical reasoning in [Go31]:

“The most crucial aspect of any comparison of two different types of unprovability proofs is the
question of what serves as the “criterion of unprovability” (I, §15). According to Wittgenstein,
such a criterion should be a purely syntactic criteria independent of any meta-mathematical
interpretation of formulas. It is algorithmic proofs relying on nothing but syntactic criteria that
serve as a measure for assessing meta-mathematical interpretations, not vice-versa.”

... Témm Lampert: [Lam17].

7.K. Skolem’s paradox: intended and unintended interpretations of
PA

Moreover, Wittgenstein’s perspective is reflected in, and illuminates (see §14.C., Lemma 14.1;
also §14.H.k.), Thoralf Skolem’s cautionary remarks against inviting paradox'®® by conflating
entailments of formal systems under different interpretations (see §2.D.), or over different
domains.

Thus, we note that, in a 1922 address delivered in Helsinki before the Fifth Congress of
Scandinavian Mathematicians, Skolem improved upon both the argument and statement of
Léwenheim’s 1915 theorem ([Lol5], p.235, Theorem 2)—subsequently labelled as the (down-
wards) Lowenheim-Skolem Theorem ([Sk22], p.293):

(Downwards) Lowenheim-Skolem Theorem ([Lol5], p.245, Theorem 6; [Sk22],
p.293): If a first-order proposition is satisfied in any domain at all, then it is already
satisfied in a denumerably infinite domain.

Skolem then drew attention to a:
Skolem’s (apparent) paradox: “...peculiar and apparently paradoxical state of affairs. By virtue
of the axioms we can prove the existence of higher cardinalities, of higher number classes, and so forth.
How can it be, then, that the entire domain B can already be enumerated by means of the finite positive
integers? The explanation is not difficult to find. In the axiomatization, “set” does not mean an arbitrarily
defined collection; the sets are nothing but objects that are connected with one another through certain
relations expressed by the axioms. Hence there is no contradiction at all if a set M of the domain B is
non-denumerable in the sense of the axiomatization; for this means merely that within B there occurs
no one-to-one mapping ® of M onto Z, (Zermelo’s number sequence). Nevertheless there exists the
possibility of numbering all objects in B, and therefore also the elements of M, by means of the positive
integers; of course such an enumeration too is a collection of certain pairs, but this collection is not a
“set” (that is, it does not occur in the domain B).”

... Skolem: [Sk22], p.295.

In a 2004 paper from the perspective of contemporary mathematics, [Gaf04], Haim Gaifman
consider’s Skolem’s remarks from a ‘broader perspective’ of non-standard models (see also §17.),
arguing that:

103Gee, for instance, Goodstein’s argument in §18., Theorem 18.1.
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“Non-standard models were introduced by Skolem, first for set theory, then for Peano arithmetic.
In the former, Skolem found support for an anti-realist view of absolutely uncountable sets. But in
the latter he saw evidence for the impossibility of capturing the intended interpretation by purely
deductive means.”

... Gaifman: [Gaf04], Abstract.

Gaifman argues that Skolem’s ‘paradox does not imply that absolutely uncountable sets do
not exist’, but ‘that there is no possibility of introducing something absolutely uncountable
except by means of pure dogma’; a dogma that can, however, claim to be a useful aid to
comprehension if it ‘can give comfort to someone who is skeptical, because it shows how one
who rejects absolutely uncountable sets can nonetheless apply the concept coherently when
relativized to some countable model’:

“A non-standard model is one that constitutes an interpretation of a formal system that is
admittedly different from the intended one. The import of ‘admittedly different’ will become clear
in sections 2 and 3. To prevent misunderstandings, let me emphasize that by ‘interpretation’ I
mean a structural interpretation, where isomorphic models count as the same interpretation. (Any
attempt to find what the mathematical objects really are amounts to a wild goose chase.)

Non-standard models have been introduced by Skolem, in a series of papers from 1922 to 1934,
in two cases: set theory and arithmetic. The earlier papers concern set theory. In [1922] he
observes that if there is a structure satisfying the axioms of set theory, then, because of the
Lowenheim-Skolem theorem, there is also such a countable structure. This came to be known as
Skolem’s paradox: a theory that asserts the existence of uncountable sets is itself satisfiable in a
countable model (if it has models at all). There is of course no paradox. As Skolem notes, the
model satisfies the claim that some member, X, is uncountable just when there is no member in
the model that, inside the model, constitutes a one-to-one mapping of X into the model’s natural
numbers. This is compatible with the fact that the set of all members of the model is countable.
The mappings that establish countability “from the outside” need not belong to the model. Skolem
himself was somewhat leery of uncountable totalities and he found that Skolem’s paradox sits well
with the view that everything is countable; uncountability is a property that an entity might have
inside some countable structure, but that is all there is to “uncountability”. As reported by Wang,
in [Skolem 1970], Skolem makes in [Skolem 1929] the following observation:

One recognizes here again, as with the earlier review of the Lowenheim Theorem,
that there is no possibility of introducing something absolutely uncountable except by
means of pure dogma.

By ‘absolutely’” Skolem means the non-relative concept. A set is absolutely uncountable, when it
has this property not inside a model, but in the “real universe”, which is studied by non-formalized
mathematics (i.e., it is an infinite set that is not equinumerous with the set of natural numbers).
The non-absolute concept is, by contrast, something that is model-dependent. It is a property a
set can satisfy within a model, assuming that there are models that satisfy the sentence ‘there are
uncountable sets’.

Of course, the paradox does not imply that absolutely uncountable sets do not exist; it is compatible
with what Skolem calls “dogma”. But it can give comfort to someone who is skeptical, because
it shows how one who rejects absolutely uncountable sets can nonetheless apply the concept
coherently when relativized to some countable model. One can thus work in set theory and speak
of uncountable sets, but view all such talk as a description of what goes on in countable models.
It is likely that Skolem, who spoke of the “relativity of set theoretic notions”, was inclined to
such a view. He was willing, for example, to accept the axiom of choice as a formal consistent
supposition, but rejected it as a principle that goes beyond this. In a lecture from 1932 (reported
by Fenstad in [Skolem 1970] p. 14) we find:



122 7.. Both Hilbert’s e-calculus and Brouwer’s Intuitionism are fragile

If one works within a completely formalized mathematics, based on a finite number of
precisely stated axioms, there is nothing to discuss but questions of consistency and
the ease of manipulation. But in ordinary mathematical practice, e.g., in the usual
studies on continua, which are never given by a set of specified rules, the axiom of
choice is, in my opinion, definitely undesirable—a kind of scientific fraud.”

... Gaifman: [Gaf04], pp.1-2.

From the evidence-based perspective of this investigation as reflected in the Complementarity
Thesis (§1., Thesis 1)—and in Wittgenstein’s perspective (see §12.A.) of a formal mathematical
theory as a symbolic language with an, implicitly intended and ‘rule-based’, interpretation (as
detailed in §13.A.)—the significance of Gaifman’s analysis of Skolem’s remarks, as above, lies in

his further observation ‘that ‘consistency’ was for Skolem not a syntactic notion but a semantic

one’:

“It should be noted that ‘consistency’ was for Skolem not a syntactic notion but a semantic one:
the existence of structures satisfying the axioms. Skolem thus distinguishes between “completely
formalized mathematics” and “ordinary mathematical practice”. The first amounts to a study
of structures satisfying the axioms; the second is presumably a study of what we might call
today ‘the intended interpretation’. The shift to a completely formalized mathematics can serve
to defuse foundational disagreement about what the intended interpretation should be. A can
doubt the truth, plausibility, or factual meaningfulness of an axiom adopted by B, but, as long
as it is consistent, A can make sense of what B is doing by regarding it as an investigation into
the common properties of the structures that satisfy the axioms. This is possible as long as the
completely formalized theory is consistent; if it is not, then those who presuppose it are not
investigating anything. The consistency problem becomes crucial.! Formalized mathematics may
thus serve as a mediator of sorts between different foundational views. But for this very reason
it does not fully capture the view that underlies ordinary mathematical practice—in as much
as the practice implies a particular structure that constitutes the subject matter of the inquiry,
“what it is all about”. If set theory is about some domain that includes uncountable sets, then
any countable structure that satisfies the formalized theory must count as an unintended model.
From the point of view of those who subscribe to the intended interpretation, the existence of
such nonstandard models counts as a failure of the formal system to capture the semantics fully.”

... Gaifman: [Gaf04], p.5.

Consequently, for Gaifman, whether in set theory or arithmetic, from ‘the point of view of
those who subscribe to the intended interpretation, the existence of such nonstandard models
counts as a failure of the formal system to capture the semantics fully’.

However, Gaifman notes that Skolem distinguished (compare with the distinction sought to
be made in §13.E.) between ‘unintended models in the case of set theory and in the case of
arithmetic’, in so far that (as is implicitly argued in §17.D.a.) ‘the existence of a non-standard
model of arithmetic is not a consequence of the Lowenheim-Skolem theorem’:

“This indeed is the way Skolem views non-standard models of arithmetic. The very title of his
1934 paper, in which he constructs an elementary extension of the standard model of arithmetic,
says as much: “About the impossibility of characterizing the number sequence by means of a
finite or an infinite countable number of statements involving only numeric variables”. A 1933
forerunner of this paper bears a similar title. (Note that the existence of a non-standard model of
arithmetic is not a consequence of the Lowenheim-Skolem theorem. Skolem’s original construction
of it anticipates the formation of an ultrapower.)

Skolem thus drew different lessons from the existence of unintended models in the case of set theory
and in the case of arithmetic. In the first case, the existence of countable (hence, “non-standard”)
models helps him to maintain his doubts about absolutely uncountable sets. In the second,
non-standard models show an essential shortcoming of a formalized approach: the failure to fully
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determine the intended model. The reason for the difference is obvious: In as much as the intended
model is problematic, the existence of non-standard models support one’s doubts. But when
the intended model is accepted as a basic precondition of our mathematical investigations, the
existence of non-standard models points to the inability of the formalization to characterize the
intended model. The difference thus stems from the gulf that separates the standard model of
natural numbers from higher order arithmetic. In [Skolem 1934], the very statement of Theorem
V, which asserts the existence of a non-standard model, takes for granted the standard model:

There exists a system NV "of things, for which two operations 4+ and - and two relations
= and < are defined, such that N is not isomorphic to the system N of natural
numbers, but nevertheless all sentences of P which are true of N are true of N .

This is not to say that foundational misgivings may not apply to the standard model of arithmetic.
But such misgivings, which may lead to the adoption of a weaker deductive system, do not derive
from the existence of non-standard models.”

... Gaifman: [Gaf04], pp.3-4.

The significance of evidence-based reasoning in admitting a distinction between the weak,
algorithmically verifiable, interpretation Zpw, svy of PA (see §2.B.), and the strong, algorith-
mically computable, interpretation Zpaw, soy of PA (see §2.C.) is highlighted by the dichotomy
in Gaifman’s:

(a) acceptance, on the one hand, that ‘when the intended model is accepted as a basic
precondition of our mathematical investigations, the existence of non-standard models
points to the inability of the formalization to characterize the intended model’; and his

(b) acceptance, on the other, that despite such inability, the intended ‘standard’ model of PA
in classical theory is:

— defined by the weak, algorithmically verifiable, interpretation Zp s, svy of PA,

— rather than by the strong, algorithmically computable, interpretation Zp 4, sc) of
PA, as was posited by Hilbert in his Program, and sought by him as the solution to
the second of his 23 Millenium 1900 Problems ([Hi00]; see also §27.(7));

whereas it is the latter that ought to be the ‘intended’, and the former the ‘unintended’,
interpretation:

“Unintended interpretations have loomed large in the philosophy of language in the second half of
the twentieth century. Quine used them famously (or infamously) in his behavioristic approach
to language. Goodman’s celebrated example of ‘Grue’ belongs here as well. In the nineties
they attracted considerable attention, following Kripke’s use of them in his highly controversial
interpretation of Wittgenstein. Underlying the employment of these unintended interpretations is,
roughly, the idea that language acquires its meaning through its use in overt interactions between
people or with the world. Therefore, in principle, one should be able to manifest, through public
usage, differences between different interpretations. What cannot be thus manifested should be
dismissed as something occult. This theme in the philosophy of language is beyond the scope of
this paper. I shall only address a particular offshoot of it, which relates directly to the philosophy
of mathematics. On this view, if we cannot point to public usage that distinguishes between
the standard and the non-standard interpretation of ‘the sequence of natural numbers’, then
the reference of this term is undetermined. Let A be the standard model, and let N/ be a
non-standard elementary extension of it. What is there, it is asked, that determines that one refers
to A rather than A7 Nothing in our deductive practices and in our use of mathematics in science
and everyday life seems to decide this.'® It is important to be clear on the logic of this move. The
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questioner, call him Q., bases the question on the construction of a non-standard model. Having
shown that such a model, which is different from the standard one, exists, Q. claims that the
reference is undetermined, since nothing in our public behavior determines it. The trouble with
this question is that Q. presupposes the distinction between standard and non-standard models
to start with. For Q. appeals to a construction of a nonstandard model, which yields, as we can
convince ourselves, a different model. If it were impossible to refer differentially to the two types
of models, Q.’s question could not be asked.'* The point can be also put as follows: Q. seems
to assume the superior stance of someone who can switch the interpretation from standard to
nonstandard, while we, who use routinely arithmetical concepts, do not notice. But in fact, Q.
plays in the same court, appealing to the same conceptual apparatus. To the question “What is it
that determines that the intended interpretation is the standard model?”, the simple answer is:
“The intended interpretation is, by definition, what you yourself called ‘the standard model’.”
This is not an appeal to some mysterious common understanding (“We both know what we mean
by ‘natural numbers’ ”), but an exploitation of the fact that the questioner uses the very term,
and presupposes the very meaning, which he tries to undermine. Also the question cannot be
construed as a reduction argument, where one assumes the opponent’s point of view in order to
derive a difficulty within it. For, by presupposing the conceptual apparatus that is needed to
construct a non-standard model (the basis of the question), Q. provides us with a way of answering
it. The question may have, though, a hidden motive: a request for some sort of explanation of
how we come to know mathematical entities. If the explanation is supposed to provide some sort
of causal link between the brain and the mathematical structures, then the request should be
rejected as a muddled question stemming from a muddled philosophical picture. But if it is a
request for an account of mathematical knowledge, then it amounts to a fundamental question
that the philosophy of mathematics should tackle. I do not propose to embark on it here.”

... Gaifman: [Gaf04], pp.18-15

Gaifman argues further that—essentially reflecting the Complementarity Thesis (§1., Thesis
1) of this investigation, as evidenced by the Provability Theorem for PA (§2.E.b., Theorem 2.17),
if we replace the word ‘standard’ by ‘intended’—by ‘subscribing to the standard model of natural
numbers, we are committing ourselves to the objective truth or falsity of number-theoretic
statements, where these are usually taken as statements of first-order arithmetic’:

“Intended interpretations are closely related to realistic conceptions of mathematical theories. By
subscribing to the standard model of natural numbers, we are committing ourselves to the objective
truth or falsity of number-theoretic statements, where these are usually taken as statements of
first-order arithmetic. The standard model is supposed to provide truth-values for these statements.
Since deductive systems can only yield r.e. (recursively enumerable) sets of theorems, they can only
partially capture truth in the standard model.'® Thus we get a substantial notion of truth: truth
that goes beyond what we can prove (from any given r.e. set of axioms, using any r.e. collection of
inference rules). Even the truth of II; sentences cannot be fully captured. Realism and intended
interpretations are thus intimately related; often they are treated as the same problem. Yet the
intended models of a given mathematical language may contain non-isomorphic structures (e.g.,
the theory of all well-ordered sets, with ordinal addition and multiplication). Truth in the theory
then means truth in all the intended models, and, depending on the case, it may or may not
outrun deductive capacity.”

... Gaifman: [Gaf0}], p.15

However, Gaifman argues further, although:

“One can be skeptic with regard to the standard model of arithmetic, because, say one has doubts
about actual infinities; but, as argued above, one cannot support this skepticism by appeal to
non-standard models. This applies also in the case of set theory. For one who subscribes to some
standard model of ZFC (Cantor’s universe, or whatever), the existence of different models of the
same theory, does not per se pose a problem. One can however pose a different question: Which,
if any, of some given models, is the standard one? This question does not presuppose the notion
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of a standard model; it only asks us to locate the intended model within a given family. This
question brings out the difference between arithmetic and set theory. In the case of the natural
numbers, the standard model is characterized by a minimality condition: it is the smallest model,
included as an initial segment in any other model. If a given model is non-standard, then this will
be revealed by a proper initial segment that is closed under the successor function. Formally, the
characterization is expressed by the inductive scheme:

(I) P(0) AVz[N(z) — (P(x) =» P(z+1))] = Vz[N(z) — P(z)]

where ‘N(z)’ stands for ‘x is a natural number’, and where ‘P()’ stands for any predicate. Any wif
of the language we are using can be substituted for ‘P()’. The concept of the sequence of natural
numbers is, however, not language dependent. The absoluteness of the concept can be secured, if
we help ourselves to the full (standard) power set of some given infinite set; for then we can treat
‘P’ as a variable ranging over that power set. But this is highly unsatisfactory, for it bases the
concept of natural numbers on the much more problematic shaky concept of the full power set. It
is, to use a metaphor of Edward Nelson [1986], like establishing the credibility of a person through
the evidence of a much less credible character witness.

The inductive scheme should be therefore interpreted as an open ended metacommitment:

(IT) Any non-vague predicate, in whatever language, can be substituted for ‘P’ in (I).}7

(We assume here either that the substitution involves no category mistakes, or that category
mistakes are treated as false by definition, so that the antecedent in (I) becomes false, and the
whole conditional-true.) As Van McGee expresses it, if God himself creates a new predicate, then
this predicate can be substituted for ‘P’.”

... Gaifman: [Gaf04], pp.15-16

In other words, skepticism about the non-finitary nature of the classical ‘standard’ model of
arithmetic should not prevent us from admitting it as an unintended, weak, algorithmically
verifiable, interpretation Zpa, svy of PA (see §2.B.).

Moreover—from the evidence-based perspective of this investigation—it is the lack hith-
erto of a distinction between the ‘unintended’, weak, algorithmically verifiable, interpretation
Tpa, sv) of PA (see §2.B.), and the ‘intended’, strong, algorithmically computable, interpreta-
tion Zpaw, soy of PA (see §2.C.), that has allowed the meta-mathematical conclusions which
Godel draws informally—albeit persuasively and misleadingly, as argued in §14.A.—from his
own formal reasoning in [Go31]—where, for instance, he implicitly footnotes in [Go31], Theorem
VIII (p.31) that an arithmetic such as PA can be treated as w-consistent, and must, therefore,
admit formally undecidable propositions—to prevail and, prima facie, compel admittance of,
uncomfortably non-finitary, non-standard models of PA as above.

The consequences of compelling admittance of, uncomfortably non-finitary, non-standard
models of PA can be both far-reaching and constraining for attempts to align our ‘sound’
intuitions (corresponding to what Pansart terms pre-formal mathematics in [Pan09]; see also
§1.A.) with accepted dogmas—where it ‘is a well-known fact that first order Peano arithmetic
has infinitely many different models’.

For instance, such constraint is evidenced in Paula Quinon and Konrad Zdanowski’s appeal—
with implicit disquietude and tentativeness—to cognitive assumptions in order to identify an
‘intended’ model of PA that, they believe, reflects our intuition more faithfully than what
current paradigms treat as the ‘standard’ model of PA:
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“In this paper we justify the following thesis: our notion of natural number is determined by any
recursive w-model of PA up to recursive isomorphism.

It is a well-known fact that first order Peano arithmetic has infinitely many different models.
Most of them are called non-standard and only one class of isomorphic models is considered as
standard.* We call a model of arithmetic standard if its ordering is of the type w. We used to
consider that standard model of arithmetic as the one that reflects our intuitions about natural
numbers adequately. A model that reflects our intuitions adequately is called intended.

In this paper we want to answer the following questions: why is one of the interpretations of the
Peano axioms distinguished among so many others? Are standard models really intended models?

It is important to notice, that we make a distinction between an intended model and a standard
model of arithmetic. The second notion is well known in metamathematics of arithmetic. The
intended model is a model that satisfies intuitions concerning natural numbers. These two concepts
were often identified even though the the standard model of PA is a well defined metamathematical
notion while the intended model refers rather to our intuitions. In what follows, we postulate a
restriction of the class of intended models to a proper subclass of standard models.

Using cognitive assumptions we argue that the intended model should be recursive (computable).
This fact, together with the first order induction principle, determines a subclass of standard
models. Similar arguments were developed in [HH05] in the context of Benaceraff analysis of the
standard model. We differ from them in putting the main stress on the cognitive nature of our
assumptions.”

... Quinon/Zdanowski: [QZ07], §1 Introduction.

Thus, from the evidence-based perspective of this investigation, and the Complementarity
Thesis (§1.; Thesis 1), Quinon and Zdanowski’s postulating ‘a restriction of the class of intended
models to a proper subclass of standard models’ appears somewhat contrived—if not misleading.

Reason: We could, prima facie, correspond Quinon and Zdanowski’s ‘standard” model of
PA to the one determined by the ‘unintended’, weak, algorithmically verifiable, interpretation
Tpa, sv) of PA (see §2.B.); and their ‘intended’” model of PA to the one determined by the
‘intended’, strong, algorithmically computable, interpretation Zpa, scy of PA (see §2.C.).

It is a postulation, however, for which neither Paula Quinon nor Konrad Zdanowski—when
wearing their philosopher’s hats—should be held accountable (for reasons detailed in §14.A.
and §17.).

Like Wittgenstein, Lucas, Penrose and others of similar ilk (see [An07b], [An07c|) they can,
in this instance, be excused for depending upon fallible classical and intuitionistic wisdom (see
also §5.) to the effect that a Peano Arithmetic such as PA can admit non-standard models.

7.L. Algorithmic verifiability and algorithmic computability from
a Brouwerian perspective

We also note that the distinction in §7.G., Theorem 7.2, between algorithmically verifiable
number-theoretic functions (and the real numbers defined by them) and algorithmically com-
putable number-theoretic functions (and the real numbers defined by them) is, prima facie,
similar to the one that, according to Mark van Atten, L. E. J. Brouwer sought to make explicit
in his 1907 PhD thesis:

“The distinction between a construction proper and a construction project was well known to Brouwer.
It is essential to his notion of denumerably unfinished sets:
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[Here we call a set denumerably unfinished if it has the following properties: we can never construct
in a well-defined way more than a denumerable subset of it, but when we have constructed such a
subset, we can immediately deduce from it, following some previously defined mathematical process,
new elements which are counted to the original set. But from a strictly mathematical point of view
this set does not exist as a whole, nor does its power exist; however we can introduce these words
here as an expression for a known intention. [10, p.148; trl. 45, p.82]

But in the quotations from 1947 and 1954 above we do not see Brouwer say, analogously, that sequences
that are not completely defined do from a strictly mathematical point of view not exist as objects, but
that terms for them are introduced as expressions for a known intention (namely, to begin and continue
a construction project of a certain kind). This explains the fact noted in the latter half of Gielen, De
Swart, and Veldman’s reflection.

Still, the distinction at the basis of De Iongh’s view between construction processes that are governed by
a full definition of the object under construction and those that, as a matter of principle, cannot be thus
governed, is a principled one of mathematical relevance, and it is important to realise that, if a proposed
axiom turns out not to hold in general, it may still hold for one of these two subclasses.

]

[10] L. E. J. Brouwer. Over de grondslagen der wiskunde. PhD thesis, Universiteit van Amsterdam,
1907.”

...van Atten: [At18], pp.67-68.

7.M. Algorithmic verifiability and algorithmic computability from
Carnap’s perspective

The distinction in §7.G., Theorem 7.2, between algorithmically verifiable number-theoretic
functions (and the real numbers defined by them) and algorithmically computable number-
theoretic functions (and the real numbers defined by them) is also, prima facie, similar to
the one which, according to Vera Flocke (see [Flo19]), Rudolf Carnap sought to make when
distinguishing between ‘proofs of “numeric”, and of “specific”, generality’ in his defense of
impredicative definitions:

“Carnap (1931, p. 102) criticizes Ramsey’s views as follows: “It seems to me that this view is not
far away from a belief in Platonic realm of ideas, which exist in themselves, independently from
whether and in which way finite people are able to conceive of them”. In other words, Carnap finds
Ramsey’s defense of impredicative definitions unacceptable since it rests on a problematic form of
Platonism. Against this backdrop, Carnap characterizes the “most difficult problem confronting
contemporary studies in the foundations of mathematics” as follows:

“How can we develop logic if, on the one hand, we are to avoid the danger of the
meaninglessness of impredicative definitions and, on the other hand, are to reconstruct
satisfactorily the theory of real numbers as classes (or properties) of fractions?” (Carnap,
1931, p. 101, my translation)

Carnap here describes a dilemma: either one accepts impredicative definitions that, according
to some mathematicians, really are meaningless, or one runs into problems concerning the the
theory of real numbers. Simple type theorists take the first horn of the dilemma, and ramified
type theorists the second. Given Carnap’s preference for simple over ramified type theory (see
p. 7), this dilemma turns into the following problem: “Is it possible to retain Ramsey’s results
without accepting his absolutist conception?” This, according to Carnap, is “the decisive question’
concerning the foundations of mathematics (1931, p. 103, my translation, Carnap’s emphasis). I
will in what follows first explain what Carnap means by “Platonism” or “absolutism”, then go on
to explain why he finds it problematic, and finally present his alternative defense of impredicative
definitions.

