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Abstract: In this paper, we propose a regularity theory of causation. The theory
aims to be reductive and to align with our pre-theoretic understanding of the
causal relation. We show that our theory can account for a wide range of causal
scenarios, including isomorphic scenarios, omissions, and scenarios which sug-
gest that causation is not transitive.

1. Introduction

Hume observed that all our reasoning about matters of particular fact is
grounded in the relation of cause and effect. This relation, if any, we under-
stand perfectly. And yet there is no theory of causation at our disposal that
tells us reliably what it means that this is a cause of that. The lack of a
satisfying theory of causation is, moreover, not for a lack of effort. There have
beenmany attempts to analyze causation.Hume himself defined a cause to be

an object, followed by another, and where all the objects similar to the first are followed by ob-
jects similar to the second. Or in other words where, if the first object had not been, the second
never had existed. (Sect. VII Hume, 1748/1975)

The first sentence says that the relation between cause and effect instanti-
ates a regularity (Andreas andGünther, 2021). This idea has been developed
further. We learned from Mackie (1965, 1974) and Wright (1985) that the
sets of actual conditions which are jointly sufficient for the effect to occur
must be minimal. And Baumgartner (2013) shows that the regularities must
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be non-redundant for the effect. The regularity theory thus counts as a cause
each member of any minimal set of actual conditions that are jointly suffi-
cient for the effect to occur in the presence of non-redundant regularities.
The second sentence of the quote says that an effect counterfactually

depends on its cause. This idea has been taken up by Lewis (1973) who
analyses causation as the transitive closure of counterfactual dependences
between actual events and absences. For Hitchcock (2001), a cause is con-
nected by an active causal path to its effect. And Gallow (2021) adds that
the active causal path, or rather active causal network, must transmit devi-
ancy from cause to effect.
In this paper, we propose a regularity theory of deterministic token

causation.1 The motivating idea is this: causation is deviant forward-
directed inferability along the causal paths of direct non-redundant regu-
larities. Building on Baumgartner’s work, we aim to reduce causation to
true propositions of particular fact and deviancy from norms. The true
propositions of particular facts and minimization procedures give rise to
non-redundant regularities. This will allow us to define causal models in
terms of true propositions of particular fact and direct non-redundant
regularities. These causal models are ultimately obtained from the true
propositions of particular fact, unlike the causal models employed by the
counterfactual theories of Hitchcock (2001), Halpern and Pearl (2005),
and others. We will show that our regularity theory aligns with the com-
monsense understanding of the causal relation – even in causal scenarios
where Baumgartner’s does not.
We proceed as follows. First, we present a regularity theory due to

Lewis (1973) and restrict the regularities to direct and non-redundant ones.
We then define causal models as tuples of direct non-redundant regularities
and propositions of particular fact. This allows us to state our preliminary
theory of token causation.We will show how our theory solves a wide range
of causal scenarios and amend it where necessary. Finally, we aim to estab-
lish the reductiveness of our theory by avoiding model-relativity.

2. Direct non-redundant regularities

Lewis (1973) authored and rejected a regularity theory. It can be summa-
rized as follows. LetA be the proposition that is true if and only if (iff) some
token eventa of typeA occurs. If no token event of typeA occurs,¬A is true.
Furthermore, let L denote a set of true regularities, andF a possibly empty
set of true propositions describing particular facts.2 An event c is a cause of a

1We set the issue of indeterministic causation aside.
2True propositions of particular fact describe actual events and absences – events and absences of

the actual world ranging from the most distant past to the farthest future.
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distinct event e iff there is a set L of true regularities and a set F of true
propositions of particular fact such that

(1) C and E are true,
(2) L∪F ⊧C→E,
(3) L∪F ⊭ E, and
(4) F ⊭ C→E.

(1) says that cause and effect are actual. (2) says that a cause expressed by
C is sufficient for its effect in the presence of L∪F . However, (3) says that
L∪F alone does not entail E. Given L∪F ; C is necessary for E. In this
sense, L∪F∪C is a minimal set sufficient for E. (4) says that F alone does
not entail the material implicationC→E.L is not redundant in the minimal
sufficiency of L∪F∪C for E.
Lewis made a case that the regularity theory cannot properly distinguish

between genuine causes and both effects and preempted would-be causes.
The underlying reason is that some of the true regularities inL are spurious.
Consider, for illustration, the structure in Figure 1, where C is a common
type-cause of D and E. In addition, B and A are alternative type-causes of
D and E respectively.
B is sufficient for D, and so is C. Likewise, each of C and A alone is suf-

ficient for E. But ¬B⋀D is also sufficient for E. When some token event
of D occurs, and no token event of B, then some token event of C occurs.
For no effect occurs without any of its causes. And C is sufficient for E.
We have thus the following true but spurious regularity:

ð¬B⋀DÞ⋁C⋁A↔E:

If a token event of type C occurs, for example, a token event of type E oc-
curs. Similarly, if no token event of type B occurs and a token event of type

FIGURE 1. C is a common type-cause of D and E.
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D occurs, then a token event of typeE occurs. Furthermore, if a token event
of type E occurs, then a token event of type A, or of type C occurs.
Given the above regularity is inL andF ¼ f¬Bg, the occurring event d is

then a cause of the occurring event e on the above regularity theory. Indeed,
D is then an INUS condition and a NESS condition for E. If the token
events d ofD and e of E occur, Mackie’s INUS theory and Wright’s NESS
theory wrongly count the event d as a cause of e.
In themeantime, Baumgartner (2013) has shown that spurious regularities

can be pruned fromL by requiring them to be non-redundant. A non-redun-
dant regularity for E is a minimally necessary disjunction of minimally suf-
ficient conjunctions forE. To be precise, letC be a set of minimal setsA i of
propositions of particular fact that are sufficient for E.⋀A i is some conjunc-
tion of the members of A i, and ⋁i⋀A i some disjunction of such
conjunctions.3 We say C is minimally necessary for E iff

(a) ⋁i⋀A i↔E is true, and
(b) there is no C0 ⊂ C such that ⋃jA j ¼ ⋃C0 and ⋁j⋀A j↔E is true.

WheneverC is minimally necessary forE, we say that⋁i⋀A i↔E is a non-
redundant regularity for E.
Now, ff¬B; Dg; fCg; fAgg is not minimally necessary for E, but

ffCg; fAgg is. The non-redundant regularity for E is thus

C⋁A↔E:

