
Cognitive Systems Research. This is the author’s updated version of DOI: 10.1016/j.cogsys.2016.02.004Cognitive Systems Research. This is the author’s updated version of DOI: 10.1016/j.cogsys.2016.02.004

The Truth Assignments That Differentiate

Human Reasoning From Mechanistic Reasoning

The Evidence-Based Argument for Lucas’ Gödelian Thesis
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Abstract. We consider the argument that Tarski’s classic definitions permit an intelligence—whether human or mechanistic—to

admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic
PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of

classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions

correspond to two distinctly different assignments of satisfaction and truth to the compound formulas of PA over N—IPA(N, SV )

and IPA(N, SC). We further show that the PA axioms are true over N, and that the PA rules of inference preserve truth over

N, under both IPA(N, SV ) and IPA(N, SC). We then show: (a) that if we assume the satisfaction and truth of the compound

formulas of PA are always non-finitarily decidable under IPA(N, SV ), then this assignment corresponds to the classical non-finitary
putative standard interpretation IPA(N, S) of PA over the domain N; and (b) that the satisfaction and truth of the compound

formulas of PA are always finitarily decidable under the assignment IPA(N, SC), from which we may finitarily conclude that PA is

consistent. We further conclude that the appropriate inference to be drawn from Gödel’s 1931 paper on undecidable arithmetical
propositions is that we can define PA formulas which—under interpretation—are algorithmically verifiable as always true over N,

but not algorithmically computable as always true over N. We conclude from this that Lucas’ Gödelian argument is validated if

the assignment IPA(N, SV ) can be treated as circumscribing the ambit of human reasoning about ‘true’ arithmetical propositions,
and the assignment IPA(N, SC) as circumscribing the ambit of mechanistic reasoning about ‘true’ arithmetical propositions.
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1. Introduction

We briefly consider a philosophical challenge that arises when an intelligence—whether human or
mechanistic—accepts arithmetical propositions as true under an interpretation—either axiomatically
or on the basis of subjective self-evidence—without any specified methodology for evidencing such
acceptance1.

For instance conventional wisdom, whilst accepting Alfred Tarski’s classical definitions of the satisfi-
ability and truth of the formulas of a formal language under an interpretation as adequate to the in-
tended purpose, postulates that under the classical putative standard interpretation IPA(N, Standard, Cl−
assical)

2 of the first-order Peano Arithmetic PA3 over the domain N of the natural numbers:

(i) The satisfiability/truth of the atomic formulas of PA can be assumed as uniquely
decidable under IPA(N, S);

(ii) The PA axioms can be assumed to uniquely interpret as satisfied/true under IPA(N, S);

(iii) The PA rules of inference—Generalisation and Modus Ponens—can be assumed to
uniquely preserve such satisfaction/truth under IPA(N, S);

(iv) Aristotle’s particularisation4 can be assumed to hold under IPA(N, S).

We shall argue that the seemingly innocent and self-evident assumptions of uniqueness in (i) to
(iii)—as also the seemingly innocent assumption in (iv) which, despite being obviously non-finitary,
is unquestioningly accepted in classical literature5 as equally self-evident under any logically unexcep-
tionable interpretation of the classical first-order logic FOL—conceal an ambiguity with far-reaching
consequences.

The ambiguity is revealed if we note6 that Tarski’s classic definitions permit both human and mech-
anistic intelligences to admit finitary7 evidence-based definitions of the satisfaction and truth of the
atomic formulas of PA over the domain N of the natural numbers in two, hitherto unsuspected and
essentially different, ways:

(1a) In terms of classical algorithmic verifiabilty; and

(1b) In terms of finitary algorithmic computability.

We shall show8 that:

(2a) The two definitions correspond to two distinctly different assignments of satisfaction
and truth to the compound formulas of PA over N—say IPA(N, Standard, V erifiable) and
IPA(N, Standard, Computable)

9; where

1For a brief recent review of such challenges, see [Fe06], [Fe08]; also [An04] and Rodrigo Freire’s informal essay on
‘Interpretation and Truth in Cantorian Set Theory ’.

2See Section 9., Appendix A. We shall refer to this henceforth as IPA(N, S).
3We take this to be the first-order theory S defined in any standard text such as [Me64], p.102.
4See Section 9., Appendix A. Informally, Aristotle’s particularisation is the non-finitary assumption that an assertion

such as, ‘There exists an x such that F (x) holds’—usually denoted symbolically by ‘(∃x)F (x)’—can always be validly
inferred in the classical logic of predicates from the assertion, ‘It is not the case that: for any given x, F (x) does not
hold’—usually denoted symbolically by ‘¬(∀x)¬F (x)’ ([HA28], pp.58-59).

5See Section 9., Appendix A.
6See [An12] and [An15].
7We mean ‘finitary’ in the sense that “. . . there should be an algorithm for deciding the truth or falsity of any math-

ematical statement” . . . http://en.wikipedia.org/wiki/Hilbert’s program. For a brief review of ‘finitism’ and ‘constructivity’
in the context of this paper see [Fe08].

8cf. [An12] and [An15].
9We shall refer to these henceforth as IPA(N, SV ) and IPA(N, SC) respectively.

http://alixcomsi.com/Freire_Interpretation and Truth in Cantorian Set Theory_3.pdf
http://en.wikipedia.org/wiki/Hilbert's_program
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(2b) The PA axioms are true over N, and the PA rules of inference preserve truth over N,
under both IPA(N, SV ) (Section 5.A.) and IPA(N, SC) (Section 6.A.).

