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Abstract. We show, for each computable ordinal α and degree a > 0(α), the

existence of a torsion-free abelian group with proper αth jump degree a.

1. Introduction

An important aim of effective algebra is concerned with determining how close
to computable an algebraic structure is. For an algebraic structure A, this property
is reflected in the degree spectum of A:

DegSpec(A) := {d : A is d-computable}.
We recall an infinite algebraic structure A is d-computable if its universe can be
identified with the natural numbers ω in such a way that the atomic diagram of A
becomes d-computable.

In many cases, the degree spectrum of A has no least element (for example,
see [18]). As a result, there has been a line of study into the jump degrees of
structures.

Definition 1.1. If A is a countable structure, α is a computable ordinal, and a ≥
0(α) is a degree, then A has αth jump degree a if the set

{d(α) : d ∈ DegSpec(A)}
has a as its least element. In this case, the structure A is said to have αth jump
degree.

A structure A has proper αth jump degree a if A has αth jump degree a but
not βth jump degree for any β < α. In this case, the structure A is said to have
proper αth jump degree.

For a computable ordinal α, it is well-known that an arbitrary structure may
not have αth jump degree (for example, see [6]). The existence or nonexistence of a
structure with proper αth jump degree a for a ≥ 0(α) depends heavily on the class
of algebraic structures considered. Within the context of linear orders, if an order
type has a degree, it must be 0; if an order type has first jump degree, it must be 0′;
and yet for each computable ordinal α ≥ 2 and degree a ≥ 0(α), there is a linear
order having proper αth jump degree a (see [6], culminating results in [1], [13], [15]
and [18]). Within the context of Boolean algebras, if a Boolean algebra has nth

jump degree (for any n ∈ ω), it must be 0(n); yet for each a ≥ 0(ω), there is a
Boolean algebra with proper ωth jump degree a (see [14]).

Date: August 8, 2012.
Key words and phrases. torsion-free abelian group, jump degree.
The second author was partially supported by the Marsden Fund of New Zealand via a Post-

Doctoral Fellowship.

1



2 ANDERSEN, KACH, MELNIKOV, AND SOLOMON

The subject of this paper is the existence of jump degrees of torsion-free abelian
groups. For α ∈ {0, 1, 2}, it is known that every possible proper αth jump degree
is realized.

Theorem 1.2 (Downey [5]; Downey and Jockusch [5]). For every degree a ≥ 0,
there is a (rank one) torsion-free abelian group having degree a.

For every degree b ≥ 0′, there is a (rank one) torsion-free abelian group having
proper first jump degree b.

Indeed, every finite rank torsion-free abelian group (see Definition 2.2) has first
jump degree as a consequence of a difficult computability-theoretic theorem of
Coles, Downey, and Slaman [3]. (See Melnikov [17] for a complete discussion.)

In contrast, not every infinite rank torsion-free abelian group has first jump
degree as a consequence of the following theorem of Melnikov. Recall that a nonzero
degree a is low if a′ = 0′ and nonlow otherwise.

Theorem 1.3 (Melnikov [17]). There is a torsion-free abelian group G such that
DegSpec(G) = {a : a is nonlow}. Consequently, there is a torsion-free abelian group
with proper second jump degree 0′′.

As a consequence of work by Ash, Jockusch, and Knight (see [1]), two obser-
vations of Melnikov (see Theorem 3 and Proposition 10 of [17]) have implications
about proper second jump degrees and proper third jump degrees.

Theorem 1.4. For every degree a > 0′′, there is a torsion-free abelian group having
proper second jump degree a. For every degree b > 0′′′, there is a torsion-free
abelian group having proper third jump degree b.

The main purpose of this paper is to generalize Theorem 1.4 to an arbitrary
computable ordinal α.

Theorem 1.5. For every computable ordinal α and degree a > 0(α), there is a
torsion-free abelian group having proper αth jump degree a.

Unfortunately, our techniques do not allow us to produce examples with a = 0(α).

Question 1.6. For each computable ordinal α ≥ 3, is there a torsion-free abelian
group having proper αth jump degree 0(α)?

Fixing α, we prove Theorem 1.5 by coding sets S ⊆ ω into groups GαS in such
a way that GαS is X-computable if and only if S ∈ Σ0

α(X). The coding method
is based on techniques in Fuchs (see Section XIII, Chapter 88 and Chapter 89,
of [11]) and Hjorth (see [12]). In particular, given torsion-free abelian groups A
and B of a certain type and elements a ∈ A and b ∈ B, Fuchs adds elements
of the form p−n(a + b) for n ∈ ω to A ⊕ B to build an indecomposable group
containing A ⊕ B. Hjorth uses this idea to encode certain labeled graphs into
countable torsion-free abelian groups. Hjorth’s ideas were later used by Downey
and Montalbán to show the isomorphism problem for torsion-free abelian groups is
analytic complete (see [7]) and further studied by Fokina, Knight, Maher, Melnikov,
and Quinn (see [8]). We refer the reader to these papers for additional background,
though we do not assume knowledge of them in our presentation. Our notation and
terminology will follow Fuchs (see [10] and [11]) rather than Hjorth.

Section 2 discusses background, notation, and conventions, though we also refer
the reader to [10] and [11] for classical background on torsion-free abelian groups
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and to [2] for background on effective algebra. Section 3 describes the encoding
of sets S ⊆ ω into groups GαS (this encoding depends on α). Theorem 1.5 is
demonstrated in Section 4.

2. Background, Notation, and Conventions

In this section, we review basic terminology and results relevant to torsion-
free abelian groups. We also introduce some classical notation and adopt some
conventions that will simplify the exposition.

Definition 2.1. An abelian group G = (G : +, 0) is torsion-free if

(∀x ∈ G)(∀n ∈ ω) [x 6= 0 ∧ n 6= 0 =⇒ nx 6= 0] ,

where nx denotes x+ · · ·+ x︸ ︷︷ ︸
n times

.1

Definition 2.2. If G is a torsion-free abelian group, a (finite or infinite) set of
nonzero elements {gi}i∈I ⊂ G is linearly independent if α1gi1 + · · ·+αkgik = 0 has
no solution with αi ∈ Z for each i, {i1, . . . , ik} ⊆ I, and αi 6= 0 for some i.

A basis for G is a maximal linearly independent set. The rank of G is the
cardinality of a basis.

The groups G constructed for Theorem 1.5 will have countably infinite rank. The
key coding mechanism will be the existence or nonexistence of elements divisible
by arbitrarily high powers of a prime.

Definition 2.3. If G is a torsion-free abelian group and x ∈ G, we write p∞ |x
and say p infinitely divides x if (∀k ∈ ω)(∃y ∈ G)

[
x = pky

]
, i.e., if p divides x

arbitrarily many times. We write p∞6 |x and say p finitely divides x otherwise.

Definition 2.4. A subgroup G of an abelian group H is pure if for every n ∈ Z
and every b ∈ G:

If H |= n | b, then G |= n | b.
In other words, if an integer n divides an element b ∈ G within H, then n divides b
within G.

We note that if G is torsion-free, then x = pky can have at most one solution y
for any nonnegative integer k.

Remark 2.5. Within any presentation of G, the set {x ∈ G : p∞ |x} of elements
infinitely divisible by p is Πc

2(G). Indeed, this set is a subgroup of G under the
group operation (which we use without further mention).

Definition 2.6. A torsion-free abelian group is divisible if it is the additive group
of a Q-vector space (or equivalently, if x = ny has a solution y ∈ G for every x ∈ G
and n ≥ 1).

If G is a torsion-free abelian group, its divisible closure (denoted D(G)) is the
smallest (under inclusion) divisible torsion-free abelian group containing G.

1We use such abbreviations freely throughout the paper.



4 ANDERSEN, KACH, MELNIKOV, AND SOLOMON

Thus, the countable divisible torsion-free abelian groups are the groups Qn
(for n ∈ ω) and Qω, and the divisible closure of Z is Q. Classically, the divisible
closure D(G) exists, is unique, and contains G as a subgroup. In terms of effective
algebra, Smith (see [20]) proved that every computable torsion-free abelian group
has a computable divisible closure and that there is a uniform procedure for pass-
ing from G to D(G).2 However, in general the divisible closure is not effectively
unique (i.e., unique up to computable isomorphism) and the canonical image of G
in D(G) is computably enumerable but not necessarily computable (see [9] and [21]
for a complete discussion of these issues). Therefore, when we consider a particular
copy G of a torsion-free abelian group, we use D(G) to denote the canonical divisible
closure as in [20]. Thus, we have a uniform way to pass from any given copy of G
to a copy of D(G).