This solves the problem of joint effects of a common cause under the
assumption that any type effect has more than one alternative type cause –
more than one minimally sufficient conjunction. The assumption likewise
solves the problem of the direction of causation. The non-redundant regular-
ity implies a non-symmetry: each ofC andA alone is sufficient forE, butE is
only sufficient for the disjunction C⋁A. Therefore, E is not a cause ofC on
the above regularity theory (assuming L ¼ fC⋁A↔E; C⋁B↔Dg contains
all and only the non-redundant regularities for E and D).
The non-redundant regularities are relative to the set of propositional var-

iables we consider. For this to be seen, consider the above structure restricted
to the variable set fC; A; Eg. This simple structure of overdetermination is
fully described by the non-redundant regularity C⋁A↔E. Indeed, a token
event of type E occurs only if a token event of type C, or one of type A oc-
curs, or both; and for any occurrence of a token event of typeA orC, there is
an occurrence of a token event of type E.
However, let us consider a structure of preemption enriched by informa-

tion about the token events. In Figure 2, a gray-shaded node indicates that

3⋁i⋀A i is short for
⋁

i ≤ n
⋀A i , where n is the cardinality ofC. Likewise,⋃iA i is short for

⋃
i ≤ n

A i .
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some token event of the relevant type occurs, and a white node that no token
event of the relevant type occurs.
C is sufficient forD, which in turn is sufficient for E. Similarly, A is suffi-

cient forB, which in turn is sufficient forE. ButC is also sufficient to prevent
any token event of type B from occurring. This is represented by the
‘preventive’ arrow betweenC andB. In the scenario under consideration, to-
ken events of bothC andA occur. c is a cause of e, but a is a mere would be
cause of e: c preempts the causal efficacy of a.
The regularityC⋁A↔E is still true and non-redundant for the structure of

preemption. However, this regularity does not fully describe the structure
relative to the variable setfC; A; D; B; Eg. In order to obtain a full descrip-
tion, we require that all non-redundant regularities inL are direct. A non-re-
dundant regularity⋁i⋀A i↔E is direct relative to a variable set iff there are
no true non-redundant regularities ⋁j⋀Bj↔C and ⋁k⋀Ck↔E, where the
same variable appears as subformula in some ⋀A i and some ⋀Bj, while
C appears as subformula in some ⋀Ck.
The non-redundant regularity C⋁A↔E is not direct relative to the

extended variable set: there are the true non-redundant regularities C↔D
andD⋁B↔E, andC appears as subformula inC⋀A andC, whileD appears
inD. (Any formula is a subformula of itself.) The non-redundant regularities
C↔D; A⋀¬C↔B, and D⋁B↔E, by contrast, are all direct relative to the
extended variable set. There are no other direct non-redundant regularities.
In general, a causal structure is fully described by all and only the direct
non-redundant regularities.
Howdoes Lewis’s regularity theory amended by direct non-redundant reg-

ularities treat preemption?Well,c is a cause ofe, as it should be. For this to be
seen, takeF ¼ ∅. Conditions (1)–(4) are then satisfied.Unfortunately,a also
counts as a cause of e. For this to be seen, observe that condition (1) is satis-
fied, and condition (3) is satisfied forF ¼ ∅ orF ¼ f¬Bg. Bothoptions also
satisfy condition (4). As to condition (2), let’s consider the first option
F ¼ ∅. There are only two cases: if ¬C, then the direct non-redundant reg-
ularities inL entailA→E viaB. IfC, the direct non-redundant regularities in
L entail E, and thus A→E. Hence, L∪F ⊧A→E. Condition (2) is satisfied,
and so a wrongly counts as a cause of e.

FIGURE 2. Preemption.
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What went wrong? Well,A andB are – just likeC andD – type-causes of
E. Whatmakes the difference in the preemption scenario betweenC andA is
that a token event of type D occurs, while no token event of type B occurs.
The spirit behind regularity theories is that the true propositions of particu-
lar fact should be respected. But the entailment of A→E involves an infer-
ence via B, even though no token event of type B occurs. This suggests that
the regularity theory of Lewis is too liberal as to the choice of the set F of
true propositions of particular fact. There is a minimality constraint on F ,
but a maximality constraint is lacking which would guarantee that ¬B ∈ F .
Such a maximality constraint alone, however, does not help Lewis’s regu-

larity theory. Even ifF ¼ f¬Bg; a counts as a cause ofe. For this to be seen,
observe first that the direct non-redundant regularities in L and ¬B entail
¬A⋁C. There are again only two cases: if ¬C, then L and F entail ¬A,
and thus A→E. If C, then L and F entail E, and thus A→E. Condition
(2) is again satisfied. But observe that this reasoning is artificial. Intuitively,
a is not a cause ofe becauseA does not entailE in a forward-directed way via
B. If you prefer, we may alternatively say that there is no causal path fromA
over B to E that is active in the sense that a token event of each of the types
A; B and E occurs.
Baumgartner (2013) develops a theory of token-causation from his theory

of type-causation and the notion of an active causal path. His theory of
type-causation requires that the regularities remain non-redundant under
any suitable extension of the variable set. As a result, there are direct and in-
direct non-redundant regularities that already tell us which relations of
type-causation are transitive, and which are not. He defines, roughly, a to-
ken event to be a cause of another iff there is an active causal path from
the first token event or absence to the second via the direct non-redundant
regularities. (See p. 98 for the formal details).
Baumgartner’s regularity theory reduces causation to material implica-

tions and minimization procedures. He thereby proposes a theory of causa-
tion free of anymodal notion. And it is notable that his theory accounts well
for many causal scenarios, including overdetermination, preemption, as well
as some switching scenarios, and some short-circuits. Only very recently
counterfactual theories of causation have been able to account for these sce-
narios (Andreas and Günther, 2021b; Gallow, 2021).
This being said, Baumgartner’s regularity theory works only under the as-

sumption that each variable set is extendable such that each type effect has at
least two alternative type causes. The assumption seems empirically accu-
rate, even though it is contingent: it depends on the actual features of our
world. We think it would be better if a theory of causation were even able
to come to the right verdicts in all conceptual possibilities – including a sce-
nario where one event is the only cause of another. We aim for such a con-
ceptually accurate regularity theory that aligns with our understanding of
the causal relation.
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3. Causal models

Causal models represent causal scenarios. In a causal scenario like preemp-
tion, certain events occur, others do not, and we have a certain structure that
tells us how event types depend on other event types. We can define a causal
model hL; F i by two components: a set L of direct non-redundant regular-
ities and a set F of propositions of particular fact. A ∈ F means that some
token event a of type A occurs. ¬A ∈ F , by contrast, means that no token
event of typeA occurs. In other words, ¬A denotes the absence of any event
of type A, or simply the absence of A.
The preemption scenario can be represented by a causal model hL; F i,

where L ¼ fC↔D; B↔A⋀¬C; E↔D⋁Bg and F ¼ fC; A; D; ¬B; Eg.
For readability, we represent causal models in two-layered boxes. The upper
layer shows the setL of direct non-redundant regularities ordered in the fol-
lowing way: the single variable is on the left-hand side and the formula in
disjunctive normal form on the right-hand side. The lower layer shows the
set F of propositions of particular fact. For the preemption scenario, we
obtain

LetΓ be a set that contains propositional formulas. We understand entail-
ment in the standard way: Γ⊧ϕ iff the propositional formulaϕ is satisfied by
any classical valuation that satisfies all members of Γ. We define the entail-
ment relation for causal models as follows:

hL; F i⊧ϕ iff L∪F ⊧ϕ:

Causation is not symmetric, if not asymmetric outright. If C is a cause of
E, it is thereby not the case that E is a cause of C. Recall that non-redun-
dant regularities of the form E↔⋁i⋀A i are generally not symmetric: the
type-effect E is only sufficient for a disjunction, while each disjunct is suf-
ficient for E.
There are, however, problematic limiting cases. Non-redundant regulari-

ties like D↔C are symmetric: D is sufficient for C, and C is sufficient for
D. There are two promising ways to determine the direction of causation
in these limiting cases. One could reconsider a Humean approach to the di-
rection of causation that relies on the direction of time (Andreas and
Günther, 2024). If, for example, the token events of typeC precede the token
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events of type D, we may say that D is the type-effect. Alternatively, one
could extend the variable set until the symmetry is broken
(Baumgartner, 2013). If we extend the variable set by C0, which is another
type-cause of D, the resulting non-redundant regularity D↔C⋁C0 breaks
the symmetry. In what follows, we assume that the direction of
non-redundant regularities can always be determined. We can then say that
any type effect is by convention on the left-hand side of a direct
non-redundant regularity and its direct type causes on the right-hand side.
Still, non-redundant regularities allow for inferences in two directions.