We shall then show that10:

(3a) If we assume the satisfaction and truth of the compound formulas of PA are always
non-finitarily decidable under the assignment IPA(N, SV ), then this assignment defines a
non-finitary interpretation of PA in which Aristotle’s particularisation always holds over
N; and which may be taken to correspond to the intended (putative) classical non-finitary
standard interpretation IPA(N, S) of PA over the domain N—from which only a human
intelligence may non-finitarily conclude that PA is consistent; whilst

(3b) The satisfaction and truth of the compound formulas of PA are always finitarily
decidable under the assignment IPA(N, SC), which thus defines a finitary interpretation of
PA—from which both intelligences may finitarily conclude that PA is consistent11.

We shall show further that both intelligences would logically conclude that:

(4a) The assignment IPA(N, SC) defines a subset of PA formulas that are algorithmically
computable as true under the putative standard interpretation IPA(N, S) if, and only if,
the formulas are PA provable;

(4b) PA is not ω-consistent12; and

(4c) PA is categorical with respect to algorithmic computability.

Both intelligences would also logically conclude that:

(5a) Since PA is not ω-consistent, Gödel’s argument in [Go31] (p.28(2))—that “Neg(17Gen r)
is not κ-PROVABLE”13—does not yield a ‘formally undecidable proposition’ in PA14;

(5b) The appropriate conclusion to be drawn from Gödel’s argument in [Go31] (p.27(1))—
that “17Gen r is not κ-PROVABLE”—is that his ‘undecidable arithmetical proposition’
is an instantiation of the argument15 that we can define number-theoretic formulas which
are algorithmically verifiable as always true, but not algorithmically computable as always
true.

We shall finally conclude from this that:

10cf. [An12] and [An15].
11As sought by David Hilbert for the second of the twenty three problems that he highlighted at the International

Congress of Mathematicians in Paris in 1900.
12See Section 9., Appendix A.
13The reason we prefer to consider Gödel’s original argument (rather than any of its subsequent avatars) is that,

for a purist, Gödel’s remarkably self-contained 1931 paper—it neither contained, nor needed, any formal citations—
remains unsurpassed in mathematical literature for thoroughness, clarity, transparency and soundness of exposition, from
first principles (thus avoiding any implicit mathematical or philosophical assumptions), of his notion of arithmetical
‘undecidability’ as based on his Theorems VI and XI and their logical consequences.

14We note that if PA is not ω-consistent, then Aristotle’s particularisation does not hold in any finitary interpretation
of PA over N. Now, J. Barkeley Rosser’s ‘undecidable’ arithmetical proposition in [Ro36] is of the form [(∀y)(Q(h, y)→
(∃z)(z ≤ y∧S(h, z)))]. Thus his ‘extension’ of Gödel’s proof of undecidability too does not yield a ‘formally undecidable
proposition’ in PA, since it assumes that Aristotle’s particularisation holds when interpreting [(∀y)(Q(h, y)→ (∃z)(z ≤
y ∧ S(h, z)))] under a finitary interpretation over N ([Ro36], Theorem II, pp.233-234; [Kl52], Theorem 29, pp.208-209;
[Me64], Proposition3.32, pp.145-146).

15Corresponding to Cantor’s diagonal argument and Turing’s halting argument as reflected in Theorem 2.1.
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Lucas’ Gödelian argument16 is validated if the assignment IPA(N, SV ) can be treated as
circumscribing the ambit of human reasoning about ‘true’ arithmetical propositions, and
the assignment IPA(N, SC) can be treated as circumscribing the ambit of mechanistic
reasoning about ‘true’ arithmetical p[ropositions.

2. Defining algorithmic verifiability and algorithmic computability

We begin by introducing the following two concepts:

Definition 1. Algorithmic verifiability:

A number-theoretical relation F (x) is algorithmically verifiable if, and only if, for any given natural
number n, there is an algorithm AL(F, n) which can provide objective evidence17 for deciding the
truth/falsity of each proposition in the finite sequence {F (1), F (2), . . . , F (n)}.

Definition 2. Algorithmic computability:

A number theoretical relation F (x) is algorithmically computable if, and only if, there is an algo-
rithm ALF that can provide objective evidence for deciding the truth/falsity of each proposition in the
denumerable sequence {F (1), F (2), . . .}.

We note that algorithmic computability implies the existence of an algorithm that can finitarily decide
the truth/falsity of each proposition in a well-defined denumerable sequence of propositions18, whereas
algorithmic verifiability does not imply the existence of an algorithm that can finitarily decide the
truth/falsity of each proposition in a well-defined denumerable sequence of propositions.

The following argument shows that although every algorithmically computable relation is algorithmi-
cally verifiable, the converse is not true.

Theorem 2.1. There are number theoretic functions that are algorithmically verifiable but not algo-
rithmically computable.

Proof : (a) Since any real number R is mathematically definable as the unique limit of a correspond-
ingly unique Cauchy sequence {Σn

i=0r(i).2
−i : n = 0, 1, . . .} of rational numbers:

� Let r(n) denote the nth digit in the decimal expression of the real numberR = Ltn→∞Σn
i=0r(i).2

−i

in binary notation.