In our construction, we will use a more limited notion of closure under divisibility
by certain primes.

Definition 2.7. If p ∈ ω is prime and G is a torsion-free abelian group, define the
p-closure of G (denoted [G]p) to be the smallest subgroup H of D(G) containing G
having the property (∀g ∈ G) [p∞ | g].

More generally, if P is a set of prime numbers and G is a torsion-free abelian
group, define the P -closure of G (denoted [G]P ) to be the smallest subgroup H
of D(G) containing G having the property (∀g ∈ G)(∀p ∈ P ) [p∞ | g]. We often
write [G]p0,p1 for [G]P with P = {p0, p1}, [G]P,q for [G]P∪{q}, and so on.

If G is any torsion-free abelian group and P is any set of prime numbers, we say
that G is P -closed if G ∼= [G]P .

The following lemma says that if G is P -closed, then the result of closing G
under additional primes will still be P -closed. In particular, we can view the prime
closure [G]P as the result of closing G under each of the individual primes in P in
any order.

Lemma 2.8. If G is a torsion-free abelian group, P is a set of primes, and q is a
prime not in P , then [[G]P ]q ∼= [G]P,q.

Proof. Since [[G]P ]q is clearly a subgroup of [G]P,q and since every element of [[G]P ]q
is infinitely divisible by q, it suffices to show that each element of [[G]P ]q is infinitely
divisible by each prime p ∈ P . Fix p ∈ P and g ∈ [[G]P ]q. We need to find
h ∈ [[G]P ]q such that ph = g. By the definition of [[G]P ]q, there is a k ≥ 0 such

that qkg ∈ [G]P ; let ĥ be this element. Let ĝ ∈ [G]P be such that pĝ = ĥ and let
h ∈ [[G]P ]q be such that qkh = ĝ. Then

qk(ph) = p(qkh) = pĝ = ĥ = qkg.

Since G is torsion-free, the equality qk(ph) = qkg implies ph = g as required. �

By an obvious variation of the construction in [20], there is an effective way to
pass from G to a copy of [G]P which is uniform in both G and P . As above, the
closure operation sending G to [G]P is not necessarily effectively unique so we fix
this uniform procedure to define a particular copy of [G]P given a particular copy
of G.

2One forms D(G) from pairs 〈g, n〉 with g ∈ G and n ≥ 1 modulo the computable equivalence
relation 〈g, n〉 ∼ 〈h,m〉 if and only if mg = nh.
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Convention 2.9. We will write statements such as ([Z]ρ1,P \[Z]P )∩ [Z]ρ2,ρ3,P = ∅.
Such statements are intended to apply within a fixed (one-dimensional) copy of Q,
where Z 5 Q is fixed as well. In particular, the indicated prime closures of Z should
all be seen as being taken within a fixed copy of Q.

Often, we will write elements of the form x+y
p as x

p + y
p even though x

p and y
p

may not exist within the group. We justify this by passing to the divisible closure
of the group and considering the canonical image of the group within its divisible
closure. Thus, x+y

p = x
p + y

p in D(G) even though x
p and y

p may not be in the image

of G.

Definition 2.10. A rooted torsion-free abelian group G is a torsion-free abelian
group with a distinguished element (termed the root of G).

We use rooted torsion-free abelian groups to help build our groups inductively.
When we consider isomorphisms, we always consider group isomorphisms with no
assumption that roots are preserved. That is, the root is only used as a tool in the
inductive definitions and is not a formal part of the algebraic structure.

Definition 2.11. Let G be a torsion-free abelian group and {di}i∈I ⊆ D(G) be a
subset of its divisible closure. We define the extension of G by {di}i∈I , denoted

〈G; di : i ∈ I〉 ,
to be the smallest subgroup of D(G) containing G and di for i ∈ I.

Note that if G is computable and {di}i∈I is a computable set of elements of D(G)
(indeed, computably enumerable suffices), then the subgroup 〈G; di : i ∈ I〉 is com-
putably enumerable in D(G). Since there is a uniform procedure to produce a
computable copy of any computably enumerable subgroup of D(G) (by letting n
denote the n-th element enumerated into the subgroup and defining the group op-
erations accordingly) we have a uniform procedure to pass from G to 〈G; di : i ∈ I〉.

We continue by introducing some (important) conventions that will be used
throughout the paper without further mention.

Convention 2.12. If β is any nonzero ordinal, when we write β = δ + i or β =
δ+ 2`+ i for some i ∈ ω, we require δ to be either zero or a limit ordinal (allowing
zero only if β < ω) and ` to be a nonnegative integer.

If i is even, we say the ordinal β is even; if i is odd, we say the ordinal β is odd.

When at limit ordinals, it will be necessary to approximate the ordinal effec-
tively from below. We therefore fix a computable ordinal λ and increasing cofinal
sequences for ordinals less than λ.

Definition 2.13. Fix a computable ordinal λ.
Fix a computable function f : λ × ω → λ such that f(α + 1, n) = α for all

successor ordinals α + 1 ∈ λ and n ∈ ω, and such that {f(α, n)}n∈ω is a sequence
of increasing odd ordinals (greater than one) with α = ∪n∈ωf(α, n) for all limit
ordinals α ∈ λ.

We denote f(α, n) by fα(n).

3. The Group GαS (For Successor Ordinals α)

Fixing a computable successor ordinal α below λ, the group GαS will be a direct
sum of rooted torsion-free abelian groups GαS (n) coding whether n is or is not in S. It
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will be useful to have a plethora of disjoint sets of primes. We therefore partition the
prime numbers into uniformly computable sets P = {pβ}β∈α+1, Q = {qβ}β∈α+1,
U = {uβ,k}β∈α+1,k∈ω, V = {vβ,k}β∈α+1,k∈ω, D = {dn}n∈ω, and E = {en}n∈ω.

More specifically, the isomorphism type of GαS (n) will be either
[
G(Σ0

α)
]
dn

or[
G(Π0

α)
]
dn

, or
[
H(Σ0

α)
]
dn

or
[
H(Π0

α)
]
dn

(all described later) depending on whether α

is even or odd (deciding G versus H) and whether n is in S (deciding Σ versus Π).
The group GαS (n) will be X-computable (uniformly in n) if S ∈ Σ0

α(X). Conversely,
there will be an effective enumeration {Υn}n∈ω of computable infinitary Σcα sen-
tences such that GαS |= Υn if and only if n ∈ S.3 Thus, the group GαS will be
X-computable if and only if S ∈ Σ0

α(X).
The definition of the rooted torsion-free abelian groups G(Σ0

α), G(Π0
α), H(Σ0

α),
andH(Π0

α) is done by recursion. Unfortunately, the recursion is not straightforward
for technical reasons within the algebra (discussed in Remark 3.2). Indeed, we
introduce additional rooted torsion-free abelian groups G(Σ0

α(m)) for m ∈ ω if α is
an even ordinal.

We define some of these groups pictorially in Section 3.1. The hope is these
examples provide enough intuition to the reader so that the formal definition of GαS
(and all the auxiliary groups) is not (too) painful.

3.1. Defining G(Σ0
β), G(Σ0

β(m)), G(Π0
β), H(Σ0

β), and H(Π0
β) Pictorially. For

each successor ordinal β ≥ 3, we give a pictorial description of the groups G(Σ0
β)

(if β is odd), G(Σ0
β(m)) (if β is even), and G(Π0

β). The recursion starts with

G(Σ0
2(m)) as Z with root r = pm1 and G(Π0

2) as [Z]p1 with root r = 1. The recursion
continues as illustrated in Figure 1 and Figure 2.

For each even ordinal β = δ + 2` + 2 > 2, we give a pictorial description of the
groups H(Σ0

β) and H(Π0
β). Though their definition relies on G(Σ0

β−1) and G(Π0
β−1)

as illustrated in Figure 3, no further recursion is required.
Within these figures, the recursively defined rooted torsion-free abelian groups

are denoted with triangles (the text inside specifies which recursively defined group),
with the root denoted by a circle at the top. A line segment connecting two roots
and with a label p denotes the sum of the roots is made infinitely divisible by p.
Brackets around a recursively defined rooted group with a label p denotes the p-
closure of the recursively defined rooted group is taken. A prime p next to a root r
denotes r is made infinitely divisible by p.