E↔D⋁B, for example, allows us to infer from either of the type causes D
andB to the type effectE. This inference goes from type causes to some type
effect. Let us call any such inference forward-directed. By contrast, the type
effectE allows us to infer the disjunction of its type causesD⋁B. This infer-
ence goes from some type effect to its type causes. Let us call any such infer-
ence backward-directed.
One idea behind our theory of causation is that a token cause allows us to

infer its token effect in a purely forward-directed way. To implement this
idea, we need to isolate the forward-directed consequences of actual events
and absences from the backward-directed ones. In general, we can isolate
the forward-directed causal consequences of some occurring token event a
of typeA for a causal modelhL; F 0i by a setting. Roughly speaking, a setting
removes a non-redundant regularityA↔⋁i⋀A i fromL and replaces it by a
true proposition, either A or ¬A. Thereby, backward-directed inferences
from A or ¬A are excluded.
Suppose we want to determine the forward-directed causal consequences

of the occurring token event a of type A for a causal model hL; F 0i, where
F 0 is a subset of the set F of true propositions particular facts. The setting
of A in this causal model results in a causal model hLA; F 0∪fAgi. If
A↔⋁i⋀A i is a member of L; LA is obtained from L by removing this
non-redundant regularity. Otherwise LA ¼ L. We call hLA; F 0∪fAgi the
causal submodel of hL; F 0i after the setting of A. By removing the non-re-
dundant regularity for A from L, backward-directed inferences from A or
¬A are excluded in the causal submodel.
Complex settings may be represented by a set S of true propositions of

particular fact. Let us denote settings by an operator ½ · � that takes a
causal model hL; F 0i and a set S of true propositions of particular fact,
where both F 0 and S are subsets of the true propositions F of particular
fact, and returns a causal model – the submodel of hL; F 0i after the set-
ting of S. The setting by a set of true propositions of particular fact is
defined as follows:

hL; F 0i½S� ¼ hLS; F 0∪Si hL; F i½S�ð Þ
where
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LS ¼ A↔⋁i⋀A i ∈ Lð ÞjA ∉ Sand¬A ∉ Sf g:

LS is the subset of L that contains each direct non-redundant regularity

A↔⋁i⋀A i whose variable A does not appear in S. After setting S in the
causal model hL; F 0i, the set S becomes part of the propositions of par-
ticular fact of the resulting submodel. Note that the resulting submodel is
again a causal model consisting of a set of non-redundant regularities
and a set of propositions of particular fact.
Settings will always only set true propositions of particular fact. No prop-

ositions contrary to the true facts are ever set, unlike the interventions em-
ployed by Halpern and Pearl (2005) for example. As a consequence, the
resulting submodels are not inconsistent provided the original causal models
were not.
We are now in a position to state our preliminary theory of causation.
Definition 1. Let hL; F i be a causal model such thatF ⊧L. c is a cause of e
relative to hL; F i iff there is a set F 0 ⊆ F such that all of the following
conditions are satisfied:

(1) hL; F i⊧C⋀E.
(2) hL; F 0i ⊭ E, and there is no F 00 so that F 0 ⊂ F 00 ⊆ F and

hL; F 00i ⊭ E.
(3) hL; ∅i½F 0�½fCg�⊧E.

(1) says that cause and effect are actual. (2) says that there is a set F 0 of
propositions of particular facts that does not entail the effect E in the pres-
ence of the direct non-redundant regularities, and F 0 is maximal: any strict
superset ofF 0 would entailE in the presence of the direct non-redundant reg-
ularities. (3) says thatF 0 and the direct non-redundant regularities do entail
E together with C in a forward-directed way.
On our preliminary theory, a cause is each member of any maximized

minimal set of actual conditions which are jointly sufficient in a
forward-directed way for the effect to occur in the presence of direct
non-redundant regularities. Causation so understood amounts to
forward-directed inferability along direct non-redundant regularities.

4. Scenarios

Let us revisit the scenario of preemption.
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Relative to hL; F i; c is a cause of e. Condition (1) is satisfied, and will be
satisfied in all the scenarios to come. Take F 0 ¼ f¬Bg. Then hL; F 0i ⊭ E,
but any strict superset of F 0 would entail E in the presence of L. Condition
(2) is satisfied. And condition (3) is satisfied as well:
fD↔C; E↔D⋁Bg∪f¬Bg∪fCg⊧E.
Relative to hL; F i; a is not a cause of e. Condition (2) is only satisfied for

F 0 ¼ f¬Bg. But then the direct non-redundant regularity of B is removed
from L by the setting of ¬B. Condition (3) is then violated:
fD↔C; E↔D⋁Bg∪f¬Bg∪fAg ⊭ E. Our preliminary theory solves
preemption.
We leave it to the reader to verify that our preliminary theory accounts for

other classic scenarios like overdetermination, prevention, double preven-
tion, and more. Instead, we turn toward the problem of isomorphic causal
models.

4.1. ISOMORPHISMS

The problem of isomorphic causal models is that there are pairs of scenarios
which are structurally indistinguishable for simple causal model accounts,
and yet our causal judgments differ (Hall, 2007, p. 44). We call a causal
model account simple if it only factors in structural equations – or our direct
non-redundant regularities – together with values of variables – or our prop-
ositions of particular fact.
Let us illustrate an instance of the problem. Here is the causal model of a

scenario of overdetermination.

We transform this causal model into a structurally indistinguishable or
isomorphic causal model. To do this, negate both sides of the direct
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non-redundant regularity. Then substituteC by F ; A by ¬D, and E by ¬E.
The result is the isomorphic causal model:

And indeed, ¬E is ‘overdetermined’ by F and ¬D. This causal model can
be represented by Figure 3.
Here is an example for this structure. Poisonings D are type causes of

deaths E, and antidotes F are type preventers of deaths E. In the scenario
under consideration, let’s say, there is an assassin, a potential target, and
her bodyguard. The assassin refrains from poisoning target’s coffee ¬D,
and her bodyguard puts antidote in her coffee F . Target survives, of course.
Because target’s coffee is not poisoned in the first place, there is no danger at
all that she dies. The prevention by bodyguard’s antidote is bogus. And so
bodyguard’s putting the antidote in her coffee is arguably no cause of her
survival (Hiddleston, 2005; Hitchcock, 2007).
Recall that there is no structural difference for simple causal model ac-

counts between F in the scenario of bogus prevention and C in the scenario
of overdetermination. However, our causal judgments differ. We judgeC to
be a cause ofE in the overdetermination scenario, while we do not judgeF to
be a cause of ¬E in the bogus prevention scenario.
Simple causal model accounts of causation – like the accounts of

Hitchcock (2001), Halpern and Pearl (2005), and Andreas and
Günther (2021b, In Press) for example – cannot distinguish between F and
C in the isomorphic causal models: C counts as a cause iff F does. This
means simple causal model accounts must incorrectly classify F as a cause
in the bogus prevention scenario if they correctly classify C as a cause in
the overdetermination scenario. This is a problem indeed if we take our
pre-theoretic understanding of the causal relation seriously.
Our preliminary theory of causation is a simple causal model account, and

so is likewise susceptible to the problem of isomorphic causal models.

