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 ABSTRACT 

Using a simulator to design and evaluate intelligent 
agents in realistic environments places enormous 
demands on a simulation tool: everything from 
supporting multiple agents and their interactions, to 
providing detailed control over trials in an 
environment, to accurate perception within 
computational bounds.  While the computationally 
intensive nature of this process is the most obvious 
reason to consider distributed simulation, we have also 
found that distributed simulation provides solutions to 
timing and perceptual problems that are particularly 
difficult  in single-system simulation.  This paper 
describes ongoing work on DGensim, a distributed 
version of the Gensim single-system simulator, and the 
significant advantages that distribution brings to the 
simulation process in this case.  We also discuss the 
difficulties of preserving the generic aspects of a 
simulator in a distributed setting. 

 1.  INTRODUCTION 

While Artificial Intelligence is contributing 
important elements to applied simulation research, 
simulation has also has an extremely influential role to 
play in pure and applied AI research.  Even those who 
insist that intelligent agent research requires the 
physical embodiment of agents usually employ 
simulation as an integral component of the design of 
those agents (e.g.  Balch, 1998a).  Simulation also 
provides important elements of control for the 
evaluation of intelligent systems (Hanks et al., 1993), 
as well as solutions to problems in the real world that 
are beyond the capabilities of current AI technology, 
allowing research one area to proceed despite the 
immaturity of research in related areas (Anderson, 
1995).  Simulation also allows us to model natural 
intelligent systems, thereby deriving a better 
understanding of the techniques employed in those 
systems and ultimately the means to exploit those 
techniques in new applications (e.g. Picault and 
Collinot, 1998)  

Using a simulator to design and evaluate intelligent 
agents in realistic environments places enormous 
demands on a simulation tool: everything from 
supporting multiple agents and their interactions, to 
providing detailed control over trials in an 
environment, to accurate perception within 
computational bounds (Anderson, 1995).  Surrounding 
these specific issues however, is the more pervasive 
problem of wide applicability: in order to perform 
ongoing research, where agent designs and the 
environments in which they are examined change as 
development pursues, we require a tool that will easily 
support such changes.  Similarly, there are many 
applications outside of the development of intelligent 
agents themselves in which complex environments 
populated by such agents are useful:  natural resource 
management (Deadman and Gimblett, 1994), biology 
(Kester, 1996), economics (Deadman, 1999), and 
sociology (Halpern, 1999) to name a few.  Ideally, a 
simulator generic enough to support diverse agents and 
environments should also be applicable to these areas 
and others. 

With this in mind, we developed Gensim, a generic 
timeshared simulator for multi-agent systems 
(Anderson and Evans, 1995).  We have employed this 
system ourselves in intelligent agent design and 
verification (Anderson, 1995; Anderson and Evans, 
1996) and have shown its potential in areas outside of 
this environment (Anderson, 1997; Anderson and 
Evans, 1994).  This system is generic in that agents 
and environments can be easily defined and 
interchanged in a modular fashion.  The system also 
provides pragmatic support for agent sensing, control 
over agent timing, and facilities for constructing 
domains and agents.  However, Gensim has several 
significant limitations in its original form, and others 
for which we have developed compromises that are 
still philosophically awkward.   

The major motivation for considering distributed 
simulation, in most cases, is the increased computing 
power it makes available (Hamilton et al., 1997).  In 
fact, some take the view that the very purpose of 
distributed simulation is to reduce the simulation time 
when compared to sequential simulation (Pham et al., 



 

1998).  The advantage of additional computational 
power is certainly attractive in an application such as 
multiagent modeling.  When modeling intelligent 
agents a great proportion of system resources is 
required to support the decision-making processes of 
these agents – especially so in heavily deliberative 
agents and agents that themselves model their world.  
While other simulators deal with this by assuming a 
simple reactive (and thus low resource consumption) 
agent model (e.g. Balch, 1998b), or by replacing 
agents with process-based simulation wherever 
possible (Hamilton et al., 1997), Gensim allows the 
implementation of as many internally sophisticated 
agents as desired.  This forces the ongoing simulation 
to proceed more slowly on a single machine, though 
internal simulation time is of course unaffected.  Much 
of the work performed in our laboratory is multiagent 
simulation work where the focus lies on agent 
collaboration or competition, and the evaluation of 
individual agent designs under experimental conditions 
is especially important.  In addition to increased 
computing power, the greater experimental control and 
lower timesharing overhead afforded by placing the 
processes associated with a single agent on a single 
machine are also beneficial in such situations. 