3.2. Defining GαS Formally. Having pictorially described some of the associated
groups, we formalize the definition of GαS . Of course, doing so requires formalizing
the definition of all the auxiliary groups.

Definition 3.1. For each ordinal β with 1 < β ≤ α, define rooted torsion-free
abelian groups G(Σ0

β) and G(Π0
β) (if β is odd) or G(Σ0

β(m)) for m ∈ ω and G(Π0
β)

(if β is even) by recursion as follows.

• For β = 2, define G(Σ0
β(m)) to be the group Z with root r = pm1 and define

G(Π0
β) to be the group [Z]p1 with root r = 1.

3We refer the reader to [2], for example, for definitions and background on computable infinitary
formulas.
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G(Σ0
β−1(1)) G(Σ0

β−1(1)) G(Π0
β−1) G(Π0

β−1)

r

G(Σ0
β−1(0)) G(Σ0

β−1(0))

r0,0 r1,0 r0,1 r1,1 r0 r1

qβ

pβ

qβ qβ qβ qβ qβ

G(Σ0
β−1(1)) G(Σ0

β−1(1))

r

G(Σ0
β−1(0)) G(Σ0

β−1(0))

r0,0 r1,0 r0,1 r1,1

qβ

pβ

qβ qβ qβ

Figure 1. G(Σ0
β) (Top) and G(Π0

β) (Bottom) if β = 2δ + 2`+ 1 > 1

r

G(Σ0
β−1)

uβ,0

pβ

G(Σ0
β−1)

vβ,0 r1

G(Σ0
β−1)

rm

G(Π0
β−1)

rm+1uβ,1

vβ,1

uβ,m

uβ,m+1

vβ,m

vβ,m+1

r

G(Σ0
β−1)

uβ,0

pβ

G(Σ0
β−1)

vβ,0 r1

G(Σ0
β−1)

rm

G(Σ0
β−1)

rm+1uβ,1

vβ,1

uβ,m

uβ,m+1

vβ,m

vβ,m+1

Figure 2. G(Σ0
β(m)) (Top) and G(Π0

β) (Bottom) if β = δ + 2`+ 2 > 2

• For odd β = δ + 2`+ 1 ≥ 3, define G(Σ0
β) to be the group〈

[Z]pβ ⊕
⊕
k∈ω

⊕
m∈ω
G(Σ0

β−1(m))⊕
⊕
k∈ω
G(Π0

β−1); q−tβ (r + rk), q−tβ (r + rk,m) : k,m, t ∈ ω
〉
,

with root r = 1 in [Z]pβ , where rk is the root of the kth copy of G(Π0
β−1)

and rk,m is the root of kth copy of G(Σ0
β−1(m)).
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G(Π0
β−1) G(Π0

β−1)

r

r0′ r1′

pβ

qβqβ

G(Σ0
β−1) G(Σ0

β−1)

r0 r1

qβqβ

r
pβ

G(Σ0
β−1) G(Σ0

β−1)

r0 r1

qβqβ

Figure 3. H(Σ0
β) (Top) and H(Π0

β) (Bottom) if β = δ + 2`+ 2 > 2

For odd β = δ + 2`+ 1 ≥ 3, define G(Π0
β) to be the group〈

[Z]pβ ⊕
⊕
k∈ω

⊕
m∈ω
G(Σ0

β−1(m)); q−tβ (r + rk,m) : k,m, t ∈ ω
〉
,

with root r = 1 in [Z]pβ , where rk,m is the root of kth copy of G(Σ0
β−1(m)).

These are illustrated in Figure 1.
• For even β = δ + 2`+ 2 > 2, define G(Σ0

β(m)) to be the group〈 ⊕
0≤k≤m

[
G(Σ0

β−1)
]
uβ,k
⊕
⊕
k>m

[
G(Π0

β−1)
]
uβ,k

; p−tβ r0, v
−t
β,k(rk + rk+1) : k, t ∈ ω

〉
,

with root r = r0, where rk is the root of the kth copy of G(Σ0
β−1) or of

G(Π0
β−1) depending on whether k ≤ m or k > m.

For even β = δ + 2`+ 2 > 2, define G(Π0
β) to be the group〈⊕

k∈ω

[
G(Σ0

β−1)
]
uβ,k

; p−tβ r0, v
−t
β,k(rk + rk+1) : k, t ∈ ω

〉
,

with root r = r0, where rk is the root of the kth copy of G(Σ0
β−1).

These are illustrated in Figure 2.
• For limit β = δ > 0, define the group G(Σ0

β(m)) to be〈 ⊕
0≤k≤m

[
G(Σ0

fβ(k))
]
uβ,k
⊕
⊕
k>m

[
G(Π0

fβ(k))
]
uβ,k

; p−tβ r0, v
−t
β,k(rk + rk+1) : k, t ∈ ω

〉
,

with root r = r0, where rk is the root of the kth copy of G(Σ0
fβ(k)) or of

G(Π0
fβ(k)) depending on whether k ≤ m or k > m.
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Define G(Π0
β) to be the group〈⊕

k∈ω

[
G(Σ0

fβ(k))
]
uβ,k

; p−tβ r0, v
−t
β,k(rk + rk+1) : k, t ∈ ω

〉
,

with root r = r0, where rk is the root of the kth copy of G(Σ0
fβ(k)).

4

This completes the formal descriptions of these groups.

For odd β ≥ 3, recall that the group G(Σ0
β) has the form〈

[Z]pβ ⊕
⊕
k∈ω

⊕
m∈ω
G(Σ0

β−1(m))⊕
⊕
k∈ω
G(Π0

β−1); q−tβ (r + rk), q−tβ (r + rk,m) : k,m, t ∈ ω
〉
.

We refer to the subgroups (indexed by k and m) of the form G(Σ0
β−1(m)) with

roots rk,m as the G(Σ0
β−1(m)) components of G(Σ0

β). Similarly, we refer to the

G(Π0
β−1) subgroups (indexed by k) with root rk as the G(Π0

β−1) components of

G(Σ0
β). We use similar language in the case of even β and limit β, as well as for

other groups defined inductively within the paper.
We emphasize the components of a group do not detach as direct summands

(because of the divisibility introduced by the primes qβ and vβ,k). For clarity, we
always refer to direct components (when the directness is an issue) without omitting
the word “direct”.

When we speak of components, we mean the components which are used in the
inductive definition of these groups (or their prime closures), and we do not care
if there are alternate ways to present the group. More formally, every such group
will be considered as an image of one canonical copy given by the definition, and
a subgroup is a component if and only if it is an image of a component which was
used in the definition of this canonical copy. The isomorphism is chosen once and
forever.

The important relationship between G(Σ0
β) and G(Π0

β) for odd β and G(Σ0
β(m))

and G(Π0
β) for even β is whether each embeds within the other. For small β, one

can see that the groups defined above satisfy the following embeddability relations:
if β > 1 is odd, then G(Σ0

β) 65 G(Π0
β) and G(Π0

β) 5 G(Σ0
β); if β > 0 is even, then

G(Π0
β) 65 G(Σ0

β(m)) and G(Σ0
β(m)) 5 G(Π0

β) for all m ∈ ω. For larger ordinals β,
the formal proof of these properties is less straightforward. Moreover, stronger
properties of such groups are needed to run a successful induction. We avoid these
formal difficulties by not using these embedability relations in later proofs, stating
them only in order to aid intuition. Though they will not be formally used, the
reader may find it useful to keep in mind which groups are “bigger”.

The embeddability relations discussed reflect the utility of the coding. Infor-
mally, we will ask

Is there a large subgroup attached to x?

about an element x that is infinitely divisible by an appropriate prime. The answer
will allow us to extract whether the Σ0

β outcome or the Π0
β outcome was the case.

We (informally) justify not using a simpler recursive scheme to define the groups
G(Σ0

β) and G(Π0
β) in the following remark.

4We emphasize that the definition of G(Σ0
β(m)) and G(Π0

β) for β = δ + 2` + 2 is identical to

the case of β = δ as by definition fδ+2`+2(k) = δ + 2`+ 1 for all k. We separate them, here and

in some later proofs, in hopes of not obfuscating the intuition.
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Remark 3.2. It would of course be simpler if Definition 3.1 used only the odd
recursion schema (for all successor ordinals). Unfortunately, the embeddability
relations would not be satisfied in this case, e.g., when β = 4 it would be the case
that G(Σ0

β) 5 G(Π0
β) and G(Π0

β) 5 G(Σ0
β). The reason is G(Σ0

4) would contain

infinitely many copies of G(Π0
3) and infinitely many copies of G(Σ0

3) whereas G(Π0
4)

only would contain infinitely many copies of G(Σ0
3). As G(Π0

3) 5 G(Σ0
3), it would

follow that G(Σ0
4) ≤ G(Π0

4). Hence asking if there is a large subgroup would not
distinguish between the Σ0

β and the Π0
β outcomes.