)
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Carnap does not offer a definition of absolutism in the 1931 paper. He, however, does offer one
in the Untersuchungen zur Allgemeinen Axiomatik (2000, §1.10).37 According to this definition,
absolutism contrasts with constructivism, and the key difference between these views concerns the
use of quantifiers. Absolutists regard an existentially quantified sentence of the form ‘JxF'z’ as
meaningful, whether or not an object b that is F' can in fact be found. Constructivists, in contrast,
regard an existentially quantified sentence of the form ‘JxFx’ as meaningful only if it has either
been inferred from a sentence of the form ‘F'b’, or else an object b which is F' can be found in
finitely many steps. This condition is very strong, since it entails that all meaningful existence
claims are true. A more plausible version of constructivism would hold that an existentially
quantified sentence of the form ‘Fb, or an object b which is F' can be found in finitely many steps,
or it can be ruled out in finitely many steps that any object b is F.

Carnap explicitly marks his constructivist views on quantification as being in agreement with
intuitionism. Unlike intuitionists, Carnap nevertheless upholds the principle of excluded middle.
He observes that there is a tripartite division between objects that have been shown to be F|,
objects that have been shown to be not-F, and objects that have neither been shown to be F' nor
shown to be not-F'. However, everything is such that we know that it can be shown to be F, or we
don’t know that it can be shown to be F', which is why Carnap accepts the principle of excluded
middle.

The basic difference between “absolutists” and “constructivists” can be illustrted as follows.38

“Absolutists” define the property of being the least upper bound z of a bounded class C' of reals
thus:

(Abs) =z is the least upper bound of a bounded class C of reals if and only if, for every ¢ € x there
is a P such that P € C and g € P.

Knowability plays no part in this definition. However, “constructivists” define the least upper
bound z of a bounded class C' of reals thus:

(Con) z is the least upper bound of a bounded class C of reals if and only if it can be shown for
every q that, if ¢ € x, then some P can be found in finitely many steps such that P € C' and
qe P.

It is clear why Ramsey counts as an “absolutist” according to this conception. Ramsey regards an
existentially quantified sentence ‘Jz(Fx)’ as meaningful whether or not an = which is F' can be
found, and hence “goes beyond the limits of the truly knowable and definable” (Carnap, 1931, p.
102, my translation).

Given Carnap’s constructivism, one should expect him to restrict quantification over infinite
domains. If the domain of an existential quantifier is infinite, then, for at least some predicates F,
it is not guaranteed that the truth of ‘dxFx’ can be decided in finitely many steps, as Carnap
requires for this sentence to be meaningful. However, Carnap grants that the domains of interest in
mathematics generally are infinite (p. 103). He resolves the apparent conflict with constructivism
by distinguishing between two different ways of proving general statements, which he calls proofs of
“numeric” and of “specific” generality, respectively.?? Here is an example to illustrate the difference:

(2) Every whale is a mammal.

A proof of the numeric generality of (2) would proceed by considering every individual whale and
showing that it is a mammal. A proof of the specific generality of (2), however, first assumes that
some arbitrary = is a whale, and shows that, since = is a whale, z is a mammal. Such a proof of
specific generality does not require to consider each element of the domain of quantification and is
compatible with quantification over infinite domains.*°”

... Flocke: [Flo19], §4 Carnap’s 1931 Defense of Impredicative Definitions.
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In particular Carnap, according to Flocke, distinguishes between the specific generality
of an arithmetic proposition—such as (1’) below—which can be ‘proved’ (presumably in an
appropriate formal system of arithmetic), and its numeric generality, which cannot:

“This distinction allows Carnap (1931, p. 103-105) to defend impredicative definitions, as follows.
Consider the definition of being the least upper bound of a bounded class C of reals:

(1) Xz [Yayae) (ae) € 2y < 3o Pay(Pay € C A quy € Py))]

Carnap’s constructivism imposes certain constraints on when the use of the quantifiers V(;) and
J(;) in this definition is to be regarded as meaningful. According to these constraints, (1’) is
meaningful if it can be shown for each q(;y € x(;y (in finitely many steps) that some P;) € C' can
be found (in finitely many steps) of which g(;) is a member. Showing that (1’) is meaningful hence
requires establishing the following proposition: it can be shown for each q(;) € ;) (in finitely
many steps) that some P;y € C' can be found (in finitely many steps) of which g(;) is a member.
Since there are infinitely many q(;) € z(;), the numeric generality of this proposition cannot be
proved. Its specific generality, however, can be proved: the least upper bound of = of a bounded
class C of reals P(; just is the set of all ¢(;) that are elements of some P;y. Being an element of
the least upper bound z of a bounded class C of reals F;) hence entails being an element of some
P(i) eC.

Carnap then imposes the further condition that the definition of a property P is meaningful if it
is possible to decide, for at least some x, whether x has P.*! That means with respect to (1’) that
this definition is meaningful if it is possible to decide, for at least some real number x, whether x
is the least upper bound of C'. This condition is met, too. We just need to find a real number
that is represented by a set of rationals which includes elements that are not shared with (the
representation of) any of the real numbers that are elements of C.*2

This view provides a specific example of a non-Platonistic defense of impredicative definitions,
even though impredicative mathematics is often thought to be acceptable only on Platonistic
grounds. However, Carnap’s views on the foundations of mathematics soon shifted away that
required him to search for an alternative defense of impredicativity, as I will go on to discuss in
the next section.”

... Flocke: [Flo19], §4 Carnap’s 1931 Defense of Impredicative Definitions.

Prima facie, from the evidence-based perspective of this investigation, Carnap’s numeric gen-
erality could be interpreted as algorithmic verifiability, and his specific generality as algorithmic
computability.

Consequently, by the Provability Theorem for PA ([Anl16], Theorem 7.1, p.41; see also
§2.E.b., Theorem 2.17), whilst the specific generality of arithmetical propositions—such as
(1")—when represented in PA would be provable in PA, their numeric generality would not
(the possible significance of which can be seen in [An16], Theorem 2.1, p.37; see also §7.G.,
Theorem 7.2).

One reason that may have inhibited recognition of the significance of such a distinc-
tion for evidence-based reasoning and its far-reaching consequences—as is highlighted in this
investigation—could be that the influence (critically misleading according to §14.) of Godel’s
interpretation of his own formal reasoning in [Go31] might have been responsible for Carnap’s
reported—according to Flocke—shift away from his earlier views on the foundation of mathe-
matics to an exclusively syntactical perspective—devoid of semantical considerations'®*—that

104 A dubious distinction, in hindsight, from the evidence-based perspective of the Complementarity Thesis of
this investigation—i.e., §1., Thesis 1, and §1., Definition 1—which seeks to define the semantics of a formal system
such as PA categorically (see [An16], Corollary 7.2, p.41) in terms of evidence-based, syntactical, definitions in
recursive arithmetic, as detailed in [An16], §5, p.38, [Anl6], §6, p.40, [Anl6], Theorem 7.1, p.41; as also §7.C.
above.
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‘required him to search for an alternative defense of impredicativity’:

“Carnap’s views on the foundations of mathematics changed dramatically after he learned of
Godel’s incompleteness theorems. According to his intellectual biography, a completely new
approach

“came to me like a vision during a sleepless night in January 1931, when I was ill. On
the following day, still in bed with fever, I wrote down my ideas on forty-four pages
under the title ‘Attempt at a metalogic’. These shorthand notes were the first version
of my book Logical Syntazx of Language” (Carnap, 1963a, p. 53).

The key difference between Carnap’s pre-Syntaz philosophy of mathematics and the new syntactic
approach is that he replaces his earlier definitional reductionism by a new metalinguistic approach.*®
As discussed earlier, one of Carnap’s goals during the 1920’s was to show that mathematics is
analytic via a definitional reduction of all mathematical concepts to a small class of logical concepts
(see §3). There is no trace of this reductionism after 1931. Instead, Carnap (1937[1934]) clearly
distinguishes between object- and meta- languages, and provides meta-linguistic definitions of
‘analytic’ as a term that applies to object-language sentences. On this new approach, there is
not a single notion of analyticity anymore. The meaning of ‘analytic’ rather has to be formally
defined, and can be defined variously in different formal systems. Carnap thus tries to achieve his
old goal of showing that mathematics is analytic by radically new means. However, this is not his
only goal. Carnap, more generally, wants to provide a new “syntactic method” for the analysis of
statements and clarification of disputes. As he puts it in the forward (p. xiii):

“The aim of logical syntax is to provide a system of concepts, a language, by the help
of which the results of logical analysis will be exactly formulable. Philosophy is to be
replaced by the logic of science—that is to say, by the logical analysis of the concepts
of the sciences [...]. The book itself makes an attempt to provide, in the form of an
exact syntactical method, the necessary tools for working out the problems of science.”

As is evident from this quotation, Carnap develops the new syntactic method in pursuit of much
of the same goals as the ones that guided the development of the axiomatic method.

An application of the syntactical method consists in the definition of the logical syntax of a
language. By a “language”, Carnap means what we would today call a “formal system”, i.e. a
formal language together with a deductive proof system. Carnap’s “languages” resemble formal
systems since they are specified by means of two sets of rules: formation and transformation
rules. The formation rules specify which strings of symbols are sentences in the system. The
transformation rules may include inference rules such as modus ponens or a list of axiom schemata,
and they settle, for every sentence s and every set R of sentences of the system, whether s is a
consequence of R.46

The logical syntax of such a system specifies what would today be called its syntazx, i.e. the
signs that occur in the system and their possible combinations. Carnap was concerned, moreover,
with providing definitions of concepts of formal deductive logic—including concepts of analyticity,
provability, logical independence, and so on. Carnap constructed syntactic definitions of these
logical concepts, so that their application conditions depend merely on the forms and not on the
meanings of sentences. The logical syntax of a language hence is a formal theory that makes “no
reference [...] either to the meanings of the symbols (for example, words), or to the sense of the
expressions (e.g. the sentences), but simply and solely to the kinds and order of the symbols from
which the expressions are constructed” (1937[1934], p. 1).4” Carnap’s further discussion makes
clear that it is possible to define the logical syntax of a language whose component expressions are
meaningful. and whose sentences do possess “senses”. The logical syntax of such a language is a
theory that ignores these “meanings” and “senses”, and refers to only syntactical properties of the
language in question.*®
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A syntactic treatment of language was important to Carnap because, he thinks, it is impossible
to “lay down sharply defined rules” (p. 1) for linguistic meanings. That is, Carnap regards it
as possible to lay down syntactic composition rules that define how complex sentences may be
built up from simpler expressions, and syntactic derivation rules that define how a sentence may
be derived from a set of sentences. He, however, regards it as impossible to similarly lay down
semantic composition rules that define the meaning of a complex expression as a function of the
meanings of its component parts, or semantic entailment relations. He learned of Tarski’s semantic
truth-definitions only in 1935, after the German edition of The Logical Syntax of Language had
already been published (in 11934).49”

... Flocke: [Flo19], §5 Carnap’s Syntax Program.

Another reason could be that (compare with the shift in Hilbert’s focus as noted in §9.A.a.)
the deterministic infinite procedures (corresponding to Hilbert’s ‘reduction procedure’ quoted
in §8.B.) needed to formalise the distinction between ‘constructive’ and ‘finitary’ reasoning
(as illustrated for quantification in §10.A.; and generally by §2., Definitions 4 and 7) become
explicit only after the belated realisation that Turing’s 1936 paper [Tu36]) admits evidence-based
reasoning in the sense of [Mu91] and [Lob59] (see §2.), such that one can view the values of a
simple functional language as specifying evidence for quantified propositions in a constructive
logic in two, essentially different, ways (see §7.C.).

7.N. Algorithmic verifiability and algorithmic computability in Buss’
Bounded Arithmetic

We also briefly outline the significance of the distinction between algorithmically wverifi-
able number-theoretic functions and algorithmically computable number-theoretic functions—
introduced in [An16]—for the seminal 1997 paper [Bs97] by Samuel R. Buss, where he considers
Bounded Arithmetics obtained by:

(a) limiting the applicability of the PA Axiom Schema of Finite Induction only to functions
with quantifiers bounded by an unspecified natural number bound b;

(b) ‘weakening’ the statement of the axiom with the aim of differentiating between effective
computability over the sequence of natural numbers, and feasible!"® ‘polynomial-time’
computability over a bounded sequence of the natural numbers.

Presumably Buss’ intent is to build a bridge between provability in a Bounded Arithmetic
and algorithmic computability (compare with the Provability Theorem for PA: [An16], Theorem
7.1, p.41; see also §2.E.b., Theorem 2.17) so that a II; formula, say [(Vz)f(x)], is provable in
the Bounded Arithmetic if, and only if, there is a deterministic polynomial-time algorithm that,
for any specifiable numeral [n], decides the A —1y) formula [f(n)] as ‘true’:

“2 Bounded Arithmetic

A constructive proof system is one in which proofs of existence contain, or imply the existence
of, algorithms for finding the object which is proved to exist. For a feasibly constructive system,
the algorithm will be feasible, not merely effective. For instance, if Va3yA(z,y) is provable then
there should be a feasible algorithm to find y as a function of z. In the next section, we introduce
feasible proof systems for number theory: more precisely, S3 will be a feasible proof system, and
other systems, Si and T% are systems that have proof-theoretic strength corresponding to higher
levels of the polynomial time hierarchy.

105Gee Parikh [PaT71].
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2.1 The Language of Bounded Arithmetic

The theories of bounded arithmetic will be first-order theories for the natural numbers N =
{0,1,2,...}. The first-order language for bounded arithmetic contains the predicates = and <
and contains function symbols 0, S (successor), +, -, L%x], |z|, # and relation symbol <, where

It is easy to check that the # (pronounced “smash”) function allows us to express 24(1a) for ¢ any
polynomial with positive integer coefficients.

Definition A bounded quantifier is a quantifier of the form (Qz < t) with ¢ a term not involving
x. A sharply bounded quantifier is one of the form (Qz < |t|). (Vz) and (3z) are unbounded
quantifiers. A bounded formula is one with no unbounded quantifiers.

A hierarchy of classes EZ, Hz of bounded formulas is defined by counting alternations of bounded
quantifiers, ignoring sharply bounded quantifiers. (Analogously to defining the arithmetic hierarchy
by counting unbounded quantifiers, ignoring bounded quantifiers.)

Definition - = I1} is the set of formulas with only sharply bounded quantifiers.

If A€ X! then (Vo < [t[)A and (Jz < t)A are in £} and (Vo < t)A is in I1} ;. Dually, if A € II}
then (3z < [t[)A and (Vz < ¢)A are in II} and (3o < ¢)A is in £} ;. For formulas not in prenex
form, we say that a formula is in Ef (resp., Hi?) iff prenex operations can be used to put the
formula in to the prenex X% (resp., I1%) form defined above.

One of the primary justifications for the definition of ¥}—and IT>—formulas is the following
theorem.

Theorem 2 Fiz k > 1. A predicate Q is in 3% iff there is a b formula which defines it.

2.2 Induction Axioms for Bounded Arithmetic

The IND axioms are the usual induction axioms. The PIND and LIN D axioms are “polynomial”
and “length” induction axioms that are intended to be feasibly effective forms of induction.

Definition Let ¢ > 0. The following are axiom schemes often used for theories of bounded
arithmetic.

SP-IND @ A(0) A (Vo) (A(z) D A(z + 1)) D (Vo) A(z) for A € X8,
SP-PIND : A(0) A (Vz)(A(|i2]) D A(z)) D (Va)A(z) for A € 5}.
SP-LIND : A(0) A (Vo)(A(z) D A(z + 1)) D (Va)A(|z]) for A € 0.

The axiom schemes EZ-LIND and ZZ-PIND typically are equivalent and are (strictly?) weaker
than X%-IND. Since exponentiation is not provably total in Bounded Arithmetic, the |z function
is not provably surjective; therefore, the LIN D axioms do not appear to [be] equal to the IND
axioms in strength.

2.3 Theories of Bounded Arithmetic

Definition Let ¢ > 0. T4 is the first-order theory with language 0, S, +,, |2 X, |z|,# and < and
axioms:

(1) A finite set, BASIC, of (universal closures of) open axioms defining simple properties of the
function and relation symbols. BASIC properly contains Robinson’s @ since it has to be
used with weaker induction axioms.

(2) The X2-IND axioms.
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T2_1 has no induction axioms. Ty is the union of the T4’s.

Ts is equivalent to TAy + X (see Parikh [40] and Wilkie and Paris [50]) modulo differences in the
nonlogical language.

Definition Let i > 0. Si is the first-order theory with language 0, S, +, -, L%xj, ||, # and < and
axioms:

(1) The BASIC axioms, and
(2) The X2-IND axioms.

Sy ' = T; ! has no induction axioms. Sy is the union of the S3”s.

Remark: The theory Si, which we will relate closely to polynomial computability, is defined by
PIND on NP properties (in light of Theorem 2).

The following, somewhat surprising, relationship holds between the hierarchy of theories S& and
the hierarchy of theories T%.

Theorem 3 (Buss [3, 4]). Leti>1. Ta b S and S4+ Ti. So Sy =Ty.”

...Buss: [Bs97].

Since Buss treats the notion of ‘feasibility’ as intuitive (see [Bs97], p. 2), it is not obvious
whether or not his intended interpretation of the existential quantifier of a Bounded Arithmetic
admits as provable a formula [(Vx)(3y)f(x,y)] which may be algorithmically verifiable, but not
algorithmically computable, under a well-defined interpretation of the Arithmetic over N.

Moreover, since the Provability Theorem for PA ([An16], Theorem 7.1, p.41; see also §2.E.b.,
Theorem 2.17) establishes precisely such an iff bridge between PA provability and algorithmic
computability, where, however, the provability of a PA formula does not ensure the ‘feasibility’
of its polynomial-time computability under interpretation over N, the question arises:

Query 4. Does the introduction of implicit bounded quantifiers yield any computational advan-
tage in Buss’ Bounded Arithmetics?

Now, the only difference between a Bounded Arithmetic and PA is that, limiting the
applicability of the PA Axiom Schema of Finite Induction only to functions with quantifiers
bounded by an unspecified natural number bound b in Bounded Arithmetics, also presumes
Aristotle’s particularisation implicitly'"®, so that, from a PA proof of [(Jy)f(n,y)], we may
always conclude that there is some PA numeral [m] such that [f(n,m)] is provable in the
arithmetic. However, §2.E.b., Theorem 2.17 shows that this is not a valid inference in PA.

To see why'%” this may not always be the case, interpret [(Vz)f(z)] as:
There is an algorithm that decides [f(n)] as ‘true’ for any specified numeral [n].
In such case, if [(Vz)(3y)f(z,y)] is provable in PA, then we can only conclude that:

There is an algorithm that, for any specified numeral [n], decides that it is not
the case that there is an algorithm that, for any specified numeral [m|, decides
[-f(n,m)] as ‘true’.

106Prima facie, any interpretation of such a Bounded Arithmetic over N could, therefore, be isomorphic to the
standard, algorithmically verifiable interpretation Zp 4y, sv) of PA over N.
107 As Brouwer had steadfastly held (see for instance Brouwer [Br08]; Brouwer [Br27]).
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We cannot, however, conclude—as we can in a Bounded Arithmetic—that:

There is an algorithm that, for any specified numeral [n|, decides that there is an
algorithm that, for some specifiable numeral [m|, decides [f(n,m)] as ‘true’.

This could be the case if [(Vz)(Jy) f (z, y)| were PA-unprovable, but [(Jy) f (n, y)] PA-provable
for any specifiable numeral [n]'%8.

Thus, the Provability Theorem for PA ([An16], Theorem 7.1, p.41; see also §2.E.b., Theorem
2.17) suggests that the postulation of an unspecified bound in a Bounded Arithmetic in order
to arrive at a ‘provability iff computability’ bridge not only invites a questionable, non-finitary,
presumption of Aristotle’s particularisation'"?, but may also be formally dispensable.

Since PA is finitarily consistent (by [An16], Theorem 6.7, p.41; see also §2.C.a., Theorem
2.16), we conclude that all arguments and conclusions of Buss’ Bounded Arithmetic can be
reflected in PA without any loss of generality. Query 4 thus admits the formal negative answer:

Theorem 7.8. (Bounded Arithmetic Theorem) Weakening the PA Aziom Schema of Fi-
nite Induction formally in Buss’ Bounded Arithmetic does not yield any computational advantage.

Proof. Buss considers a Bounded Arithmetic Sy which is, essentially, the first-order Peano
Arithmetic PA (as defined in §2.) with the following ‘weakened’ Axiom Schema of Finite
Induction, PIND!!0:

{7(0) & (Vo)(f([5]) = f(2))} = (Vo) f(z)]
Now, PIND can be expressed in PA as follows:

{f(0) & (Va)(f(z) = (f(22) & f(22 + 1))} — (Va) f(2)].

Moreover, the above is a particular case of, say, PIND(k):
{/(0) & (Vo) (f(z) = (f(kx) & flkz +1) & ... &f(kz + k- 1))} — (Vo) f()].

(a) By [Anl16], Lemma 5.3, p.39 (see also §2.B.a., Lemma 2.4), for any specifiable PA formula
[f(x)], the PA Axiom Schema of Finite Induction:

[F(0) = (Vo) (f(z) = [z +1))) = (Vo) f(z))]

interprets as an algorithmically verifiable true formula under Zpan, svy. Moreover, it
immediately follows that PIND(k) too is algorithmically verifiable as true under the
classical, standard, algorithmically verifiable interpretation Zpa(n, gv) of PA.

(b) Now we have the PA theorem:

(V) f(x) = {F(0) & (Vo) (f(z) = f(z +1))}]

It follows that the following is also a PA theorem:
{f(0) & (Vo) (f(z) = f(z+ 1))} = {f(0) & (Va)(f(z) = (f(kz) &
flkx+1) & ... & f(kx+k—1)))}]

108¢f. Kurt Godel’s argumentation in Godel [Go31].
109Which (see §7., Definition 17), prima facie, appears contrary to both Buss’ intent and spirit.
10Where | 5] denotes the largest, natural number, lower bound of the rational §.
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In other words, for any specifiable numeral [k], PIND(k) is entailed by the standard PA
Axiom Schema of Finite Induction. Hence, by [An16], Lemma 6.4, p.40 (see also §2.C.a.,
Lemma 2.12) PIND(k) interprets as an algorithmically computable true formula under
Tpa, sc)y; and, ipso facto, as an algorithmically verifiable true formula under Zpa(n, sv).
U
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CHAPTER 8. MATHEMATICAL CONSEQUENCES

8. The significance of Hilbert’s w-Rule for Godel’s w-
consistency

The distinction between §2., Definition 4, and §2., Definition 7, also allows us to address, and
place, Hilbert’s w-Rule of infinite induction ([Hi30], pp.485-494) within a broader evidence-based
perspective; where we first define an:

Proposition 8.1. (Algorithmic (weak) w-Rule of infinite induction) Ifit is proved that
the PA formula [F(x)] interprets as an arithmetical relation F*(x) that is algorithmically com-
putable as true for any specified natural number n, then the PA formula [(Vx)F(z)] can be
admitted as an initial formula (axiom) in PA.

The significance of the (weak) Algorithmic w-Rule of infinite induction is that it is defined
in terms of algorithmic computability; and is an immediate consequence of the Provability
Theorem for PA (§2.E.b., Theorem 2.17) which, essentially, was what Hilbert had sought in his
Program (see [Hi00]).

Thus, as part of his program for giving mathematical reasoning a finitary foundation,
Hilbert proposed a stronger (since it implies the Provability Theorem for PA) w-Rule of infinite
induction as an ad hoc means of extending a Peano Arithmetic to a possible completion!!!,

which we can rephrase, without loss of generality, in terms of algorithmic verifiability as:

Proposition 8.2. (Hilbert’s (strong) w-Rule of infinite induction) If it is proved that
the PA formula [F(x)] interprets as an arithmetical relation F*(x) that is algorithmically
verifiable as true for any specified natural number n, then the PA formula [(VYx)F(z)] can be
admitted as an initial formula (aziom) in PA.

The question of whether or not weakened versions of Hilbert’s original w-Rule of infinite
induction could be regarded as finitary is addressed in detail by Matthias Schirn and Karl-Georg
Niebergall in [SNO1]:

“Restricted versions of the w-rule have been suggested both as a means of explicating certain
forms of finitary arguments or proofs and as a way of correctly extending a theory already
accepted. In this section, we want to deal with the question as to whether weak versions of the
w-rule can be regarded as finitary. For if they can, they may prove useful for the construction
of metamathematical theories that clash neither with Hilbert’s programme nor with Godel’s
Incompleteness Theorems. In pursuing our aim, we align ourselves with Hilbert’s programme. By
contrast, in his 1931 essay Hilbert himself introduces a restricted w-rule as a means of extending
PA, though he does so in a way which admits different interpretations.