� Then, for any given natural number n, Gödel’s β-function19 defines an algorithm AL(R, n) that
can verify the truth/falsity of each proposition in the finite sequence:

16Which Lucas advanced in [Lu61].
17cf. [Mu91]: “It is by now folklore . . . that one can view the values of a simple functional language as specifying

evidence for propositions in a constructive logic . . . ”.
18We note that the concept of ‘algorithmic computability’ is essentially an expression of the more rigorously defined

concept of ‘realizability’ in [Kl52], p.503.
19In Theorem VII of his 1931 paper Gödel defined ([Go31], p.31, Lemma 1; see also [Me64], p.131, Proposition 3.21)

a primitive recursive function—Gödel’s β-function—as:
β(x1, x2, x3) = rm(1 + (x3 + 1) ? x2, x1)

where rm(x1, x2) denotes the remainder obtained on dividing x2 by x1. Gödel then showed that, for any non-terminating
sequence of values f(x1, 0), f(x1, 1), . . ., we can construct natural numbers b, c such that:

(i) j = max(n, f(x1, 0), f(x1, 1), . . . , f(x1, n));
(ii) c = j!;
(iii) β(b, c, i) = f(x1, i) for 0 ≤ i ≤ n.

and that β(x1, x2, x3) is strongly represented in PA by [Bt(x1, x2, x3, x4)], which is defined as follows:
[(∃w)(x1 = ((1 + (x3 + 1) ? x2) ? w + x4) ∧ (x4 < 1 + (x3 + 1) ? x2))].
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{r(0) = 0, r(1) = 0, . . . , r(n) = 0}.

� Hence, for any real number R, the relation r(x) = 0 is algorithmically verifiable trivially.

(b) Since it follows from Alan Turing’s Halting argument20 that there are algorithmically uncom-
putable real numbers:

� Let r(n) denote the nth digit in the decimal expression of an algorithmically uncomputable real
number R in binary notation.

� By (a), the relation r(x) = 0 is algorithmically verifiable trivially.

� However, by definition there is no algorithm ALR that can decide the truth/falsity of each
proposition in the denumerable sequence:

{r(0) = 0, r(1) = 0, . . .}.

� Hence the relation r(x) = 0 is algorithmically verifiable but not algorithmically computable. �

3. Reviewing Tarski’s inductive assignment of truth-values under
an interpretation

We shall essentially follow standard expositions21 of Tarski’s inductive definitions on the ‘satisfiability’
and ‘truth’ of the formulas of a formal language under an interpretation where:

Definition 3. If [A] is an atomic formula [A(x1, x2, . . . , xn)]22 of a formal language S, then the
denumerable sequence (a1, a2, . . .) in the domain D of an interpretation IS(D) of S satisfies [A] if, and
only if:

(i) [A(x1, x2, . . . , xn)] interprets under IS(D) as a unique relation A∗(x1, x2, . . . , xn) in D
for any witness WD of D;

(ii) there is a Satisfaction Method that provides objective evidence23 by which any witness
WD of D can objectively define for any atomic formula [A(x1, x2, . . . , xn)] of S, and any
given denumerable sequence (b1, b2, . . .) of D, whether the proposition A∗(b1, b2, . . . , bn)
holds or not in D;

(iii) A∗(a1, a2, . . . , an) holds in D for any WD.

Witness: From a constructive perspective, the existence of a ‘witness’ as in (i) above is implicit in the
usual expositions of Tarski’s definitions.

Satisfaction Method: From a constructive perspective, the existence of a Satisfaction Method as in (ii)
above is also implicit in the usual expositions of Tarski’s definitions.

A constructive perspective: We highlight the word ‘define’ in (ii) above to emphasise the constructive
perspective underlying this paper; which is that the concepts of ‘satisfaction’ and ‘truth’ under an interpre-
tation are to be explicitly viewed as objective assignments by a convention that is witness-independent. A
Platonist perspective would substitute ‘decide’ for ‘define’, thus implicitly suggesting that these concepts
can ‘exist’, in the sense of needing to be discovered by some witness-dependent means—eerily akin to a
‘revelation’—if the domain D is N.

20[Tu36], p.132, §8.
21See Section 9., Appendix A.
22We shall use square brackets to indicate that the contents represent a symbol or a formula of a formal theory,

generally assumed to be well-formed unless otherwise indicated by the context.
23In the sense of [Mu91].
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We further define the truth values of ‘satisfaction’, ‘truth’, and ‘falsity’ for the compound formulas of
a first-order theory S under the interpretation IS(D) in terms of only the satisfiability of the atomic
formulas of S over D as usual24.

We now show how Tarski’s definitions yield two distinctly different ‘standard’ interpretations of the
first-order Peano Arithmetic PA.

4. The ambiguity in the classical putative standard interpretation
of PA over the domain N of the natural numbers

The classical putative standard interpretation IPA(N, S) of PA over the domain N of the natural
numbers is obtained if, in IS(D):

(a) we define S as PA with standard first-order predicate calculus as the underlying logic25;

(b) we define D as the set N of natural numbers;

(c) we assume for any atomic formula [A(x1, x2, . . . , xn)] of PA, and any given sequence
(b∗1, b

∗
2, . . . , b

∗
n) of N, that the proposition A∗(b∗1, b

∗
2, . . . , b

∗
n) is decidable in N;

(d) we define the witness W(N, Standard, Classical) informally as the ‘mathematical intuition’
of a human intelligence for whom, classically, (c) has been implicitly accepted as objectively
‘decidable’ in N.

(e) we postulate that Aristotle’s particularisation holds over N26.

Clearly, (e) does not form any part of Tarski’s inductive definitions of the satisfaction, and truth, of the
formulas of PA under the above interpretation. Moreover, its inclusion makes IPA(N, S) extraneously
non-finitary27.

We shall show that the implicit acceptance in (d) conceals an ambiguity that needs to be made explicit
since:

Lemma 4.1. A∗(x1, x2, . . . , xn) is both algorithmically verifiable and algorithmically computable in
N by W(N, Standard, Classical).