FIGURE 3. Bogus prevention.
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Hitchcock (2007), Hall (2007), Halpern and Hitchcock (2015), and
Halpern (2015) all aim to solve the problem by taking into account default
or normality considerations. The underlying idea is that the status of genuine
causes depends on being deviant from what is normal (Beebee, 2004;
McGrath, 2005). On this view, genuine effects are brought about by causes
that are more deviant from normality than its non-actual alternatives.
Gallow (2021) goes even further by elevating the transmission of deviancy
to the mark of causation: an event is a cause in virtue of transmitting its de-
viancy to its effect.
We also aim to resolve the problem of isomorphic causal models by a con-

dition of deviancy. But what is deviancy? For now, we followGallow (2021,
p. 54) in saying that prima facie an occurring event is more deviant than its
absence. But this is just a first approximation. The question of what consti-
tutes deviancy is more intricate. We will discuss it later.
To amend our theory by a deviancy condition, we need the notion of a

root proposition. We say a proposition F of particular fact is a root propo-
sition in a causal modelhL; F i iff there is no direct non-redundant regularity
for F or ¬F in L. Finally, let F r denote the set of root propositions in F .
We amend now our theory by a condition of deviancy. The condition ap-

plies to all genuine causes for the effect under consideration and to all root
propositions which are not in the maximized minimal setF 0 of propositions
of particular fact that are jointly sufficient for the effect in the presence of the
direct non-redundant regularities. It says that all such genuine causes and
root propositions have to bemore deviant than their negation. To be precise,
we require the following condition in addition to conditions (1)–(3):

(4) for allF ∈ F∖F 0, ifF≡C orF ∈ F r, thenF is more deviant than¬F .

The deviancy condition (4) says that, for c to be a cause of e, the proposi-
tionC and each root proposition F that is not in the maximized minimal set
F 0 of propositions of particular fact must bemore deviant than its respective
negation. On the amended theory, causation is thus understood as deviant
forward-directed inferability along direct non-redundant regularities.
How does our amended theory treat bogus prevention? Well, we know

from the isomorphism between overdetermination and bogus prevention
that f counts as a cause of the non-occurrence of any event e of type E –

or simply e’s absence – on our preliminary theory for F 0 ¼ ∅. However,
the deviancy condition is violated.¬D is a root proposition of particular fact
that is not in F 0 ¼ ∅, but ¬D is less deviant than D. Therefore, f is not a
cause of e’s absence. d’s absence is normal and so is likewise no cause of
e’s absence. Or so says our amended theory.
Bogus prevention illustrates the underlying rationale of condition (4). The

root propositions in F∖F 0 are causes or backup causes if they are more

A REGULARITY THEORY OF CAUSATION 13

© 2024 The Authors
Pacific Philosophical Quarterly published by University of Southern California and John Wiley & Sons Ltd.

 14680114, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/papq.12447, W

iley O
nline L

ibrary on [12/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



deviant than their negations. Otherwise they would remain inF 0 in virtue of
its maximality. In the bogus prevention scenario, d’s absence and f ’s occur-
rence are no causes because of the normality of the root proposition¬D. The
normality of non-occurrence of any event of typeD entails that d’s absence
and f ’s occurrence are no causes.
Like the simple causal model accounts, Baumgartner’s (2013) regularity

theory wrongly says that d’s absence and f ’s occurrence are causes of e0s ab-
sence (p. 105). He prefers this result over a relativization of causation to nor-
mality or typicality (p. 106). This is where we fundamentally part ways. We
take our pre-theoretic understanding of the causal relation in the bogus pre-
vention scenario at face value.
This being said, Baumgartner aims for a proof of concept that his regular-

ity theory could be enriched by a notion of normality or typicality – much
like simple causal model accounts (p. 106). And indeed, he shows how his
regularity theory so enriched can account for the bogus preventer f by
disregarding an atypical but empirically possible situation – possible accord-
ing to the type-level structure of bogus prevention.
He assumes that the least typical empirical possibility is the one in which

some token events of type D and of type F occur. By disregarding this em-
pirical possibility, a token event of type E occurs just in case one of type D
occurs. The non-redundant regularity simplifies toE↔D.¬F does not figure
any longer in the non-redundant regularity. And so f ceases to be a cause of
e’s absence on his enriched theory. But d’s absence remains a cause of e’s ab-
sence. And this goes against our commonsense judgment: the normal
absence of poison does not cause target’s survival.

4.2. OMISSIONS

Omissions pose another problem for many theories of causation. In a sce-
nario of omission, an event fails to occur and so another event occurs. How-
ever, had the event occurred, it would have prevented the other event from
occurring. The basic structure of omissions can be represented by Figure 4.
An event c of type C occurs and brings about an event e of type E. No

event f of type F occurs. However, had an event f of type F occurred, it

FIGURE 4. Omission.
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would have prevented e from occurring. Here is the causal model for the sce-
nario of omission.

Relative to this causal model, f ’s absence is not a cause of e, given the
above convention about deviancy. For this to be seen, observe that condi-
tions (2) and (3) are only satisfied forF 0 ¼ fCg. But then condition (4) is vi-
olated: ¬F ∈ F∖F 0 and ¬F is a root proposition, and yet ¬F is less deviant
than F .4

Indeed, many omissions are no causes. Putin’s failure to water my plant,
for example, did not cause it to dry up and die. However, some omissions in-
tuitively do count as causes. My neighbor promised me to water my plant,
but she didn’t and it died. Here, my neighbor’s failure to water my plant
should count as a cause of its death (McGrath, 2005). Our theory can cap-
ture this phenomenon if we refine our notion of deviancy.
We have said that prima facie an occurring event is more deviant than its

absence. We say now in addition that the absence ¬A of any event of typeA
is more deviant than an event of typeA if¬A violates a norm that is active in
the scenario under consideration (Andreas et al., 2023; Beebee, 2004). My
neighbor’s omission to water my plant is an absence that violates the active
norm of promise-keeping. My neighbor deviated from this norm and so her
omission is more deviant than its negation. Our theory says then that my
neighbor’s failure to water my plant is a cause of the plant’s death. Putin,
by contrast, did not promise to water my plant. His omission is thus less de-
viant than his watering my plant, and so does not count as a cause of my
plant’s death. Or so says our theory.
We have illustrated how condition (4) helps overcome the problem of iso-

morphic causal models and how it accounts for simple scenarios of omis-
sion. As to the latter, deviant omissions are genuine causes, non-deviant ones
are not. In general, a genuine cause is deviant and allows to infer its effect in
a forward-directed way along direct non-redundant regularities.
Baumgartner’s (2013) theory says that all omissions of f in the above sce-

nario are causes of e. There is only one set of actual conditions that are
jointly sufficient for e to occur in the presence of the non-redundant regular-
ity: f¬F ; Cg. What does his theory say when we enrich it by some typicality
ranking?