Rule w*: When it is shown that the formula A(Z) is a correct numerical formula for
each particular numeral Z, then the formula Yz A(x) can be taken as a premise.

Hilbert qualifies this rule expressly as finitary and goes on to remind us that VzA(x) has a much
wider scope than A(f1), where i is an arbitrary given numeral.”
... Schirn and Niebergall: [SNO1], p.137.

11Ty other words, to logically showing that, for any specified arithmetical proposition, either the proposition,
or its negation, is formally provable from the axioms and rules of inference of the extended Arithmetic.
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Schirn and Niebergall conclude that Hilbert’s assumption of Aristotle’s particularisation as
a valid, and essential, form of reasoning—as evidenced in his definitions of the universal and
existential quantifiers in terms of his e-operator (see §10.A.)—committed him to an essentially
non-finitary perspective; reflected also in his w-rule of infinite induction; both of which we shall
show—§8.C., Lemma 8.5 and §8.D., Corollary 8.10—are stronger than Godel’s assumption
of w-consistency in the latter’s 1931 paper [Go31] on ‘formally undecidable’ arithmetical
propositions:

“We venture to surmise that Hilbert qua metalogician relies on existence assumptions of precisely
this kind without being haunted by any finitist qualms. And we do think that those assumptions
of infinity that are made by accepting one application of rule w* are not more far-reaching than
those made by accepting transfinite induction upto ¢,.

It should be evident that the w-rule or even one application of it cannot be accepted from Hilbert’s
original finitist point of view. Yet both modern metalogic and Hilbert’s metamathematics of
the 1920s rest on certain assumptions of infinity that clash anyway with his classical finitism
(cf. Niebergall and Schirn 1998, section 4). Intuitively speaking, one may tend to believe that
the metalogical assumptions of infinity just appealed to, or Hilbert’s assumption in his work on
proof theory in the 1920’s that there are infinitely many stroke-symbols, are slightly weaker than
those that we make when we apply an w-rule. However this may be, we do not rule out that
Hilbert wants to commit himself only to the possible existence of infinitely many stroke-figures or,
alternatively, to the existence of infinitely many possible stroke-figures. Unless a satisfactory theory
of the potential infinite is to hand, it is probably wise to postpone closer scrutiny of the question
whether, from the point of view of strength, applications of a given w-rule and the assumptions
of infinity, both made by Hilbert in the 1920s and common in contemporary metalogic, differ
essentially from each other.”

... Schirn and Niebergall: [SNO1], p.141.

Now, Godel’s 1931 paper can, not unreasonably, be viewed as the outcome of a presumed
attempt to formally validate Hilbert’s w-rule of infinite induction finitarily, since:

Lemma 8.3. If we meta-assume Hilbert’s w-rule of infinite induction for PA, then a consistent
PA is w-consistent.

Proof. 1f the PA formula [F'(x)] interprets as an arithmetical relation F*(z) that is algorithmi-
cally verifiable as true for any specified natural number n, and the PA formula [(Vz)F(z)] can
be admitted as an initial formula (aziom) in PA, then [=(Vz)F (z)] cannot be PA-provable if
PA is consistent. The lemma follows. O

Comment: We note, however, that we cannot similarly conclude from the the Algorithmic w-Rule
of infinite induction that a consistent PA is w-consistent.

However, by Godel’s Theorem VI in [Go31], it follows from §8., Lemma 8.3 that one
consequence of assuming Hilbert’s w-Rule of infinite induction is that there must, then, be a
formally undecidable arithmetical proposition; a further consequence of which would be that
any first-order arithmetic such as PA must be essentially incomplete (i.e., not completable by
the addition of an w-Rule of infinite induction as envisaged by Hilbert).

Godel’s Theorem VI: “For every w-consistent recursive class k of FORMULAS, there exists a
recursive CLASS EXPRESSION r such that neither v Gen r nor Neg(v Gen ) belongs to Flg(k)
(where v is the FREE VARIABLE of r).”

...[Go31], Theorem VI, p.24
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8.A. Is Hilbert’s w-Rule equivalent to Gentzen’s Infinite Induction?

Schirn and Niebergall also address the question of whether Hilbert’s w-rule of infinite induction
is weaker than Gentzen’s cut-elimination, and consider the argument that:

“Since we can construe the infinitely many premises of one application and, hence, of finitely many
applications of the w-rule as ordered with order type w, the proof theorist who intends to employ
the w-rule has to presuppose only (the existence of) w. By contrast, Gentzen’s consistency proof
for pure number theory in his 1936 article presupposes (the existence of) €,. Moreover, if a proof
theorist endorsing the basic tenets of Hilbert’s finitism were asked how he brings it about to prove
infinitely many premises, he might respond as follows:

To accept one application of rule w* is not more problematic than to make the assumption
that one can conclude from the PA-provability of ‘Vz(0 < z)’ to the PA-provability of ‘0 < n’
for every n. Both cases require that modus ponens be applied infinitely many times, where
the sequence of the prooflines has order-type w.”

... Schirn and Niebergall: [SNO1], p.140.

Schirn and Niebergall remark, and stress, that the issue confronting Hilbert then—as also
“finitists’ of all hues since!'?>—was that of unambiguously defining a deterministic procedure for
interpreting quantification finitarily; both over the numerals and the numbers that they seek to
formally represent:

“It is important to bear in mind that finitist mathematics may be extended by adding well-formed
formulae or by adjoining further ‘principles’. It is the first that is at issue in Hilbert’s proposed
finitist interpretation of quantified statements about numerals (Hilbert and Bernays 1934, 32ff.).
So, let us begin by taking a closer look at this.

(1) A general statement about numerals ‘Vii ${(f)’ can be interpreted finitistically only as a
hypothetical statement, i.e. as a statement about every given numeral. A genera}rstatement
about numerals expresses a law that has to be verified for each individual case.”

(2) An existential statement about numerals ‘3@ £{(f)’ must be construed, from the finitist point
of view, as a ‘partial proposition’, i.e. ‘as an incomplete communication of a more exactly
determinate statement, which consists either in the direct specification of a numeral with
the property {l or in the specification of a procedure for gaining such a numeral’ (Hilbert
and Bernays 1934, 32). The specification of the procedure requires that for the sequence of
acts to be carried out a determinate limit be presented.

(3) In like manner we have to interpret finistically statements in which a general statement is
combined with an existential statement such as ‘For every numeral t with the property ﬂ(ft)
there exists a numeral [ for which %(E, Y) holds’, for example. In the spirit of the finitist
attitude, this statement must be regarded as the incomplete communication of a procedure
with the help of which we can find for each given numeral t with the property ﬂ(%) a numeral
[ which stands to t in the relation B(t, ).

(4) Hilbert points out that negation is unproblematic when applied to what he calls ‘elementary
propositions’, i.e. to statements which can be decided by direct intuitive observation. In the
case of universally and existentially quantified statements about numerals, however, it is
not immediately clear what ought to be regarded as their negation in a finitist sense. The
assertion that a numeral n with the property fl(ﬁ) does not exist has to be conceived of as

H2We note that ‘finitists’—ranging from Brouwer [Br08], to Wittgenstein [Wi78], to Alexander Yessenin-Volpin
[He04]—have persistently (and not unreasonably in view of §2.F., Corollary 2.23) questioned the assumption that
the classical ‘standard’ interpretation Zp z(n, sv) of PA—which implicitly admits non-constructive entailments
such as Aristotle’s particularisation—can be treated as constructively well-defining a model of PA (in the sense
of §12., Definition 31; see also [Brm07], [Pos13]).
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the assertion that it is impossible that a numeral & has the property $i(fi). Strengthened
negation of an existential statement, thus constructed, is not (as in the case of negation of
an elementary statement) the contradictory of ‘Elﬁf,l(ﬁ)’. From the finitist standpoint, we
therefore cannot make use of the alternative according to which there either exists a numeral
n to which ﬂ(ﬁ) applies or the application of ${(/) to a numeral @i is excluded. Hilbert admits
that, from the finitist perspective, the law of the excluded middle is invalid in so far as for
quantified sentences we do not succeed in finding a negation of finitist content which satisfies
the law.

Fn25 The proposed interpretation of universal quantification is reminiscent of Gentzen’s and W. W. Tait’s account (See Tait
1981) in that it likewise embodies a version of the w-rule which rests on the identification of numerals with numbers.
Tait’s additional idea is that the law in question is to be construed as something given by a finitist function.
... Schirn and Niebergall: [SNO1], p.148.

Comment: We note that Schirn and Niebergall too seem to implicitly subscribe to the—misleading
by §8.D., Corollary 8.14—admission they ascribe to Hilbert, namely that ‘from the finitist
perspective, the law of the excluded middle is invalid in so far as for quantified sentences we do
not succeed in finding a negation of finitist content which satisfies the law’.

Schirn and Niebergall note that, although Hilbert endeavoured to distinguish between
quantified propositions over numerals and quantified propositions over the numbers that they
seek to represent (corresponding to what we have termed as weak and strong interpretations
of quantification in §7.C., Definition 18 to §7.C., Definition 21), he could not express the
distinction formally:

Now, when we compare (1)-(4) with Hilbert’s remarks on what can be formulated finitistically
in say, ‘Uber das Unendliche’ (1926), we notice two things. Explication (4) is very much akin to
the points made in that paper about the negation of quantified statements. The matter stands
differently with (1)-(3). On plausible grounds, one should assume that a finitistically interpreted
sentence is capable of being formulated finitistically in the first place. If that is correct, then (1)
to (3) ought to be understood in such a way that universally quantified sentences, even sentences
whose formalizations are genuine HZ—sentences (cf. (3)), can be formulated in the language of
finitist mathematics. Plainly, if around 1934 Hilbert really wished to maintain that quantified
sentences of types (1)-(3) have a proper place in the language of finitist metamathematics, he
would have departed significantly from his conception of metamthematics in the 1920s. It is quite
true that both in ‘Uber das Unendliche’ and in Grundlagen der Mathematik (1934) Hilbert spares
himself the trouble of developing the language of finitist metamathematics in a systematic way.
There is one crucial difference, though. In his celebrated essay, the distinction between real and
ideal statements, although chiefly designed to streamline the formalism, provides at least a clue
for assessing the scope and the limits of the language of finitist mathematics. By contrast, the
reader of Hilbert and Bernays 1934 who is expecting to encounter this helpful distinction again
here will be disappointed. In this book, there is not even a trace of it framed in familiar terms.

Admittedly, all this does not exclude that an alternative way of construing the phrase ‘finitistically
interpretable’ can be contrived. Consider sentences of type (1). In ‘Uber das Endliche’ Va(z +1 =
1+ z)’ is not a sentence of L,,, and the same applies to an expression like (*) ‘For every given
a‘a+1=1+a is true’. By contrast, if a numeral a is given, the expression ‘a+1=1+a’is a
sentence of the language of finitist metamathematics. In Grundlagen der Mathematik (1934), the
question of which language (*) may belong to is passed over in silence. We are only told that a
finitist interpretation of (*) requires that it be construed as a hypothetical judgement about every
given numeral (cf. (1)) (we aassume that (*) should be considered a general statement about
numerals). A similar formulation is employed in ‘Uber das Endliche’ (91 [378]), with the minor
difference that here Hilbert talks about interpretation sz’anlz'citer.28 And it is almost precisely
at this point that he introduces his conception of real and ideal statements, stressing that the
latter are, from the finitist point of view, devoid of meaning. This shows: the fact that in ‘Uber
das Endliche’ certain sentences of type (1), like (*), are amenable to (a finitist) interpretation
is compatible with the fact that the language of finitist metamathematics does not comprise
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sentences of this type. The finitist interpretation of (*) proceeds in such a way that for every given
numeral a (*) is replaced with ‘a4 1 =1+ a’, and then each of the sentences ‘a+1=1+a’ is
interpreted finitistically. Seen from this angle, we should not take it for granted that in Grundlagen
der Mathematik (1934) finitist interpretability implies finitist formulability. What we do take for
granted is that if this implication holds for sentences of one of these types, then it must also hold
for the sentences of the remaining types.

Fn28 It is reasonable to assume that here he likewise has a finitist interpretation in mind. Notice that non-finitary sentences, i.e.
ideal sentences, are not interpreted at all.”
... Schirn and Niebergall: [SNO1], p.143.

Perhaps—as illustrated by §2., Definitions 4 and 7—a transparent and unambiguous de-
scription of the deterministic infinite procedures!'® needed to evidence the distinction formally
becomes available only after the realisation that Turing’s 1936 paper [Tu36]) admits evidence-
based reasoning in the sense of [Mu91] and [Lob59]; namely, that one can view the values of a
simple functional language as specifying evidence for propositions in a constructive logic'!?.

8.B. Hilbert’s weak proof of consistency for PA

Schirn and Niebergall note further that, in order to argue that every numerical formula derivable
from the axioms of a weakened arithmetic H was ‘true’, Hilbert and Bernays introduced the
concept of ‘verifiabilty’, whose well-definedness, however, appealed to the existence of appropriate
‘reduction procedures’ in cases where quantification and/or its negation was intended to be
interpreted over only all ‘numeral’ instantiations of the formulas of H:

“In order to find out whether in Grundlagen der Mathematik (1934) quantified sentences of types
(1)-(4) are indeed regarded to belong to the well-formed sentences of the language of finitist
metamathematics, it is useful to take a closer look both at the number-theoretic formalisms
presented there and at the corresponding consistency proofs. In §6 (Hilbert and Bernays 1934,
220ff.), Hilbert carries out a consistency proof for a certain weak arithmetical axiom system (cf.
1934, 219) which we call H. The ‘proof’ is entirely informal, and it is not clear whether Hilbert
shows metamathematically ‘There is no proof in H for falsum’ or only for every concretely given
proof figure a that a is no proof for falsum in H. The very beginning of the proof speaks in
favour of the second option, that is, we conjecture that Hilbert conducts what is in effect an
informal version of what in our paper ‘Hilbert’s finitism and the notion of infinity’ (1998) we call
an approrimative consistency proof:29 ‘We now imagine that we are given such a proof figure with
the end formula 0 # 0. On this (proof figure) two processes can be effected one after another
which we call dissolution of the proof figure in “proof-threads” and elimination of the free variables’
(Hilbert and Bernays 1934, 220; cf. 298).

Hilbert and Bernays show, in the first place, that every numerical formula that can be derived from
the axioms of H without the use of bound variables is true.”’ In a second step, they demonstrate
that every numerical formula provable in H is true even if we drop the restriction concerning the
bound variables. They generalize the notion of a true formula in such a way that all formulae of a
given proof figure are taken into account, not only the numerical ones (cf. Hilbert and Bernays
1934, 232ff.). This is accomplished by introducing the term ‘verifiable’. Confining themselves
provisionally to formulae without universal quantifiers, Hilbert and Bernays explain the term as
follows: (i) a numerical formula is verifiable, if it is true; (ii) a formula containing one or more
free individual variables, but no other variables, is verifiable, if it can be shown that it is true for
every replacement of the variables with numerals; and (iii) a formula with bound variables, but
without formula variables and without universal quantifiers is verifiable, if the application of a
certain reduction procedure leads to a verifiable formula in the sense of (i) or (ii).3 In a further

13 Corresponding to Hilbert’s ‘reduction procedure’ quoted in §8.B..
H4Moreover, as it turns out, in two, essentially different, ways (see §7.C.).
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step, Hilbert and Bernays show that the end formula of the given proof (in H) is verifiable (cf.
Hilbert and Bernays 1934, 244ff.). H is therefore consistent.

As to (ii), it is plain that verifiability is defined through an unbounded quantification over numerals,
i.e. for all substitution instances. The phrase ‘can be shown’ remains unexplained and is possibly
meant to impart a ‘constructive’ or finitist air to unbounded universal quantification over numerals.
These belong, in the terminology of Hilbert (1926), to the class of ideal statements and are as such
unacceptable for the finitist of the 1920s. We further note that carrying out consistency proofs
along the lines of (i)-(iii) requires that the verifiability predicate can be formulated in the language
of finitist metamathematics. Hence, this language must contain sentences of type (1).”

Fn29 In Niebergall and Schirn 1998, §6 we define this notion as follows (for axiomatizable theories S and T with representation
7): S proves the approximative consistency of T:< Vn S - —Proof_(n,Ll). We assume here that the formalized proof
predicate is the standard one. In our opinion, the notion of an approximative consistency proof captures the core of the
conception of finitary metamathematical consistency proofs which Hilbert developed in his papers on proof theory in the
1920s.

Fn30 Numerical formulae are characterized as quantifier-free sentences; see Hilbert and Bernays 1934, 228. Hilbert emphasizes
that this is only a stricter version of the assertion that it is impossible to derive 0 # 0 from the axioms of H without
admitting bound variables (Hilbert and Bernays 1934, 230).”

... Schirn and Niebergall: [SNO1], pp.144-145.

Now, if we treat Hilbert and Bernays’ intent whilst introducing their concept of ‘verifiability’
as corresponding to the concept of ‘algorithmic wverifiability’ introduced in §2., Definition 4
then—despite Schirn and Niebergall’s reservations in [SNO1]—it can be argued that Hilbert’s
reasoning does yield a weak, constructive, proof of consistency for PA which is essentially that
of §2.B.a., Theorem 2.8; even though it fails to yield the strong, finitary, proof of consistency
for PA (see §2.C.a., Theorem 2.16) which Hilbert sought in the second of his 23 Millenium 1900
Problems ([Hi00]; see also §27.(7)).

Moreover, from such a perspective Hilbert and Bernays’ reasoning would be at least as
constructive as Gentzen’s, essentially set-theoretical, trans-finitary proof ([Me64], p.258) of
consistency for a first-order number theory if we admit Gentzen’s Rule of Infinite Induction
([Me64], p.259) in a formal system S_ in which all theorems of S are provable ([Me64], p.263,
Lemma A-3):

A(M)VD for all natural numbers n
((z) A(z))vD

Infinite Induction:

Comment: From the evidence-based perspective of this investigation, Gentzen’s, essentially
set-theoretical, trans-finitary proof ([Me64], p.258) of consistency for a first-order Arithmetic can
claim to be a proof of consistency for the formal first-order system S of Peano Arithmetic defined
by Mendelson (in [Me64], pp.102-103) only if the Arithmetic of the set-theoretically-defined finite
ordinals is treated as a conservative extension of PA. We note that, by §18.A., Corollary 18.3 and,
equivalently, §18.A., Theorem 18.4, this is not the case.

Further, if we were to interpret Infinite Induction as essentially stating that:

Proposition 8.4. (Gentzen’s w-Rule of infinite induction) If the S_-formula [A(7)] in-
terprets as true for any specified natural number n, then we may conclude that [(Vx)A(x)] is
provable in S_.

then it would immediately follow that:

Thesis 3. Hilbert’s w-Rule of infinite induction is equivalent to Gentzen’s w-Rule of infinite
induction.
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8.C. Hilbert’s w-Rule is stronger than w-consistency

Now we note that, in his 1931 paper [Go31], Godel constructed an arithmetical formula [R(x)]'?

in his formal Peano Arithmetic P and showed that, if P is assumed w-consistent, then both
[(Vz)R(z)] and [=(Vz)R(z)]'® are unprovable in P ([Go31], p.25(1), p.26(2)), even though
[R(n)] is provable in P for any specified numeral [n] (whence [R(n)] would be ‘true’ under any
well-defined interpretation of P).

It immediately follows that:

Lemma 8.5. Assuming that PA admits Hilbert’s w-Rule of infinite induction is stronger than
assuming that PA is w-consistent. O

Proof. If PA admits Hilbert’s w-rule of infinite induction, then Godel’s arithmetical formula
[(Vz)R(x)] would be PA-provable. The lemma follows. O

Comment: We note that the ‘constructiveness’ of mathematical rigour in evidence-based arith-
metical reasoning reflected in §8.C., Lemma 8.5 and §8.B., Thesis 3 is in striking contrast
to the—debatable to the point of inconsistency, as argued by Vladimir Voevodsky in [Vol0]—
‘constructiveness’ of classically accepted mathematical rigour in set-theoretically-based arithmetical
reasoning such as is reflected in [Chol8], §Implications of Gentzen’s Proof: “Gentzen’s proof cer-
tainly meets ordinary standards of mathematical rigor ...”.

Lemma 8.5 can be viewed as justifying Godel’s claim that his argument in [Go31]—from
which he concludes the existence of an undecidable arithmetical proposition—is based on the
weaker!!” premise that a consistent PA can be w-consistent.

The question arises whether an even weaker Algorithmic w-Rule—as defined above!!®—can

yield a finitary completion for PA as sought by Hilbert, albeit for an w-inconsistent PA.

It is a question that can now be answered in the affirmative, since PA is not only ‘algorith-
mically’ complete in the sense of the weak Algorithmic w-Rule (see §2.E.b., Theorem 2.17), but
categorical (see also §8.G.) with respect to algorithmic computability (see §2.E.b., Corollary
2.18)!

8.D. Aristotle’s particularisation entails w-consistency

In this investigation we argue that these issues are related, and placing them in an appropriate
perspective requires any constructive perspective of mathematics to question (see §11.) not only
the persisting, theistic, belief in classical mathematics that Aristotle’s particularisation remains
valid even when applied over an infinite domain such as N, but also the basis of Brouwer’s
unjustifiable, atheistic, belief that the Law of the Excluded Middle is non-constructive, following
his challenge of the classical belief in [Br08] (see §10.).

Comment: Unjustifiable, since §2.C.a., Theorem 2.16, finitarily establishes that PA is consistent.
Hence the underlying first-order logic FOL—in which the Law of the Excluded Middle is a

15Which, in his terminology, Gédel defined, and referred to only indirectly, in [Go31] by its Godel-number 7
(see eqn.(12), p.25).

H6Which Gédel defined, and referred to, in [Go31] only by their Godel-numbers 17 Gen r and Neg(17 Gen r),
respectively (see eqn.(13), p.25).

17 e., weaker than assuming Hilbert’s w-rule, which entails §8., Lemma 8.3.

18Which, prima facie, does not imply that a consistent PA is necessarily w-consistent.
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theorem—too is finitarily consistent. Consequently, whereas the sole target of Brouwer’s objection
to Hilbert’s formalisation of quantification—Aristotle’s particularisation—implies the Law of the
Excluded Middle, the converse is not true.

For instance, we note that:

Lemma 8.6. If PA is consistent but not w-consistent, then there is some PA formula [F(x)]
such that, under any interpretation—say Ipany—of PA over N:

(i) the PA formula [~(Yx)F (z)] interprets as an algorithmically verifiable true arithmetical
proposition under Lp (),

(ii) for any specified numeral [n], the PA formula [F(n)] interprets as an algorithmically
verifiable true arithmetical proposition under Ipa(n).

Proof. 1f PA is consistent then, by definition, a provable PA-formula is true in any well-defined
interpretation of PA under which the PA-axioms interpret as true, and the PA rules of inference
preserve such truth. The lemma follows immediately from the definition of w-consistency, and
from Tarski’s standard definitions of the satisfaction, and truth, of the formulas of a formal
system such as PA under an algorithmically verifiable interpretation (see §2.B.). O

Further:

Lemma 8.7. If PA is consistent and the interpretation Lpany admits Aristotle’s particulari-
sation over N then:

(i) if the PA formula [—(Vz)F (x)] interprets as an algorithmically verifiable true arithmetical
proposition under Lpa(ny,

(i1) then there is some unspecified natural number m such that the interpreted arithmetical
proposition F*(m) is algorithmically verifiable as false in N.

Proof. The lemma too follows immediately from the definition of Aristotle’s particularisation
and Tarski’s standard definitions of the satisfaction, and truth, of the formulas of a formal
system such as PA under an algorithmically verifiable interpretation (see §2.B.). a

It follows immediately from §8.D., Lemma 8.7 that:

Corollary 8.8. If PA is consistent and Aristotle’s particularisation holds over N, then there
can be no PA formula [F(x)] such that, under any interpretation Tpany of PA over N:

(i) the PA formula [~(Yx)F ()] interprets as an algorithmically verifiable true arithmetical
proposition under Lpa(n);

(ii) for any specified numeral [n], the PA formula [F(n)] interprets as an algorithmically
verifiable true arithmetical proposition under Ip(ny. O

In other words'?°:

19Guch as, for instance, any interpretation that defines the existential quantifier as in [Me64], pp.51-52 V(ii).
120We note that §8.D., Corollary 8.9 negates Martin Davis’ speculation in [Da82], p.129, that such a proof of
w-consistency may be “...open to the objection of circularity”.



144 8.. The significance of Hilbert’s w-Rule for Gédel’s w-consistency

Corollary 8.9. If PA is consistent and Aristotle’s particularisation holds over N, then PA 1is
w-consistent. O

It follows that:

Corollary 8.10. If Aristotle’s particularisation holds over N, then PA 1is consistent if, and
only if, it is w-consistent.

Proof. We note first that, by §8.D., Corollary 8.9, if PA is consistent and Aristotle’s particular-
isation holds over N, then PA is w-consistent.