Proof (i) It follows from the argument in Theorem 5.1 (below) that A∗(x1, x2, . . . , xn) is algorithmi-
cally verifiable in N by W(N, Standard, Classical).

(ii) It follows from the argument in Theorem 6.1 (below) that A∗(x1, x2, . . . , xn) is algorithmically
computable in N by W(N, Standard, Classical). The lemma follows. �

We note without proof that28 (i) is consistent with, whilst (ii) is inconsistent with, the assumption of
Aristotle’s particularisation.

24See Section 9., Appendix A.
25Where the string [(∃ . . .)] is defined as—and is to be treated as an abbreviation for—the PA formula [¬(∀ . . .)¬]. We

do not consider the case where the underlying logic is Hilbert’s formalisation of Aristotle’s logic of predicates in terms
of his ε-operator ([Hi27], pp.465-466).

26This postulates that a PA formula such as [(∃x)F (x)] can always be taken to interpret under IPA(N, S) as ‘There is
some natural number n such that F (n) holds in N.

27As argued by Brouwer in [Br08].
28For a more detailed argument see [An12] and [An15].
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5. The standard verifiable interpretation IPA(N, SV ) of PA over N

We now consider a standard verifiable interpretation IPA(N, SV ) of PA, under which we define:

Definition 4. An atomic formula [A] of PA is satisfiable under the interpretation IPA(N, SV ) if, and
only if, [A] is algorithmically verifiable under IPA(N, SV ).

We note that:

Theorem 5.1. The atomic formulas of PA are algorithmically verifiable as true or false under the
standard verifiable interpretation IPA(N, SV ).

Proof It follows from Gödel’s definition of the primitive recursive relation xBy29—where x is the
Gödel number of a proof sequence in PA whose last term is the PA formula with Gödel-number y—
that, if [A] is an atomic formula of PA, we can algorithmically verify which one of the PA formulas
[A] and [¬A] is necessarily PA-provable and, ipso facto, true under IPA(N, SV ). �

We note that the interpretation IPA(N, SV ) cannot claim to be finitary30.

Reason: It follows from Theorem 2.1 that we cannot conclude finitarily from Tarski’s Definitions
3 to 10 whether or not a quantified PA formula [(∀xi)R] is algorithmically verifiable as true under
IPA(N, SV ) if [R] is algorithmically verifiable but not algorithmically computable under the interpre-
tation31.

5.A. The PA axioms are algorithmically verifiable as true under IPA(N, SV )

The significance of defining satisfaction in terms of algorithmic verifiability under IPA(N, SV ) is that:

Lemma 5.2. The PA axioms PA1 to PA8 are algorithmically verifiable as true over N under the
interpretation IPA(N, SV ).

Proof Since [x+y], [x?y], [x = y], [x′] are defined recursively32, the PA axioms PA1 to PA8 interpret
as recursive relations that do not involve any quantification. The lemma follows straightforwardly
from Theorem 5.1 and Tarski’s Definitions 3 to 10. �

Lemma 5.3. For any given PA formula [F (x)], the Induction axiom schema [F (0) → (((∀x)(F (x) →
F (x′))) → (∀x)F (x))] interprets as an algorithmically verifiable true formula under IPA(N, SV ).

Proof

(a) If [F (0)] interprets as an algorithmically verifiable false formula under IPA(N, SV ) the
lemma is proved.

Reason: Since [F (0) → (((∀x)(F (x) → F (x′))) → (∀x)F (x))] interprets as an algorithmically
verifiable true formula under IPA(N, SV ) if, and only if, either [F (0)] interprets as an algo-
rithmically verifiable false formula or [((∀x)(F (x) → F (x′))) → (∀x)F (x)] interprets as an
algorithmically verifiable true formula under under IPA(N, SV ).

29[Go31], p. 22(45).
30See [An12] and [An15] for a proof that IPA(N, SV ) is non-finitary, since it defines a model of PA if, and only if, PA

is ω-consistent and so we may always non-finitarily conclude from [(∃x)R(x)] the existence of some numeral [n] such
that [R(n)].

31Although a proof that such a PA formula exists is not obvious, we shall show that Gödel’s ‘undecidable’ arithmetical
formula [R(x)] is algorithmically verifiable but not algorithmically computable under the interpretation IPA(N, SV ).

32cf. [Go31], p.17.
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(b) If [F (0)] interprets as an algorithmically verifiable true formula, and [(∀x)(F (x) →
F (x′))] interprets as an algorithmically verifiable false formula, under IPA(N, SV ), the
lemma is proved.

(c) If [F (0)] and [(∀x)(F (x) → F (x′))] both interpret as algorithmically verifiable true
formulas under IPA(N, SV ) then, for any natural number n, there is an algorithm which
(by Definition 1) will evidence that [F (n) → F (n′)] is an algorithmically verifiable true
formula under IPA(N, SV ).

(d) Since [F (0)] interprets as an algorithmically verifiable true formula under IPA(N, SV ),
it follows for any natural number n that there is an algorithm which will evidence that
each of the formulas in the finite sequence {[F (0), F (1), . . . , F (n)}] is an algorithmically
verifiable true formula under the interpretation.

(e) Hence [(∀x)F (x)] is an algorithmically verifiable true formula under IPA(N, SV ).

Since the above cases are exhaustive, the lemma follows. �

We note that if [F (0)] and [(∀x)(F (x)→ F (x′))] both interpret as algorithmically verifiable true formulas
under IPA(N, SV ), then we can only conclude that, for any natural number n, there is an algorithm which
will give evidence for any m ≤ n that the formula [F (m)] is true under IPA(N, S).