Despite the obvious advantage of increased 
computing power, our major motivation in moving to a 
distributed simulation model was in fact to increase the 
fidelity of Gensim simulations, as will be described in 
the next Section.  While it is at least potentially 
acceptable in many cases to wait for a simulation 
involving computationally intensive agents to 
complete, distributing a simulation allows for better 
solutions to several awkward problems, including 
timing across agents and more accurate perceptual 
interface, thus leading to improved simulations. 

These advantages led us to the development of 
DGensim, a system under ongoing development in our 
Autonomous Agents Lab.  This system will ultimately 
form the major non-robotic platform for agent 
development and experimentation in our laboratory, 
and because of this it is our intent to keep the generic 
nature of the system as close to the original Gensim 
system as possible.  This should also allow its potential 
transfer to the other application areas mentioned 
above.  The remainder of this paper introduces the 
Gensim simulation approach, describes the 
methodology employed in creating DGensim, details 
the advantages that distribution brings to the Gensim 
approach, and discusses the difficulties of providing  
generic elements in a distributed simulation system. 

2.  GENSIM AND DGENSIM 

As mentioned in the previous Section, Gensim 
(Anderson and Evans, 1995) is a generic simulation 
system for intelligent agent designs.  It supports 
multiple agents consisting of multiple timeshared 
processes, manages an object-oriented environment, 
treats the relationship between agents and their 
environment consistently, and views agents and 
environments as plug-in modules that are easily 
substituted.  
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Figure 1.  Conceptual View of Gensim (Anderson and 
Evans, 1995). 

Figure 1 illustrates a conceptual view of the 
Gensim system.  In Gensim, a LISP-based simulation 
process manages an object-oriented view of the 
environment, including the physical embodiment of 
the associated agents themselves.  Collections of agent 
processes (also LISP-based) making up the decision-
making components of agents are timeshared, with 
equal timeslices usually given to each agent.  Agent 
processes are run, and during their timeslices may or 
may not commit to particular actions, which are 
communicated to the simulator.  The simulator 
manifests these changes in a time-based manner (i.e. 
manifesting the changes made during the agent 
timeslices just completed), using an event queue to 
manage future change.  During agent time-slices, 
agents also make requests for perceptual information 
within their current context, and after the simulator 
manifests the changes initiated during the current 
cycle, this perceptual information is provided based on 
limitations of bandwidth and recorded agent perceptual 
abilities.  The system also contains specialized 
representations and mechanisms for keeping the event 
queue to a limited complexity; balancing accurate and 
pragmatic perception; allowing the translation of 
references to objects in agents’ own world models in 
actions communicated to the simulator; allowing 



 

flexible autonomy for agents; and relatively easily 
defining agents and environments in a modular 
fashion.  Details of these and other significant aspects 
of the system may be found in (Anderson and Evans, 
1995). 

Given that the major computational overhead in 
many multiagent simulations is the management of 
intelligent agent decision-making processes, the 
obvious choice for distribution is the movement of 
such internals to separate hardware systems.  While it 
is desirable for experimental purposes to have a single 
agent per machine in order that machine load does not 
affect the performance of one agent over others, from 
the standpoint of keeping the simulator more broadly 
useful, it was decided to support as many agents as 
desired per component system. 