For even successor ordinals β ≥ 4, we will need additional auxiliary groups
H(Σ0

β) and H(Π0
β).

Definition 3.3. For each even computable ordinal β = δ+2`+2 ≥ 4, define rooted
torsion-free abelian groups H(Σ0

β) and H(Π0
β) as follows.

Define H(Σ0
β) to be the group〈

[Z]pβ ⊕
⊕
k∈ω
G(Σ0

β−1)⊕
⊕
k′∈ω
G(Π0

β−1); q−tβ (r + rk), q−tβ (r + rk′) : k, k′, t ∈ ω
〉
,

with root r = 1 in [Z]pβ , where rk is the root of the kth copy of G(Σ0
β−1) and rk′ is

the root of k′th copy of G(Π0
β−1).

Define H(Π0
β) to be the group〈

[Z]pβ ⊕
⊕
k∈ω
G(Σ0

β−1); q−tβ (r + rk) : k, t ∈ ω
〉

with root r = 1 in [Z]pβ , where rk is the root of the kth copy of G(Σ0
β−1).

These are illustrated in Figure 3.

It is now possible to define GαS for S ⊆ ω.

Definition 3.4. For each successor ordinal α ≥ 3 and set S ⊆ ω, define a torsion-
free abelian group GαS as follows.

• If α = δ + 2`+ 1 ≥ 3, define GαS to be the group

GαS :=
⊕
n∈S

[
G(Σ0

α)
]
dn
⊕
⊕
n 6∈S

[
G(Π0

α)
]
dn
.

• If α = δ + 2`+ 2, define GαS to be the group

GαS :=
⊕
n∈S

[
H(Σ0

α)
]
dn
⊕
⊕
n 6∈S

[
H(Π0

α)
]
dn
.

The following definition and associated observation will be exploited in later
sections when we wish to express elements as sums of roots of subcomponents.

Definition 3.5. If G is any group within this section, or any direct product of
prime closures of such groups, we let RG denote the set of roots of the recursively
nested components of G.

Of course, some elements serve as the root of more than one component at
different ordinal levels. For example, if β is odd, then the root of a G(Σ0

β−1(m))

component of G(Π0
β) is also the root of a [G(Σ0

β−2)]uβ−1,0
component. However, this

root appears only once in RG .

Fact 3.6. The set RG is a basis for both G and D(G).
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4. Proof of Theorem 1.5

Having defined GαS for each successor ordinal α ≥ 3, it of course remains to verify
the desired properties. We state these explicitly.

Lemma 4.1. For each successor ordinal α ≥ 3, there is an effective enumeration
{Υn}n∈ω of computable Σcα sentences such that GαS |= Υn if and only if n ∈ S.

Lemma 4.2. For each successor ordinal α ≥ 3, if S ∈ Σ0
α(X), then GαS has an

X-computable copy.

Assuming Lemma 4.1 and Lemma 4.2, we prove Theorem 1.5. Lemma 4.1 is
demonstrated in Section 4.1 and Lemma 4.2 is demonstrated in Section 4.2. We
note the proof of Theorem 1.5 from Lemmas 4.1 and 4.2 is identical to the context
of linear orders (see [1]).

Proof of Theorem 1.5. Fix a computable ordinal α, a degree a > 0(α), and a set
A ∈ a. By Theorem 1.4, we may assume that α ≥ 3.

If α is a successor ordinal β + 1, we argue the torsion-free abelian group G :=
Gα
A⊕A has proper αth jump degree a. By Lemma 4.1 and Lemma 4.2, we have

DegSpec(G) = {X : A⊕A ∈ Σ0
α(X)}

= {X : A ∈ ∆0
α(X)}

(for α finite, these are Σ0
α+1(X) and ∆0

α+1(X)). It follows {X(α) : X ∈ DegSpec(G)}
contains precisely those sets that compute A. Thus G has αth jump degree a. On
the other hand, if β < α, the set {X(β) : X ∈ DegSpec(G)} has no element of
least degree (see Lemma 1.3 of [1]). Thus G does not have βth jump degree for any
β < α.

If α is a limit ordinal, fix an α-generic set B such that B(α) ≡T B ⊕ ∅(α) ≡T A.
Viewing B as a subset of ω × ω, we write Bn := {k : (n, k) ∈ B}. We argue the
torsion-free abelian group

G :=
⊕
n∈ω

[GBn ]en

has proper αth jump degree a, where GBn is the group Gfα(n)
Bn

associated with the
set Bn and the ordinal fα(n). Making use of the uniformity in both Lemma 4.1 and

Lemma 4.2 and that the prime en distinguishes the subgroup Gfα(n)
Bn

from Gfα(n′)
Bn′

for n′ 6= n, we have

DegSpec(G) = {X : Bn ∈ Σ0
fα(n)(X) uniformly in n}.

It follows {X(α) : X ∈ DegSpec(G)} contains precisely those sets that computeB(α).
Thus G has αth jump degree a. On the other hand, the set {X(β) : X ∈ DegSpec(G)}
has no element of least degree for any β < α (see discussion after Lemma 3.1 of [1]).
Thus G does not have βth jump degree for any β < α. �

4.1. Proof of Lemma 4.1. The definition of the Σcα sentences {Υn}n∈ω is done re-
cursively, mirroring the recursive nature of the definition of GαS . Before we start con-
structing formulas Φβ(x) and Ψβ(x) connected semantically to G(Σ0

β), G(Σ0
β(m)),

and G(Π0
β), we demonstrate two divisibility lemmas that isolate aspects of the odd

and even inductive steps. The proofs of these are similar to proofs of lemmas by
Downey and Montalbán (see Lemma 2.3 and Lemma 2.4 of [7]). For the proof of
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Lemma 4.4(1), we make explicit whether we are viewing elements of B as belonging
to B or the divisible closure of B. For later parts of Lemma 4.4 and Lemma 4.5, we
do not make it explicit as which it should be is clear from context. Before stating
these two divisibility lemmas, we note a number of simple number theoretic facts
(without proof) that we will use repeatedly (without mention).

Fact 4.3. The following facts hold of prime closures of Z.

• For any primes p0 and p1, [Z]p0+[Z]p1 = [Z]p0,p1 , where the sum [Z]p0+[Z]p1
denotes the set of all q ∈ Q such that q = a + b for some a ∈ [Z]p0 and
b ∈ [Z]p1 .
• For all sets of primes P0 and P1, [Z]P0 ∩ [Z]P1 = [Z]P0∩P1 .
• If P0 and P1 are disjoint sets of primes, then ([Z]P0

\ Z) ∩ [Z]P1
= ∅ and

0 6∈ ([Z]P0
\ Z) + [Z]P1

.

Lemma 4.4. Fix pairwise disjoint sets of prime numbers P0, F1, and F2 and a
prime number ρ 6∈ P0∪F1∪F2. For each i ∈ ω, fix a copy of [Z]F1

and let xi denote
the element 1 in this copy. For each i, j ∈ ω, fix a copy of [Z]F2

and let yi,j denote
the element 1 in this copy. Let B be the group

B :=

〈⊕
i∈ω

[Z]F1 ⊕
⊕
i,j∈ω

[Z]F2 ;
xi + yi,j
ρk

: i, j, k ∈ ω
〉

P0

.

Then B has the following properties:

(1) For any z ∈ B and σ1 ∈ F1, we have σ∞1 | z if and only if z =
∑
imixi

with mi ∈ [Z]F1,P0 .
(2) For any y ∈ B and σ2 ∈ F2, we have σ∞2 | y if and only if y =

∑
i,jmi,jyi,j

with mi,j ∈ [Z]ρ,F2,P0
.

(3) Fixing an integer `, if ρ∞ |∑jm`,jy`,j, then
∑
jm`,j = 0.

(4) If z can be expressed as z =
∑
mixi with mi ∈ [Z]P0

, then for each σ1 ∈ F1

and σ2 ∈ F2, the element z satisfies the formula

(†) σ∞1 | z ∧ (∃y ∈ B) [ρ∞ | (z + y) ∧ σ∞2 | y] .