We cannot conclude that there is an algorithm which, for any natural number n, will give evidence that
the formula [F (n)] is true under IPA(N, S).

Lemma 5.4. Generalisation preserves algorithmically verifiable truth under IPA(N, SV ).

Proof The two meta-assertions:

‘[F (x)] interprets as an algorithmically verifiable true formula under IPA(N, SV )
33’

and

‘[(∀x)F (x)] interprets as an algorithmically verifiable true formula under IPA(N, SV )’

both mean:

[F (x)] is algorithmically verifiable as always true under IPA(N, SV ). �

It is also straightforward to see that:

Lemma 5.5. Modus Ponens preserves algorithmically verifiable truth under IPA(N, SV ). �

We thus have that:

Theorem 5.6. The axioms of PA are always algorithmically verifiable as true under the interpreta-
tion IPA(N, SV ), and the rules of inference of PA preserve the properties of algorithmically verifiable
satisfaction/truth under IPA(N, SV ). �

By Theorem 5.1 we conclude that:

Theorem 5.7. If the PA formulas are algorithmically verifiable as true or false under IPA(N, SV ),
then PA is consistent. �

We note that, like Gentzen’s argument, such a proof of consistency would be debatably ‘finitary’, since
we cannot conclude from Theorem 5.1 that the quantified formulas of PA are ‘finitarily’ decidable as
true or false under the interpretation IPA(N, SV ).

33See Definition 9
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6. The standard computable interpretation IPA(N, SC) of PA over N

We next consider a standard computable interpretation IPA(N, SC) of PA, under which we define:

Definition 5. An atomic formula [A] of PA is satisfiable under the interpretation IPA(N, SC) if, and
only if, [A] is algorithmically computable under IPA(N, SC).

We note that:

Theorem 6.1. The atomic formulas of PA are algorithmically computable as true or as false under
the standard computable interpretation IPA(N, SC).

Proof If [A(x1, x2, . . . , xn)] is an atomic formula of PA then, for any given sequence of numerals
[b1, b2, . . . , bn], the PA formula [A(b1, b2, . . . , bn)] is an atomic formula of the form [c = d], where [c]
and [d] are atomic PA formulas that denote PA numerals. Since [c] and [d] are recursively defined
formulas in the language of PA, it follows from a standard result34 that [c = d] is algorithmically
computable as either true or false in N since there is an algorithm that, for any given sequence of
numerals [b1, b2, . . . , bn], will give evidence whether [A(b1, b2, . . . , bn)] interprets as true or false in N.
The lemma follows. �

We note that the interpretation IPA(N, SC) is finitary since:

Lemma 6.2. The formulas of PA are algorithmically computable finitarily as true or as false under
IPA(N, SC).

Proof The Lemma follows by finite induction from Definition 2, Tarski’s Definitions 3 to 10, and
Theorem 6.1. �

6.A. The PA axioms are algorithmically computable as true under IPA(N, SC)

The significance of defining satisfaction in terms of algorithmic computability under IPA(N, SC) as
above is that:

Lemma 6.3. The PA axioms PA1 to PA8 are algorithmically computable as true under the interpre-
tation IPA(N, SC).

Proof Since [x+y], [x?y], [x = y], [x′] are defined recursively35, the PA axioms PA1 to PA8 interpret
as recursive relations that do not involve any quantification. The lemma follows straightforwardly
from Definitions 3 to 10 in Section 3. and Theorem 5.1. �

Lemma 6.4. For any given PA formula [F (x)], the Induction axiom schema [F (0) → (((∀x)(F (x) →
F (x′))) → (∀x)F (x))] interprets as an algorithmically computable true formula under IPA(N, SC).

Proof By Definitions 3 to 10:

(a) If [F (0)] interprets as an algorithmically computable false formula under IPA(N, SC)

the lemma is proved.

34For any natural numbers m, n, if m 6= n, then PA proves [¬(m = n)] ([Me64], p.110, Proposition 3.6). The converse
is obviously true.

35cf. [Go31], p.17.
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Since [F (0) → (((∀x)(F (x) → F (x′))) → (∀x)F (x))] interprets as an algorithmically com-
putable true formula if, and only if, either [F (0)] interprets as an algorithmically computable
false formula, or [((∀x)(F (x) → F (x′))) → (∀x)F (x)] interprets as an algorithmically com-
putable true formula, under IPA(N, SC).

(b) If [F (0)] interprets as an algorithmically computable true formula, and [(∀x)(F (x) →
F (x′))] interprets as an algorithmically computable false formula, under IPA(N, SC), the
lemma is proved.

(c) If [F (0)] and [(∀x)(F (x) → F (x′))] both interpret as algorithmically computable true
formulas under IPA(N, SC), then by Definition 2 there is an algorithm which, for any
natural number n, will give evidence that the formula [F (n) → F (n′)] is an algorithmically
computable true formula under IPA(N, SC).

(d) Since [F (0)] interprets as an algorithmically computable true formula under IPA(N, SC),
it follows that there is an algorithm which, for any natural number n, will give evidence
that [F (n)] is an algorithmically computable true formula under the interpretation.

(e) Hence [(∀x)F (x)] is an algorithmically computable true formula under IPA(N, SC).