The basic model employed in DGensim is for the 
most part the same as the original Gensim system of 
Figure 1, with some important differences that will be 
dealt with shortly.  The physical organization and 
execution layer of DGensim however, is quite 
different.  As shown in Figure 2, DGensim revolves 
around a set of n node machines, n-1 of which are 
dedicated to executing agent internals (the agent 
processes of Figure 1, which ultimately take 
perceptions, perform intelligent processing, and make 
commitments to action).  The remaining node runs the 
environment manager, which performs most of the 
functions of the simulator process of Figure 1, with 
some very important exceptions that make significant 
philosophical and practical improvements over the 
original Gensim system.  In order to deal with the 
management of multiple agents per agent node, an 
agent manager is employed.  This process is initially 
run on each machine that is to participate in the 
simulation by supporting agent internals, and connects 
to the environment manager via a prespecified Linux 
port.  When the environment manager is started on the 
environment node, it makes contact with remote nodes 
and transfers agent code to them.  This transfer is 
intended in future to allow the environment node to 
choose the most appropriate machine for a particular 
agent. The agent manager keeps track of the 
communication ports and process details for all agents 
on that particular machine.  Beyond accepting agent 
code, the agent manager is also sent limited 
environmental information, which allows it to play 
another important role that will be described shortly. 

The most immediate result of the distribution of 
agent internals is a much more natural, realistic flow of 
agent decision-making over time due to a more 
realistic execution of the underlying agent processes.  
This is due in part to improvements in implementation 
platform.  The choice of platform for DGensim was 

Allegro Common Lisp (ACL) under Linux, which 
among other things allows OS-level threads as 
opposed to the application-level timesharing of the 
original Gensim system.  One of the original intentions 
for further development with Gensim (Anderson, 
1997) was to port the system to Java, due to the 
language’s strong supports for multithreading and 
networking.  The difficulty with this however, was 
providing the same facilities for rapid agent and 
environment construction and the same level of 
support for AI components within agents afforded by 
Lisp.  However, given the advances in multiprocessing 
and network sockets in ACL, the ACL/Linux platform 
brings all the major advantages of Java, while allowing 
code compilation, and the ease of definition discussed 
above. 
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Figure 2.  Overview of DGensim Organization. 

2.1 Actions and Timing 

There are also significant improvements in timing 
accuracy brought about by distribution per se.  
Because change initiated by agents is processed on an 
agent-by-agent basis cyclically in Gensim, some 
agents get a chance to have the change from their 
actions manifested ahead of others in the same cycle 
consistently.  This leads to a predictable outcome of 
single-cycle interactions by the ordering of agents 
unless care is taken when defining those actions and 
their possible interactions.  This and related timing 
problems are diminished in Gensim through the 
encouragement of small time cycle lengths, limiting 
the effect of this on the accuracy of a simulation, but 
cannot be completely eliminated.  Rather than 
allowing an agent to take as many fixed time steps as 
required to come to a decision upon action, and then 
processing that decision along with those of other 



 

agents during that same cycle, agents in DGensim send 
their timestamped decisions asynchronously to an 
action monitoring agent (see Figure 2).  This relatively 
simple agent (running on the same system maintaining 
the object-oriented environment) organizes incoming 
decisions and assists in correcting for limited network 
delays using the timestamps on incoming actions to 
order the queue of pending events.   

While agent processes in DGensim make 
asynchronous decisions for action, the environment 
around those agent processes flows at a constant rate 
through time – thus defining the flow of time for the 
agents involved.  The original organization of Gensim 
was intended to approach this, but was limited in this 
capacity simply because it was based on the concept of 
a single agent decision-making process being executed 
at a time.  As in Gensim,  the environment manager in 
DGensim is a time-driven simulation, since it is 
managing time for the external agent processes for 
which it exists.  It cannot simply take large temporal 
leaps ahead to an upcoming future event and process it 
if there are no other pending events, since agents may 
make action commitments before these future events 
are meant to occur.  Others have pointed out that 
complex time-based simulations can often become 
unwieldy (Hamilton et al., 1997), but in this case a 
time-based simulation is necessary.  Time needs to 
flow for the agent-decision making processes in a 
constant manner, just as it does in the real world, since 
the simulation itself exists solely for the purposes of 
the agents that inhabit it.  

Like Gensim, DGensim contains components that 
assist in making the time-depended simulation more 
efficient.   For example, the event queue uses event 
generators, which insert the next of a long chain of 
events into the event queue when the current portion of 
an event sequence is processed.  This allows us to 
represent ongoing sequences of events while only 
having any one part of that in the queue at a time, and 
also directly minimizes the amount of data that must 
be examined when the event queue is altered.   