(5) If z ∈ B satisfies (†) with witness y ∈ B, then z =
∑
imixi with mi ∈ [Z]P0

and y =
∑
i,jmi,jyi,j with mi,j ∈ [Z]ρ,F2,P0 for all i, j and mi =

∑
jmi,j

for all i (noting that mi = 0 is possible).

Indeed, in any torsion-free abelian group of which B is a pure subgroup, these facts
remain true.

Proof. For (1), the backward direction is immediate. For the forward direction, we
express z (in the divisible closure) as z =

∑
imixi+

∑
i,jmi,jyi,j with mi,mi,j ∈ Q

(allowing the possibility of a coefficient being zero). If σ∞1 | z, as the summation is
finite, there is a [Z]σ1-multiple ẑ of z in B with

ẑ =
∑
i

m̂i

σni1

xi +
∑
i,j

m̂i,j

σ
ni,j
1

yi,j

(with the right hand side expressed in the divisible closure) where m̂i, m̂i,j ∈ Z,
m̂i 6= 0 implies σ16 |m̂i, m̂i,j 6= 0 implies σ16 |m̂i,j , and ni, ni,j > 0. Since the coefficient
of yi,j in any element of B (viewed in the divisible closure) is an element of [Z]ρ,F2,P0

5

5Though we justify this here, we omit such arguments in the rest of the paper as all are similar
to the argument here.
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and ([Z]σ1
\Z)∩([Z]ρ,F2,P0

) = ∅, it must be that m̂i,j = 0 for all i, j, and so mi,j = 0
for all i, j. The reason that the coefficient of yi,j in any element of B (viewed in the
divisible closure) is an element of [Z]ρ,F2,P0 is an immediate consequence of the fact
that every element of B is a formal sum

∑
i aixi +

∑
i,j bi,j(xi + yi,j) +

∑
i,j ci,jyi,j

with ai ∈ [Z]F1,P0
, bi,j ∈ [Z]ρ,P0

, and ci,j ∈ [Z]F2,P0
. Thus, in the divisible closure,

the coefficient of any fixed yi,j is an element of [Z]ρ,P0
+ [Z]F2,P0

= [Z]ρ,F2,P0
.

Thus if σ∞1 | z, then z =
∑
imixi (in the divisible closure) with mi ∈ Q. From

the structure of elements of B, we have mi ∈ [Z]ρ,F1,P0 . Fix i. If mi 6∈ [Z]F1,P0 ,
then there would be a non-[Z]P0-multiple of xi+yi,j in z for some j, in particular a
[Z]ρ,P0

\[Z]P0
-multiple. Then the coefficient of this yi,j in z (in the divisible closure)

would be in [Z]ρ,P0
\[Z]P0

+ [Z]F2,P0
. However 0 6∈ [Z]ρ,P0

\[Z]P0
+ [Z]F2,P0

, yielding
a contradiction to the form z =

∑
imixi. Thus mi ∈ [Z]F1,P0

for all i, completing
the proof of (1).

For (2), the argument is similar and we leave the minor change in details to the
reader.

For (3), as ρ∞ |∑jm`,jy`,j , there is a [Z]ρ-multiple ẑ of
∑
jm`,jy`,j in B with

ẑ =
∑
j

m̂`,j

ρn`,j
y`,j

where m̂`,j ∈ Z6=0, ρ6 |m̂`,j , and n`,j > 0. Indeed, we may assume that
∑
j
m̂`,j
ρn`,j

∈
[Z]ρ\Z (in particular, that it is not an element of [Z]P0,F2

) if
∑
jm`,j 6= 0. From

the structure of elements of B, we have

ẑ = a`x` +
∑
j

b`,j(x` + y`,j) +
∑
j

c`,jy`,j

with a` ∈ [Z]F1,P0 , b`,j ∈ [Z]ρ,P0 , and c`,j ∈ [Z]F2,P0 . As
∑
j
m̂`,j
ρn`,j

6∈ [Z]P0,F2 , it

must be the case that
∑
j b`,j 6∈ [Z]P0

. However this would imply the coefficient

of x` is nonzero as 0 6∈ [Z]F1,P0 +[Z]ρ,P0\[Z]P0 . This would contradict the form of ẑ,
showing (3).

For (4), we note if z =
∑
imixi with mi ∈ [Z]P0

, then y =
∑
imiyi,0 is in B.

Moreover, by Parts (1) and (2), this y witnesses z satisfying (†), showing (4).
For (5), fix z and y with σ∞1 | z, ρ∞ | z + y, and σ∞2 | y. By Part (1), we

have z =
∑
imixi with mi ∈ [Z]F1,P0 . By Part (2), we have y =

∑
i,jmi,jyi,j with

mi,j ∈ [Z]ρ,F2,P0 . As ρ∞ | z + y, there is a [Z]ρ-multiple ẑ + ŷ of z + y in B with

ẑ + ŷ =
∑
i

m̂i

ρni
xi +

∑
i,j

m̂i,j

ρni,j
yi,j

where m̂i, m̂i,j ∈ Z, m̂i 6= 0 implies ρ6 |m̂i, m̂i,j 6= 0 implies ρ6 |m̂i,j , and ni, ni,j > 0.
As

ŵ :=
∑
i

m̂i

ρni
xi +

∑
i

m̂i

ρni
yi,0

is in B (by virtue of it being a sum of [Z]ρ-multiples of xi + yi,0) and infinitely
divisible by ρ, the element

ẑ + ŷ − ŵ =
∑
i,j

m̂i,j

ρni,j
yi,j −

∑
i

m̂i

ρni
yi,0
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is in B and is infinitely divisible by ρ. By Part (3), this implies m̂i
ρni =

∑
j
m̂i,j
ρni,j

for

all i. This is equivalent to mi =
∑
jmi,j for all i.

As mi,j ∈ [Z]ρ,F2,P0
for all i, j, fixing i, the sum

∑
jmi,j is in [Z]ρ,F2,P0

. As

[Z]F1,P0
∩ [Z]ρ,F2,P0

= [Z]P0
, it follows mi ∈ [Z]P0

for all i. This shows (5). �

Lemma 4.5. Fix pairwise disjoint sets of primes Fi, for i ∈ ω, and P0, and fix a
sequence of distinct primes ρn, for n ∈ ω, such that ρn 6∈ (∪i∈ωFi)∪P0 for each n.
Let B be the group

B :=

[〈
F ;

xi,j
σki

,
xi,j + xi+1,j

ρki
: i, j, k ∈ ω and all σi ∈ Fi

〉]
P0

where F is the free abelian group on the elements xi,j for i, j ∈ ω. Then B has the
following properties:

(1) Fixing an integer `, a prime σ` ∈ F`, and an element z ∈ B, if σ∞` | z, then
z =

∑
jm`,jx`,j with m`,j ∈ [Z]F`,P0

.

(2) Fixing an integer `, if z =
∑
jm`,jx`,j is nonzero, then ρ∞i 6 |z for any i.

(3) Fixing primes σi ∈ Fi for 0 ≤ i ≤ k + 1, if z0, . . . , zk+1 ∈ B satisfy

σ∞i | zi for all i ≤ k + 1 and ρ∞i | (zi + zi+1) for all i ≤ k
then there are constants mj ∈ [Z]P0

such that zi =
∑
jmjxi,j for all 0 ≤

i ≤ k + 1.

Indeed, in any torsion-free abelian group of which B is a pure subgroup, these facts
remain true.

Proof. For (1), we express z as z =
∑
i,jmi,jxi,j with mi,j ∈ Q 6=0. As σ∞` | z and

the summation is finite, there is a [Z]σ` -multiple ẑ of z in B with

ẑ =
∑
i,j

m̂i,j

σ
ni,j
`

xi,j

where m̂i,j ∈ Z6=0, σ 6̀ |m̂i,j , and ni,j > 0. Thus the coefficient of xi,j in ẑ is an
element of [Z]σ`\Z. On the other hand, the coefficient of xi,j in any element of B
is an element of [Z]Fi,P0

+ [Z]ρi,P0
+ [Z]ρi−1,P0

6. As ([Z]σ`\Z) ∩ [Z]Fi,ρi,ρi−1,P0
= ∅

if i 6= `, it follows that z can be expressed as z =
∑
jm`,jx`,j with m`,j ∈ Q 6=0.