Since the above cases are exhaustive, the lemma follows. �

The Poincaré-Hilbert debate: We note that Lemma 6.4 appears to dissolve the Poincaré-Hilbert
debate36 since: (i) the algorithmically verifiable non-finitary interpretation IPA(N, SV ) of PA validates
Poincaré’s argument that the PA Axiom Schema of Finite Induction could not be justified finitarily with
respect to algorithmic verifiability under the classical putative standard interpretation of arithmetic, as
any such argument would necessarily need to appeal to some form of infinite induction37; whilst (ii) the
algorithmically computable finitary interpretation IPA(N, SC) of PA validates Hilbert’s belief that a finitary
justification of the Axiom Schema was possible under some finitary interpretation of an arithmetic such
as PA.

Lemma 6.5. Generalisation preserves algorithmically computable truth under
IPA(N, SC).

Proof The two meta-assertions:

‘[F (x)] interprets as an algorithmically computable true formula under IPA(N, SC)
38’

and

‘[(∀x)F (x)] interprets as an algorithmically computable true formula under IPA(N, SC)’

both mean:

[F (x)] is algorithmically computable as always true under IPA(N, S). �

It is also straightforward to see that:

Lemma 6.6. Modus Ponens preserves algorithmically computable truth under IPA(N, SC). �

We thus have that39:
36See [Hi27], p.472; also [Br13], p.59; [We27], p.482; [Pa71], p.502-503.
37cf. Gerhard Gentzen’s non-finitary proof of consistency for PA, which involves a non-finitary Rule of Infinite

Induction that admits appeal to the well-ordering property of transfinite ordinals.
38See Definition 9
39Without appeal, moreover, to Aristotle’s particularisation.
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Theorem 6.7. The axioms of PA are always algorithmically computable as true under the interpreta-
tion IPA(N, SC), and the rules of inference of PA preserve the properties of algorithmically computable
satisfaction/truth under IPA(N, SC). �

We thus have a finitary proof that:

Theorem 6.8. PA is consistent. �

7. Bridging PA Provability and Computability

We now show that PA can have no non-standard model, since it is ‘computably’ complete in the sense
that:

Theorem 7.1. (Provability Theorem for PA) A PA formula [F (x)] is PA-provable if, and only if,
[F (x)] is algorithmically computable as always true in N.

Proof We have by definition that [(∀x)F (x)] interprets as true under the interpretation IPA(N, SC)

if, and only if, [F (x)] is algorithmically computable as always true in N.

By Theorem 6.7, IPA(N, SC) defines a finitary model of PA over N such that:

If [(∀x)F (x)] is PA-provable, then [F (x)] is algorithmically computable as always true in
N;

If [¬(∀x)F (x)] is PA-provable, then it is not the case that [F (x)] is algorithmically com-
putable as always true in N.

Now, we cannot have that both [(∀x)F (x)] and [¬(∀x)F (x)] are PA-unprovable for some PA formula
[F (x)], as this would yield the contradiction:

(i) There is a finitary model—say I ′PA(N, SC)—of PA+[(∀x)F (x)] in which [F (x)] is algo-
rithmically computable as always true in N.

(ii) There is a finitary model—say I ′′PA(N, SC)—of PA+[¬(∀x)F (x)] in which it is not the

case that [F (x)] is algorithmically computable as always true in N.

The lemma follows. �

Corollary 7.2. PA is categorical with respect to algorithmic computability.

8. An evidence-based perspective of Lucas’ Gödelian argument

We finally note that:

Lemma 8.1. If IPA(N, M) defines a model of PA over N, then there is a PA formula [F ] which is
algorithmically verifiable as always true over N under IPA(N, M) even though [F ] is not PA-provable.

Proof Gödel has shown how to construct an arithmetical formula with a single variable—say [R(x)]40—
such that [R(x)] is not PA-provable41, but [R(n)] is instantiationally PA-provable for any given PA

40Gödel refers to the formula [R(x)] only by its Gödel number r ([Go31], p.25(12)).
41Gödel’s aim in [Go31] was to show that [(∀x)R(x)] is not P-provable; by Generalisation it follows, however, that

[R(x)] is also not P-provable.
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numeral [n]. Hence, for any given numeral [n], Gödel’s primitive recursive relation xBd[R(n)]e42 must
hold for some x. The lemma follows. �

By the argument in Theorem 7.1 it follows that:

Corollary 8.2. The PA formula [¬(∀x)R(x)] defined in Lemma 8.1 is PA-provable. �

Corollary 8.3. In any model of PA, Gödel’s arithmetical formula [R(x)] interprets as an algorith-
mically verifiable, but not algorithmically computable, tautology over N.

Proof Gödel has shown that [R(x)]43 always interprets as an algorithmically verifiable tautology over
N44. By Corollary 8.2 [R(x)] is not algorithmically computable as always true in N. �

Corollary 8.4. PA is not ω-consistent.45

Proof Gödel has shown that if PA is consistent, then [R(n)] is PA-provable for any given PA numeral
[n]46. By Corollary 8.2 and the definition of ω-consistency, if PA is consistent then it is not ω-
consistent. �

Corollary 8.5. The putative standard interpretation IPA(N, S) of PA does not define a model of
PA47.

Proof If PA is consistent but not ω-consistent, then Aristotle’s particularisation does not hold over N.
Since the putative standard interpretation of PA appeals to Aristotle’s particularisation, the lemma
follows. �

We conclude from this that Lucas’ Gödelian argument48 can validly claim that:

Thesis 1. There can be no mechanist model of human reasoning if the assignment IPA(N, SV ) can be
treated as circumscribing the ambit of human reasoning about ‘true’ arithmetical propositions49, and
the assignment IPA(N, SC) can be treated as circumscribing the ambit of mechanistic reasoning about
‘true’ arithmetical propositions.