This timing model is both more accurate and far 
simpler to employ within DGensim agents than the 
original.  As it is however, it is susceptible to problems 
with long network delays:  in a wide-area network 
scenario, it is entirely possible to have an action 
commitment from an agent delayed enough that others 
that might have interfered with it would have been 
processed, and even related sensory information 
already delivered to other agents.  It is a fairly simple 
matter to deal with small delays, based on the fact that 
the environment is updated in discrete time steps.  
Every event intended to occur during a particular unit 
time is processed in sequence, and as long as an action 

is received by the action monitoring agent within this 
time boundary, the action monitoring agent will 
rearrange the event queue such that everything is 
updated as if the actions arrived at the appropriate 
point in time. That is, there is a window of safety 
around with an event can be delayed, and a simulation 
may be designed to increase that window. 

In the event that an action arrives after its time unit 
has been processed by the environment manager, 
compromises must be made.  In this case, other agents 
may have already been given perceptions that might 
have been different had the action been received in a 
timely fashion (and if the delay is long, even made 
further action commitments on that basis).  Given that 
the simulator is supposed to be an ongoing interactive 
real world for agents to inhabit, rollback is generally 
not an option.  Rollback would also be difficult for 
large numbers of agents, and more importantly the 
mechanics of being able to roll back agent state change 
the nature of the agents themselves.  The latter would 
lead to different results in experimentation than would 
be seen otherwise.  Other options are made available 
however, in order to keep the simulator as general as 
possible.  First, an action may be simply invalidated, 
as if it simply had not occurred, and the agent(s) 
involved informed of this. From an agent standpoint, 
this is not particularly realistic, but it may be useful in 
some simulations.  Another available alternative is to 
process the event as if it had happened during the time 
unit in which it arrived as opposed to the one in which 
it was generated.  Envision one agent throwing a ball, 
and a second (the late agent) attempting to catch it.  In 
this situation, the end result would be as if the late 
agent moved to catch the ball too late to receive it.  
This is somewhat more suitable, but still inadequate 
for most agent evaluation experiments because the 
actions of the late agent itself were optimal – it was the 
nature of the simulation that caused the delay.  Still, it 
is more philosophically pleasing than stopping a third 
agent that did catch the ball after the late agent missed, 
informing it that it in fact does not have the ball after 
all, and magically transferring the ball back to the late 
agent.  We also allow both of these more viable 
alternatives on an action-by-action level, allowing the 
particular context to be considered as well.   

Finally we allow a preventative measure that slows 
the simulation down significantly but deals with these 
problems as completely as can be expected.  In 
DGensim, it is also possible to force each agent to 
transmit its actions regularly, including a no-op action 
if the agent is not performing any useful activity.  This 
allows the environment manager to process one 
timeslice after a complete set of these actions is 
received.  This is overwhelming in the case of a large 



 

number of agents however, or a particularly small time 
unit setting for the environment manager. 

In the above scenario, we have been dealing with 
the late arrival of an agent action.  The opposite 
scenario – the possibility that an agent may deliberate, 
commit to an action, then do the same before it gets 
perception from the first back because it is running 
faster internally than the ongoing simulation – is less 
troublesome.  Here what is happening in terms of the 
model is that an agent is choosing to commit to actions 
without the aid of additional perception (the same 
situation arises above if network problems lead 
perceptions to be late).  It is possible to implement the 
time it takes to actually perform the action as part of 
the action itself, which would cause a properly 
implemented agent to delay the commitment until it 
was effectively finished performing the first action, 
and thus take care of situations where agent processes 
were running artificially faster than the environment or 
other agents. 