4By contrast, c is a cause of e. TakeF 0 ¼ f¬Fg. Conditions (2) and (3) are then satisfied. And be-
cause ¬F is not in F∖F 0, condition (4) is trivially met.
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Observe that the non-redundant regularity of the omission scenario is of
the same form as the one of bogus prevention. There Baumgartner assumed
that the empirical possibility in which token events of type F and typeC oc-
cur is less typical than any other. By disregarding this empirical possibility,
an event of type E occurs just in case one of type C occurs. The non-redun-
dant regularity of the scenario simplifies to E↔C. And so the default omis-
sion of f ceases to be a cause of e on his enriched theory. So far so good.
There is, however, work left. Baumgartner has not yet said how normality,

typicality, or deviancy are supposed to figure in the confines of his theory in
general. It remains unclear how his enriched regularity theory applies to ar-
bitrary causal scenarios.

4.3. ENTANGLEMENTS

Another problem comes from causes that are entangled with one another.
We first illustrate the problem and then refine our theory in response. Con-
sider a structure, where two type causesA andC are necessary for an effectE
to occur.Moreover,A andC are entangled: one of them is a type cause of the
other. And let’s say in the actual scenario a token event of each type occurs.
Figure 5 graphically represents this scenario, where the thick circle aroundE
means that both A and C are necessary for E.
We say that C is here a subcause of A. Here is the causal model for this

subcause scenario.

Entangled causes are tightly related. Here, the subcause C depends di-
rectly and exclusively on the ‘supercause’A. Given the direct non-redundant
regularities, the occurrence of some token event of type E is determined by
whether or not some token event of type A occurs. In this sense, the type-
cause C is subordinate to the type-cause A.

FIGURE 5. Subcause.
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Our present theory of causation does not count the token event of type C
as a cause of the token event of type E. For this to be seen, note that
hL; F 0i ⊭ E only forF 0 ¼ ∅. But then hL; ∅i½F 0�½fCg� ⊭ E. However, this
seems to be the wrong verdict.
Why does our present theory of causation fail for entangled causes? Well,

it seems that the tight connection between entangled causes like A and C is
the culprit. A solution is thus to cut this tight connection between entangled
causes by removing non-redundant regularities from the causal model. In
the subcause scenario, this means we could cut the tight connection between
the subcause C and its supercause A by removing the direct non-redundant
regularity C↔A. We thus generalize our theory of causation as follows.
Definition 2. Let hL; F i be a causal model such thatF ⊧L. c is a cause of e
relative to hL; F i iff there is a setL0 ⊆ L and a setF 0 ⊆ F such that all of
the following conditions are satisfied:

(1) hL; F i⊧C⋀E.
(2) hL0; F 0i ⊭ E, and there is no F 00 so that F 0 ⊂ F 00 ⊆ F and

hL0; F 00i ⊭ E.
(3) hL0; ∅i½F 0�½fCg�⊧E.
(4) For all F ∈ F∖F 0, if F≡C or F ∈ F r, then F is more deviant than

¬F .

This proper generalization of our amended theory solves the subcause sce-
nario. For this to be seen, take L0 ¼ fE↔C⋀Ag andF 0 ¼ fAg. Well then,
condition (2) is satisfied, and so are conditions (3) and (4). Hence, the occur-
ring token event c of typeC is a cause of the occurring token event e of type
E, as desired.5

4.4. NON-TRANSITIVITY

A final challenge for the current theory arises from causal scenarios which
suggest that causation is not transitive. The transitivity of causation means
this: whenever a token event c of type C is a cause of one of type A and
the one of type A is a cause of a token event e of type E, then c is a cause
e. It seems often plausible to judge c a cause of e if you judge c a cause of
a and a a cause of e. However, several scenarios have been put forth which
suggest that our causal judgments are not transitive (Lewis, 2000;
McDermott, 1995; Paul, 2000).

5Baumgartner’s (2013) theory correctly says that both token events of type A and C, respectively,
are causes of the token event of typeE. Beckers (2021, pp. 1361–1363) puts forth a series of six scenar-
ios in order to support his causal model account of causation and to challenge others. The latter four
scenarios contain entangled causes.We leave it to the reader to verify that our theory delivers the com-
monsense results Beckers desires.

A REGULARITY THEORY OF CAUSATION 17

© 2024 The Authors
Pacific Philosophical Quarterly published by University of Southern California and John Wiley & Sons Ltd.

 14680114, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/papq.12447, W

iley O
nline L

ibrary on [12/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



One of the examples against transitivity is due toHitchcock (2001, p. 276).
A boulder is dislodged and rolls toward a hiker. The hiker sees the boulder
coming and ducks, so that she does not get hit by the boulder. If the hiker
had not ducked, however, the boulder would have hit her.
The boulder scenario seems to show that there are cases where causation is

not transitive: the dislodged boulder causes the ducking of the hiker, which
in turn causes the hiker to remain untouched by the boulder. But it is
counterintuitive to say that the dislodging of the boulder causes the hiker
to remain unscathed. Unlike other accounts, our theory does not rely on
transitivity to handle certain causal scenarios. We are thus free to deny that
our causal judgment is invariably transitive.
The structure of the boulder scenario can be represented by Figure 6

(Gallow, 2021, p. 53).
Hall (2007, p. 36) calls this structure a short circuit: the boulder’s dislodge-

ment (f ) threatens to hit the hiker by a rolling boulder (b), and at the same
time provokes an action – the ducking (d) – that prevents this threat from
being effective: no token event e of type E occurs.
The token event f should not count as a cause of the absence of any evente

of typeE, because f creates and cancels the threat to bring about some token
event e of type E (Paul and Hall, 2013, p. 216). Our current analysis, how-
ever, says that f is a cause of e’s absence. To see this, consider the causal
model of the boulder scenario:

TakeL0 ¼ fD↔F ; E↔B⋀¬Dg andF 0 ¼ fBg. Then condition (2) is sat-
isfied, and so are the conditions (3) and (4).
What went wrong?Well, it seems that f comes out as a cause ofe’s absence

because we disregard that F is type-causally connected to E via B. By

FIGURE 6. Short circuit.
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removing the direct non-redundant regularity B↔F , we loose the informa-
tion that f creates a threat to bring about e’s occurrence. But, intuitively, this
information seems to be crucial to determine whether f is a cause of e’s ab-
sence. And so it seems to be unwarranted to neglect one of the type-causal
paths from F to E.
The generalization of our theory to handle scenarios of entangled causes

overshoots. Removing arbitrary direct non-redundant regularities from L
can lead to counterintuitive results, as the boulder scenario illustrates. In
response, we put a constraint on which direct non-redundant regularities
can be removed. The idea is this: when testing whether a token event c of
type C is a cause of a token event e of type E, the causal paths from C to
E need to remain intact.
To implement the idea that constrains the removal of direct

non-redundant regularities, we introduce some terminology. Recall that
A↔⋁i⋀A i is the direct non-redundant regularity of A. We say A is a child
variable of the parent variables appearing as subformulas in some A i. Let
B be one of the parent variables appearing in some A i. A is then one of its
first descendants. The child variables of A are the child variables of one of
B’s child variables and so are among B’s second descendants. And so on.
The descendants of B are the variables you can reach by following the child
relation. In general, the descendants of some variable B are the variables in
the transitive closure of the child relation starting from B. Finally, let B be
a proposition of the formD or¬D, whereD is a propositional letter.We then
say that the descendants ofB are all the variables (of the causal model under
consideration) which are descendants of the variable D of which B is a
proposition.
For our final theory of causation, we require the following condition in

addition to conditions (1)–(4):

(5) For all descendantsA ofC, the direct non-redundant regularity ofA is
in L0.