We show m`,j ∈ [Z]F`,P0
for all j. Fixing j, if m`,j were not in [Z]F`,P0

, there
would necessarily be a non-[Z]P0-multiple of either x`,j +x`+1,j or x`−1,j +x`,j in ẑ.
This implies the coefficient of x`+1,j or x`−1,j is nonzero in ẑ as 0 6∈ [Z]ρ`,P0\[Z]P0 +
[Z]ρ`+1,P0

+ [Z]F`+1,P0
and 0 6∈ [Z]ρ`,P0

\[Z]P0
+ [Z]ρ`−1,P0

+ [Z]F`−1,P0
. However this

contradicts the form of ẑ, so it must be that m`,j ∈ [Z]F`,P , showing (1).
For (2), fix an `, a nonzero element z =

∑
jm`,jx`,j , and an integer i towards

a contradiction. As we are assuming ρ∞i | z for a contradiction, there is a [Z]ρi-
multiple ẑ of z in B with

ẑ =
∑
j

m̂`,j

ρ
n`,j
i

x`,j

where m̂`,j ∈ Z6=0, ρi6 |m̂`,j , and n`,j > 0. Fix j and note that the coefficient
of x`,j in ẑ is an element of [Z]ρi\Z. On the other hand, the coefficient of x`,j in
any element of B is an element of [Z]F`,P0

+ [Z]ρ`,P0
+ [Z]ρ`−1,P0

. As ([Z]ρi\Z) ∩

6We ignore the degenerate case of i = 0 as it is actually simpler.
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([Z]F`,P0
+ [Z]ρ`,P0

+ [Z]ρ`−1,P0
) = ∅ if ` 6∈ {i, i+ 1}, we must have ` ∈ {i, i+ 1}. We

show that either yields a contradiction.
If ` = i, as ([Z]ρ`\Z)∩([Z]F`,P0+[Z]ρ`−1,P0) = ∅, the term x`,j+x`+1,j must have a

nonzero coefficient in the expression of ẑ as an element of B. Indeed, this coefficient
must be an element of [Z]ρ`\Z as the coefficient of x`,j in ẑ is in [Z]ρ`\Z. This implies
the coefficient of x`+1,j in ẑ is nonzero as 0 6∈ ([Z]ρ`\Z) + [Z]ρ`+1,P0

+ [Z]F`+1,P0
,

contradicting the form of z. If ` = i + 1, identical reasoning suffices to contradict
the form of z. We have thus shown (2).

For (3), we induct on k. For k = 0, by Part (1), we have zi =
∑
jmi,jxi,j with

mi,j ∈ [Z]Fi,P0
for i ∈ {0, 1}. As ρ∞0 | (z0 + z1), there is a [Z]ρ0-multiple ẑ of

z := z0 + z1 in B with

ẑ =
∑
j

m̂0,j

ρ
n0,j

0

x0,j +
∑
j

m̂1,j

ρ
n1,j

0

x1,j

with ρ06 |m̂0,j , ρ06 |m̂1,j , n0,j > 0, and n1,j > 0. We rewrite ẑ as

ẑ =
∑
j

m̂0,j

ρ
n0,j

0

(x0,j + x1,j) +
∑
j

m̂1,j − ρn1,j−n0,j

0 m̂0,j

ρ
n1,j

0

x1,j .

As the first summation and ẑ are both in B and infinitely divisible by ρ0, so is
the second summation. By Part (2), the second summation must be zero. Thus
m̂1,j/ρ

n1,j

0 = m̂0,j/ρ
n0,j

0 for all j, and so m0,j = m1,j for all j, with this value an
element of [Z]F0,P0 ∩ [Z]F1,P0 = [Z]P0 , completing the base case.

Assuming Part (3) for k, we show it true for k + 1. As in the base case, write
zi =

∑
jmi,jxi,j with mi,j ∈ [Z]Fi,P0

for i ≤ k + 2 by Part (1). By the induction
hypothesis, for each fixed j, the values of mi,j for 0 ≤ i ≤ k + 1 are equal. Let mj

denote this common value. Since mj is in [Z]F0,P0 ∩ · · · ∩ [Z]Fk,P0 , it must be in
[Z]P0

. As zk+2 =
∑
jmk+2,jxk+2,j with mk+2,j ∈ [Z]Fk+2,P0

, the same analysis as
in the base case implies mk+2,j = mk+1,j = mj . �

We continue by introducing various formulas that capture structural aspects of
the groups. These formulas describe how group elements interact in terms of infinite
divisibility by certain primes. When defining these formulas and verifying their
properties, we often restrict quantification from ranging over all group elements to
ranging only over those elements which are infinitely divisible by certain primes.

To make this notion precise, we define the (computable infinitary) language of
infinite divisibility. The signature of this language is the same as the signature of
the language of groups except that for each prime p, we add a relation symbol for the
relation p∞ |x. That is, we treat p∞ | t for each prime p and term t as an atomic
statement. We build up formulas in this language in the standard computable
infinitary manner.

Definition 4.6. For any formula ϕ in the infinite divisibility language and any
prime q, we define the relativized formula ϕq by recursion as follows:

• If ϕ is atomic, then ϕq =def ϕ.
• If ϕ := (

∧
i βi), then ϕq =def

∧
i β

q
i ; similarly for

∨
, ¬, and −→.

• If ϕ := (∃x)β(x), then ϕq =def (∃x) [q∞ |x ∧ βq(x)].
• If ϕ := (∀x)β(x), then ϕq =def (∀x) [q∞ |x −→ βq(x)].
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Thus, a formula ϕq restricts all quantification to be over elements which are
infinitely divisible by the prime q. The following lemma is a formal statement of
this property.

Lemma 4.7. Let G be a torsion-free abelian group, let q be a prime, and let Gq
be the subgroup consisting of the elements infinitely divisible by q. If Gq is a pure
subgroup, then for any formula ϕ(x) in the language of infinite divisibility and any
parameters a from Gq, we have

(1) G |= ϕq(a) if and only if Gq |= ϕ(a).

In particular, if G is {q}-closed, then Gq = G and hence

G |= ϕq(a) if and only if G |= ϕ(a).

Proof. Suppose Gq is a pure subgroup. We proceed by induction on ϕ(x). If ϕ(x) is
atomic, then ϕq(a) is the same as ϕ(a). If ϕ(a) has the form t0(a) = t1(a), then (1)
follows because Gq is a subgroup. If ϕ(a) has the form p∞ | t(a), then (1) follows
because Gq is pure. The inductive cases for

∧
,
∨

, −→ and ¬ follow immediately by
definition, leaving only the quantifier cases. It suffices to consider the case for ∃.

Suppose ϕq(a) has the form ((∃x)β(x, a))q and G |= (∃x)[q∞ |x∧βq(x, a)] with a
fixed witness x. Since x is infinitely divisible by q, we have x ∈ Gq. By the inductive
hypothesis Gq |= β(x, a) and hence Gq |= (∃x)β(x, a) as required. Conversely,
suppose Gq |= (∃x)β(x, a) with fixed witness x ∈ Gq. By the inductive hypothesis,
G |= βq(x, a), and since every element of Gq is infinitely divisible by q, we have
q∞ |x. Therefore, we have G |= (∃x)[q∞ |x ∧ βq(x, a)] as required. �

Because the language of infinite divisibility is infinitary, we can express the re-
lation p∞ |x using the standard formula ϕp(x) given by

ϕp(x) :=
∧
k∈ω

(∃y)
[
pky = x

]
.

In any group, the atomic relation p∞ |x and the formula ϕp(x) are equivalent in the
sense that they are satisfied by the same elements. Thus, we can always translate
formulas in the language of infinite divisibility into formulas in the (computable
infinitary) language of group theory.7 Notice, however, that some caution is required
because the relativized formulas (p∞ |x)q and ϕqp(x) are not (always) equivalent:
the former is satisfied by those elements infinitely divisible by p, whereas the latter
is satisfied by those elements infinitely divisible by p and q.

When we measure the quantifier complexity of a formula in the language of
infinite divisibility, we will always mean its complexity as a formula in the language
of group theory. Given the remarks in the previous paragraph, we need to be careful
how we translate relativized formulas in the language of infinite divisibility into
formulas in the language of group theory for the purposes of measuring complexity.
Thus, when we say a formula ϕq (in the language of infinite divisibility) is in Σcβ or

Πc
β , we mean that the following formula ψ (in the language of group theory) is in

the complexity class.

• First, use the recursive definition of relativized quantifiers to write ϕq in
an unrelativized form in the language of infinite divisibility.