Note that none of these approaches to dealing with 
delay (except the case above where an agent can 
effectively be made to act in synch with a slower 
environment) is particularly appealing in the case of 
experimentally evaluating agents: network delays 
significantly affect results.  Even in the situation where 
the environment manager can expect a completely 
regular response from each agent, it may not be worth 
continuing experimentally if it does not get one (i.e. an 
agent is severed from the simulation temporarily).  
However, this is a particularly exacting application of 
distributed simulation, and these approaches are 
available to be used where that may be more suitable.  
In our own work, because of the nature of the 
problems we are investigating, we naturally use small 
dedicated networks, and would consider an experiment 
invalid if delays in action reception such as those 
considered above occurred. On this scale however, 
such delays are rare and thus an insignificant downside 
in comparison to the timing benefits alone.  However, 
this problem does affect elements of generality to 
which we are aiming.  Issues related to this will be 
explored in Section 3. 

2.2  Perception 

Perception and its relationship to the agent and 
environment is another significant problem in Gensim 
that was dealt with there through compromise, but 
which can be significantly improved through a 
distributed implementation.  In Gensim (and DGensim 
as well), perception is implemented pragmatically at 
the object level (Anderson and Evans, 1995), in order 
to remove the burden of pixel-level perception for 
agents – one of the major reasons simulators are 

employed in intelligent agent development (Hanks et 
al., 1993; Anderson, 1995).   In both Gensim and 
DGensim, agents specify their interest using concepts 
familiar to both the agent and the simulator (e.g. scan 
for blue objects; where is the other agent) or may 
simply gaze in a direction of interest.  In the original 
Gensim system, the simulator responds to this request 
with object-attribute-value specifications for a limited 
range (based on a model of the agent’s perceptual 
abilities) of what can be perceived (given the agents’ 
perceptual and focus biases).  However, this is an 
artificial organization of perception, in that the 
simulator is doing more than just removing the overly-
detailed burden of low-level vision – it is actually 
doing all the agent’s perception for it aside from the 
highest level of integrating those perceptions into the 
state of the agent’s decision-making components.  The 
environment simulation process is deciding which 
objects the agent can see, and which it is limited from 
seeing.  While some perceptual limitation is due 
directly to the environment and does seem to fall 
within these bounds (e.g. objects block one another, 
fog can obscure objects), others are due to the agent 
(what type of objects it is biased toward focusing 
perceptual attention upon, for example).  Placing the 
perceptual component completely within either the 
agent or environment is philosophically inaccurate and 
technically problematic.   Beyond philosophical issues, 
there are practical issues involved here as well:  this 
sensory preparation is an extremely computationally-
intensive element, and it is necessary to strike a 
balance in this aspect as well. 

The solution to this problem in DGensim is to 
move the management of perception to a point 
between the agent decision-making components and 
the simulated environment.  In DGensim, the bulk of 
perception is managed by the agent managers running 
on each agent machine.  In response to an agent’s 
perceptual request, the agent manager receives a 
description of objects that could be perceived based on 
the physical aspects of the environment – it is up to the 
agent manager to filter these according to the 
particular biases of the agent itself.  This places 
perception in a much more natural position in a 
simulation organization, and removes a significant 
amount of unnecessary work from the environment 
manager.  However, it also results in the potential for 
an inordinate amount of information transfer, and 
potential network overload for a large number of 
agents. 

In order to restrict the amount of information that 
must be physically sent across the network by the 
environment manager, agent managers contain 
simplified environmental information: stereotyped 



 

views of objects in the environment that are exported 
to agent managers by the environment manager each 
time a new environment is used.  When the agent 
manager accepts a particular agent, a registration is 
created indicating the mapping between agent and 
manager, a part of which states the frequency with 
which sensory information should be sent to the 
particular DGensim agent (via its manager).  This 
effectively states the speed at which the agent can 
perceive objects.  The environment manager maintains 
the agent’s current orientation and maximum sphere of 
attention (physical attributes of the agent’s body, 
which it is managing as part of the environment), and 
relays very basic object information to the appropriate 
agent manager.  This information is essentially which 
object stereotypes to invoke and the particular changes 
beyond those stereotypes.  The agent manager then 
reconstructs detailed attribute perceptions (the 
information originally provided by the simulator in 
Gensim) based on the information received and its 
local knowledge.  This approach pragmatically 
balances reasonable perception with network 
bandwidth, and also allows us to deal with the 
perception-related problems described earlier. 