Condition (5) ensures that the causal paths starting from a candidate cause
C remain in L0. On our final theory, causation is understood as deviant
forward-directed inferability along the causal paths of direct
non-redundant regularities from cause to effect.We show now how this con-
dition helps to handle scenarios that challenge the transitivity of causation.

4.4.1. Short circuit

Let us, first, reconsider the boulder scenario of Figure 6. f does no longer
count as a cause of e’s absence. For this to be seen, observe that all variables
are descendants of F . Condition (5) thus prohibits to remove any direct

A REGULARITY THEORY OF CAUSATION 19
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non-redundant regularity fromL. As a consequence, there is noL0 andF 0 so
that condition (2) is satisfied. Even for F 0 ¼ ∅, the direct non-redundant
regularities entail ¬E.
By contrast,d counts as a cause of e’s absence. For this to be seen, observe

that F is not a descendant ofD. Hence, the direct non-redundant regularity
D↔F can be removed from L. Take L0 ¼ fB↔F ; E↔B⋀¬Dg and
F 0 ¼ fF ; Bg. hL0; F 0i does not entail ¬E, and F 0 is maximal: any strict
superset of F 0 would entail ¬E in the presence of the direct non-redundant
regularities in L0. But, of course, hL0; ∅i½F 0�½fDg�⊧¬E.
On Baumgartner’s (2013) theory, the type-level structure of the boulder

scenario is empirically equivalent to the type level structure
L ¼ fB↔F ; D↔F ; ¬E↔F⋁¬Fg. A situation in which B and ¬D are true
is impossible according to this and the original type-level structure of the
boulder scenario. In both, there are only two empirically possible situations
over the four variables: fF ; B; D; ¬Eg and f¬F ; ¬B; ¬D; ¬Eg. The
type-level structure of the boulder scenario only allows for empirical possi-
bilities, in which no token event of type E occurs. And so it is empirically
equivalent to a type-level structure including the indirect non-redundant reg-
ularity ¬E↔F⋁¬F but without the regularity E↔B⋀¬D. This shows, so
argues Baumgartner, that the latter regularity is empirically redundant (pp.
101–104). After all, the indirect non-redundant regularity says that a token
event of type E never occurs.
The two type-level structures are empirically equivalent: the situations

compatible with the respective non-redundant regularities coincide. How-
ever, we think that the type-level structure of the boulder scenario is a con-
ceptual possibility for which a theory of causation should be able to account
for. Andwhile Baumgartner’s theory correctly says that f is not a cause ofe’s
absence, it also says thatd is not a cause ofe’s absence. The latter is wrong on
our understanding of the causal relation. After all, we judge the hiker’s
ducking to be a cause of her remaining untouched by the boulder.

4.4.2. Extended double prevention

In a scenario of double prevention, an event prevents another event which –

had it occurred –would have prevented a third event. Hall (2004, p. 247) pre-
sents an extension of a simple scenario of double prevention, which we call
extended double prevention. The structure of this scenario can be repre-
sented by Figure 7.
Here, the event of type C double prevents the event of type E because C

prevents an event of type D from occurring that – had it occurred – would
have prevented the occurring event of type E. In the present scenario, how-
ever, the occurring events of type B and of type C have an occurring com-
mon cause of typeF , and the subgraph F � B � C � D is a short circuit.
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F starts a process viaB that threatens to preventE. At the same time, F ini-
tiates another process viaC that prevents the threat.F cancels its own threat
– the threat via B – to prevent E. Paul (2013, p. 216) argue, among others,
that F is not a cause of E in extended double prevention.
Here is the causal model for the scenario of extended double prevention.

Relative to this causal model, f is not a cause of e. For this to be seen, ob-
serve first that all non-root variables are descendants of F . Condition (5)
prohibits to remove any direct non-redundant regularity from L. Any set
F 0 of particular facts that is supposed to satisfy condition (3) needs to con-
tainA; otherwise hL0; ∅i½F 0�½fFg� ⊭ E. However, ifA ∈ F , then condition
(2) is violated: hL0; F 0i⊧E.6
On Baumgartner’s (2013) theory, the type-level structure of extended

double prevention is empirically equivalent to the type-level structure
L ¼ fB↔F ; C↔F ; E↔Ag (see pp. 101–102). As a consequence, a is
the only cause of e. The double preventer c, in particular, does not count
as a cause of e.

FIGURE 7. Extended double prevention.

6By contrast, c is a cause of e. Take F 0 ¼ fF ; B; Ag and L0 ¼ L∖fC↔Fg. Conditions (1)–(5) are
then met.
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4.4.3. Modified extended double prevention

In Figure 8, Paul (2013, pp. 198–199) ask us to consider a slightmodification
of extended double prevention by ‘adding a non-occurring event of type G’.
Paul and Hall argue that ‘the original verdict stands’: f is not a cause of e

because no event of type G occurs and this non-occurrence does not make
any difference (p. 199). Here is the causal model for the scenario of modified
extended double prevention.

Relative to this causal model, f is not a cause of e. For this to be seen, ob-
serve first that all non-root variables are descendants of F . Condition (5)
prohibits to remove any direct non-redundant regularity from L. There are
only two cases in which hL0; F 0i meets condition (2). First, take
F 0 ¼ f¬G; ¬Dg. But then condition (3) is violated: hL0; ∅i½F 0�½fFg� ⊭ E.
Second, takeF 0 ¼ fA; Bg. In this case, ¬G is inF∖F 0 and¬G ∈ F r. Be-

cause¬G is less deviant thanG, condition (4) is violated.We have shown that
f is not a cause of e in the scenario of modified extended double prevention.
On Baumgartner’s (2013) theory, f counts as a cause of e. The type-level

structure of modified extended double prevention is empirically accurate,

FIGURE 8. Modified extended double prevention.
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and yet his theory delivers the wrong result. This being said, his enriched
theory could obtain the correct result, if the empirical possibility, in which
a and f occur but g does not, is less typical than the other empirical possibil-
ities. But this condition is hard to assess because Baumgartner did not yet
tell us what makes one empirical possibility more or less typical than
another.

4.4.4. Isomorphic modified extended double prevention

Paul (2013, pp. 198–199) considers a scenario that is isomorphic to modified
extended double prevention. They represent it by Figure 9.
In this scenario, the occuring event of typeE requires that both an event of

type A and one of type D occurs. Paul (2013, p. 199) argues that this time c
clearly is a cause ofe. Here is the causal model for the scenario of isomorphic
modified extended double prevention.

Relative to this causal model, c is a cause of e. Take L0 ¼ L and
F 0 ¼ fA; ¬Bg. Then condition (2) is satisfied: hL0; F 0i ⊭ E, andF 0 is max-
imal: any strict superset of F 0 would entail E in the presence of the direct
non-redundant regularities. And condition (3) is satisfied as well:
hL0; ∅i½F 0�½fCg�⊧E. Condition (4) is satisfied as well: G is in F∖F 0 and
G ∈ F r, but G is also more deviant than ¬G. And condition (5) is trivially
satisfied as we did not remove any direct non-redundant regularity.We have
shown that c is a cause of e in the scenario of isomorphic modified extended
double prevention.7

4.4.5. Switch

Switching scenarios are paradigmatic for causal scenarios where our causal
judgments are not transitive. In switching scenarios, some occurring event of
type F helps determine the causal path by which another event is brought
about. Crucially, the other event would also occur via an alternative causal
path if no event of type F had occurred.