We note next that if PA is w-consistent then, since [n = n| is PA-provable for any specified
PA numeral [n], we cannot have that [-(Vz)(x = x)] is PA-provable. Since an inconsistent PA
proves [—(Vz)(x = z)|, an w-consistent PA cannot be inconsistent. O

It also follows that:

Corollary 8.11. If PA is consistent but not w-consistent, then Aristotle’s particularisation
does not hold in any interpretation of PA over N. a

Finally since, by §2.F., Corollary 2.22, PA is finitarily consistent but not w-consistent, it further
follows that (compare [Anl13a], §2, Theorem 1, p.6):

Theorem 8.12. Aristotle’s particularisation does not hold in any finitary interpretation of PA
under which the PA-axioms interpret as true, and the PA rules of inference preserve such truth.
O

Moreover:
Theorem 8.13. The first-order logic FOL s finitarily consistent.

Proof. The theorem follows from the finitary proof that the first-order Peano Arithmetic is
consistent (§2.C.a., Theorem 2.16)—whence FOL too is finitarily consistent. 0

Further since, by definition, [P — P = -P V PJ:

Corollary 8.14. The Law of the Excluded Middle [P V —P] is a theorem of the first-order
logic FOL. a

we conclude that:

Corollary 8.15. The Law of the Excluded Middle does not entail Aristotle’s particularisation.
O
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8.E. Markov’s principle does not hold in PA

We note that an immediate consequence of §8.D., Theorem 8.12 is that Markov’s principle does
not—contrary to what has been argued by some advocates of intuitionistic logic—hold in PA:

“Mathematicians of the Russian school accept the following principle: if [n] is a recursive binary
sequence (i.e., for each i, n, = 0 or n, = 1), and if we know that not for all i does n, = 0, then
we may say that there is an i such that n, = 1. Formally, in terms of a binary number-theoretic
function, f:

—Wx(f(x) = 0) — In(f(n) = 1).

Advocates of intuitionistic logic often find this unpalatable. Existential statements should be
harder to prove. But in fact this is the principle that allows one to prove in constructive recursive
analysis that every real valued function is continuous at each point in which it is defined. This
was first proved by Tseitin. Markov himself had proved weaker versions, which are classically but
not constructively equivalent.”

.. Posy: [Pos13], p.112.

Corollary 8.16. Markov’s principle: —(Vx)(f(z) =
Boolean number-theoretic function such that f(n) =0 o

0) = (In)(f(n) = 1), where f(n) is a
or f(n) =1, does not hold in PA.

Proof. Godel has shown in [Go31] how to construct an arithmetical formula with a single
variable—say [R(z)]'?'—such that [(Vz)R(z)] is not PA-provable'*?, but [R(n)] is instantiation-
ally PA-provable for any specified PA numeral [n]'?3.

Hence, for any specified numeral [n], treating Gédel’s primitive recursive relation x B™ [R(n)]™
as a Boolean number-theoretical function that takes the value 0 if ‘true’, and the value 1 if
‘false’, #B"[R(n)]" must hold for some = (where "[R(n)]" denotes the Gédel-number of the
formula [R(n)]).

The corollary follows since, by §2.F., Corollary 2.20, the PA formula [~(Vx)R(z)] is also
PA-provable. a

8.F. Aristotle’s particularisation is ‘stronger’ than the Axiom of
Choice

To appreciate the extent of non-constructivity implicit in the concept, we note that the
postulation of an ‘unspecified” object in Aristotle’s particularisation is ‘stronger’ than the usual
set-theoretical Axiom of Choice.

This follows from Rudolf Carnap’s analysis in a 1962 paper on the use of Hilbert’s e-operator
in scientific theories ([Ca62], pp.157-158; see also Wang’s remarks [Wa63], pp.320-321):

“What now is the connection between the e-operator and the axiom of choice? Is the acceptance
of the former tantamount to that of the latter? In more formal terms, is the axiom of choice
derivable from the other axioms of set theory if the underlying logic contains the e-operator with
its axioms? In some sense, this is the case, but the assertion needs some qualifications. ... The

121Godel refers to the formula [R(z)] only by its Godel number r ([Go31], p.25, eqn.12). Although Godel’s aim
in [Go31] was to show that [(Va)R(x)] is not P-provable, it follows that [R(z)] is also, then, not P-provable.
122Which corresponds to Gédel’s proof in [Go31] that (p.26(2)): (n)nB,.(17Gen r) holds.

123Which corresponds to Gédel’s proof in [Go31] that (p.26(2)): (n)Bew, [Sb <r 21(171) )] holds.



146 8.. The significance of Hilbert’s w-Rule for Gédel’s w-consistency

decisive point for this question of derivability is the specific form of the axiom schema of subsets
(Aussonderungsaziom). In the customary language L it may be formulated as follows, where “Su”
stands for “u is set”:

(4) ‘Su>D (Fy) [Sy-(v)(vey=veu - ¢)] where ¢ is any sentential formula of language L
containing ‘v’ as the only free variable.

If L, is taken as the axiomatic language, there is the choice of two versions of the axiom schema,
differing in the kinds of formulas admitted as ¢. The first version is the same as (4): only the
formulas of L_ without ‘€’ are admitted; in other words, formulas of L (as a sub-language of L_).
The second version, which we shall call (4,), is formed from (4) by replacing ‘L’ with ‘L_’. (4,) is
stronger than (4). But to accept this version seems natural, once the e-operator has been accepted
as a primitive logical constant.

Consider now the principle of choice:

(5) If z is a set such that:

(a) any element of z is non-empty,

(b) any two distinct elements of x are disjoint,

then there is a set y (called a selection set of ) such that

(©) yc Uz,

(d) for any element z of =, y N z has exactly one element.
It can now be seen easily that, if the axiom schema of subsets is taken in the stronger form (4,),
then (5) is derivable. The derivation is as follows. Let 2 be any set satisfying the conditions (a)
and (b) in (5). According to the axiom of the union set, | Jx is a set. Therefore, by (4_), there is a
set y containing exactly those elements v of |Jz for which

(F2)[zex - v=¢,(u€2),
(This last formula is taken as ¢ in (4,).) Thus y is a subset of | J x containing just the representative

of the elements of x. Hence y satisfies the conditions (¢) and (d) in (5). Thus (5) is derived.”

... Carnap: ([Ca62], pp.157-158)

Now, it follows from Carnap’s analysis that, if we define a formal language ZF. by replacing:
(V) F' ()] with [F(eo(=F(2)))]
() ()] with [F(e.(F(x)))]

in the Zermelo-Fraenkel set theory ZF, then it can be seen that:

Lemma 8.17. The Axiom of Choice is true in any well-defined interpretation of the Zermelo-
Fraenkel set theory ZF. that admits Aristotle’s particularisation. a

Lemma 8.18. The postulation of an ‘unspecified’ object in Aristotlean particularisation is a
stronger postulation than the Aziom of Choice. a
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8.G. Rosser’s Rule C' is stronger than Godel’s w-consistency

Clearly the proof that PA is categorical with respect to algorithmic computability (§2.E.b.,
Corollary 2.18) conflicts immediately with the conventional wisdom that J. Barkley Rosser’s
proof of undecidability ([Ro36]) successfully avoids the assumption of w-consistency.

Comment: It also conflicts with conventional set-theoretical wisdom: (a) that ZF provides a
relative proof of consistency for PA (see, for instance, [Chol8]); and (b) that ZF entails the
existence of non-standard models of PA that admit elements other than the natural numbers (see
§17.).

However, we note that:
Lemma 8.19. [f:

(i) from the P-provability of [(Jz)F(x)] we can always conclude the existence within a proof
sequence of an unspecified P-term [a] such that [F(a)] is provable;

then:

(i1) we cannot have that a P-formula [(3x)F ()] is P-provable and also that [~F(a)] is
P-provable for any specified, constructively well-defined, term [a] of P.

Proof. The lemma follows immediately from its statement. a

We note that (ii) is Godel’s definition of w-consistency, which he explicitly assumed when
deriving his ‘formally undecidable’ arithmetical formula (which involves a universal quantifier)
in [Go31].

We also note that (i) is essentially Hilbert’s definition of existential quantification in his
e-calculus (see §6.), which Rosser enunciated as Rule C' ([Ro53], pp.127-130), and tacitly
assumed (see §16.) as a valid deduction rule of FOL—albeit restricted as an eliminable ‘catalyst’
to strictly within a proof sequence, in the sense that whatever is assumed under Rule C' does
not appear in the final formula of the sequence—when deriving his ‘formally undecidable’
arithmetical formula (which involves an existential quantifier) in [Ro36], where he explicitly
assumed only that P is simply consistent:

Rosser’s Rule C (Ezcerpted from Mendelson [Me64], p.73-74, §7, Rule C.)

“It is very common in mathematics to reason in the following way. Assume that we have proved a
wi of the form (Ex)A(zx). Then, we say, let b be an object such that A(b). We continue the proof,
finally arriving at a formula which does not involve the arbitrarily chosen element b. ...

In general, any wf which can be proved using arbitrary acts of choice, can also be proved without
such acts of choice. We shall call the rule which permits us to go from (Exz)A(z) to A(b), Rule C
(“C” for “choice”). More precisely, the definition of a Rule C deduction in a first-order theory K is
as follows:

I' . A if and only if there is a sequence of wis B,,..., B, = A

n

such that the following four statements hold.

(I) For each i, either

(i) B, is an axiom of K, or
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(ii) B, isin T, or
(iii) B, follows by MP or Gen from preceding wfs in the sequence, or

(iv) There is a preceding wf (Ex)C(z) and B, is C(d), where d is a new individual constant.
(Rule C)

(IT) As axioms in (I)(i), we can also use all logical axioms involving the new individual constants
already introduced by applications of (I)(iv), Rule C.

(ITI) No application of Gen is made using a variable which is free in some (Ex)C(z) to which
Rule C has been previously applied.

(IV) A contains none of the new individual constants introduced in any application of Rule C.

. . . o . ”
Fnt The first formulation of a version of Rule C similar to that given here seems to be due to Rosser ([Ro53], pp.127-130).

Comment: We note that, by admitting introduction of an unspecified new individual constant d
into the formal reasoning, Rule C'(I)(iv) implicitly assumes—without a valid proof (see below; also
§8.H.a.), and without formally admitting an axiom of choice into K which is equivalent to Hilbert’s
e-based choice axiom (see §10.A.)—that such a d can, indeed, be recursively constructed—at
least in principle—as a K-term by the first-order construction of terms permitted within K, since
any putative K-formula which could define a K-term such as d can denote only algorithmically
computable constants if K is first-order.

For instance, we note that the, ostensibly ‘formal’, argument offered as validation of Rule C
in standard texts, such as [Mel5] (see Proposition 2.10, pp.80-81) and [Ro53] (see **Theorem
VI.7.2, pp.131-133), appeals invalidly—and misleadingly—to the deduction that, if [C(x)] is a
unary formula of K, and [y] is not free in [A]:

(4) [(3z)C(2)] Fo  [A] (application of Rule C)
(@) [Ez)C(z)], [C(d)] F  [A]

(i5i)  [(Fx)C(z)] F o [C(d) = A

(v)  [(Fz)C(z)] FooCly) = A

(v)  [(F2)C(z)] Fo (V) (Cly) — A)

(vi)  [(F2)C(z)] Fo[(Fy)Cy) — Al

(vit)  [(Fz)C(z)] Hoo A

The ‘invalid’ element is that the deduction assumes, in step (i), that we can introduce a well-formed
term [d] into K such that [C(d)] can be treated as a well-formed formula of K.

The argument thus assumes that which is to be proven since, if the assumption is invalid, then the
above deduction reduces to:

() [(F0)C@) Fo (A

(@) [Gz)C(x)] = [A]
The ‘misleading’ element is that the deduction of (¢v) from (4i¢) implicitly appeals to a semantic
interpretation of the formula [(3z)C(x)].

However, Rosser’s belief that simple consistency suffices for establishing his ‘formally
undecidable’ arithmetical formula (which involves an existential quantifier) in P is illusory since
(compare with §7., Theorem 7.1):

Lemma 8.20. Rosser’s Rule C' entails Aristotle’s particularisation.

Proof. 1f P is simply consistent, the introduction of an unspecified P-term into the formal
reasoning under Rule C entails, by §7., Definition 17, Aristotle’s particularisation in any
interpretation of P. O

Corollary 8.21. Rosser’s Rule C' s stronger than Godel’s w-consistency.
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Proof. 1f P is simply consistent, the introduction of an unspecified P-term into the formal
reasoning under Rule C entails Aristotle’s particularisation in any interpretation of P, which in
turn entails that P is w-consistent (see §8.D., Corollary 8.9). The corollary follows by §8.G.,
Lemma &8.19. a

Although the implicit assumption of w-consistency—entailed by Rosser’s Rule C—is not
immediately obvious in Rosser’s original proof (see §16.)—nor in Kleene’s proof of ‘Rosser’s
form of Godel’s theorem’ ([K152], Theorem 29, pp.208-209)—it is seen to be implicit in §8.H.a.
(i) - (ix), which is an essential step in Mendelson’s argument for Proposition 3.32 (Godel-Rosser
Theorem) in [Me64].

We note that, in a relatively recent paper [SS17], Saeed Salehi and Payam Seraji claim
that Rosser’s Incompleteness Theorem ‘does not generally hold for definable non-recursively
enumerable theories’, whilst Godel’s First Incompleteness Theorem could hold for some such
theory; thus implicitly reflecting (compare Corollary 8.21) that the former is ‘stronger’ than
the latter:

“Godel’s First Incompleteness Theorem is generalized to definable theories, which are not necessarily
recursively enumerable, by using a syntactic-semantic notion (that is the consistency of a theory
with the set of all true II,, sentences or equivalently the ¥, soundness of the theory) that
corresponds to Godel’s notion of w-consistency in an appropriate way. It is also shown that
Rosser’s Incompleteness Theorem does not generally hold for definable non-recursively enumerable
theories; whence Godel-Rosser’s Incompleteness Theorem is optimal in a sense.”

... Saeed and Seraji: [SS17], Abstract.

8.H. Mendelson’s proof highlights where Rosser’s argument pre-
sumes w-consistency
We analyse Mendelson’s meticulously detailed expression ([Me64], p.145, Proposition 3.32) of

Rosser’s argument—since it is more transparent than Kleene’s ([K152], Theorem 29, pp.208-
209)—and highlight where it tacitly presumes that P is w-consistent.

Now, Gddel defines a formal Peano Arithmetic P, and a primitive recursive relation, ¢(z,y),
that holds if, and only if, = is the Gédel-number of a well-formed P-formula, say [H (w)]—which
has a single free variable, [w]—and y is the Gédel-number of a P-proof of [H (z)].

So, for any natural numbers h, j:
(a) q(h,7) holds if, and only if, j is the Gédel-number of a P-proof of [H (h)].

Rosser’s argument defines an additional primitive recursive relation, s(z,y), which holds
if, and only if, = is the Godel-number of [H(w)], and y is the Godel-number of a P-proof of

[=H (x)].

Hence, for any natural numbers h, j:
(b) s(h,7) holds if, and only if, j is the Godel-number of a P-proof of [=H(h)].

Further, it follows from Godel’s Theorems V ([Go31], p.22) and VII ([Go31], p.29) that
the primitive recursive relations ¢(x,y) and s(z,y) are instantiationally equivalent to some
arithmetical relations, Q(x,y) and S(z,y), such that, for any natural numbers h, j:
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(c) If q(h, j) holds, then [Q(h, )] is P-provable;
(d) If —q(h,j) holds, then [=Q(h, )] is P-provable;
(e) If s(h, j) holds, then [S(h, j)] is P-provable;
(f) If —s(h,j) holds, then [=S(h, j)] is P-provable;
Now, whilst Godel defines [H (w)] as:

[(Vy)—Q(w, y)],

Rosser’s argument defines [H (w)] as:

[(Vy)(Q(w,y) = (32)(z <y A S(w, 2)))];

Further, whereas Godel considers the P-provability of the Godelian proposition,:

[(Vy)=Q(h, y)],

Rosser’s argument considers the P-provability of the proposition:

[(Vy)(Q(h,y) = (32)(z <y A S(h, 2)))].
We note that, by definition:

(i) q(h,7) holds if, and only if, j is the Gédel-number of a P-proof of:

[(Vy)(Q(h,y) = (32)(z <y A S(h, 2)))];

(ii) s(h,j) holds if, and only if, j is the Gédel-number of a P-proof of:

(V) (Qh,y) = (32)(z <y A S(h, 2))))]-

8.H.a. Where Mendelson’s proof tacitly assumes w-consistency

(a) We assume, first, that r is the Godel-number of some proof sequence in P for the Rosser
proposition [(Vy)(Q(h,y) — (Fz)(z <y A S(h, 2)))].

Hence q(h,r) is true, and [Q(h,r)] is P-provable.
However, we then have that [Q(h,r) — (3z)(z < r A S(h, z))] is P-provable.
Further, by Modus Ponens, we have that [(3z)(z < r A S(h, z)))] is P-provable.

Now, if P is simply consistent, then [=((Vy)(Q(h,y) — (Fz)(z < y A S(h,z))))] is not
P-provable.

Hence, s(h,n) does not hold for any natural number n, and so —s(h,n) holds for every
natural number n.

It follows that [-S(h,n)] is P-provable for every P-numeral [n].
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Hence, [=((32)(z < r A S(h, 2)))] is also P-provable—a contradiction.

Hence, [(Vy)(Q(h,y) — (Fz)(z <y A S(h, z)))] is not P-provable if P is simply consistent.

(b) We assume next that 7 is the Godel-number of some proof-sequence in P for the proposition
F((vy)(Qh,y) = (32)(2 < y A S(h, 2))))]-

Hence s(h,r) holds, and [S(h,r)] is P-provable.

However, if P is simply consistent, [(Vy)(Q(h,y) — (3z)(z < y A S(h, z)))] is not P-
provable.

Hence, —¢q(h,n) holds for every natural number n, and [-Q(h,n)] is P-provable for all
P-numerals [n].

(i) The foregoing implies [y < r — =Q(h,y)] is P-provable, and we consider the following
deduction ([Me64], p.146):

(1) [r < k] ... Hypothesis
(2) [S(h,7)] ...By 3(b)

(3) [r <k AS(h,r)] ... From (1), (2)
(4) [(32)(z <kAS(h,z))] ...From (3)

(ii) From (1)-(4), by the Deduction Theorem, we have that [r < k — (32)(z < kA
S(h, z))] is provable in P for any P-numeral [k];
(iii) Now, [k <rVr < k] is P-provable for any P-numeral [k];
(iv) Also, [(k <7 — =Q(h,k)) AN (r <k — (32)(z < kA S(h,z)))] is P-provable for any
P-numeral [k].
(v) Hence [(=(k <)V =Q(h,k)) A (=(r <k)V(3z)(z < kAS(h,z)))] is P-provable for
any P-numeral [k].
(vi) Hence [=Q(h, k) V (32)(z < k A S(h, 2))] is P-provable for any P-numeral [£].
(vii) Hence [(Q(h, k) — (32)(z < k A S(h,2))] is P-provable for any P-numeral [£].
(viii) Now, (vii) contradicts our assumption that [—((Vy)(Q(h,y) — (32)(z < yAS(h, 2))))]
is P-provable.

(ix) Hence [=((Vy)(Q(h,y) — (F2z)(z <y A S(h,z))))] is not P-provable if P is simply
consistent.

However, the claimed contradiction in (viii) only follows if we assume that P is w-consistent,
and not if we assume only that P is simply consistent.

In other words, Mendelson’s step (viii) implicitly appeals to Rosser’s Rule C, and assumes
that the formula [~(Yy)(Q(h,y)] entails the formula [~(Q(h, k)] for some unspecified term [k] of
P—which entails that Aristotle’s particularisation holds in any model of P (see §8.G.)—without
justifying that such a [k] can, indeed, be specified in P without inviting contradiction.

We note that the appeal to Rosser’s Rule C' in Mendelson’s step (viii) is obscured in
Kleene’s proof of ‘Rosser’s form of Godel’s theorem’ ([K152], Theorem 29, pp.208-209), where
he appeals to an earlier lemma *169 in order to conclude from F Vb[b < k D —A(q,b)| that
F Vb[-A(q,b) V 3e(c < b & B(q,c))].



152 8.. The significance of Hilbert’s w-Rule for Gédel’s w-consistency

That Kleene implicitly appeals to Rosser’s Rule C' in his proof is seen in his introducory
remarks to his Theorem 29, where he explicitly appeals to Aristotle’s particularisation (see §7.,
Definition 17) in his interpretation of the Rosser formula:

“We have given the original Godel form of the theorem first, as the proof is intuitively simpler
and follows the heuristic outline. Rosser 1936 has shown, however, that by using a slightly more
complicated example of an undecidable formula, the hypothesis of w-consistency can be dispensed
with, and the incompleteness proved from the (simple) consistency alone. Consider the formula
Vb[-A(a,b) V Ic(c < b & B(a,c))]. This has a Godel number, call it g. Now consider the formula

A, (q), ie.
Aq(a): Vb[-A(q,b) V e(c < b & B(q,0))]

We can interpret the formula A,(q) from our perspective of the Gédel numbering as asserting
that to any proof of A,(q) there exists a proof of =A,(q) with an equal or smaller Gédel number,
which under the hypothesis of simple consistency implies that A,(q) is unprovable.”

... Kleene: [KI52], p.208.
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CHAPTER 9. MATHEMATICAL CONSEQUENCES

9. Hilbert’s purported ‘sellout’ of finitism

We digress here slightly to assess the ‘weak’ proof of consistency for PA in §2.B.a., Theorem
2.8, and the ‘strong’ proof of consistency for PA in §2.C.a., Theorem 2.16, from the perspective
of what Schirn and Niebergall—in their analysis of Hilbert’s finitism ([SNO1])—term as ‘The
sellout of finitism’ by Hilbert and Bernays, where they note that:

“In §5.2 of Hilbert and Bernays (1939), entitled ‘The formalized metamathematics of the number-
theoretic formalism’ (cf. 302ff.), the authors introduce a notational variant of PA which they
call Z,. Its purported drawback for metamathematical purposes rests on the fact ‘that in the
formalization of finitist reasoning in the system (Z ) the characteristic of the finitist argumentation
is, for the most part, lost’ (1939, 361). Nonetheless, Z  is regarded as setting a provisional upper
limit for a finitistically acceptable metatheory (Hilbert and Bernays 1939, 353ff., 3611f.).

At the beginning of the section ‘Eliminability of the “tertium non datur” for the investigation
of the consistency of the system (Z,)’, Hilbert and Bernays observe that the ‘proof-theoretic
methods hitherto applied (by them) , even though they partially go beyond the domain of recursive
number theory, apparently do not transcend the domain of those concept formations and modes of
inference that can still be presented within the formalism Z,’ (Hilbert and Bernays 1939, 361).”
On the face of it, this passage suggests that Hilbert and Bernays are here operating with a twofold
notion of extending proof-theory or metamathematics: the extension involves both the language of
metamathematics and the metamathematical theory itself. Unfortunately, they do not distinguish
clearly between these two methods of extending metamathematics; their respective remarks give
rise to ambiguity.

Hilbert and Bernays sketch, in the first place, an extension L:R of L., which is supposed to

+

A
contain only ‘finitary” statements. Taking L., as the starting point, L, is arrived at in two
stages: first, symbols for certain computable number-theoretic functions are adjoined to L.,
(call the set of formulae thereby defined L;R ). Second, L;R , is converted into LIR . by way of
adding to L/PR , only those statements that can be ‘interpreted in a strict sense’ by a statement
of L (cf. Hilbert and Bernays 1939, 362). Hilbert and Bernays do not explain the phrase

PRA
‘interpreted in a strict sense’, but their ensuing exposition suggests that it is at least formulae
of the type ‘VaIy ¢ (x,y)’ with quantifier-free formula 1) that aare capable of being ‘interpreted

in a strict sense’ in L, . The interpretation can be given by choosing for such a “Va3y 1 (x,y)’
the quantifier-free formula ‘¢)(z, f(2))’ in L

PRA’
which has already been introduced in L, . That these two formulae are equivalent to one another
in some sense of ‘equivalent’ is sslllggested by the phrase ‘strict interpretation’, but the authors do
not argue for this ‘equivalence’.

where f is a function-sign for a recursive function

Fn50 The authors also argue that the proof-theoretical methods have been extended from PRA to PA without infringing the
‘methodic fundamental idea of finitist proof theory’ (1939, 362).

Fn51 Obviously, the conception of the finitistically admissible presented in this example is akin to the position Hilbert and Bernays
advocate in 1934, but deviates from Hilbert’s finitism in the 1920s. The truly original, austere notion of a finitary statement

+ 5
embodies less than what can be expressed in LPRA‘ ?

... Schirn and Niebergall: [SNO1], p.154.

9.A. Fwvidence-based reasoning meets Godel’s criteria for construc-
tivity

What is noteworthy—from the evidence-based perspective of [An16] (see §2.)—about the above

account is that the search for finitary means of reasoning in the first volume of Grundlagen
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der Mathematik (1934)—which even then conflicted with Hilbert’s enthusiastic espousal of
Cantor’s set theory, thereby leading to what came to be known as ‘Hilbert’s Program’—was
apparently abandoned around the period of the second volume of Grundlagen der Mathematik
(1939); influenced in part, perhaps, by developments following Godel’s 1931 incompleteness
theorems which seemed to suggest—as Godel reportedly remarked in his 1938 Zilsel lecture—

that “intuitionistic methods went beyond finitist ones” (as Godel had analysed formally in
[Go33)).