7As all of our languages are computable infinitary languages, we drop explicit reference to this
fact from now on.
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• Second, replace each occurrence of an atomic formula p∞ | t in this unrela-
tivized formula by the corresponding formula ϕp(t) to obtain a formula ψ
in the language of group theory.

By performing the translation in this order, we ensure that we do not add additional
divisibility conditions on the witnesses for p∞ | t and thus each atomic fact p∞ | t
remains Πc

2 even if it is under the scope of a relativizing prime.
We need one further convention before giving our formulas. Note that this

convention does not change the quantifier complexity of any formula.

Convention 4.8. When we quantify over group elements using (∃z) or (∀z), the
quantification is restricted to nonzero group elements. Hence (∃z) [ψ(z)] is an abbre-
viation for (∃z) [z 6= 0 ∧ ψ(z)] and (∀z) [ψ(z)] is an abbreviation for (∀z) [z = 0 ∨ ψ(z)].

In a similar manner, we regard each of the formulas Aβ(x), Φβ(x), Ψβ(x), Bβ(x),
and Θβ(x) (all defined later) as having an additional conjunct x 6= 0. In most
cases, we could show that such a conjunct is unnecessary, but it easier to add it
and ignore the issue of the zero element. The point of this convention is merely to
keep our formulas a reasonable size and to avoid repeatedly stating assumptions
that elements are not the zero element.

The formulas Aβ(x) below capture when an element x is a sum of roots of
G(Σ0

β(m)) components (for even β). The formulas Φβ(x) and Ψβ(x) capture when

an element x is a sum of roots of G(Σ0
β) components and a sum of roots of G(Π0

β)
components, respectively.

Definition 4.9. For each even ordinal β, we let Aβ(x) be the computable infinitary

formula Aβ(x) := p∞β |x ∧ (∃w)
[
u∞β,1 |w ∧ v∞β,0 | (x+ w)

]
.

Definition 4.10. For each ordinal β with β ≥ 2, we define computable infinitary
formulas Φβ(x) (for odd β) and Ψβ(x) (for even β) by recursion as follows.

• If β = 2, define Ψβ(x) to be the formula Ψ2(x) := p∞1 |x.
• If β = 3, define Φβ(x) to be the formula

Φ3(x) := p∞3 |x ∧ (∃y)
[
q∞3 | (x+ y) ∧ Ψ2(y)

]
.

• If β = δ + 2` > 2, define Ψβ(x) to be the formula

Ψβ(x) :=
∧
m∈ω

(∃x0, . . . , xm)

[
x0 = x ∧

∧
k≤m

u∞β,k |xk ∧
∧
k<m

v∞β,k | (xk + xk+1) ∧ Φ
uβ,m
fβ(m)(xm)

]
.

Note that when β is a successor ordinal, the last conjunct is Φ
uβ,m
β−1 (xm).

• If β = δ + 2`+ 1 > 3, define Φβ(x) to be the formula

Φβ(x) := p∞β |x ∧ (∃y)
[
q∞β | (x+ y) ∧Aβ−1(y) ∧Ψβ−1(y)

]
.

Lemma 4.11. The complexity of Aβ(x) is Σc3 (independent of β). If β = δ+2` ≥ 2,
then Ψβ ∈ Πc

β. If β = δ+2`+1 ≥ 3, then Φβ ∈ Σcβ. Furthermore, the relativization
of these formulas to any prime does not change their complexity.

Proof. These statements follow immediately from p∞ |x being Πc
2 and induction.

�

Fact 4.12. Let ρ0, ρ1 and ρ2 be distinct prime numbers and let ψ(x) be the formula
ρ∞0 |x ∧ (∃y)[ρ∞1 | y ∧ ρ∞2 | (x+ y)]. The following properties hold for any prime q.



18 ANDERSEN, KACH, MELNIKOV, AND SOLOMON

(1) If G |= ψq(x) for a fixed x ∈ G with witness y and H is a pure subgroup
of G with x, y ∈ H, then H |= ψq(x) with witness y.

(2) If H |= ψq(x) for a fixed x ∈ H with witness y and H is a subgroup of G,
then G |= ψq(x) with the same witness.

In particular, these properties hold for Aβ(x).

More generally, we have the following fact about our formulas as a consequence
of them imposing only positive infinite divisibility conditions.

Fact 4.13. Let ϕ(x) be a formula of the form Aβ(x), Φβ(x) or Ψβ(x). If H |= ϕ(x)
for some fixed x ∈ H and if H is a subgroup of G, then G |= ϕ(x).

The next lemma gives the key properties needed to verify that our construction
succeeds.

Lemma 4.14. Fix an odd ordinal β ≥ 3 and a set of primes P disjoint from
{pρ}ρ≤β∪{qρ}ρ≤β∪{uρ,m}ρ≤β,m∈ω∪{vρ,m}ρ≤β,m∈ω. Let G be the group [⊕i∈ωCi]P ,
where each Ci is either isomorphic to G(Σ0

β) or G(Π0
β). 8

(1) If β = 3, then G |= Ψ2(y) if and only if y can be expressed as y =
∑
aiyi

with each yi a root of a G(Π0
2) component and ai ∈ [Z]p1,q3,P .

(2) For β = δ + 2`+ 1 > 3:
(a) If G |= Aβ−1(z)∧Ψβ−1(z), then z =

∑
aizi with zi a root of a G(Π0

β−1)

component, ai ∈ [Z]P,pβ−2,qβ (if β − 1 is not a limit) and ai ∈ [Z]P,qβ
(if β − 1 is a limit).

(b) If z =
∑
aizi with zi a root of a G(Π0

β−1) component and ai ∈ [Z]P ,

then G |= Aβ−1(z) ∧Ψβ−1(z).
(3) For β = δ + 2`+ 3 > 3 and k ≥ 0:

(a) If G |= u∞β−1,k | z ∧Φ
uβ−1,k

β−2 (z), then z =
∑
aizi with ai ∈ [Z]uβ−1,k,qβ ,P

and zi a root of a [G(Σ0
β−2)]uβ−1,k

component.

(b) If z =
∑
aizi with ai ∈ [Z]uβ−1,k,P and zi a root of a [G(Σ0

β−2)]uβ−1,k

component, then G |= u∞β−1,k | z ∧ Φ
uβ−1,k

β−2 (z).

(4) For β = δ + 1 and k ≥ 0:
(a) If G |= u∞β−1,k | z∧Φ

uβ−1,k

fβ−1(k)(z), then z =
∑
aizi with ai ∈ [Z]uβ−1,k,qβ ,P

and zi a root of a [G(Σ0
fβ−1(k))]uβ−1,k

component.

(b) If z =
∑
aizi with ai ∈ [Z]uβ−1,k,P and zi a root of a [G(Σ0

fβ−1(k))]uβ−1,k

component, then G |= u∞β−1,k | z ∧ Φ
uβ−1,k

fβ−1(k)(z).

Moreover, the same is true if G is a finite sum of such groups Ci.
Before proving Lemma 4.14, we establish some notation and some basic facts

which will be useful in the proof. By Fact 3.6, we can write any element of G, as
an element of D(G), in the form

∑
qixi where each qi ∈ Q 6=0 and xi ∈ RG . We will

often use various divisibility conditions to narrow which roots xi can occur in such
a sum for particular elements and then use Lemma 4.4 and Lemma 4.5 to restrict
the possible values for the coefficients qi.

8The astute reader will note the upcoming statements are almost, but definitely not, bicondi-

tionals as a consequence of differences of elements within distinct Ci. Though it is not too difficult
to formulate (stating precisely is a bit more difficult) exact conditions for an element to satisfy

the appropriate conjunction, we do not need them for our purposes.
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Definition 4.15. If X ⊆ RG , denote by SpanG(X) the set of all elements g ∈ G
such that, in D(G), g =

∑
qixi where qi ∈ Q and xi ∈ X for all i.

Lemma 4.16. For any set X ⊆ G (in particular any set X ⊆ RG), the set
SpanG(X) is a pure subgroup of G.

Proof. The set SpanG(X) is clearly a subgroup of G. To see that it is pure, fix
g ∈ SpanG(X), n > 0, and h ∈ G such that nh = g in G. We need to show that
h ∈ SpanG(X). Write g =

∑
qixi (in D(G)) with qi ∈ Q and xi ∈ X. Because G

is torsion-free, the element h is the unique element satisfying nh = g. Therefore,
in D(G), we have h =

∑
(qi/n)xi and hence h ∈ SpanG(X). �

Note that in the context of torsion-free abelian groups, the subgroup SpanG(X)
need not separate as a direct summand of G. Nevertheless, in the proof of Lemma 4.14,
we will often be able to describe the isomorphism types of such subgroups. The
next lemma pertains to any torsion-free abelian group.