7Baumgartner’s (2013) theory correctly says that c is a cause of e (see pp. 101–102).
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To make it more concrete, consider a story provided by Hall (2000, p.
205). Flipper is standing by a switch in the railroad tracks. A train ap-
proaches in the distance. She flips the switch, so that the train travels down
the right track, instead of the left. Because the tracks reconverge up ahead,
the train arrives at its destination all the same. The commonsense judgment
is that flipping the switch is not a cause of the train’s arrival – even though
flipping the switch is a cause of the train’s traveling on the right track, and
the train’s traveling on the right track is a cause of the train’s arrival (Paul
and Hall, 2013, p. 232).
The structure of this switch scenario can be represented by Figure 10.
The flipping of the switch f causes the train to travel on the right track r

and prevents the train from traveling on the left track l. And the traveling
on the right track r causes the train to arrive at its destination e. However,
the flipping of the switch f arguably is not a cause of the train’s arrival e.
Here is the causal model for the switch scenario.

FIGURE 9. Isomorphic modified extended double prevention.

FIGURE 10. Switch.
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Relative to this causal model, f is not a cause of e. For this to be seen, ob-
serve first that all variables are descendants of F . Condition (5) thus pro-
hibits to remove any direct non-redundant regularity fromL. But then there
is no F 0 so that condition (2) is satisfied. Even for F 0 ¼ ∅, the direct non-
redundant regularities entail E.
By contrast, f is a cause of r. TakeL0 ¼ L andF 0 ¼ fEg. Condition (2) is

then satisfied: hL0; F 0i ⊭ R, and F 0 is maximal: any strict superset of F 0

would entail R in the presence of the direct non-redundant regularities.
The other conditions are trivially satisfied.
Likewise, r is a cause of e. Take L0 ¼ fL↔¬F ; E↔L⋁Rg and

F 0 ¼ fF ; ¬Lg. Condition (2) is then satisfied because hL0; F 0i ⊭ E, and
F 0 is maximal: any strict superset of F 0 would entail E in the presence of
the direct non-redundant regularities. The other conditions are trivially
satisfied.
The representation of switching scenarios is somewhat controversial. Our

theory of causation delivers the desired results for the ‘basic’ switch
discussed by Paul (2013, p. 232), for the more realistic switches discussed
by Hitchcock (2009, pp. 395-396), and also a switch discussed by
Halpern (2016, p. 72).We leave it to the reader to verify that our final theory
of causation delivers also the desired results for all of the previously men-
tioned scenarios.
On Baumgartner’s (2013) theory, the type-level structure of our simple

switch is empirically equivalent to L ¼ fL↔¬F ; R↔F ; E↔F⋁¬Fg. And
so there is no cause of e. r does, in particular, not count as a cause of e. This
being said, Baumgartner’s theory delivers the correct verdicts for Paul and
Hall’s basic switch.

5. Reductiveness

We have proposed a regularity theory of causation. On our preliminary the-
ory, a cause is each member of any maximized minimal set of actual condi-
tions which are jointly sufficient in a forward-directed way for the effect to
occur in the presence of the direct non-redundant regularities. Causation
so understood is forward-directed inferability along direct non-redundant
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regularities. The direct non-redundant regularities are material
bi-implications obtained from true propositions of particular fact and mini-
mization procedures. Causation is thus reduced to true propositions of par-
ticular fact.
However, our causal relation is so far relative to a set of selected var-

iables. For the true non-redundant regularities are direct relative to a var-
iable set (see Section 2). Extending the variable set under consideration
may render direct non-redundant regularities indirect. Even worse, an exten-
sion of the variable set may render a non-redundant regularity redundant
(Baumgartner, 2013, pp. 93–94). This poses the metaphysical question
how we can identify causation in the world, as opposed to causation in a
model containing a limited amount of variables.
Our answer has two parts. First, causation in the world requires each non-

redundant regularity to be stable – to remain non-redundant under any apt
extension of the variable set. An extension of a variable set is apt just in case
the additional variables do not introduce dependences among the variables
that are stronger than causation, such as logical or mereological relations,
supervenience, or grounding. Stable regularities are not relative to a particu-
lar variable set because they remain non-redundant under any apt extension.
Second, we say that a stable regularity⋁i⋀A i↔E ismetaphysically direct

iff there are no stable regularities ⋁j⋀Bj↔C and ⋁k⋀Ck↔E, where the
same variable appears as subformula in someA i and someBj, while C ap-
pears as subformula in some Ck. Metaphysically direct regularities inherit
from stable regularities that they are not relative to a particular variable
set. And they remain metaphysically direct under each apt extension of the
variable set.
Metaphysically direct regularities allow us to define causation without

model relativity. We say c is a cause of e iff there is a setL0 ⊆ L of metaphys-
ically direct regularities and a set F 0 ⊆ F of propositions of particular fact
such that our conditions for causation are satisfied. This way to avoidmodel
relativity may well lead to very fine-grained metaphysically direct regulari-
ties. But it is also a way to reduce causation in the world to true propositions
of particular fact.
We have amended our preliminary theory by a condition of deviancy.

Causation so understood is deviant forward-directed inferability along di-
rect non-redundant regularities. We have said that occurring events are
prima facie more deviant than their absences (Section 4.1). We could have
said instead that occurring events have a metaphysically different status
from their absences. This metaphysical postulate would have saved that
our amended theory reduces causation to true propositions of particular
fact. And it still solves the problem of isomorphic causal models and ac-
counts for the non-causal status of many omissions. However, some omis-
sions are judged to be causes.8 The reason seems to be that the latter, but
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not the former, violate some norm. This is why we said in addition that an
absence is more deviant than an event if the absence violates a norm active
in the scenario under consideration. Causation is thus reduced to true prop-
ositions of particular fact and deviancy from norms.
Blanchard and Schaffer (2017) criticize the distinction between default

and deviant events. Consider the causal model for bogus prevention in Sec-
tion 4.1. They claim that this causal model is not apt for the scenario where
no poison is administered because it lacks essential structure: a variable for
whether or not the administered antidote neutralizes some poison. The
causal model so enriched is not isomorphic to overdetermination and the ad-
ministration of antidote is no cause of target’s survival. This solution, so they
conclude, shows that we do not need a default-deviant distinction but apt
causal models.
Indeed, the metaphysically direct regularities presumably entail that a

neutralization event occurs only if a poisoning event and an administration
of antidote event occurs. One must wonder, however, whether there are no
causal scenarios that share the simple structure of bogus prevention. It seems
at least conceptually possible thatE↔¬F⋀D is a true metaphysically direct
regularity of some scenario, in which an event of typeF occurs, but no events
of typesD andE. But then the bogus preventer of typeF is not a cause of the
absence of type E. Blanchard and Schaffer still need to explain this verdict.
There is, of course, more to say about deviancy, norms, and the distinction

between occurring events and absences. Hitchcock and Knobe (2009) argue
that our judgment of causation is influenced by statistical and moral norms,
as well as norms of proper functioning. However, they dodge the questions
of what norms are in the first place and when they are active in a certain sce-
nario. These are open problems. Another is that the distinction between oc-
curring events and absences is not always clear cut. Is, for example, the death
of a plant an occurring event, or rather the absence of continued living? It
seems that this depends on the involved norms. Is it normal that plants con-
tinue to live? Or is being alive the deviant state to being dead? The distinction
between occurring events and absences seems to be related to the deviancy
from norms. But an investigation of this relation must await another
occasion.
We have further amended our theory by a condition which ensures that

the causal paths from a cause to its effect remain intact. Causation so under-
stood is deviant forward-directed inferability along the causal paths of direct
non-redundant regularities from cause to effect. The further amendment
helps to handle scenarios that challenge the transitivity of causation, like
short circuits and switches. Our final regularity theory thus accounts for