In a detailed account of these developments, and their impact on Hilbert’s Program, Wilfried
Sieg refers to a lecture Godel delivered in Vienna on 29 January 1938:

“...to a seminar organized by Edgar Zilsel. The lecture presents an overview of possibilities
for continuing Hilbert’s program in a revised form. It is an altogether remarkable document:
biographically, it provides, together with (1933b) and (1941), significant information on the
development of Godel’s foundational views; substantively, it presents a hierarchy of constructive
theories that are suitable for giving (relative) consistency proofs of parts of classical mathematics
(see §§2-4 of the present note); and, mathematically, it analyzes Gentzen’s (1936) proof of the
consistency of classical arithmetic in a most striking way (see §7). A surprising general conclusion
from the three documents just mentioned is that Godel in those years was intellectually much
closer to the ideas and goals pursued in the Hilbert school than has been generally assumed (or
than can be inferred from his own published accounts). ...

The Zilsel lecture gives, as we remarked, an overview of possibilities for a revised Hilbert program.
The central element of that program was to prove the consistency of formalized mathematical
theories by finitist means. Godel’s 1931 incompleteness theorems have been taken to imply that for
theories as strong as first-order arithmetic this is impossible, and indeed, so far as Godel ventures
to interpret Hilbert’s finitism, that is Godel’s view in the present text as well as earlier in (1933b)
(though not in (1931d)) and later in (1941), (1958) and (1972). The crucial questions then are
what extensions of finitist methods will yield consistency proofs, and what epistemological value
such proofs will have.

Two developments after (Godel 1931d) are especially relevant to these questions. The first was the
consistency proof for classical first-order arithmetic relative to intuitionistic arithmetic obtained
by Godel (1933d). The proof made clear that intuitionistic methods went beyond finitist ones (cf.
footnote 10 below). Some of the issues involved had been discussed in Godel’s lecture (1933b), but
also in print, for example in (Bernays 1935b) and (Gentzen 1936). Most important is Bernays’s
emphasis on the “abstract element” in intuitionistic considerations. The second development was
Gentzen’s consistency proof for first-order arithmetic using as the additional principle—justified
from an intuitionistic standpoint—transfinite induction up to e,. Already in (1933b, p. 31) Godel
had speculated about a revised version of Hilbert’s program using constructive means that extend
the limited finitist ones without being as wide and problematic as the intuitionistic ones:

But there remains the hope that in future one may find other and more satisfactory methods of construction beyond the

limits of the system A [[capturing finitist methods]], which may enable us to found classical arithmetic and analysis upon
them. This question promises to be a fruitful field for further investigations.

The Cambridge lecture does not suggest any intermediate methods of construction; by contrast,
Godel presents in the Zilsel lecture two “more satisfactory methods” that provide bases to which
not only classical arithmetic but also parts of analysis might be reducible: quantifier-free theories
for higher-type functionals and transfinite induction along constructive ordinals. Before looking at
these possibilities, we sketch the pertinent features of the Cambridge talk, because they give a
very clear view not only of the philosophical and mathematical issues Godel addresses, but also of
the continuity of his development.”

... Sieg: [Si12], Chapter IT.4, pp.195-195.

Comment: Of interest in this context is Vladimir Voevodsky’s remark (see also [Chol8]) on
what Gentzen’s proof of consistency for first-order arithmetic entails from a univalent foundational
perspective:
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“There is another argument which is often cited as a proof of consistency of first-order
arithmetic which has been invented by Gerhard Gentzen (1909-1945).

While Gentzen’s reduction argument leads to many very interesting developments it

can not be used as a proof of consistency. In relation to the consistency issue the only

thing which it shows is that any inconsistency will define a non-terminating decreasing
9

sequence of ‘ordinals less that ¢,’.
... Voevodsky [Vo10].

The above account also raises the following point of interest from the evidence-based perspective
of [Anl6]:

For any integer n > 0, and integers x, > 0, we denote the ordinal W < w” by
(Tyy @y, Tyy Xy, Ty, ..., x, ), Where:

W=w'z, +...+ w4.:1:4 +w3.a:3 +w2.x2 +w.z, +x,

Define:

S, ={(z,, 2,2y, 25,2,,...,2,)} 3 (v +x, +x,+2, 42, +...+2,) =k
Then S, is a finite set of n-tuples for any & > 0. Hence {5, } is denumerable.

Now we note that w' € S, for all n > ¢ > 1, and it is reasonable to assume that
some finite initial segment of any denumerable ordering of the ordinals below w”,
which does not appeal (non-constructively) to an axiom of choice, must include an
ordinal wl.xj for some xz; >0 corresponding to each n > > 1.

Query 5. Can the above argument in §9.A. be extended to ordinals below €, by defin-
ing higher order ordinals similarly in terms of the ordered n-tuples (W, W, ,W,, ..., W, ),

n

here W, = w! ; ; ; d jvely?
where W, =w, .z, +...+tw, .2, , +tw, 2, +w ., +w,.T,,, and so on recursively:

Since transfinite induction can reasonably be considered constructive only if the induction is
definable in terms of an evidence-based procedure over an algorithmically verifiable (even if not
algorithmically computable) ordering of the ordinals which does not appeal to an axiom of choice,
it is not obvious in what sense Gentzen’s proof—unlike the weak proof of consistency in §2.B.a.,
Theorem 2.8—can be considered constructive.

Sieg notes that the issue of constructivity was addressed by Godel earlier in his 1933
‘Cambridge’ lecture as follows:

Understanding by mathematics “the totality of the methods of proof actually used by mathemati-
cians”, Godel sees the problem of providing a foundation for these methods as falling into two
distinct parts (p. 1):

At first these methods of proof have to be reduced to a minimum number of axioms and primitive rules of inference, which

have to be stated as precisely as possible, and then secondly a justification in some sense or other has to be sought for these
axioms, i.e., a theoretical foundation of the fact that they lead to results agreeing with each other and with empirical facts.

The first part of the problem is solved satisfactorily through type theory and axiomatic set theory,
but with respect to the second part Godel considers the situation to be extremely unsatisfactory.
“Our formalism”, he contends, “works perfectly well and is perfectly unobjectionable as long as
we consider it as a mere game with symbols, but as soon as we come to attach a meaning to our
symbols serious difficulties arise” (p. 15). Two aspects of classical mathematical theories (the
non-constructive notion of existence and impredicative definitions) are seen as problematic because
of a necessary Platonist presupposition “which cannot satisfy any critical mind and which does
not even produce the conviction that they are consistent” (p. 19). This analysis conforms with
that given in the Hilbert school, for example in (Hilbert and Bernays 1934), (Bernays 1935b) and
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(Gentzen 1936). Godel expresses the belief, again as the members of the Hilbert school did, that
the inconsistency of the axioms is most unlikely and that it might be possible “to prove their
freedom from contradiction by unobjectionable methods”.

... Sieg: [Si12], Chapter II.4, pp.195-196.

We note that the strong (intuitionistically unobjectionable) finitary proof of consistency
for PA in §2.C.a., Theorem 2.16, justifies the optimism Godel shared in 1933 with Hilbert and
Bernays over a positive outcome for Hilbert’s Program.

Moreover, §2.C.a., Theorem 2.16, underscores another implicit thesis of this investigation that:

The deterministic infinite procedures (corresponding to Hilbert’s ‘reduction procedure’
quoted in §8.B.) needed to formalise the distinction between ‘constructive’ and ‘finitary’
reasoning (as illustrated for quantification in §10.A., and generally by §2., Definitions 4
and 7), involve a paradigm shift in recognising that:

e Turing’s 1936 paper [Tu36]) admits evidence-based reasoning for assigning the values
of ‘satisfaction’ and ‘truth’ to the formulas of a first-order language such as PA,

e in the sense that one can view the values of a simple functional language as specifying
evidence for propositions in a constructive logic ([Mu91], §1 Introduction; [Lob59],
p.165),

e which yields two constructively well-defined, hitherto unsuspected, complementary
interpretations of PA (as defined in §2.B. and §2.C.)

e under Tarski’s inductive definitions of the satisfiability and truth of the PA-formulas
under an interpretation.

We note further that, according to Sieg, Godel’s focus in 1933 was already on identifying
the minimum requirements that any method claiming to prove consistency of a system must
satisfy in order to be considered constructive:

“Clearly, the methods whose justification is being sought cannot be used in consistency proofs, and
one is led to the consideration of parts of mathematics that are free of such methods. Intuitionistic
mathematics is a candidate, but Godel emphasizes (p. 22) that

the domain of this intuitionistic mathematics is by no means so uniquely determined as it may seem at first sight. For
it is certainly true that there are different notions of constructivity and, accordingly, different layers of intuitionistic or
constructive mathematics. As we ascend in the series of these layers, we are drawing nearer to ordinary non-constructive
mathematics, and at the same time the methods of proof and construction which we admit are becoming less satisfactory
and less convincing.

The strictest constructivity requirements are expressed by Godel (pp. 23-25) in a system A that is
based “exclusively on the method of complete induction in its definitions as well as in its proofs”.
That implies that the system A satisfies three general characteristics: (A1) Universal quantification
is restricted to “infinite totalities for which we can give a finite procedure for generating all
their elements”; (A2) Existential statements (and negations of universal ones) are used only
as abbreviations, indicating that a particular (counter-)example has been found without—for
brevity’s sake—explicitly indicating it; (A3) Only decidable notions and calculable functions can
be introduced. As the method of complete induction possesses for Godel ™ a particularly high
degree of evidence, “it would be the most desirable thing if the freedom from contradiction of
ordinary non-constructive mathematics could be proved by methods allowable in this system A”
(p. 25).

... Sieg: [Si12], Chapter II.4, p.196.
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If we apply Godel’s stipulations (A1), (A2) and (A3) to the weak standard interpretation
Tpa, svy of PA defined in §2.B., and the strong finitary interpretation Zpa(n, sy of PA defined
in §2.C., we note that they can be viewed as broadly meeting Godel’s criteria of constructivity:

(A1)

(A2)

Universal quantification is restricted to infinite totalities for which we can give a finite
procedure for verifying all assertions about their elements.

The weak interpretation of universal quantification under the weak standard interpretation
Tpa, sv) of PA (see §10.D.), as well as the strong interpretation of universal quantification
under the strong finitary interpretation Zpan, sc) of PA (see §10.E.), are both defined
constructively in terms of finitely determinate algorithms over the respective domains of
quantification;

Ezistential statements (and negations of universal ones) are used only as abbreviations,
indicating that a particular (counter-)example has been found without—for brevity’s sake—
explicitly indicating it.

Existential quantification in each case is used only as an abbreviation for the negation of
universal quantification such that:

(a) The formula [(3x)F(x)] is an abbreviation of [—(Vz)=F(z)], and is defined as verifi-
ably true in Zpy, sv) relative to its truth assignment Ty if, and only if, it is not
the case that, for any specified natural number n, we may conclude on the basis of
evidence-based reasoning that the proposition —F™(n) holds in Zpa, svy; where the
proposition F*(n) is postulated as holding in Zpaw, sv) for some unspecified natural
number n if, and only if, it is not the case that, for any specified natural number
n, we may conclude on the basis of evidence-based reasoning that the proposition
—F*(n) holds in Tpaw, sv);

(i) However, we note that we cannot assume that the satisfaction and truth of
quantified formulas of PA are always finitarily decidable—in the sense of being
algorithmically computable—under the weak standard interpretation Zp, sv)
of PA over N (as defined in §27.), since we cannot prove finitarily from only
Tarski’s definitions and the assignment Ty of algorithmically wverifiable truth
values to the atomic formulas of PA under Zp 4, svy whether, or not, a speci-
fied quantified PA formula [(Vz;)R] is algorithmically verifiable as true under

Ipa, sv);

(ii) Moreover, it is not unreasonable to conclude—in the light of Gddel’s stipulation
(A2) in the previous quote—that the failure to successfully carry out Hilbert’s
Program may be attributed to an unawareness of the evidence-based distinction
between algorithmically computable truth and algorithmically verifiable truth
(see §7.C.(1) and §7.C.(2)).

(b) The formula [(3x)F(x)] is an abbreviation of [=(Vz)—F(z)], and is defined as true
in Zpa(, sc) relative to its truth assignment T¢ if, and only if, we may conclude on
the basis of evidence-based reasoning that it is not the case, for any specified natural
number n, that the proposition —F*(n) holds in Zpaw, sc)-
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We note that Zpa, scy is a strong finitary interpretation of PA since—when in-
terpreted suitably—all theorems of first-order PA interpret as finitarily true in
Tpa, sc) relative to Te (see §2.C.a., Theorem 2.15).

(A3) Only decidable notions and calculable functions can be introduced.

Only decidable notions are used to establish that the PA axiom schema of induction
interprets as wverifiably true under the weak standard interpretation Zpaw, svy of PA
(§2.B.a., Lemma 2.4); and as computably true under the strong finitary interpretation
Tpaw, scy of PA (2.C.a., Lemma 2.12).

To an extent, the above explains in hindsight why, according to Sieg, Godel’s focus shifted
from seeking the consistency sought originally by Hilbert’s Program to assessing the relative
consistency of various systems and proofs:

“Godel infers that Hilbert’s original program is unattainable from two claims: first, all attempts
for finitist consistency proofs actually undertaken in the Hilbert school operate within system A;
second, all possible finitist arguments can be carried out in analysis and even classical arithmetic.
The latter claim implies jointly with the second incompleteness theorem that finitist consistency
proofs cannot be given for arithmetic, let alone analysis. G6del puts this conclusion here quite
strongly: “.... unfortunately the hope of succeeding along these lines [[using only the methods of
system A]] has vanished entirely in view of some recently discovered facts” (p. 25). But he points
to interesting partial results and states the most far-reaching one, due to (Herbrand 1931) in a
beautiful and informative way (p. 26):

If we take a theory which is constructive in the sense that each existence assertion made in the axioms is covered by a
construction, and if we add to this theory the non-constructive notion of existence and all the logical rules concerning it,
e.g., the law of excluded middle, we shall never get into any contradiction.

Godel conjectures that Herbrand’s method might be generalized to treat Russell’s “ramified type
theory”, i.e., we assume, the theogy obtained from system A by adding ramified type theory
instead of classical first-order logic.

There are, however, more extended constructive methods than those formalized in system A;
this follows from the observation that system A is too weak to prove the consistency of classical
arithmetic together with the fact that the consistency of classical arithmetic can be established
relative to intuitionistic arithmetic. The relative consistency proof is made possible by the
intuitionistic notion of absurdity, for which “exactly the same propositions hold as do for negation
in ordinary mathematics—at least, this is true within the domain of arithmetic” (p. 29). This
foundation for classical arithmetic is, however, “of doubtful value”: the principles for absurdity
and similar notions (as formulated by Heyting) employ operations over all possible proofs, and the
totality of all intuitionistic proofs cannot be generated by a finite procedure; thus, these principles
violate the constructivity requirement (Al).

Despite his critical attitude towards Hilbert and Brouwer, Godel dismisses neither in (1933b) when
trying to make sense out of Hilbert’s program in a more general setting, namely, as a challenge to
find consistency proofs for systems of “transfinite mathematics” relative to “constructive” theories.
And he expresses his belief that epistemologically significant reductions may be obtained.

Fn9 In Konzept, p. 0.1, Godel mentions Herbrand’s results again and also the conjecture concerning ramified type theory.
The obstacle for an extension of Herbrand’s proof is the principle of induction for “transfinite” statements, i.e., formulae
containing quantifiers. Interestingly, as discovered in (Parsons 1970), and independently by Mints (1971) and Takeuti (1975,
p. 175), the induction axiom schema for purely existential statements leads to a conservative extension of A, or rather its
arithmetic version, primitive recursive arithmetic. How Herbrand’s central considerations can be extended (by techniques
developed in the tradition of Gentzen) to obtain this result is shown in (Sieg 1991).

Fnl0 In his introductory note to (1933d), Troelstra (1986, p. 284) mentions relevant work also of Kolmogorov, Gentzen and
Bernays. Indeed, as reported in (Gentzen 1936, p. 532), Gentzen and Bernays discovered essentially the same relative
consistency proof independently of Godel. According to Bernays (1967, p. 502), the above considerations made the Hilbert
school distinguish intuitionistic from finitist methods. Hilbert and Bernays (1934, p. 43) make the distinction without
referring to the result discussed here.”

... Sieg: [Si12], Chapter II.4, pp.196-197.
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We also note that—according to Carl J. Posy’s implicitly empathetic account of Hilbert’s
Program——prior to publication of the second volume of the Grundlagen der Mathematik in
1929, Hilbert was yet ‘confident in our ability to produce provably adequate formal systems’:

Hilbert’s Program: Constructivism of the Right

“It might seem strange to call Hilbert a constructivist. After all, he himself introduced non-
constructive methods into algebra, he was unfriendly towards the Kroneckerian restrictions,
and—in opposition to Brouwer—he was a staunch supporter of classical logic. Indeed, Hilbert
did not practice or condone “constructive mathematics” in the sense that I have been using the
term. Nevertheless, he was a constructivist: he saw infinity as a problem for mathematics (or,
more precisely, as the source of mathematics’ problems), and as a solution he aimed to found
mathematics on a base of intuition, just as do all the constructivists we have considered.

Hilbert in fact was driven by an opposing pair of pulls, and his program for the foundation of
mathematics was the result of those pulls.

On the one hand, Hilbert held that there is no infinity in physical reality, and none in mathematical
reality either. Only intuitable objects truly exist, and only an intuitively grounded process (he spoke
of “finitary thought”) can keep us within the realm of the intuitable. This is his constructivism.
Mathematical paradox arises, he said, when we exceed those bounds. And indeed, he held that
infinite mathematical objects do go beyond the bounds of mathematical intuition. For him finite
arithmetic gave the basic objects, and he held that arithmetic reasoning together was the paradigm
of finitary thought. Together this comprised the “real” part of mathematics. All the rest—set
theory, analysis, and the like—he called the “ideal” part, which had no independent “real content”.

On the other hand, Hilbert also believed that this ideal mathematics was sacrosant. No part of it
was to be jettisoned or even truncated. This is why I dub it “constructivism of the right”. “No
one will expel us,” he famously declared, “from the paradise into which Cantor has led us (Hilbert
1926).

Hilbert’s program, which was first announced in 1904 and was further developed in the 1920s,
was designed to reconcile these dual pulls.35 outline of the program for a branch of mathematics
whose consistency is in question is generally familiar: axiomatize that branch of mathematics;
formalize the axiomatization in an appropriate formal language; show that the resulting formal
system is adequate to the given branch of mathematics (i.e., sound and complete); and then prove
the formal system to be consistent.

The important assumptions here are that formal systems are finitely graspable things and that
the study of formal systems is a securely finitary study. Thus, he is proposing to use the finitary,
trustworthy part of mathematics to establish the consistency of the ideal part.

Today, of course, we know that the program as thus formulated cannot succeed. Goédel’s theorems
tell us that. But in the late 1920s, Hilbert still had ample encouraging evidence. Russell and
Whitehead’s Principia Mathematica stood as a monument to formalization. He and his students
successfully had axiomatized and formalized several branches of mathematics. Moreover, he firmly
believed that within each branch of mathematics we can prove or refute any relevant statement.
He believed that is, optimistically, in the solvability of all mathematical problems. And so he was
confident in our ability to produce provably adequate formal systems. And—assuming in advance
the success of his program—he was comfortable in developing the abstract, unanchored realms of
ideal mathematics.

Fn35 It was announced in Hilbert’s lecture “Uber die Grundlagen der Logik und der Arithmetik” (published as Hilbert 1905). He
developed the Program more fully in the 1920s. Hilbert and Bernays’ book Grundlagen der Mathematik (1934) contains the
most mature statement of the program.”

...Posy: [Pos13], pp.119-120.

Comment: We note that Posy’s conclusion, ‘we know the program as thus formulated cannot
succeed. Godel’s theorems tell us that’, can no longer be treated as definitive in view of the
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finitary, evidence-based, proofs of PA-consistency in §2.C.a., Theorem 2.16, and of PA-categoricity
in §2.E.b., Corollary 2.18.

9.A.a. Shift in Hilbert’s focus

In other words, around 1929 Hilbert’s focus, and that of mainstream classical meta-mathematics
thereafter, apparently shifted from seeking finitary means of reasoning (compare with the
Complementarity Thesis—§1., Thesis 1) to where it has resided ever since: determining the
relative proof-theoretic strengths of formal systems, irrespective of whether or not they have any
evidence-based interpretation that would assure the soundness—and hence the consistency—of
the concerned systems.

Comment: We can, not unreasonably, view such a shift as an attempt to justify that a formal
system (which we can informally view as corresponding to Carnap’s explicatum in [Ca62al; or
to Gamez’s ‘P-description’ and ‘C-description’ in [Gam18], Fig.5.2, p.79) does indeed represent
that which (viewed as corresponding informally to Pantsar’s pre-formal mathematics in [Pan09)
(§4. Formal and pre-formal mathematics); or to Carnap’s explicandum in [Ca62a]; or to Gamez’s
‘C-theory’ in [Gaml8], F, p.79; or to what some cognitive scientists, such as Lakoff and Nufiez in
[LROO] (see also §25.), term as ‘conceptual metaphors’) it seeks to express formally.

Schirn and Niebergall deplore at length this weakening of Hilbert’s finitary resolve!?4,
which they implicitly seem to also ascribe to efforts by Hilbert and Bernays to contain the
perceived negative implications of Gédel’s 1931 paper [Go31] on finitism, whilst at the same
time unquestioningly accepting the validity of Godel’s conclusions therein; even though such
acceptance entailed accepting non-standard integers, such as Cantor’s transfinite ordinals ‘w’
and ‘e,” as legitimate objects in ‘constructive’ reasoning.

“We observe that in Hilbert and Bernays 1939 the authors pass easily from the determination
of what is finitistically formulable to a characterization of what is finitistically provable. We
are told that for the formalization of certain general results of proof theory it is desirable to
obtain as mathematical theorems conditionals containing a universally quantified sentence as
antecedent (Hilbert and Bernays 1939, 358, 362). Such sentences are for example (formalizations
of) assertions concerning the unprovability or verifiability of formulae or the computability of
functions. To illustrate the idea, Hilbert and Bernays sketch a formalization of the informal
consistency proof for H in Grundlagen der Mathematik (1934), to which we have already referred
in §2. The formalization is carried out in PA, and it is shown by means of a complexity analysis
that a fragment of PA, though extending PRA, would actually suffice for the consistency proof..
Proof-theoretic means extending PRA, including a form of complete induction which cannot be
formalized by the induction schema of recursive number theory (Hilbert and Bernays 1939, 358),
are said to be useful or desirable for conducting certain formal consistency proofs.

However this may be, the crucial question for Hilbert and Bernays is whether the so-called finitary
methods may go beyond the scope of the modes of inference formalizable in Z,. The question
is said to lack a precise formulation, on the grounds that ‘finitary’ has not been introduced as
a sharply defined termed, but only as a label for a ‘methodic guideline’. It serves merely to
recognize certain forms of concept formation and of inference definitely as finitary and certain
others definitely as non-finitary. It is not appropriate, though, for drawing an exact dividing line

124Not entirely unreasonably, since an unintended consequence of such a shift for the natural sciences—which
use formal mathematical structures to express, and communicate, their observations of a commonly accepted
reality—might, for instance, be viewed as the arguably unreasonable (according to Sabine Hossenfelder in
[Hos18a]; see also §19.D.e.) focus of particle physicists on only the proof-theoretic properties of their theories,
irrespective of whether or not such theories have any evidence-based interpretation that would assure their
soundness in mirroring the external reality they seek to express.
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between modes of inference which meet the requirements of the finitist method and modes of
inference which do not.,,

It is in this connection that Hilbert and Bernays mention a typical borderline-case; it concerns
the question whether conditionals with a universally quantified sentence as antecedent can be
formulated finitistically. They claim to have removed this indeterminacy by distinguishing between
sentences and inference rules (Hilbert and Bernays 1939, 358f., 361). Hilbert and Bernays admit,
though, that in some cases this distinction may strike us as forced, and all this is said to require
that the bounds of the finitist framework hitherto established be somewhat loosened, that is, that
we go beyond what can be formulated in L;R , and proved in recursive number theory.

Two comments on these and similar remarks and ideas in Hilbert and Bernays (1939) are in
order here. First, what the authors may make clear with them is at best that, compared with
Hilbert’s finitism of the 1920s, the language of finitist metamathematics must be extended; for
instance, unbounded quantifications should now be finitistically formulable. Yet Hilbert and
Bernays do not even address the issue why in that case all theorems of PA should be sound from
a finitist point of view. Moreover, remarks to the extent that it is useful or desirable that the
language of metamathematics has a certain expressive power and that the metamathematical
theory itself includes a certain repertoire of proof-theoretic means convey nothing about the
assumed finitary character of both the metamathematical language and the metamathematical
theory under consideration.