This rebalancing of the function of perceptual 
information service is also in part a consequence of 
distribution:  given that agents are now separated from 
the environment processes by machine boundaries, it 
makes sense to move those elements of perception that 
do not belong in the environment there as well.  This 
also assists significantly in improving efficiency:  In 
Gensim, the bulk of the simulation time was spent 
preparing perceptual information and translating it into 
the object references or descriptions an individual 
agent would comprehend for each unique agent 
(DGensim employs the same deictic object description 
facilities provided for Gensim; the interested reader is 
referred to (Anderson and Evans, 1995) for more 
details on this).  Moving a significant portion of the 
work previously done by the environment simulator to 
the distributed components allows the simulation to 
run more efficiently and keep up with distributed agent 
internals.  This in turn helps to minimize the problems 
associated with getting perception information back to 
agents in a timely fashion as discussed above. 

In this section we have outlined a few of the major 
benefits brought about by a distributed redesign of the 
original Gensim system.  In each case however, 
solutions improving upon aspects of the original 
Gensim system has impacted to some degree on the 
generic nature of the system.  Since generality is a 
major focus in both Gensim and DGensim, the impacts 
on generality of dealing with the problems discussed 

above, as well other aspects of moving to a distributed 
simulation, need to be examined in more detail. 

3. BREADTH, GENERALITY, AND DGENSIM 

When employing a tool for examining intelligent 
agents within a simulated environment (or to take a 
different perspective, constructing a simulation model 
that happens to employ intelligent agents), breadth and 
generality in such a tool is extremely important.  While 
it is certainly possible to construct completely 
specialized environments from scratch for each new 
project (and this occurs in AI and other areas with an 
unfortunate preponderance), we would prefer a tool 
that is flexible enough to support a wide range of 
agents and environments.  Clearly this avoids 
unnecessary reimplementation, but control and 
verifiability aspects, for example, are involved as well.  
A tool allows a researcher to ensure that 
implementations under comparison have identical 
constraints placed upon them, and helps to ensure 
scientific validity in the results obtained.  More 
importantly however, a flexible tool is required 
because of the complexity of the agents and 
environments themselves.  Complex software systems 
can neither be completely understood nor completely 
designed in advance.  This will sometimes necessitate 
changes in design approach in mid-stream, and if our 
original tool does not support such changes, the tool 
must be abandoned and some (possibly extensive) 
reimplementation performed.   In the hypothetical 
worst case, we have to completely re-build the entire 
environment and agents de novo with each small 
design change.  The desire to impose control and avoid 
reimplementation was our primary motivation for 
building the original Gensim system.  In Gensim, we 
attempt to make as few assumptions about the nature 
of agents, the nature of environments, and the nature of 
their interface as is possible.  Gensim does not assume 
any particular mode of operation for an agent, and 
makes no assumptions beyond a representation for 
space in an environment.  Some assumptions must be 
made in order to have a coherent interface between 
agents and a simulated environment (e.g. common 
name for concepts or an ability to translate these, so 
agents can refer to objects in the environment; the 
common representation for space in order to specify 
objects and activities relative to the position of the 
agent). A common model of perception and action is 
also necessary, so that agents may communicate their 
committed actions appropriately and receive 
perceptual information from the simulated 
environment.  These however, are relatively 
insignificant compared to the architectural assumptions 
of most agent-based simulators (Anderson, 1995; 
Anderson and Evans, 1995). 