42Where d[R(n)]e denotes the Gödel-number of the PA formula [R(n)].
43Gödel refers to the formula [R(x)] only by its Gödel number r; [Go31], p.25, eqn.12.
44[Go31], p.26(2): “(n)¬(nBκ(17Gen r)) holds”
45This conclusion is contrary to accepted dogma. See, for instance, Davis’ remarks in [Da82], p.129(iii) that “. . . there

is no equivocation. Either an adequate arithmetical logic is ω-inconsistent (in which case it is possible to prove false
statements within it) or it has an unsolvable decision problem and is subject to the limitations of Gödel’s incompleteness
theorem”.

46[Go31], p.26(2).
47I note that finitists of all hues—ranging from Brouwer [Br08], to Wittgenstein [Wi78], to Alexander Yessenin-Volpin

[He04]—have persistently questioned the assumption that the putative standard interpretation IPA(N, S) can be treated
as well-defining a model of PA; see also [Brm07].

48Although Lucas’ original thesis ([Lu61] deserves consideration that lies beyond the immediate scope of this inves-
tigation, we draw attention to his informal defence of it from a philosophical perspective in The Gödelian Argument:
Turn Over the Page, where he concludes with the argument that: “Thus, though the Gödelian formula is not a very
interesting formula to enunciate, the Gödelian argument argues strongly for creativity, first in ruling out any reductionist
account of the mind that would show us to be, au fond, necessarily unoriginal automata, and secondly by proving that
the conceptual space exists in which it intelligible to speak of someone’s being creative, without having to hold that he
must be either acting at random or else in accordance with an antecedently specifiable rule”.

49Such a thesis can be justified by the argument in [An13] and [An15a] that: (i) the assignment IPA(N, SV ) can be
viewed as corresponding to the way human intelligence conceptualises, symbolically represents, and logically reasons
about, those sensory perceptions that are triggered by physical processes which can be treated as representable—not
necessarily finitarily—by algorithmically verifiable formulas, where a physical process is effectively computable if, and
only if, it is algorithmically verifiable; whilst: (ii) the assignment IPA(N, SC) can be viewed as corresponding to the way
human intelligence conceptualises, symbolically represents, and logically reasons about, only those sensory perceptions
that are triggered by physical processes which can be treated as representable—finitarily—by algorithmically computable
formulas, where a physical process is effectively computable if, and only if, it is algorithmically computable. We suggest
how such a perspective offers a resolution to the EPR paradox.

http://users.ox.ac.uk/~jrlucas/Godel/turn.html#r-10
http://users.ox.ac.uk/~jrlucas/Godel/turn.html#r-10
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Argument: Gödel has shown how to construct an arithmetical formula with a single variable—
say [R(x)]50—such that [R(x)] is not PA-provable, but [R(n)] is instantiationally PA-provable for
any given PA numeral [n]. Hence, for any given numeral [n], Gödel’s primitive recursive relation
xBd[R(n)]e51 must hold for some natural number m.

If we assume that any mechanical witness can only reason finitarily then although, for any given nu-
meral [n], a mechanical witness can give evidence under the assignment IPA(N, SC) that the PA formula
[R(n)] holds in N, no mechanical witness can conclude finitarily under the assignment IPA(N, SC) that,
for any given numeral [n], the PA formula [R(n)] holds in N.

However, if we assume that a human witness can also reason non-finitarily, then a human witness
can conclude under the assignment IPA(N, SV ) that, for any given numeral [n], the PA formula [R(n)]
holds in N.

9. Appendix A

Aristotle’s particularisation: Aristotle’s particularisation is the implicit non-finitary assumption
that the classical first-order logic FOL is ω-consistent, and so we may always interpret the formal
expression ‘[(∃x) F (x)]’ of a formal language under an interpretation as ‘There exists an object s in
the domain of the interpretation such that F (s)’.

We note that Aristotle’s particularisation is a non-finitary but fundamental tenet of classical logic
unrestrictedly adopted as intuitively obvious by standard literature52.

However, L. E. J. Brouwer had noted in his seminal 1908 paper on the unreliability of logical prin-
ciples53 that the commonly accepted interpretation of this formula is ambiguous if interpretation is
intended over an infinite domain.

Brouwer essentially argued that:

(i) Even supposing the formula ‘[P (x)]’ of a formal Arithmetical language interprets as an
arithmetical relation denoted by ‘P ∗(x)’; and

(ii) the formula ‘[¬(∀x)¬P (x)]’ interprets as the arithmetical proposition denoted by
‘¬(∀x)¬P ∗(x)’;

(iii) the formula ‘[(∃x)P (x)]’—which is formally defined as ‘[¬(∀x)¬P ∗(x)]’—need not
interpret as the arithmetical proposition denoted by the usual abbreviation ‘(∃x)P ∗(x)’;
and

(iv) that such postulation is invalid as a general logical principle in the absence of a
means for constructing some putative object a for which the proposition P ∗(a) holds in
the domain of the interpretation.

Hence we shall follow the convention that the assumption that ‘(∃x)P ∗(x)’ is the intended interpreta-
tion of the formula ‘[(∃x)P (x)]’—which is essentially the assumption that Aristotle’s particularisation
holds over the domain of the interpretation—must always be explicit.

50Gödel refers to this formula only by its Gödel number r ([Go31], p.25(12)).
51Where xBy denotes Gödel’s primitive recursive relation ‘x is the Gödel-number of a proof sequence in PA whose

last term is the PA formula with Gödel-number y’ ([Go31], p. 22(45)); and d[R(n)]e denotes the Gödel-number of the
PA formula [R(n)].