Second, Hilbert’s and Bernay’s remarks presented above suggest that the old foundational view
dominating the pre-Gddelian period of Hilbertian proof theory has been replaced with a view like
this: we are accustomed to certain informal metamathematical considerations, and experience
teaches us that they can be formalized in PA. Hence, we are entitled to use them in metamathe-
matical reasoning. Whether Hilbert and Bernays do not care any longer much about questions of
finitist justifiability, or whether they leave their readers with a principle of the following kind: what
is not definitely infinitistic may be regarded as finitist, remains unclear. Deplorably, this is not the
only place where Hilbert and Bernayshedge instead of putting their cards on the table. Surely
Hilbert, as the founder of the finitist point of view, should feel called upon to give a clear-cut
explication of ‘finitist’ allowing a fair assessment of his programme. So, it could seem that the
appeal to the alleged indefinability of ‘finitist’ is meant to serve as a safeguard against possible
objections. This may come out a little clearer in Hilbert’s and Bernays’s treatment of transfinite
induction to which we now turn.

Possibly guided by some principle of the kind just mentioned and the desire to be able to formalize
metatheoretical considerations to as high a degree as possible, Hilbert and Bernays arrive at PA (or
Z,, respectively) as a provisional boundary within which a finitist metatheory may be developed
(1939, 354, 361). The crucial question for Hilbert and Bernays is now whether the so-called finitary
methods may go beyond the scope of the modes of inference formalizable in Z ,. (Remember that,
owing to the vagueness of the word ‘finitary’, they do not consider this question to be formulated
in precise terms.) For, as they point out (1939, 353f.), a (formal) metamathematical consistency
proof for PA cannot be carried out in PA itself. Nevertheless, Hilbert and Bernays do not rest
content with the idea that there can be no finitary proof for PA. Accordingly, they insist that
‘in any case, it is possible [...] to surpass the modes of inference formalizable in (Z,) without
using the typically non-finitary inferences. And in this way we succeed in giving a very simple
consistency proof for the system (Z)’ (1939, 362). Hilbert and Bernays refer in this connection to
an arithmetical version of transfinite induction.” The line of thought which leads them eventually
to considering transfinite induction, in particular up to ¢,, as a possibly ‘legitimate’ method of
proof theory deserves close attention.”

]

“At the very end of the last chapter of Grundlagen der Mathematik (1939), Hilbert and Bernays
make a concluding (but convoluted) remark on Gentzen’s (1936) consistency proof, which suggests
that it was no longer their serious concern to argue for the finitist nature of the proof-theoretic
means applied in consistency proofs for mathematical theories they consider important. We are
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told that it is a consequence of Godel’s Theorem that

the more comprehensive the formalism to be considered is, the higher are the order types,
i.e. forms of the generalized induction principle, that must be used. [...] The methodic
requirements for the contentual proof of that higher induction principle supply the standard
for [determining] which kind of methodic assumptions must be taken as a basis for the
contentual attitude, if the consistency proof for the formalism in question is to be successful,
(Hilbert and Bernays 1939, 387)

Fn52 We think that in Hilbert’s classical papers the expression ‘finitary’ is much less vague than in Grundlagen der Mathematik
(1939). In spite of its vagueness both during the pre-Godelian and post-Gédelian period of Hilbertian proof theory, it is
reasonable to say that it had undergone a thorough shift of meaning by 1939.

Fn53 Therefore the remark just quoted seems to suggest that PA+TI[EO] could be treated as a finitistically admissible theory.”

... Schirn and Niebergall: [SNO1], pp.154-157.
However, since:

(i) Schirn and Niebergall observe that, regarding the consistency of PA, ‘Hilbert and Bernays
do not rest content with the idea that there can be no finitary proof for PA’; and

(ii) Hilbert’s and Bernays’ ‘informal’ proof of the consistency of arithmetic in the Grundlagen
der Mathematik—as analysed in [SNO1] (see §8.B.)—can be viewed as essentially outlining
a proof of §2.B.a., Theorem 2.8;

a more appropriate perspective may be that Hilbert’s weakened finitism in 1939 reflected, as
we noted earlier, the circumstance that the deterministic infinite procedures (corresponding to
Hilbert’s ‘reduction procedure’ quoted in §8.B.) needed to formalise the distinction between
‘constructive’ and ‘finitary’ reasoning (as illustrated for quantification in §10.A.; and generally
by §2., Definitions 4 and 7) were already intuited by Hilbert, even though they become explicit
only after the realisation that Turing’s 1936 paper [Tu36]) admits evidence-based reasoning—in
the sense that one can view the values of a simple functional language as specifying evidence
for quantified propositions in a constructive logic in two, essentially different, ways (see §7.C.).
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CHAPTER 10. MATHEMATICAL CONSEQUENCES

10. Hilbert’s and Brouwer’s interpretations of quantifi-
cation

It is not entirely unreasonable (as argued in [Anlbal, [An15b]) to view Hilbert’s evolving finitism
as a search for a definitive response to Brouwer’s objection to his classical interpretation of
quantification; which Hilbert formalised in [Hi27] by defining a formal e-calculus L. where he
sought to capture the essence:

— of Aristotle’s unspecified x in Definition 17,

— as an unspecified term [e,(F(x))].
Hilbert then defined:
L [(Y2)F(x) < Flea(~F(2)))]
2. [(Fz)F(z) < F(eo(F()))]
and showed that Aristotle’s logic is a well-defined interpretation of L.:

— if [e.(F(z))] can be interpreted as some, unspecified, x satisfying F'(z).

10.A. Hilbert’s interpretation of quantification

Formally, Hilbert interpreted quantification in terms of his e-function as follows:

“IV. The logical e-axiom
13. A(a) = A(e(A4))

Here £(A) stands for an object of which the proposition A(a) certainly holds if it holds of any
object at all; let us call € the logical e-function.

1. By means of ¢, “all” and “there exists” can be defined, namely, as follows:
(i) (Va)A(a) < A(e(—4))
(ii) (Fa)A(a) < A(e(A))...

On the basis of this definition the e-axiom IV(13) yields the logical relations that hold for
the universal and the existential quantifier, such as:

(Va)A(a) = A(D) ... (Aristotle’s dictum),
and:

=((Va)A(a)) = (Ja)(—A(a)) ... (principle of excluded middle).”

... Hilbert: [Hi27].
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Thus, Hilbert’s interpretation (i) of universal quantification—under any objective (i.e.,
evidence-based) method Ty of assigning truth values to the sentences of a formal logic L—
is that the sentence (Vx)F(z) can be defined as holding (presumably under a well-defined
interpretation H of L with respect to Ty) if, and only if, F'(a) holds whenever —F'(a) holds for
some unspecified a (under H ); which would imply that =F(a) does not hold for any specified a
(since H is well-defined), and so F'(a) holds for any specified a (under H).

Further, Hilbert’s interpretation (ii) of existential quantification, with respect to Ty, postu-
lates that (3x)F () holds (under H) if, and only if, F'(a) holds for some unspecified a (under

Comment: The consequent—and continuing—influence of Hilbert’s interpretation of quantifica-
tion on mathematics and philosophy is illustrated by Hilary Putnam’s 1971 remark that:

“Quantification over mathematical entities is indispensable for science—but this
commits us to—the [independent] existence of the mathematical entities [that satisfy
our theories]. This type of argument stems, of course, from Quine, who has for years
stressed both the indispensability of quantification over mathematical entities and the
intellectual dishonesty of denying the existence of what one daily presupposes.”

... Putnam: [Pu71], p.347.
We can express this formally as (compare with §8.D., Theorem 8.12):

Lemma 10.1. Aristotle’s particularisation holds under every well-defined interpretation of
Hilbert’s e-calculus L. O

We also have further that (compare with §8.D., Corollary 8.14):

Lemma 10.2. The Law of the Ezcluded Middle (LEM) holds under every well-defined inter-
pretation of Hilbert’s e-calculus L.

Proof The lemma follows since the principle of excluded middle is a theorem of L. and entails
LEM. O

10.B. Brouwer’s objection

Brouwer’s objection to such an unspecified and ‘postulated’ interpretation of quantification
was that, for an interpretation to be considered constructively well-defined relative to Ty
when the domain of the quantifiers under an interpretation is infinite, the decidability of the
quantification under the interpretation must be constructively verifiable in some intuitively,
and mathematically acceptable, sense of the term ‘constructive’ ([Br08]).

In other words (as highlighted by the semantic and logical paradoxes analysed in §19.), any
assumption of an unspecified object under an interpretation of a formal language L is valid
if, and only if, such an element is shown to be specifiable as a term in L by the rules for the
formation of L-terms.

Two questions arise:

(a) Is Brouwer’s objection relevant today?

(b) If so, can we interpret quantification finitarily?
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10.C. Isthe PA-formula [(Vx)F(z)] to be interpreted weakly or strongly?

The perspective we choose for addressing these issues is that of the structure N, defined by:

1. N (the set of natural numbers);
. = (equality);
3. S (the successor function);

+ (the addition function);

5. % (the product function);

6. 0 (the null element)

which serves for a definition (see §27.(16)) of the, classical, standard interpretation Zpanm, sv)
of the first-order Peano Arithmetic PA.

However, if we are to avoid intuitionistic objections to the admitting of unspecified natural
numbers in the definition of quantification under Zpa, svy, we are faced with the ambiguity
where if

— [(Vz)F(z)] and [(3z)F(z)] denote PA-formulas; and

— The relation F™*(x) denotes the interpretation in the standard interpretation Zpan, svy of
the PA-formula [F'(z)] under an inductive assignment of Tarskian truth values Tsy; where

— The underlying first-order logic FOL of PA admits evidence-based interpretation (in the
sense of §7.C.);

then the question arises!?":

(a) Is the PA-formula [(Vx)F(x)] to be interpreted weakly as:

e ‘For any specified n, F*(n)’,
— which holds if, and only if,
— for any specified n in N,
— there is algorithmic evidence that F*(n) holds in N,

and the PA-formula [—(Vx)F(z)] interpreted weakly as:

e There is no algorithm which will evidence that the PA-formula [(Vx)F (x)] can be

interpreted weakly*?®;

125WWe reiterate that the distinction between ‘any’ and ‘all’ made below pertains to the assignment of truth-
values to the formulas of a formal theory under an interpretation of the universal quantifier over a well-defined
domain of interpretation. It is to be distinguished from the distinction Russell makes in [Rus08] (pp.156-163)
between ‘all’ and ‘any’ with respect to the assignment of provability-values to the formulas of a formal theory
that admits ‘apparent’ and ‘real’ variables in a proof sequence. See also [Fe(2], pp.3-4.

126Which implies only that [(Vz)F (z)] is not provable in PA; it does not entail that F'*(z) is not algorithmically
verifiable.
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or:
(b) is the formula [(Vz)F(x)] to be interpreted strongly as:

e ‘Forall n, F*(n)’,
— which holds if, and only if,
— there is algorithmic evidence that,
— for any specified n in N,
— F*(n) holds in N?

and the PA-formula [—~(Vx)F(x)] interpreted strongly as:

e There is no algorithm which will evidence that the PA-formula [(Yx)F(z)] can be
interpreted strongly'?T.

10.C.a. The Church-Turing Thesis entails Aristotle’s particularisation

The significance of §10.C., Definition 5 for evidence-based reasoning (which admits only §7.C.)
is that (compare with the conclusions in §8. and §8.D.):

Theorem 10.3. The Church-Turing Thesis entails Aristotle’s particularisation. O

Proof. 1f we accept the Church-Turing Thesis (§27.(2)), then admitting a natural number as
unspecified in N (as in §7., Definition 17), implies that, by §10.C., Definition 5, it is specifiable
in PA and, ipso facto, specified under any well-defined interpretation of PA. O

The significance of Theorem 10.3 is, further, that it emphasises the extent to which faith-
based reasoning—which appeals unrestrictedly to Aristotle’s particularisation (see §7., Definition
17; also §7.B.)—is implicit even in argumentation that—contradicting §7.H.b., Theorem 7.3
(CT falsifiable)—seeks to ‘prove’ the Church-Turing Thesis, or equivalent theses, from finitary,
or constructive, premises.

For instance, in her article [Dul4], Marie Duzi attempts ‘to define the notion of algo-
rithm/effective procedure’; in this case by applying ‘a procedural theory of concepts’ which was
‘formulated by Materna using Transparent Intensional Logic (TIL) as a background theory’, to
support her hypothesis that, consequently, ‘the Church-Turing thesis becomes provable’ in such
a context:

“We considered four ways of construing the notion of computability:

1) EP—analytical concept of effective procedure, algorithm

2) TM—Turing machine, GR—general recursivity, A\D—lambda definability

3) MN-—machine-computable in the narrow sense (for instance with laws of physics imposing
limitations on the machine)

MW —machine-computable in the wide sense (for instance involving infinitely small times

4) O-machines with an oracle.

127Which, too, implies that [(Vz)F(z)] is not provable in PA. By §2.E.b., Theorem 2.17 ( Provability Theorem
for PA), this does, however, entail that F™*(z) is not algorithmically computable.
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The Church-Turing thesis claims the equivalence of (1) and (2). Thus the Church-Turing thesis
proposes three kinds of a refinement of the concept of effective procedure/algorithm.

At this point we can formulate a hypothesis: if the concept of an effective procedure (algorithm) is
sufficiently refined and delimited, for instance, as proposed above by our refined definition, then
the Church-Turing thesis becomes provable.”

... Duzi: [Dul4], §6. Summary and concluding remarks.

In an earlier paper [DGO8] (subsequently qualified, and clarified, by Gurevich in [Gul9]),
Nachum Dershowitz and Yuri Gurevich too argue that Church’s Thesis provably follows from—in
their case—four, seemingly ‘undeniably’ computable, postulates:

“The first issue that needs to be addressed when axiomatizing effective computation is: What
kind of object is a “computation”? Once we agree that it is some sort of state transition system
(Postulate I in what follows), we need to formalize the appropriate notions of “state” and of
“transition”. To model states, we take the most generic of mathematical objects, namely, logical
structures (Postulate IT). To ensure that each transition step is effective, we require only that it
not entail an unbounded amount of exploration of the current state (Postulate III). Finally, we
need to make sure that a computation does not start out with any magical abilities (Postulate IV).
We will demonstrate that under these very natural and general hypotheses regarding algorithmic
activity, which certainly suffice for the computation of all recursive functions, the recursiveness of
the computed function is in fact guaranteed.

More precisely, but still informally, the postulates say the following about algorithms:

1. An algorithm determines a sequence of “computational” states for each valid input.

II. The states of a computational sequence are structures. And everything is invariant under
isomorphism.

III. The transitions from state to state in computational sequences are governable by some fized,
finite description.

IV. Only undeniably computable operations are available in initial states.

Postulates I-III are called the “Sequential Postulates” [42]. They axiomatize (deterministic,
sequential) algorithms in general, not only those for computable functions; they apply equally
to algorithms dealing with complex numbers, say, as to those for integers only. Postulate IV,
which will be fleshed out later, ensures that an algorithm is not endowed from the outset with
uncomputable oracles, such as infinite precision operations on real numbers, or a solvability decider
for Diophantine equations. We will show in this paper that Church’s Thesis provably follows from
these four postulates.”

... Dershowitz/Gurevich: [DG08], §1.3. Sketch of awioms, p.306.

Church!ThesisThesis!Church

The implicit non-constructivity imputed to the above argumentations in [Dul4] and [DGO8]—
as being entailed by Theorem 10.3—was sought, in the case of [DGO08], to be identified by
Doukas Kapantais in [Kapl6]; where, in his refutation of the Church-Turing Thesis (compare
§7.H.b., Theorem 7.3), he argues against Dershowitz and Gurevich’s ‘Postulates’ (in [DGO08])
by proposing ‘an effective computation that cannot be translated salva isomorphism into a
computation of a machine with this abstract structure’

“I now present three different interpretations of the Church-Turing thesis and single out the one I
believe that my paper refutes.

In Church’s (1936) initial formulation, the Thesis consists in the claim that the class of effectively
calculable numeric functions is identical to the class of recursive numeric functions, which is also
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identical to the class of A-definable numeric functions. Turing (1936) proved that the latter two
are identical to the class of Turing Machine computable numeric functions, and, like Church,
he assumed that they all coincide with the effectively calculable numeric functions (although,
unlike Church, he did not confine the domains of functions to numeric ones). Among the notions
appearing in all these identity statements the only one that is not formal is the notion of “effectively
calculable numeric function”.

Church!ThesisThesis!Church
Turing! ThesisThesis! Turing

Several alternative ways of interpreting the Thesis have been suggested. I will now classify them
under three major categories/interpretations.

INT1. The Church-Turing thesis is in reality a definition. It has been proved that there is an
idealized calculator with huge computational powers (i.e. the Turing Machine) and a family of
equipotent machines® and formalisms. We should all agree to name the functions these machines
and formalisms can compute “effectively calculable functions”.

INT2. The Church-Turing thesis is in fact a conjecture. After the discovery of this idealized
calculator with these huge computational powers, and the discovery of a family of other equipotent
machines and formalisms, the conviction grew that these machines/formalisms really exhaust
the computational powers in general. Now, if they really do so, anything that can be effectively
calculated can be computed by a Turing Machine.

INT3. The Church-Turing thesis is the conjecture according to which not only anything that can
be calculated can be computed by a Turing Machine, but also any formalism or machine that
is equipotent to a Turing Machine is equivalent to it up to isomorphism. It comes down to the
conjecture that all these maximal computational systems and machines share the same abstract
structure, and so they do not only have the same computational power but, which is more, they
compute in the same abstract way.

Were one to put INT1 to INT3 into slogans, INT1 would be: “Turing Machine computable
functions are called ‘effectively calculable’ 7, INT2: “No numeric function that can be calculated
cannot be computed by a Turing Machine”, and INT3: “All maximal models of computation share
the same abstract structure with Turing Machines.

In what follows, I will be referring to the Church-Turing thesis as the thesis behind INT3, an
interpretation well attested in the literature ...

INT3 goes beyond INT2 in the following two respects. First, it tries to provide an explanation of
the otherwise mysterious co-extensiveness of this family of formalisms and machines. For to say
that they are all equipotent, because they exhaust the limits of computation, is not an explanation
of why they exhaust the limits of computation; it’s just some further evidence that they do so. On
the other hand, bringing forward what they themselves share in common (i.e. a common structure)
is much more ambitious. For, after having brought forward what these formalisms/machines
share in common, one could further suppose that any formalism/machine that exhausts the limits
of computation shares this element in common too. Notice here that, if this last supposition
turns out to be correct, one would also have a formal proof of the Thesis. For consider it this
way. Prima facie, the Church-Turing thesis cannot be formally proved, since it claims that a
non-formal item (i.e. “effectively calculable”) is identical with a formal one (i.e. “Turing Machine
computable”). Now, there can be no formal proof of any identity statement relating a formal
and a non-formal item. The only identity statements that can be formally proved are statements
relating items within a formal language of a theory. So, suppose that some explanation has been
provided as for why these formalisms/machines are equipotent. If this explanation consists in the
finding of yet another formal item, i.e. their common structure, and you further assume that any
formalism/machine that exhausts the limits of computation must be characterized by this item
too, then, what you are actually doing is proposing a formal interpretation for the “effectively
calculable”. Le. you do not only prove that all these formalisms/machines share a formal element
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in common, you further propose that this element is shared by all formalisms and machines that
exhaust the limits of computation. So, you can now formally define “effectively calculable” through
this.

An enterprise of this sort has been undertaken in Dershowitz & Gurevich (2008).!! What these
authors did is the following. On the one hand, they have proposed a specific axiomatization as
the formal counterpart of “effectively calculable”.!? On the other, they have proved that all the
formalisms/machines of the second part of the equivalence are interpretations of this axiomatization.
So, in case this axiomatization really captures the informal notion of “effectively calculable”, then,
their proof must also be a formal proof of the Thesis. Additionally, they have informally argued
that this axiomatization must indeed be capturing the informal notion of “effectively”calculable”,
for, in order not to be capturing it, one would need to be able to imagine a computational method
that is both effective and, at the same time, falsifies at least one among the four Postulates of their
system.' So, now, the burden of (dis)proof is on the opponent, who must either argue against
these Postulates directly, or come forward with an effective computation that cannot be translated
salva isomorphism into a computation of a machine with this abstract structure.

In what follows, I will do the latter by indicating a certain way of mechanically calculating the
original Ackermann function that we, humans, can perform and that cannot be mimicked by
any Turing Machine. If this is exact, the isomorphism between us, as calculators, and these
formalisms/machines fails. More precisely, I will claim that there are some updates in this
particular way of computing the original Ackermann function that have no isomorphic counterparts
in any computation of the same function as performed by these machines. This implies not
only that the set of Postulates of Dershowitz and Gurevich need to be loosened in order to be
able to capture “effectively calculable”, but also that INT3 is false, since the same Postulates
provably capture the abstract structure behind Turing Machines and equipotent machines and
formalisms. 4"

... Kapantais: [Kap16], §3 What the Church-Turing thesis says. Quotation accessed Apr 18 2020 from ResearchGate.

Intriguingly—from the evidence-based perspective of this investigation—Kapantais argues
in [Kap16] from an unusual anthropomorphic image'?® of a function ‘as a person to whom you
give some items and who, then, returns some items back’:

What is a “function”? In essence, what a function is comes down to this: Something, an item, the
so-called “argument” of the function, is substituted by another (not necessarily different) thing,
item. What performs this substitution is the function itself. The “not necessarily different” clause
above is suggestive and not contradictory with respect to the verb “is substituted” it depends upon.
For the important thing, as far as functions are concerned, is only this: they take some arguments
as their input and they return some values as their output. So, the function is an operation that
operates on items (trivially, on what else could an operation operate upon?) and produces items.
The set of items, from which the function takes the items it operates upon, is called the “domain
of arguments”, and the set of items, from which the function takes the items that result from the
operation, is called “the domain of values”. It is not compulsory that the operation is fruitful
for all arguments. Some functions produce no result, when given some argument values. These
functions are called “partial”. The rest are called “total”.

You can easily—and safely, from the formal point of view—make an anthropomorphic model of
what a function is. You can imagine it as a person to whom you give some items and who, then,
returns some items back.

So far we’ve only said that functions operate on items and return items. A natural question is
what kind of items these items might be. The straightforward answer is: “any kind”. Provided
they satisfy suitable identity criteria, people, atoms, streets, sets, numbers, functions, intensions,
feelings—you name it!—might serve as the arguments or values of functions.

128Functional and, seemingly, intentionally non set-theoretical to avoid any implicit appeal to non-constructive
concepts as, we have imputed above, is the case in Dershowitz and Gurevich’s argumentation in [DGO0S].
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The way we have presented things thus far suggests that we consider functions to be items in
their own right, and so, since no item can be an argument/value of a function, unless it satisfies
appropriate identity criteria, we now ask: What kind of criteria are these with respect to functions?
The criteria we will employ are these: two functions will be identical, if and only if they return
the same values for same arguments. This is called an “extensional” criterion, since it ignores the
way the function arrives at its values. The only thing that matters is that, on being given these
specific arguments, it provides these specific values.

Seen thus, functions exist “out there”, along with trees, human beings, sets, numbers and any other
item that belongs to our world. Upon the same extensional criterion, functions can ultimately be
reduced to sets of ordered pairs.

Functions from natural numbers to natural numbers are called “numeric functions”.”

... Kapantais: [Kap16], §1 What a function is. Quotation accessed Apr 18 2020 from ResearchGate.

What is intriguing about Kapantais’ unusual anthropomorphic image of a function ‘as a
person to whom you give some items and who, then, returns some items back’, is that if we,
instead, treated the latter as the image of an algorithmically verifiable function ([An16], Defini-
tion 1, p.37; see also §2., Definition 4), then the definition of ‘effective computability’ (as defined
by §7.F., Definition 22, and §7.H.b., Definition 25) corresponds faithfully to Kapantais’ meaning
of the term, ‘the idea being that a function that cannot be effectively calculated/computed is
not calculable/computable at all’.

Comment: Kapantais cautions, however, that the above perspective could be interpreted am-
biguously:

“I am just having the slightest of worries about the term “anthropomorphic” with
respect [to] my image of a function. The reason is that I do [not] want to commit
myself to the idea that in principle there is something intrinsic to human calculators
as opposed to non human ones that gratifies them with superior insights/capabilities.
I wish to remain agnostic as for that. I would rather prefer to say that my idea of a
function is “agentcentric”, were such a word available. This agent might be anything
whatsoever, from a human being to a black box, provided that it satisfies the condition
of operating mechanically. In the case of the black box, one would need to open it and
see how it functions, of course.

Even more than that, at the end of the day, I tend to think that I would not be
identifying this agent with the function itself; I would rather prefer to say that the
agent can be made into a model of the function.”

... Kapantais: Email dated May 7 2020.