 

The generality and breadth capabilities of a 
simulation tool can be viewed as a spectrum along 
numerous dimensions, including the degree of 
programming effort required (typically the stronger the 
reliance on pre-programmed components, the smaller 
the breadth of situation the tool can fit) ; the breadth of 
agents that can be supported (in Gensim, for example, 
agents must fit the above criteria – this includes many 
agents but certainly not all possible agents); and the 
breadth of environments that can be represented.  In 
particular, supporting a wide variety of agent types or 
architectures makes considerable demands on a 
simulator: in many simplistic agents, for example, 
using the perceptual facilities available in Gensim is 
overkill, while in others the perceptual model would be 
too unrealistic (e.g. agents where low-level vision is an 
important part of the agent architecture).  Similar 
criticism can be made of any other agent decision.  In 
this situation and others concerning generality, Gensim 
and DGensim attempt to hit a middle ground.  
Supporting every possible agent type, for example, is 
simply not viable: there would be so many potential 
facilities for perception alone and so much custom 
programming required that the tool would become 
largely unusable.  Instead, Gensim and DGensim 
implement a range of facilities that attempt to hit what 
most agents in an experimental situation would 
require, allowing the use of custom programmed 
components where these will not suit.  Similar 
provisos exist for other aspects of these systems as 
well. 

The practical objective of DGensim is unchanged 
from that of the original Gensim system: to provide a 
generic platform for intelligent agent research.  
However, like the issues of breadth discussed above, 
there are issues of breadth and generality peculiar to 
the element of distribution itself that must be 
considered, and similar mid-level approaches taken.  
The difficulty with distributed simulators in this regard 
is that they have a far wider range of motivation than 
non-distributed simulators, and far more significant 
architectural consequences of those disparate 
motivations.  In distributed simulations, primary 
motivation ranges from providing significantly 
detailed graphical environments suited to human 
participants, to focusing on the interactions of 
computational agents.  Environments range from the 
corners of the internet to local area networks, and 
reliability, security, control, and level of fidelity and 
graphic detail (e.g. Jinxiong and Sartor, 1994; Reese, 
1994) vary considerably, as do the number of expected 
agents (for example, DIS (IEEE, 1993) vs. DDD (Song 
and Kleinman, 1994)).  More pervasive issues such as 
the integration of different simulation tools (e.g. the 
DIS (IEEE, 1993) and HLA (DOD, 1998) standards) 

also surround this spectrum.  In short, the range of 
variability in even the same application area is orders 
of magnitude larger in a distributed simulation, 
because the element of distribution increases the 
potential applicability of the simulation and the impact 
on design significantly. 

Given that our own primary motivation is the 
examination of intelligent agents and their interactions, 
we currently assume a local network, where security 
and reliability are not strong issues (though these are 
not completely absent either).  Even with these 
restrictions, perfect generality is impossible without 
weakening a tool to the point of uselessness (as would 
perfect generality in any of the issues mentioned 
earlier), and so tradeoffs are made as they were in the 
original Gensim system to balance utility with 
generality.  One significant aspect of this has been the 
design of the system itself (Figure 2).  It is logical in 
an organizational sense to keep the environment on a 
single machine and distribute the agent internals, since 
the latter are loosely coupled and the former is highly 
interactive, making the synchronization of elements of 
the former difficult and computationally expensive 
(Hamilton et al., 1997).  It is also logical in a practical 
sense from our own perspective, in that sophisticated 
agent internals are the most computationally costly 
elements of our own simulations.  Within this 
organization we can still support a broad range of 
agents and environments, but the choice of distributing 
agent internals and leaving the environment on a single 
machine limits true generality in several ways.  Most 
obviously, the physics of the environment cannot be 
computationally overwhelming, since they are on a 
single machine.   

As mentioned, this has not at all been a problem in 
our own work, but may be such in others, and the 
ability to distribute the environment itself is in our 
plans for the future.  Also as mentioned earlier, we 
have attempted to hit a middle ground and lessen the 
load on the environment manager by moving much of 
the work associated with perception to remote nodes as 
well.  More significantly, the network assumptions 
made in our own work (by the nature of the problems 
themselves) forbid much in the way of trouble with 
network failures or lag, important issues in wide-area 
simulation.  We also intend to attempt to make this 
approach more applicable to wider areas in future as 
well, through the addition of additional mechanisms 
for dealing with network delay and failure. 