8This claim is somewhat controversial. Beebee (2004) argues that omissions are never causes.
Dowe (2000, Ch. 6) argues that omissions are no genuine causes, but may figure in true counterfactual
claims about genuine causation. We are convinced byMcGrath (2005) who argues that the causal sta-
tus of omissions depends on norms.
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our judgments on a wide range of causal scenarios – wider than
Baumgartner’s (2013) theory. We summarize the results in the Conclusion.
Except for perhaps norms, our regularity theory has no need for any

modal notions. It does neither rely on a notion of nomic sufficiency
(Hausman, 1998), nor on a notion of epistemic inferability (Andreas and
Günther, 2019, 2020, 2021a). It does likewise not rely on counterfactuals.
The latter distinguishes our theory from many contemporary theories of
causation (Hall, 2004, 2007; Lewis, 2000; Ramachandran, 1997; Wood-
ward, 2003; Yablo, 2002). These counterfactual theories are not reductive
if they rely on antecedently given causal structures – as they often do in
the form of given causal models (Andreas and Günther, 2021b;
Gallow, 2021; Halpern, 2016; Halpern and Pearl, 2005; Hiddleston, 2005;
Hitchcock, 2001, 2007). Hitchcock (2001) and Halpern and Hitch-
cock (2010) offer some guidelines on what constitutes an apt causal model.
But the question is not fully answered (Blanchard and Schaffer, 2017).
Our regularity theory, by contrast, has no need for discerning apt from

non-apt causal models. It tells us what causes what relative to a particular
causal model understood as a tuple of true direct non-redundant regularities
and true propositions of particular fact. And we have proposed a way how
we could avoid this model-relativity if we had the metaphysically direct reg-
ularities at our disposal.

6. Conclusion

We have put forth a regularity theory of causation. The theory says, in es-
sence, that causation is deviant forward-directed inferability along the
causal paths of direct non-redundant regularities. The verdicts of our theory
aligns with our pre-theoretic understanding of the causal relation in the con-
sidered set of scenarios. In virtue of its deviancy condition, the theory can ac-
count for the problem of isomorphic causal models and the problem of omis-
sions. It can, furthermore, account for entangled causes and scenarios that
challenge the transitivity of causation. The following table summarizes the
results of our regularity theory in comparison with Baumgartner’s (2013).

Causes of e or ¬e Baumgartner (2013) Our regularity theory

Overdetermination c; a c; a
Preemption c; d c; d
Bogus prevention ðf Þ; ¬d �
Default omission ð¬f Þ; c c
Deviant omission ð¬f Þ; c ¬f ; c
Subcause c; a c; a
Short circuit � d
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Table . (Continued)

Causes of e or ¬e Baumgartner (2013) Our regularity theory

Extended DP a c; a
Mod. extended DP ðf Þ; c; ¬d; a c; a
Iso. mod. extended DP c; h; d; a c; h; d; a
Simple switch � r

The table shows the causes ofe ore’s absence – here abbreviated by¬e – in
the respective causal scenario. Expressions like ðf Þ mean that a suitable no-
tion of typicality or deviancy could undo the causal status of the token event
f on Baumgartner’s theory. ‘DP’ stands for double prevention.
In the scenario of bogus prevention, there is no poisoning and target sur-

vives. The absence of poison in target’s coffee, here¬d, is as much a cause of
her survival as the absence of someone stabbing her or the absence of some-
one shooting her: the absences are not deviant and so are no causes. Body-
guard’s putting antidote into her coffee f is in this scenario likewise no cause
of her survival. Baumgartner can secure the latter but not the former verdict
by imposing a certain typicality ranking on bogus prevention.
We have discussed a short circuit scenario. A boulder is dislodged and

rolls toward a hiker. The hiker sees the boulder coming and ducks, so that
the boulder does not hit her. Had she not ducked, however, the boulder
would have hit her. The dislodgement of the boulder f is no cause of the
hiker’s remaining unscathed. Our theories agree. The hiker’s ducking d is
a cause of the hiker’s remaining untouched by the boulder. Our theory says
so, but Baumgartner’s does not. A similar point applies to our simple switch.
The train traveling on the right track r causes the train to arrive at its desti-
nation. Our theory says so, unlike Baumgartner’s. The table shows further
differences.
We think our theory aligns with our pre-theoretic judgments about causa-

tion, andmore so than Baumgartner’s. This is no wonder in a sense: our the-
ory aims to be conceptually accurate, whereas Baumgartner’s seems to aim
for empirical accurateness. And it may well turn out that his theory is empir-
ically more accurate – perhaps scenarios like simple short circuits and simple
switches have no empirical causal structure. But even if it should turn out
this way, these scenarios seem to be conceptually possible. And so a concep-
tually accurate theory should still align with our commonsense understand-
ing of causation.
We have set out to propose a regularity theory which reduces causation to

true propositions of particular fact and deviancy from norms. And we have
come a long way. We have defined direct non-redundant regularities in
terms of true propositions of particular fact and minimization procedures.
In turn, we have defined causal models in terms of direct non-redundant reg-
ularities and propositions of particular fact. The regularity theory we
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proposed says what causes what relative to such a causal model. Finally, we
have made a metaphysical proposal of how to avoid the model-relativity.
Our regularity theory is, however, still incomplete. We haven’t said much

on what norms are and when events deviate from norms in a given scenario.
We have also bracketed the question whether or not norms can be reduced
to propositions of particular matter of fact. It seems to us that the relation
between the deviancy from norms and the distinction between events and
absences, in particular, deserves more attention.
We generally obtain the direction of causation via the direct

non-redundant regularities. However, this strategy does not work for scenar-
ios where some type effect has only a single type cause. We have pointed to-
ward solutions for these simplistic but conceptually possible scenarios due to
Baumgartner (2013) and Andreas andGünther (2024). But a comprehensive
treatment in the confines of our theory is left for future work.9

There is no doubt: more work is to be done. But for now, we may hope to
be one step closer to a regularity theory that grounds the type relation of
cause and effect in matters of particular fact and aligns with our understand-
ing of token causation.10

[Correction added on 22 February 2024, after first online publication:
Footnote 9 has been renumbered to 10, as a new footnote 9 and the related
reference have been added in this version.]

Holger Andreas
Department of Economics, Philosophy and Political Science
University of British Columbia

Mario Günther
Munich Center for Mathematical Philosophy
LMU Munich
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