Moreover, Kapantais’ ‘conclusion that the human brain/mind is not equivalent up to
isomorphism to Turing Machines’ essentially echoes the conclusion of Lucas’ Gédelian argument
as detailed in the concluding thesis of [An16] (Thesis 1, p.42; see also §2.F.a.; §20.D., Theorem
20.1, and §20.E., Query 21):

“What the above proof establishes is that the Machine cannot mimic the way the human calculator
finds An in the following essential respect. The human calculator launches a program, implementing
an algorithm such that it builds recursively the function An by n consecutive updates A0 that
involve no ‘do until’ commands. Had the operation of the Machine and of the human calculator
been isomorphic, there should be a translation function such that it takes each element of the
stages the human calculator goes through, while computing An, to the stages the Machine goes
through,while computing f(n), and this translation would have left the abstract algorithm they
both implement, by their distinct programs, intact. Suppose that there is such a translation
function 7. Obviously, 7(A0)=[A0], 7(Al)=[Al], .... Say that “u” denotes the update function
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upon states during a calculation. What is missing for the isomorphism to be preserved is 7(u(Ax)).
For example, u(Ax) is Ax+1, but u([Ax]) is not [Ax+1]. There is simply no way for the Machine
to update [Ax] in a way that preserves isomorphism.?’ That is to say that, there can be no
translation of theway the human calculator updates states along her way to An to a similar way
that the Machine updates states along its way to [An|. The particular details as for how exactly
the Machine arrives at [An] are of no importance. The “dumbest” but still effective way would be
to check all numbers from 0 onwards to see whether they are [An] or not.If f(x)=y is decidable,
the Machine will eventually stop at [An]. One can imagine several interesting shortcuts, but, still,
there would be no program available to the Machine in order to calculate an upper bound for
(or to calculate the exact number of) the updates it needs for reaching [An], and, so, the way it
updates its states must be structurally different.?!

Notice that this is stronger than saying that the Turing Machine as a calculator and the human
being as a calculator differ. After all, a one dimensional Turing Machine also differs from a two
dimensional Turing Machine, and both differ from a Post Machine. However, these machines
are interpretations of the same abstract structure, and, so, their calculations can be translated
into one another. Strings are strings, graphs are graphs, sets are sets, but this variety reflects no
structural difference.

On the other hand, the difference between the idealized human calculator and the Turing Machine
is structural, and, so:

(i) Not all maximal models of mechanical computation are equivalent up to isomorphism to
Turing Machines (This is a refutation of the Church-Turing thesis in the form of INT3).

And:

(ii) The human brain/mind is not equivalent up to isomorphism to Turing Machines. (Notice
that the counterexample to the Turing Machine was an algorithm implemented by the
idealized human calculator.)”

... Kapantais: [Kap16], §5 Conclusions. Quotation accessed Apr 18 2020 from ResearchGate.

10.D. The standard interpretation Zp,y, sv) of PA interprets [(Vx)F(z)]
weakly

Keeping the distinction between §10.C.(a) and §10.C.(b) in mind, it would seem that classically,
under the standard interpretation Zp 4y, sv) of PA:

(1a) The formula [(Vz)F(x)] is defined as true in Zpa, sv) relative to an assignment Ty of
truth values under interpretation over N if, and only if, for any specified natural number
n, we may conclude on the basis of evidence-based reasoning that the proposition F*(n)
holds in IPA(N, SV)s

(1b) The formula [(Jz)F(z)] is an abbreviation of [=(Vz)=F(z)], and is defined as true in
Tpa, svy relative to Tsy if, and only if, we may conclude on the basis of evidence-based
reasoning that it is not the case there is an algorithm which will evidence the formula
[(Vx)F(x)] as true in Zpaq, svy relative to Tyy;

(1c) The proposition F*(n) is postulated as holding in Zpa, sv) for some unspecified natural
number n if, and only if, it is not the case that, for any specified natural number n, we
may conclude on the basis of evidence-based reasoning that the proposition =F™*(n) holds

in Zpaw, sv)-
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If we assume that Aristotle’s particularisation holds under the standard interpretation
Tpa, sv) of PA (as defined in §27.(16)), then (1a), (1b) and (1c) together interpret [(Va)F'(x)]
and [(Jz)F(x)] under Zpaw, svy weakly, as seems implicitly intended by Hilbert’s e-function;
whence they attract Brouwer’s objection.

This would, then, answer question §10.B.(a).

10.E. A finitary interpretation Zp,n scy of PA which interprets
[(Vz)F(z)] strongly

Now, our thesis is that the implicit target of Brouwer’s objection'? is the unqualified semantic
postulation of Aristotle’s particularisation entailed by §10.D.(1c), which appeals to Platonically
non-constructive, rather than intuitively constructive, plausibility.

We note that this conclusion about Brouwer’s essential objection apparently differs from
conventional intuitionistic wisdom (i.e., perspectives based essentially on Brouwer’s explicitly
stated objection to the Law of the Excluded Middle (LEM) as expressed in [Br23], p.335-336):

— which would presumably deny appeal to §10.D.(1c) in an interpretation of FOL by denying
that the FOL theorem [P v =P] (Law of the Ezcluded Middle) is finitary;

— even though denying appeal to §10.D.(1c) in an interpretation of FOL does not entail
denying the FOL theorem [P v —P] (a consequence of §8.D., Corollary 8.15).

We can thus re-phrase question §10.B.(b) more specifically:
e Can we define an interpretation of PA over N without appealing to §10.D.(1c¢)?

We note that we can, indeed, define another—hitherto unsuspected—-evidence-based inter-
pretation Zpa(n, scy of PA under an inductive assignment of Tarskian truth values Tsc over
the structure N, where:

2a) The formula [(Vx)F(x)] is defined as true in Zpan. g0 relative to Tse if, and only if, we
(N, SC)

may conclude on the basis of evidence-based reasoning that there is an algorithm which,

for any specified natural number n, will evidence that the proposition F*(n) holds in

Tpa, scy;

(2b) The formula [(3z)F(x)] is an abbreviation of [~(Vx)—F(z)], and is defined as true in
Ipam, scy relative to Tsc if, and only if, we may conclude on the basis of evidence-based
reasoning that it is not the case there is an algorithm which will evidence the formula
(Vo) F(x)] as true in Zpag, scy relative to Tc.

We note that Zpan, scy is a strong finitary interpretation of PA since—when interpreted
suitably—all theorems of first-order PA interpret as finitarily true in Zpa, scy relative to Te
(an immediate consequence of §2.C.a., Theorem 2.16).

This answers question §10.B.(b).

129 And perhaps of parallel objections perceived generically as “Limitations of first-order logic”; see [AR02b],
p.78, §2.1.
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10.F. Are both interpretations Zp,, sv) and Zpy, sc) of PA over N
well-defined?

The question arises:

Query 6. Are both the interpretations Lpaw, svy and Ipaw, scy of PA over the structure N
well-defined, in the sense that the PA axioms interpret as true, and the rules of inference
preserve truth, relative to each of the assignments of truth values Ty, and Te respectively?

We note that [An16] answers the question affirmatively by showing that the two interpreta-
tions Zpa, svy and Zpa(w, soy of PA over the structure N can be viewed as complementary, since
(see §2.A.) Tarski’s classic definitions permit an intelligence—whether human or mechanistic—to
admit finitary, evidence-based, inductive definitions of the satisfaction and truth of the atomic
formulas of the first-order Peano Arithmetic PA, over the domain N of the natural numbers, in
two, hitherto unsuspected and essentially different, ways:

(1) in terms of weak algorithmic verifiabilty; and

(2) in terms of strong algorithmic computability.

However, we note that, from the PA-provability of [=(Vz)F(x)], we may only conclude
under the finitary interpretation Zpa(n, sc), on the basis of evidence-based reasoning, that it is
not the case [F'(n)] interprets as always true in N.

We may not conclude further, in the absence of evidence-based reasoning, that [F(n)]
interprets as false in N for some numeral [n].

More precisely, we may not conclude from the PA-provability of [—(Vz)F(z)], in the absence
of evidence-based reasoning, that the proposition F*(n) does not hold in N for some unspecified
natural number n since, by §2.F.; Corollary 2.22, PA is not w-consistent.
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CHAPTER 11. MATHEMATICAL CONSEQUENCES

11. Three perspectives of logic

We conclude from the foregoing considerations that the common perceptions of a mutual
inconsistency between classical and constructive mathematical philosophies—vis a vis ‘omni-
scient” mathematical truth, and ‘omniscient’ mathematical ontologies, decried by Krajewski in
[Kr16]—are illusory; they merely reflect the circumstance that (see §1., Thesis 1), to date, all
such philosophies do not explicitly—and unambiguously (as proposed in §12.)—define the rela-
tions between a language and the logic that is necessary to assign unequivocal, evidence-based,
truth-values of both ‘provability’ and ‘truth’ to the propositions of the language.

11.A. Hilbert’s theism

For instance, classical perspectives which admit Hilbert’s formal definitions of quantification can
be labelled ‘theistic’, since they implicitly assume—without providing evidence-based criteria
for interpreting quantification constructively—both that:

(a) the first-order logic FOL is consistent;
and that:

(b) Aristotle’s particularisation (see §7., Definition 17)—which postulates that ‘[=V-z|" can
unrestrictedly be interpreted as ‘there exists an unspecified instantiation of x’—holds
under any interpretation of FOL.

The significance of the label ‘theistic’*®” is that conventional wisdom ‘omnisciently’ believes
that Aristotle’s particularisation remains valid—sometimes without qualification—even over
infinite domains; a belief that—as highlighted in §7.A.—is not unequivocally self-evident, but
must be appealed to as an article of unquestioning faith (see §7.B.).

11.B. Brouwer’s atheism

In sharp contrast, constructive approaches based on Brouwer’s philosophy of Intuitionism can
be labelled ‘atheistic’'®! because they—also without providing adequate evidence-based criteria
for interpreting quantification constructively—deny both that!3?:

(a) FOL is consistent (since they omnisciently deny that the Law of the Excluded Middle
LEM—which is a theorem of FOL—holds under any well-defined interpretation of FOL);

130 Although intended to highlight an entirely different distinction, that the choice of the label ‘theistic’ may
not be totally inappropriate is suggested by Tarski’s reported point of view to the effect (Franks: [Fr09], p.3):
“...that Hilbert’s alleged hope that meta-mathematics would usher in a ‘feeling of absolute security’ was a ‘kind
of theology’ that ‘lay far beyond the reach of any normal human science’ ...”.

131 A5 can other ‘constructive’ approaches such as those analysed by Posy in [Pos13] (p.106, §5.1).

132But see also Maietti: [Mt09] and Maietti/Sambin: [MS05].
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Comment: The omniscience of the belief is reflected in [K152]:

“The formula Vo (A(z) V-A(z)) is classically provable, and hence under classical interpretation
true. But it is unrealizable. So if realizability is accepted as a necessary condition for
intuitionistic truth, it is untrue intuitionistically, and therefore unprovable not only in the
present intuitionistic formal system, but by any intuitionistic methods whatsoever.”

... Kleene: [KI52], p.513.

and that:

(b) Aristotle’s particularisation holds under any interpretation of FOL that has an infinite
domain.

Although Brouwer’s explicitly stated objection appeared to be to the Law of the Excluded
Middle as expressed and interpreted at the time (Brouwer: [Br23], p.335-336; Kleene: [KI152],
p.47; Hilbert: [Hi27], p.475), some of Kleene’s remarks ([K152], p.49), some of Hilbert’s remarks
(e.g., in [Hi27], p.474) and, more particularly, Kolmogorov’s remarks (in [Ko25], fn. p.419;
p.432) suggest that the intent of Brouwer’s fundamental objection can also be viewed today as
being limited only to the (yet prevailing) classical belief—as an article of Hilbertian faith—that
the validity of Aristotle’s particularisation can be extended without qualification to infinite
domains.

The significance of the label ‘atheistic’ is that whereas intuitionistic approaches to math-
ematics deny the faith-based belief in the unqualified validity of Aristotle’s particularisation
over infinite domains, their denial of the Law of the Excluded Middle is itself an ‘omniscient’
belief that is also not unequivocally self-evident, and must be appealed to as an article of
unquestioning faith!3?,

11.B.a. Denial of an unrestricted applicability of the Law of the Excluded Middle
is a belief

The perspective is implicit in Bauer’s unusually candid acknowledgment in [Bal6] that con-
structive mathematics holds denial or acceptance of the Law of the Excluded Middle (LEM) as
an optional belief that is open to persuasion:

“Unless we already believe in =—P < P, we cannot get one from the other by exchanging P and
“P.”

... Bauer: [BalG], p.2.

“Classical mathematical training plants excluded middle so deeply into young students’ minds that
most mathematicians cannot even detect its presence in a proof. In order to gain some sort of
understanding of the constructivist position, we should therefore provide a method for suspending
belief in excluded middle.”

... Bauer: [Bal6], p.6.

We note, however, that Bauer’s admission masks an atheistic disbelief that is embedded
equally deeply in constructive mathematics.

Reason: 1t is non evidence-based constructive mathematics that mistakenly equates denial
of the ‘principle of excluded middle’, i.e., ‘=((Va)A(a)) — (3a)(—A(a))’ (see §7.B.), in Hilbert’s
e-calculus (in [Hi27]) with denial of LEM in well-defined interpretations (in the sense of §1.,

133Thus lending justification to Krajewski’s comment in [Kr16]: “Brouwer created mathematical intuitionism
and was a mystic”.
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Definition 1, and §12., Definitions 31 and 32) of formal theories; where the logical axioms and
rules of inference are those of the standard first-order logic FOL, in which the classical Law
of the Excluded Middle LEM!3 i.e., [(Vx)(A(x) V —A(x))]'3—is a theorem, and which—as
defined in standard, introductory, texts on mathematical logic (e.g., [Me64])—forms an essential
part of classical mathematical training.

The root of this conflation lies in the fact that Brouwer’s original objection (in [Br08]) was
to the definition of existential quantification in terms such as those of Hilbert’s e-operator in
the latter’s e-calculus, in which LEM is a theorem.

Denying LEM is thus sufficient for Brouwer’s purpose of denying validity to any interpretation
of Hilbert’s definition of existential quantification over any putative structure in which the
calculus is satisfied.

However it is not necessary since—as entailed by §8.D., Corollary 8.15—the converse does
not hold.

In other words, denying validity to any interpretation of Hilbert’s definition of existential
quantification over a structure in which the calculus FOL is satisfied does not entail that LEM
is not satisfied over the structure.

Moreover, as observed by Godel in [Go33], such a denial of tertium non datur misleadingly
compelled Arend Heyting to admit an intuitionistic notion of “absurdity” into his formalisation
of intuitionistic arithmetic, which entailed that “all of the classical axioms become provable
propositions for intuitionism as well”:

“If one lets correspond to the basic notions of Heyting’s propositional calculus the classical notions
given by the same symbols and to “absurdity” (—), ordinary negation (~), then the intuitionistic
propositional calculus A appears as a proper subsystem of the usual propositional calculus H. But,
using a different correspondence (translation) of the concepts, the reverse occurs: the classical
propositional calculus is a sub-system of the intuitionistic one. For, one has: Every formula
constructed in terms of conjunction (A) and negation (—) alone which is valid in A is also provable
in H. For each such formula must be of the form: =A, A—-A, A... A—-A_, and if it is valid in
A, so must be each individual —A4,; but then by Gilvenko —A, is also provable in H and hence
also the conjunction of the —A,. From this, it follows that: if one translates the classical notions
~p, p—q, pVgq, p.q by the following intuitionistic notions: —p, =(p A —q), =(—=p A —~q), p A gq
then each classically valid formula is also valid in H.

The aim of the present investigation is to prove that something analogous holds for all of arithmetic
and number theory, as given e.g. by the axioms of Herbrand. Here also one can give an interpretation
of the classical notions in terms of intuitionistic notions, so that all of the classical axioms become
provable propositions for intuitionism as well.

]

Theorem I, whose proof has now been completed, shows that intuitionistic arithmetic and number
theory are only apparently narrower than the classical versions, and in fact contain them (using
a somewhat deviant interpretation). The reason for this lies in the fact that the intuitionistic
prohibition against negating universal propositions to form purely existential propositions is
made ineffective by permitting the predicate of absurdity to be applied to universal propositions,
which leads formally to exactly the same propositions as are asserted in classical mathematics.
Intuitionism would seem to result in genuine restrictions only for analysis and set theory, and these
restrictions are the result, not of the denial of tertium non datur, but rather of the prohibition of

134Law of the Excluded Middle LEM (cf., [Me64], p.4): For any well-formed formula P of a formal system
S, P v =P is a theorem of S.
135Tertium non datur with an exclusive ‘[V]’.
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impredicative concepts. The above considerations, of course, yield a consistency proof for classical
arithmetic and number theory. However, this proof is certainly not “finitary” in the sense given
by Herbrand, following Hilbert.”

... Godel: [Go33], pp.75 € 80.

Thus, from an evidence-based perspective, Godel’s demonstration of an equivalence between
classical arithmetic and Heyting’s Arithmetic emphasises the thesis of this investigation that
denial of LEM (tertium non datur) was unnecessary for ensuring finitism; especially since
such denial denied formal, finitary, argumentation to Intuitionism for much of that which it
apparently sought to protect.

11.B.b. Brouwerian interpretations of A,V, —, 4V

The significance of the label ‘atheistic’ is also seen in the following, presumably standard,
intuitionistic interpretations of A,V,—,3,V, as detailed by Bishop in [Bil8|:

“Each formula of ¥ represents a constructively meaningful assertion, in that it denotes a construc-
tively meaningful assertion for given values of the free variables, if we interpret A,V,—,3,V in
the constructive (Brouwerian) sense. Here is a brief summary of Brouwer’s interpretations. (The
interpretations hold for all fixed values of the free variables.)

(a) AA B asserts A and also asserts B.

(b) AV B either asserts A or asserts B, and we have a finite method for deciding which of the
two it does assert.

(¢) A — B asserts that if A is true, then so is B. (To prove A — B we must give some method
that converts each proof of A into a proof of B.)

(d) VaxA(x) asserts that A(f) holds for each (constructively) defined functional f of the same
type as the variable x, where A(f) is obtained from A(z) by substituting f for all free
occurrences of .

(e) JxA(x) asserts that we know an algorithm for constructing a functional f for which A(f)
holds.”

... Bishop: [Bi18], pp.6-7.

We note that although Bishop asserts the above interpretations as constructive, they are
ambiguous as to the intended meaning of the words ‘all’ and ‘each’; since the interpretations do
not distinguish between:

(i) algorithmic computability, i.e., whether there is an algorithm which, for ‘all’ specifiable val-
ues of the free variables, evidences that the formula 3 denotes a constructively meaningful
assertion; and

(i) algorithmic verifiability, i.e., whether, for ‘any/each’ specified value of the free variables,
there is an algorithm which evidences that the formula 3 denotes a constructively
meaningful assertion.

Accordingly, they cannot accommodate a coherent computational interpretation of Godel’s
first-order arithmetical formula [R(z)], which:

(1) is such that the PA-formula [R(n)] is PA-provable for any substitution of the numeral [n]
for the variable [z] in the PA-formula [R(x)], even though the formula [(Vx)R(x)] is not
PA-provable;
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and which:

(2) interprets as an arithmetical relation, say R (x), such that, for any specified natural
number n, there is always some algorithm that will evidence the proposition R (n) as
true, but there is no algorithm that, for any specified natural number n, will evidence
R’ (n) as a true arithmetical proposition (an immediate consequence of §2.F., Corollary
2.21).

Curiously, although (1) is essentially the first half of Gédel’s ‘undecidability’ argument in
[Go31]'%5, the significance of interpretation (2) apparently escaped Godel’s attention; even
though what we have termed as an ambiguity—reflecting a failure to constructively define, and
distinguish between, the concepts ‘for each/any’ and ‘for all'—in the intuitionistic interpretation
of quantification can, reasonably, be seen as something that Godel too viewed with disquietude as
a ‘vagueness’ in Heyting’s formalisation of intuitionistic logic—a vagueness which he, however,
seemed at the time to view as an unsurmountable barrier'®” towards the furnishing of a
constructive intuitionistic proof of consistency for classical arithmetic. As remarked by Mark
van Atten in [At17]:

“Godel’s 1933 lecture is concerned with the question of a constructive consistency proof for classical
arithmetic. In considering what should count as constructive mathematics, Godel there argues
against accepting impredicative definitions, and insists on inductive definitions. Godel discusses
the prospects for a consistency proof for classical arithmetic using intuitionistic logic, then best
known from Heyting’s formalisation ‘Die formalen Regeln der intuitionistischen Logik’ (Heyting,
19301,b,c), as well as Heyting’s Konigsberg lecture of 1931, ‘Die intuitionistiche Grundlegung der
Mathematik’, published as Heyting 1931.

L]

The principles in Heyting’s formalisation that have Godel’s special interest are those for ‘absurdity’,
that is, intuitionistic negation. But Godel goes on to argue that this notion is not constructive in
his sense, and hence of no use for a constructive consistency proof of classical arithmetic. The
problem he sees is that their intuitionistic explanation involve a reference to the totality of all
constructive proofs. The example he gives is

po—p

which, he says, means ‘If p has been proved, then the assumption —p leads to a contradiction.
Godel says that these axioms are not about constructions on a substrate of numbers but rather
on a substrate of proofs, and therefore the example may be explicated as ‘Given any proof for
a proposition p, you can construct a reductio ad absurdum for the proposition —p’. He then
comments that

Heyting’s axioms concerning absurdity and similar notions |...] violate the principle, which
I stated before, that the word ‘any’ can be applied only to those totalities for which we
have a finite procedure for generating all their elements [...] The totality of all possible
proofs certainly does not possess this character, and nevertheless the word ‘any’ is applied
to this totality in Heyting’s axioms [...] Totalities whose elements cannot be generated by a
well-defined procedure are in some sense vague and indefinite as to their borders. And this
objection applies particularly to the totality of intuitionistic proofs because of the vagueness
of the notion of constructivity. Therefore this foundation of classical arithmetic by means of
the notion of absurdity is of doubtful value. (Godel, 1933b, p.53)

1361 25: “1. 17 Gen r is not k-provable”.
137 Albeit surmountable today, once the source of the ambiguity is identified and removed, since PA is finitarily
consistent (see §2.C., Theorem 2.16).
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A draft of this passage in Godel’s archive does not quite end with rejection of Heyting’s logic.
Instead, it reflects:

Therefore you may be doubtful [sic] as to the correctness of the notion of absurdity and
as to the value of a proof for freedom from contradiction by means of this notion. But
nevertheless it may be granted that this foundation is at least more satisfactory than the
ordinary platonistic interpretation [...]

Either way, the doubt about, or objection to, the notion of absurdity immediately generalises to
implication as such.

It is remarkable, given the construction of Gédel’s talk, in which the discussion of the intuitionistic
logical connectives is preceded by an argument against the use of impredicative definitions for
foundational purposes, that the objection Gddel puts forward is not that Heyting’s principles for
absurdity are impredicative, but that they are vague. Impredicativity of course entails constructive
undefinability and in that sense vagueness, and it is possible that Gédel had seen the problem of
impredicativity but thought that, in the context of a consistency proof that is looked for because
of its epistemic interest, vagueness is the more important thing to note, even if impredicativity is
the cause of it.”

...van Atten: [At17], pp.6-7.

11.B.c. Conception of Truth in Intuitionism

The following review of the concept of truth in Intuitionism by Panu Raatikainen, in [Raa04],
highlights that the consequence, of what we have termed as the ‘atheistic’ denial of the Law
of the Excluded Middle in Intuitionistic calculi, has been to treat the concept of ‘truth’ in
Intuitionism as a constructive alternative—rather than as the complement suggested by the
Complementarity Thesis (§1., Thesis 1)—to the concept of ‘proof’ in formal argumentation,
entailed by what we have termed as the ‘theistic’ assumption of the validity of Aristotle’s
particularisation in any well-defined interpretation of Hilbert’s e-calculus:

“I will end by recalling what Heyting once said is the aim of intuitionism: ‘We look for a
basis of mathematics which is directly given and which we can immediately understand without
philosophical subtleties’ (Heyting 1974, p. 79). It is arguable that after almost a hundred years of
intensive attempts, intuitionism has not yet succeeded in this. Above, we have examined the three
basic choices there are for the intuitionistic theory of truth, the strict actualism, the liberalized
actualism and possibilism, and found all them wanting.

In this Appendix, I shall deal solely with the later intuitionism which has a more positive view of
logic than the orthodox intuitionism of Brouwer, according to which mathematics is absolutely
independent of logic. Indeed, much of contemporary intuitionism, or constructivism, views
mathematics simply as deriving theorems with the help of intuitionistic logic from intuitionistically
acceptable axioms (and whatever principles used in proofs not covered by intuitionistic logic).
Thus e.g. Bridges says that in practice what the contemporary constructive mathematicians are
doing amounts to ‘doing mathematics with intuitionistic logic’ (Bridges 1997).

Another popular trend in the present-day intuitionism is to emphasize that one should recognize
a proof when one sees one.?® This idea derives from Kreisel, and has been pressed repeatedly
especially by Dummett. More formally, it is expressed by the requirement that the proof relation
must be decidable. It is indeed arguable that such a requirement is necessary for the intuitionistic
epistemology. It also harmonizes well with Heyting’s view that ‘[a] mathematical construction
ought to be so immediate to the mind and its result so clear that it needs no foundation whatsoever’
(Heyting1956b, p. 6).