One of the ways in with DGensim is more 
restrictive than the original Gensim is in its ability to 
deal with agents with variable autonomy.  While there 
is no more that is required to be shared between a 
DGensim agent and its environment than there was in 



 

the original Gensim system (while perception 
processing has been moved, the same mechanics and 
shared concept requirements of perception persist), 
Gensim agents could take advantage of the fact that all 
agents were stored on the same physical machine and 
share agent components.  This allowed not only agents 
with lower autonomy through the sharing of 
knowledge and components, but served to very quickly 
define large numbers of similar agents and also made 
the simulation more efficient in some cases.  In a 
distributed scenario, supporting this could be 
overwhelming in terms of information exchange if 
agents with shared components were distributed, and 
so a restriction is made forcing the use of this feature 
to agents residing on the same machine.  This is not 
impossible to handle, but introduces issues of 
consistency and control where users must be careful of 
machine load balancing to ensure the accuracy of 
agent performance in simulation. 

4. DISCUSSION AND FUTURE WORK 

As mentioned earlier in this paper, DGensim is in 
ongoing development using LISP on a network of 
Linux-based machines.  We have currently made what 
we believe are reasonable assumptions to provide a 
useful tool supporting a broad range of agents and 
environments efficiently and effectively.  While we 
have designed the system in particular for 
experimenting with intelligent agents in spatially-
explicit multiagent settings from the point of view of 
the design and performance of those agents, we believe 
this system to be applicable to other areas where 
multiagent simulation is of use as well.  

DGensim is also in ongoing development in a 
larger sense.  What is described in this paper is the first 
phase of a much larger distributed simulation system 
which will hopefully be just as powerful while dealing 
with some of the issues affecting the implementation 
of significantly large numbers of agents along with a 
wider range of distribution.  The next phase will 
involve the distribution of the environment across 
multiple machines as well as agent internals.  As stated 
earlier, the tightly interactive nature of environmental 
components makes synchronization difficult.  
However there are strong elements of locality of 
reference in agent interaction in virtually any physical 
environment, pointing toward geographical division as 
a logical choice.  With reference to generality, there 
have also been numerous applications of applied 
multiagent simulations with a strong spatial reasoning 
aspect, especially in environmental or ecosystem 
management settings (e.g. Deadman and Gimblett, 
1994).  In such cases, changing the internal 
representation of the environment to be compatible 
with a common GIS format, and allowing agent 

perception to effectively become a GIS query would 
form both an effective means of handling the physical 
aspects of perception (i.e. before they are given to the 
agent manager as detailed in Section 2), and providing 
a detailed spatially-oriented representation as well.  
This would be especially useful in domains where 
fairly strong geographic boundaries could be defined 
(i.e. where the likelihood of agent sensory range 
overlapping a boundary and thus having to be serviced 
from two different machines would be minimal).  We 
also intend to add the ability for agents to migrate from 
machine to machine to rebalance loads and (in the case 
of a distributed environment as well) make the overall 
simulation more efficient and dynamic.  Given that 
agent code migrates from the initial controlling 
(environment) machine to the distributed agent 
machines at the outset of a simulation, this in 
particular would not be a difficult extension. 

Finally, we are interested in improving this system 
to provide more effective control and more precise 
simulations in heterogeneous environments, where 
different numbers of agents and their effect on 
machine execution speed must be dealt with, as well as 
varying network loads and network types.  We are 
currently proposing funding for a large scale 
heterogeneous distributed system employing several 
different network facilities, machine architectures, and 
operating systems, in order to begin this work. 

This paper has described an effective tool for the 
examination and experimentation of intelligent agents 
in simulated worlds, as well as the construction of 
simulations employing intelligent agents.  We have 
endeavoured to illustrate that despite the common view 
of distributed simulation as a necessary evil for large-
scale simulations of difficult problems, with its 
overhead paid back in increased performance, the 
distributed approach in fact brings about many 
practical advantages in this case.  In particular, simpler 
timing (and at a lower level, the implementation of 
timing), and the provision of a pragmatic agent 
perception component benefit greatly specifically from 
being implemented in a distributed setting.  While this 
is by no means a simulator that can be used to 
implement every possible distributed simulation, we 
believe it is applicable not only to the initial problem 
to which it was designed, but a wide range of 
applications outside of this.  Future work will extend 
this range while keeping the pragmatic choices 
outlined here in mind. 
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