52See [Hi25], p.382; [HA28], p.48; [Sk28], p.515; [Go31], p.32.; [Kl52], p.169; [Ro53], p.90; [BF58], p.46; [Be59], pp.178
& 218; [Su60], p.3; [Wa63], p.314-315; [Qu63], pp.12-13; [Kn63], p.60; [Co66], p.4; [Me64], p.52(ii); [Nv64], p.92; [Li64],
p.33; [Sh67], p.13; [Da82], p.xxv; [Rg87], p.xvii; [EC89], p.174; [Mu91]; [Sm92], p.18, Ex.3; [BBJ03], p.102; [Cr05], p.6.

53[Br08].
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ω-consistency: A formal system S is ω-consistent if, and only if, there is no S-formula [F (x)] for
which, first, [¬(∀x)F (x)] is S-provable and, second, [F (a)] is S-provable for any given S-term [a].

In order to avoid intuitionistic objections to his reasoning in his seminal 1931 paper on formally
undecidable arithmetical propositions54, Gödel did not assume that the classical putative standard
assignment IPA(N, S) of PA yields a model of PA. Instead, Gödel introduced the syntactic property of
ω-consistency as an explicit assumption in his formal reasoning55. Gödel explained at some length56

that his reasons for introducing ω-consistency as an explicit assumption in his formal reasoning was to
avoid appealing to the semantic concept of classical arithmetical truth—a concept which is implicitly
based on an intuitionistically objectionable logic that assumes Aristotle’s particularisation is valid
over N.

However, we note that if we assume the classical putative standard assignment IPA(N, S) of PA yields
a model of PA, then PA is consistent if, and only if, it is ω-consistent. It can thus be argued that
Gödel’s Platonism was perhaps rooted (justifiably within the context of the implicit non-finitary
assumption of Aristotle’s particularisation in classical theory) in his implicitly held57 non-finitary
belief that any first-order axiomatic theory of arithmetic or set theory is ω-consistent.

Standard interpretation of PA: The classical putative standard interpretation IPA(N, S) of PA
over the domain N of the natural numbers is the one in which the logical constants have their ‘usual’
interpretations58 in Aristotle’s logic of predications59 (which subsumes Aristotle’s particularisation),
and60:

(a) The set of non-negative integers is the domain;
(b) The symbol [0] interprets as the integer 0;
(c) The symbol [′] interprets as the successor operation

(addition of 1);
(d) The symbols [+] and [?] interpret as ordinary addition

and multiplication;
(e) The symbol [=] interprets as the identity relation.

The axioms of first-order Peano Arithmetic (PA)

PA1 [(x1 = x2) → ((x1 = x3) → (x2 = x3))];
PA2 [(x1 = x2) → (x′1 = x′2)];
PA3 [0 6= x′1];
PA4 [(x′1 = x′2) → (x1 = x2)];
PA5 [(x1 + 0) = x1];
PA6 [(x1 + x′2) = (x1 + x2)′];
PA7 [(x1 ? 0) = 0];
PA8 [(x1 ? x

′
2) = ((x1 ? x2) + x1)];

PA9 For any well-formed formula [F (x)] of PA:
[F (0) → (((∀x)(F (x) → F (x′))) → (∀x)F (x))].

Generalisation in PA If [A] is PA-provable, then so is [(∀x)A].

Modus Ponens in PA If [A] and [A→ B] are PA-provable, then so is [B].

54[Go31].
55[Go31], p.23 and p.28.
56In his introduction on p.9 of [Go31].
57[Go31], p.28.
58We essentially follow the definitions in [Me64], p.49.
59See http://plato.stanford.edu/entries/aristotle-logic/, §4.3.
60cf. [Me64], p.107.

http://plato.stanford.edu/entries/aristotle-logic/
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Hilbert’s Second Problem: “When we are engaged in investigating the foundations of a science,
we must set up a system of axioms which contains an exact and complete description of the relations
subsisting between the elementary ideas of that science. . . . But above all I wish to designate the
following as the most important among the numerous questions which can be asked with regard to
the axioms: To prove that they are not contradictory, that is, that a definite number of logical steps
based upon them can never lead to contradictory results. In geometry, the proof of the compatibility
of the axioms can be effected by constructing a suitable field of numbers, such that analogous relations
between the numbers of this field correspond to the geometrical axioms. . . . On the other hand a direct
method is needed for the proof of the compatibility of the arithmetical axioms.”61

In this paper, we treat Hilbert’s intent62 behind the enunciation of his Second Problem as essentially
seeking a finitary proof for the consistency of arithmetic when formalised in a language such as the
first order Peano Arithmetic PA.

Tarski’s inductive definitions: We shall assume that truth values of ‘satisfaction’, ‘truth’, and
‘falsity’ are assignable inductively—whether finitarily or non-finitarily—to the compound formulas
of a first-order theory S under the interpretation IS(D) in terms of only the satisfiability of the atomic
formulas of S over D as usual63:

Definition 6. A denumerable sequence s of D satisfies [¬A] under IS(D) if, and only if,
s does not satisfy [A];

Definition 7. A denumerable sequence s of D satisfies [A→ B] under IS(D) if, and only
if, either it is not the case that s satisfies [A], or s satisfies [B];

Definition 8. A denumerable sequence s of D satisfies [(∀xi)A] under IS(D) if, and only if,
given any denumerable sequence t of D which differs from s in at most the i’th component,
t satisfies [A];

Definition 9. A well-formed formula [A] of D is true under IS(D) if, and only if, given
any denumerable sequence t of D, t satisfies [A];

Definition 10. A well-formed formula [A] of D is false under IS(D) if, and only if, it is
not the case that [A] is true under IS(D).
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