The whole picture I want to consider here is beautifully expressed by Sundholm: ‘Proofs begin
with immediate truths (axioms), which themselves are not justified further by proof, and continue
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with steps of immediate inference, each of which cannot (be) further justified by proof’ (Sundholm
1983, p. 162). I shall next argue that the two above ideas are incompatible. (Interestingly, also
Beeson (1985) denies the decidability of proof relation. He ends up with this conclusion somewhat
differently than the way I do.)

For simplicity, let us focus on the provability in the language of arithmetic L(HA). Now given a
finite sequence of formulas, it is certainly possible to check effectively whether every step in it is
an application of intuitionistically acceptable rule of inference. But how about the premises? Only
if one can in addition see that all the premises of a derivation are intuitionistically true one can
say that one has a proof of the conclusion at hand. This is at least in principle possible if axiom
hood is a decidable property. However, in the intuitionistic setting, it cannot be! For if it was, the
intuitionistic provability could be captured by a formalized system. And then, by Godel’s theorem,
there would be truths that are unprovable, contrary to the basic principle of intuitionism, which
equates truth with provability.

The situation is actually even much worse—I doubt that it is generally realized how bad it really
is. Not only must the set of admissible axioms be undecidable. It cannot be semi-decidable, i.e.
recursively enumerable (X9), it cannot be Trial-and-Error decidable (A9); it cannot be anywhere
in the arithmetical hierarchy (not X9 for any n). (Here I assume that the notions of arithmetical
hierarchy, or at least the idea of being definable in the language of arithmetic, make sense; in
practice quite many contemporary intuitionists seem to accept them.) For assume that the property
of being an admissible axiom were definable by an arithmetical formula (however complex). This
implies that also provability is definable in the language of arithmetic. Then one can apply Godel’s
technique and construct a statement of the language which is unprovable but true.

Thus the totality of intuitionistically provable sentences (already, restricted to L(HA) i.e. the
arithmetical sentences) necessarily is non-arithmetical, i.e. at least hyperarithmetical (A}l). But
this means that they are just as abstract and inaccessible as truth in classical arithmetic. The
same holds already for the alleged axioms, that is, ‘the immediate truths’. But certainly non-
arithmeticality makes the sphere of ‘the immediate truths’ implausibly complex and inaccessible.
If one cannot tell whether the premises used in a derivation are acceptable, that is, true, or not,
one cannot tell whether one has a genuine proof before one’s eyes or not, contrary to the standard
assumption of contemporary intuitionism.”

... Raatikainen: [Raa04]

11.C. Finitary agnosticism

Finally, the evidence-based reasoning in [An16] shows that we can avoid both Hilbertian and
Brouwerian ‘omniscience’, in our foundational assumptions, by adopting what may be labelled
as a finitarily ‘agnostic’—essentially Wittgensteinian (see also §12.A.; §13.)—perspective; and
noting that although, if Aristotle’s particularisation holds in an interpretation of a FOL then
LEM must also hold in the interpretation, the converse is not true (see §8.D., Corollary 8.15).

“What really matters to Wittgenstein is not the denial that an arithmetical term has a meaning,
but rather that this meaning is an ideal object, named or described by the term. In his view, even
the distinction between a numeral and a number is quite legitimate, in perfect analogy with the
distinction, explicitly made by him, between a propositional sign (Satzzeichen) and a proposition
(Satz). That between numerals and numbers is not an ontological distinction between two kinds of
entities (material entities versus ideal entities), but a distinction between two ways of considering
the one linguistic reality: the way in which one considers a sign as a mere physical entity and the
way in which one takes into account its role of notational device to represent a certain formal
property.®® Nonetheless, a point has to be stressed, which to a large extent shortens Wittgenstein’s
distance from formalism and justifies, in my opinion, the description of his earlier conception of
mathematics as quasi-formalistic (a label that, as we shall see, is fitting for every stage of the whole
development of his philosophy of mathematics). The recognition of the mutual reducibility of two
models of linguistic construction—when calculation is required—is the outcome of a rule-governed
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process of transformation of a certain grouping of the elements of a string of “Q”, ezhibiting
the first model, into a different one, exhibiting the second model. Thus, although arithmetical
signs within calculations are not considered as mere physical structures, doing mathematics is
appropriately described as a sign manipulation activity.

The last remark leads us to the comparison with intuitionism. We have said that the reference to
vision, intuition or immediate recognition plays a decisive role in Wittgenstein’s conception of our
“knowledge” of the formal domain. And there is also a certain similarity between Wittgenstein’s the-
ses on the purely instrumental role assigned to mathematical notation and even to the formulation
of theorems (equations), on the one hand, and certain typical ideas of Brouwer concerning logical
and mathematical language, on the other. However, a decisive element of disagreement between
the two conceptions can be easily identified. When Wittgenstein, dealing with mathematics and
logic, speaks of vision, he does not intend to supply a psychological foundation to mathematical
activity. Rather, he resorts to the notion of intuition or to the metaphor of vision to describe the
relationship between speakers and what is shown by language (the domain of necessity) and to
contrast it with the meaningful expression of a thought (the picture of a contingent state of affairs).
It goes without saying that all this has nothing to do with the psychologization of mathematics of
intuitionists. 607

... Frascolla: [Fra9}], § Foundations of Mathematics (I), p.40.

The significance of the label ‘agnostic’ is that an evidence-based perspective:

(a) Neither shares an ascetic Brouwerian faith which unnecessarily denies appeal to LEM,
and, ipso facto, to the consistency of FOL—in which LEM is a theorem—since such
consistency follows immediately (see §8.D., Theorem 8.13) from the finitary proof of
consistency for the first order Peano Arithmetic PA in [An16], Theorem 6.8 (p.41; see
also §2.C.a., Theorem 2.16);

(b) Nor shares a libertarian Hilbertian faith that unrestrictedly admits Aristotle’s particulari-
sation over infinite domains (see §8.D., Corollary 8.12).

Moreover, recognising such distinction has significant consequences for the the natural
sciences in general, and cognitive sciences in particular, since they yet subscribe unquestioningly
to the, not uncommon, perception'® that Godel’s Incompleteness Theorems set absolute limits
on the ability of the brain to express and communicate mental concepts verifiably.

On the contrary, both the classical and intuitionistic interpretations of quantification yield
interpretations of the first-order Peano Arithmetic PA—over the structure N of the natural
numbers—that are complementary, not contradictory.

The former yields the weak standard interpretation Zp,w, svy of PA over N, which is
well-defined with respect to weak non-finitary assignments of algorithmically verifiable Tarskian
truth values Ty to the formulas of PA under Zp 4y, sv) and which, from a perspective such
as that of John Lucas’ Godelian Thesis ([Lu61]; [Lu96]), can be viewed as circumscribing the
ambit of non-finitary human reasoning about ‘true’ arithmetical propositions (see §2.F.).

The latter yields a strong finitary interpretation Zp 4, so) of PA over N, which is construc-
tively well-defined (in the sense of §12.; Definitions 29 to 31) with respect to strong finitary
assignments of algorithmically computable Tarskian truth values T to the formulas of PA
under Zp 4y, sc) and which, from the perspective of Lucas’ Godelian Thesis, can be viewed as
circumscribing the ambit of finitary mechanistic reasoning about ‘true’ arithmetical propositions;
where we tentatively define:

138 Addressed informally from a naive perspective in [An04].
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Definition 28. (Well-defined interpretation) An interpretation Z of a formal language L,
over a domain D of a structure S, is constructively well-defined relative to an assignment of
truth values Tt to the formulas of L if, and only if, the provable formulas of L interpret as true
over D under I relative to the assignment of truth values T7.

Of interest is Frank Waaldijk’s perspective, which particularly emphasises the need for such
a unified, constructive, foundation for the mathematical representation of elements of reality
such as those considered in [LR0O0] (see also §25.):

“Our investigations lead us to consider the possibilities for ‘reuniting the antipodes’. The antipodes
being classical mathematics (CLASS) and intuitionism (INT). ...It therefore seems worthwhile to
explore the ‘formal’ common ground of classical and intuitionistic mathematics. If systematically
developed, many intuitionistic results would be seen to hold classically as well, and thus offer
a way to develop a strong constructive theory which is still consistent with the rest of classical
mathematics. Such a constructive theory can form a conceptual framework for applied mathematics
and information technology. These sciences now use an ad-hoc approach to reality since the classical
framework is inadequate. ... [and can] easily use the richness of ideas already present in classical
mathematics, if classical mathematics were to be systematically developed along the common
grounds before the unconstructive elements are brought in.”

... Waaldigk: [W103], §1.6, p.5).

11.C.a. The significance of finitary agnosticism

The significance of finitary agnosticism, and of the entailed evidence-based, strong proof (see
[An16], Theorems 6.7 and 6.8, p.41; also §2.C., Theorem 2.16) of the consistency of the
first-order Peano Arithmetic PA, for Hilbert’s Program, and its consequences for a coherent
philosophy of the nature of mathematics and of mathematical truth, is highlighted in Pantsar’s
following, remarkaably incisive, analysis of the inter-relationship between what he calls pre-
formal mathematics, formal mathematics, and Tarski’s definitions of the satisfaction and truth
of the formulas of a formal system under a well-defined interpretation:

“The concept of pre-formal mathematical thinking is essential to this work, and it needs elaboration.
The details that we attribute to preformal thinking, however, should not be considered to be
crucial for the arguments here. More important is the fact that the phenomenon of pre-formal
thinking exists, and that it is bound to bear enough resemblance to the account here in its central
facets. As it is presented in this work, pre-formal mathematics consists of two sides. First, there
is the individual learning of mathematical concepts, to which we will return later. Second, even
those who are familiar with mathematical formalism still use the pre-formal element in their
thought process all the time, even when the results get a purely formal presentation. Constructing
a mathematical proof is not only about mechanically grinding out the formalism; it also includes
the crucial stage of discovering the connections and ideas that will be the basis for the formal
presentation. One crucial part of this is the discovery of new mathematical theorems. Of course
this only concerns a minuscule part of all the practising mathematicians, but that part is all the
more interesting.

Because of the elusive and heterogenic subject matter, comprehensive psychological studies of
mathematical discovery/invention are obviously too much to ask. The best we have are the
regrettably few accounts of the subjective experiences of mathematicians. Although obsolete in its
psychological terminology, the mathematician Jacques Hadamard’s The Psychology of Invention
in the Mathematical Field (1954) is probably still the most important work in this area. The bulk
of that book is based on Henri Poincaré’s account of mathematical invention, where such matters
as the unconscious element, mental images and the aesthetic aspects of mathematical discovery
are given an important role. In Hadamard’s research he found out that most mathematicians
shared similar experiences. The details of them are fascinating, but as such not central to this
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work. What is important is that Hadamard’s book gives us clear evidence that the psychology of
mathematical invention is not reducible to the neat formal accounts that are the end product of
mathematical studies. Mathematical thinking as a human phenomenon is a vastly more complex
and broad field.

However, it must be remembered that Hadamard is concerned with the discovery of mathematical
truths, which is only half of the picture. At least as important is the way that we justify believing
in such supposed truths. That of course happens ultimately by proving them. Mathematical
discovery/invention by itself could be thoroughly un-mathematical-—which it of course is not—but
as long as the discovered/invented theorems can be proven, the nonformal elements included in the
discovery could be philosophically irrelevant. But from Hadamard’s book we get a different picture.
The psychology of mathematical invention is closely connected to the formal mathematics, and all
our non-formal ways of processing mathematics make for an indispensable part of mathematics as
a human phenomenon. I want to extend that conclusion to mathematical thinking in general, and
not just the context of discovery.

Of course this approach as such is nothing drastic: even extreme formalists would not claim
that mathematics does not include a non-formal element. What they do claim is that in the
philosophical accounts of mathematics this element is essentially superfluous. However, in this
chapter I will argue that this is not the case. The recognition of pre-formal mathematical thinking
is essential to the philosophy of mathematics. In the model proposed in Chapter 4.3, mathematics
consisted of three parts. Starting from the end product, the part (1) is formal mathematics. The
part (2) is pre-formal mathematics, which is our actual mathematical thinking, how we process
mathematics “in our heads”. This part is essentially semantical, dealing with the meanings of the
theorems of formal mathematics. That is why in the pre-formal part we use examples, diagrams
and informal presentations—they give us a better understanding of the meanings of the formal
concepts. The part (3) is the reference of pre-formal mathematics, that is, the subject matter of
mathematics: what the theorems of mathematics ultimately refer to.

How are these parts of mathematical thinking connected to each other? Proof is obviously in
the realm of formal mathematics, and it is designed to correspond to our pre-formal ideas of
truth, which in turn corresponds to the part (3), the final subject matter of mathematics. In
this way, there is a connection through all the stages. Had Hilbert’s program been established
successfully, formal theories of mathematics could describe a direct correspondence between
the parts (1) and (3). However, that would not have done anything to make the pre-formal
thinking obsolete. In the practice of mathematics it would most likely have caused no changes.
Certainly the completeness and consistency of formal systems would have been important results
in the philosophy of mathematics: ultimately, they would have shown pre-formal thinking to be
superfluous in the connection between formal mathematics and their references. But even so, it
would not have changed the fact that human beings process mathematics semantically. Although
the philosophical importance of pre-formal thinking may have been diminished, all three levels
of mathematics would still have been needed to make a theory of philosophy of mathematics
complete. Knowing what happened to Hilbert’s formalist program, it is all the more important to
recognize all three levels.”

... Pantsar: [Pan09], §4.5 Pre-formal mathematics.

What is striking about Pantsar’s illuminating perspective of the inter-relation between his
pre-formal mathematics, formal mathematics, and classical Tarskian truth definitions, is that:

— since the strong proof (see [An16], Theorems 6.7 and 6.8, p.41; also §2.C.a., Theorem 2.16)
of the consistency of the first-order Peano Arithmetic PA validates Hilbert’s Program
(see [Zac0T]),

— by essentially providing the finitary proof of consistency for arithmetic that Hilbert had
sought when articulating the second of his twenty three Millenium problems (see [Hi00])
at the 1900 International Congress of Mathematicians in Paris,
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Tarski’s definitions:

— when evidence-based (in the sense of §7.C.), and applied strongly (see [Anl6], §6, p.40;
see also §2.C.), show ‘pre-formal thinking to be superfluous in the connection between
formal mathematics and their references’; whilst

— when faith-based (in the sense of §7.B.), and applied weakly (see [Anl6], §5, p.38; see
also §2.B.), could establish a possible reference between pre-formal mathematics and ‘our

29

actual mathematical thinking, how we process mathematics “in our heads”’,

— which, essentially, is that which can be viewed as corresponding to what Pantsar’s pre-
formal mathematics seeks to express formally—in the sense of Carnap’s explicandum in
[Cab2al; or of Gamez’s ‘C-theory’ in [Gam18], F, p.79; or of what some cognitive scientists,
such as Lakoff and Nufiez in [LRO0] (see also §25.), term as ‘conceptual metaphors’.

From the evidence-based interpretation of this investigation, the above perspective can also
be viewed as asserting that:

— what can be conceived as justifiably true in pre-formal mathematics,
— exceeds that which can be proven in formal mathematics,

— which exceeds that which can be evidenced as algorithmically verifiable truths in formal
mathematics,

— which exceeds that which can be evidenced as algorithmically computable truths and, ipso
facto, which can be categorically communicated as mathematical knowledge in formal
mathematics.

The mathematical significance of this can be variously seen, for instance, in:

(a) the pictorial proof of §21.A., Proposition 21.2 (The prime factors of an integer are mutually
independent), and its entailment

(a’) §21.A., Proposition 21.5 (P#NP by Eratosthenes sieve); vis a vis

(b) the algorithmically verifiable proof of §21.A.c., Theorem 21.12 (The prime factors of an
integer are mutually independent); and its entailment

(b’) §21.A.f., Theorem 21.16 (FACTORISATION is not in P); as well as

(c) the algorithmically verifiable proof of §20.D., Corollary 20.2 (Lucas’ Godelian Thesis);
and its entailment

(¢) §20.E., Query 21 (Turing Test).

(d) the algorithmically computable proof of §2.C.a., Theorem 2.16 (PA is strongly consistent);
and its entailment

(d) §2.E.b., Corollary 2.18 (PA is categorical).
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11.D. Theological metaphors in mathematics

The significance of, and justification for, the theological distinction sought to be made in this
investigation is highlighted by philosopher Stanislaw Krajewski in a relatively recent review of
the unsettling ‘omniscient theological’ claims that mathematics has sought—and yet seeks—to
impose upon those whom it should seek to serve (in the sense sought to be elaborated in §13.C.).

11.D.a. Brouwer’s intuitionism seen as mysticism

For instance we note that, from Krajewski’s perspective:

“Brouwer created mathematical intuitionism and was a mystic. The relationship between the
two must not be excluded even though Brouwer seemed to deny any connection. In 1915, he
wrote that neither “practical nor theoretical geometry can have anything to do with mysticism.”
(after van Dalen, 1999, 287) On the other hand, in a 1948 lecture Consciousness, Philosophy, and
Mathematics, he summed up his famous picture of the mental — or, indeed, is it mystical? — origins
of arithmetic, and eventually of the whole of mathematics:

‘Mathematics comes into being, when the two-ity created by a move of time is divested
of all quality by the subject, and when the remaining empty form of the common
substratum of all two-ities, as a basic intuition of mathematics is left to an unlimited
unfolding, creating new mathematical entities ..." (Brouwer, 1949, 1237; or 1975, 482)”.

... Krajewski: [Kri6].

In [ATO03], Mark van Atten and Robert Tragesser note how the ephemeral nature of
Brouwer’s ‘mysticism’—and the relevance of his, by conviction ‘mathematically inarticulable’,
intuitionistic beliefs for the foundations of mathematics—may escape rational articulation;
and the dramatically contrasting ways in which not only Brouwer, but also Godel-—although
arguably at opposite philosophical poles—perceived their own mystical beliefs and vainly
strained— in the absence of a common evidential yardstick for defining arithmetical truth—to
seek subjectively sustainable bases for their respective dogmas.

Comment: Namely, Brouwer’s rejection of LEM as non-constructive, and Godel’s ’omnisciently’
believing all formal arithmetics to be w-consistent, both of which we show as mistaken (the first
as an immediate consequence of §8.D., Theorem 8.13; and the second by §2.F., Corollary 2.22 and,
independently, by §12.A.f., Theorem 12.6).

11.D.b. The unsettling consequences of belief-driven mathematics

In his review Krajewski stresses the disquieting consequences of such belief-driven mathematics:

“FExamples of possible theological influences upon the development of mathematics are indicated.
The best known connection can be found in the realm of infinite sets treated by us as known or
graspable, which constitutes a divine-like approach. Also the move to treat infinite processes as if
they were one finished object that can be identified with its limits is routine in mathematicians,
but refers to seemingly super-human power. For centuries this was seen as wrong and even today
some philosophers, for example Brian Rotman, talk critically about “theological mathematics”.
Theological metaphors, like “God’s view”, are used even by contemporary mathematicians. While
rarely appearing in official texts they are rather easily invoked in “the kitchen of mathematics”.
There exist theories developing without the assumption of actual infinity the tools of classical math-
ematics needed for applications (For instance, Mycielski’s approach). Conclusion: mathematics
could have developed in another way. Finally, several specific examples of historical situations are
mentioned where, according to some authors, direct theological input into mathematics appeared:
the possibility of the ritual genesis of arithmetic and geometry, the importance of the Indian
religious background for the emergence of zero, the genesis of the theories of Cantor and Brouwer,
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the role of Name-worshipping for the research of the Moscow school of topology. Neither these
examples nor the previous illustrations of theological metaphors provide a certain proof that
religion or theology was directly influencing the development of mathematical ideas. They do
suggest, however, common points and connections that merit further exploration.”

... Krajewski: [Kri6].

The disquieting, ‘reality-denying’, consequences of Krajewski’s point that:

“...the move to treat infinite processes as if they were one finished object that can
be identified with its limits is routine in mathematicians, but refers to seemingly
super-human power.”

is seen in §19.C., where we are confronted with 2-dimensional geometrical models, of infinite
processes expressing plausible real-world examples, that have well-defined geometrical limits
which do not, however, correspond to their ‘limiting’ configurations in a putative ‘completion’
of Euclidean Space.

As we argue in §7.1., Theorem 7.5, since every real number is specifiable in PA instead
of defining real numbers as the putative limits of putatively definable Cauchy sequences'
which ‘exist’ in some omniscient Platonic sense in the interpretation of an arithmetic, we can
alternatively define—from the perspective of constructive mathematics, and seemingly without
any loss of generality—such numbers instead by their evidence-based, algorithmically verifiable,
number-theoretic functions (as defined in §7.C.) that formally express—in the sense of Carnap’s
‘explication’ —the corresponding Cauchy sequences, viewed now as non-terminating processes
in the standard interpretation of the arithmetic that may, sometimes, tend to a discontinuity
(see §19.C., Cases 1-4).

Moreover, as Krajewski further notes—and implicitly questions—the dichotomy in accepting
omniscient ‘limits’ on the basis of, seemingly subjective, ‘self-evidence’ comes at an unacceptable
price: it compels the prevalent double-standards in addressing mathematical and logical concepts
that are defined in terms of ‘infinite’ processes:

“Up to the 18th century only potential infinity was considered meaningful. For example, Leibniz
believed that “even God cannot finish an infinite calculation.” (Breger, 2005, 490) Since the 19th
century we have been using actually infinite sets, and for more than a hundred years we have
been handling them without reservations. Nowadays students are convinced that this is normal
and self-evident as soon as they begin their study of modern mathematics. This constitutes the
unbelievable triumph of Georg Cantor. There may have been precursors of Cantor, and as early as
five centuries before him there had been ideas about completing infinite additions—as documented
in the paper by Zbigniew Krdl in the present volume—but clearly it was Cantor who opened to us
the realm of actually infinite structures.

As is well known, we handle, or at least we pretend we can handle, with complete ease the following
infinite sets (and many other ones): the set of (all) natural numbers, real numbers etc.; the
transfinite numbers—even though the totality of all of them seems harder to master; the set of
(all) points in a given space, the sets of (all) functions, etc.

It is apparent that we behave in the way described by Boethius or Burley as being proper to
God. Infinite structures are everyday stuff for mathematicians. What is more, we are used to
handling infinite families of infinite structures. Thus the set (class) of all models of a set of axioms
is routinely taken into account as is the category of topological spaces and many other categories

139¢putatively definable’ since not all Cauchy sequences are algorithmically computable (see §7.G., Theorem

7.2). The significance of this distinction for the physical sciences is highlighted in §22.D. and §22.D.a..
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approached as completed entities. In addition, in mathematical logic one unhesitantly considers
such involved sets as the set of all sentences true in a specific set theoretical structure or in each
member of an arbitrary family of structures.

Such behavior is so familiar that no mathematician sees it as remarkable. But the fact is that this
is like being omniscient. We do play the role of God or, rather, the role not so long ago deemed
appropriate only for God!

From where could the idea of actual infinity in mathematics have arisen? The only other examples
of talk that remind of actual infinity are religious or theological, as the just mentioned verses from
the psalms indicate. This fact is suggestive but it does not constitute a proof that post-Cantorial
mathematics was derived from theology. Actually, we know that Cantor was stimulated by internal
mathematical problems of iterating the operation of the forming of a set of limit points and
performing the “transfinite” step in order to continue the iteration. This fact leads to a more
general issue of infinite processes.”

... Krajewski: [Kri16].

11.D.c. Does mathematics really ‘need’ to be omniscient?

The ‘need’ for an omniscience that permits ‘reification’ of a putative infinite process—as in the
postulation of an Axiom of Choice—is frowned upon by Krajewski (also shown as dispensable
from a cognitive perspective by Lakoff and Nunez in [LRO0]; see also §25.), since it merely
obscures the lack of well-definedness—in the sense of evidence-based justification as detailed in
§7.F. (Definition 23)—of the infinite process and, ergo, of any consequences that appeal to the
Axiom:

“Another historically important example of a reification of an infinite action is provided by the
Axiom of Choice. Choosing one element from each set of an arbitrary family of (disjoint) sets must
constitute a series of movements; if the family is infinite it must be an infinite series of operations.

If there is a single rule according to which the choice is done then the resulting set of representatives
can be defined and can be relatively safely assumed to exist. In the case of an arbitrary family
of sets there is no such definition, and it is necessary to postulate the existence of the selection
set. Its existence is not self-evident. The first uses of the Axiom of Choice were unconscious, but
seemed natural to the advocates of unrestricted infinite mathematics. However, when the use of
this axiom became understood, opposition against it arose. Among the opponents were important
mathematicians, like the French “semi-intuitionists”, who did handle infinite operations, but felt
that some limitations were necessary. For example, in 1904 Emile Borel claimed that arbitrary
long transfinite series of operations would be seen as invalid by every mathematician. According
to him the objection against the Axiom of Choice is justified since “every reasoning where one
assumes an arbitrary choice made an uncountable number of times ... is outside the domain of
mathematics”. Interestingly, against Borel, Hadamard saw no difference between uncountable and
countable infinite series of choices. He rejected, however, an infinity of dependent choices when
the choice made depends on the previous ones. (Borel 1972, 1253) All t