Lemma 4.17. Let H be a torsion-free abelian group which is P -closed for a set P
of primes. Let ρ be a prime and let h ∈ H be infinitely divisible by ρ. Then for any
q ∈ [Z]P , the element qh is infinitely divisible by ρ.

Proof. Let g ∈ H satisfy ρkg = h. Since H is [Z]P -closed and q ∈ [Z]P , we can
multiply this equation by q in H to obtain (qρk)g = qh. Thus, the element qg
witnesses that qh is divisibly by ρk. �

We return to the proof of Lemma 4.14. We work both within G and D(G) during
this proof and often rely on context to indicate which group we are working in.

Proof of Lemma 4.14. Before establishing Lemma 4.14, we say a word about its
proof. For β = 3, we demonstrate (1) directly. For β > 3, we demonstrate (2), (3),
and (4) by simultaneous induction on β. The base case of the induction is the case
β = 5 for (3). The induction cases proceed as follows. To prove (2) for β, we use
that (3) and (4) hold for values less than or equal to β; to prove (3) for β, we use
that (2) holds for values less than β; and to prove (4) for β, we use that (3) holds
for values less than β. Because (3) includes our base case, we begin with the proof
of (3) after showing (1).

(1) For β = 3, we show y can be so expressed if G |= Ψ2(y), i.e., if G |= p∞1 | y.
Working in D(G), we express y as y =

∑
aiyi where ai ∈ Q and yi is the root of

a G(Σ0
2(m)) component, a G(Π0

2) component, or a [Z]p3 component. We note that
it is impossible that any yi is the root of a G(Σ0

2(m)) component. For if one were,
with yj the root of a G(Σ0

2(mj)) component, there would be a [Z]p1 -multiple ŷ of y
in G with

ŷ =
∑
i

âi
pni1

yi

where âi ∈ Z6=0, p16 |âi, and nj > mj . However, this is impossible as the coefficient
of the root of any G(Σ0

2(mj)) component in G has the form a/pk1 where a ∈ [Z]q3,P
and k ≤ mj .

Thus, we have that y =
∑
aiyi where each yi is the root of a [Z]p3 component or

a G(Π0
2) component. In other words, we have y ∈ B where B := SpanG(X) and X
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is the set of roots of G(Π0
2) components and [Z]p3 components of G. Hence B can

be written as a direct sum of subgroups[〈
[Z]p3 ⊕

⊕
k∈ω

[Z]p1 ; q−t3 (r + rk) : k, t ∈ ω
〉]

P

since G(Π0
2) ∼= [Z]p1 .9 Since G |= p∞1 | y and B is a pure subgroup of G (by

Lemma 4.16), we have that B |= p∞1 | y. Applying Lemma 4.4(2) to B (with
F1 = {p3}, F2 = {p1}, ρ = q3, and P = P ) yields that each yi is the root of
a G(Π0

2) component and each ai ∈ [Z]p1,q3,P .
Conversely, suppose y =

∑
aiyi with ai ∈ [Z]p1,q3,P and yi the root of a G(Π0

2)
component. Since y is the sum of roots of G(Π0

2) components, we have y ∈ B
(where B is as in the other direction). Since each ai ∈ [Z]p1,q3,P , Lemma 4.4(2)
implies that p∞1 | y.

(3) For the base case when β = 5, we first show (3)(a). Fix k ∈ ω and suppose that
G |= u∞4,k | z ∧ Φ

u4,k

3 (z), recalling u∞4,k | z ∧ Φ
u4,k

3 (z) is

(‡) u∞4,k | z ∧ p∞3 | z ∧ (∃y)[u∞4,k | y ∧ q∞3 | (z + y) ∧ p∞1 | y].

We need to show that z =
∑
aizi with each ai ∈ [Z]u4,k,q5,P and each zi a root of

a [G(Σ0
3)]u4,k

component.
Since u∞4,k | z, the element z must be a sum z =

∑
wi, where each wi comes

from a [G(Σ0
3)]u4,k

or [G(Π0
3)]u4,k

component (which we denote by Gi). Indeed, since
p∞3 | z by hypothesis, each wi is a multiple of the root of Gi. Hence, the element z
must be a sum z =

∑
aizi where ai ∈ Q and each zi is the root of Gi. We endeavor

to show that, in fact, each ai ∈ [Z]u4,k,q5,P and each Gi is a [G(Σ0
3)]u4,k

component.
Fix a witness y for (‡). Since u∞4,k | y, the element y must also be contained

within the [G(Σ0
3)]u4,k

and [G(Π0
3)]u4,k

components. Furthermore, since p∞1 | y, the
element y must have the form y =

∑
bjyj where each bj ∈ Q and yj is the root of

a G(Π0
2) component. Since the [G(Π0

3)]u4,k
components do not contain G(Π0

2) com-

ponents, each yj is the root of a G(Π0
2) subcomponent of a [G(Σ0

3)]u4,k
component.

Thus z, y ∈ B where B := SpanG(X) and X contains the roots of the [G(Π0
3)]u4,k

components, the roots of the [G(Σ0
3)]u4,k

components, and the roots of the G(Π0
2)

components of the [G(Σ0
3)]u4,k

components. By Lemma 4.16, the group B is a pure
subgroup of G.

To describe the isomorphism type of B, we need to analyze which primes infinitely
divide the roots occurring in X. The point is that a particular element of X may
be the root of components at more than one level and each level will introduce
different infinite divisibilities. Because of these considerations, we split into cases
depending on whether k > 0 or k = 0.

First, consider the case when k > 0 and let r be the root of a [G(Π0
3)]u4,k

component or a [G(Σ0
3)]u4,k

component. The root r is infinitely divisible by p3

(since it is a root at level 3), by u4,k (by the prime closure of the component added
at level 4) and by all the primes in P (by the prime closure of G). Because k > 0,
the element r is not the root of a component at level 4 and because the level 3 (at
which r is a root) is odd, the element r is not the root at level 2. Similarly, if r is
the root of a G(Π0

2) subcomponent of a [G(Σ0
3)]u4,k

component, then r is infinitely

9Of course, here we mean r to be the root of the [Z]p3 component and rk to be the root of the

kth copy of [Z]p1 . When obvious, we omit such explanation.
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divisible by p1 (since it is the root of G(Π0
2)), by u4,k (by the prime closure) and by

all the primes in P . Again, the element r is not the root at any other level. Thus,
when k > 0, the group B is isomorphic to a direct sum of infinitely many copies
of [Z]p3,u4,k,P (coming from the roots of the [G(Π0

3)]u4,k
components) and infinitely

many copies of

(2)

[〈
[Z]p3 ⊕

⊕
k∈ω

[Z]p1 ; q−t3 (r + rk) : k, t ∈ ω
〉]

u4,k,P

(coming from the roots of the [G(Σ0
3)]u4,k

components and the roots of their G(Π0
2)

subcomponents).
We show that each zi in the sum z =

∑
aizi is the root of a [G(Σ0

3)]u4,k
compo-

nent. If not, then we can suppose without loss of generality that z0 is the root of a
[G(Π0

3)]u4,k
component, that is, the element z0 is the element 1 in a direct summand

of B of the form [Z]p3,u4,k,P . Since q∞3 | (
∑
aizi+

∑
bjyj), there is a [Z]q3-multiple ŵ

of z + y in B such that

ŵ =
∑
i

âi

qki3

zi +
∑
j

b̂j

q
`j
3

yj

where âi, b̂j ∈ Z, q36 |âi, ki > 0, q36 |b̂j and `j > 0 (assuming âi, b̂j 6= 0). However,
the coefficient of z0 in any element of B must be from [Z]p3,u4,k,P . Hence, we have
â0 = 0 and therefore a0 = 0.

Having established that each zi is the root of a [G(Σ0
3)]u4,k

component, it follows
that z, y ∈ B′ where B′ := SpanG(X ′) with X ′ ⊆ X containing only the roots of the
[G(Σ0

3)]u4,k
components and the roots of their G(Π0

2) subcomponents. That is, the
group B′ is the subgroup of B consisting of the direct sum of the infinitely many
copies of the group in (2). Since B′ is a pure subgroup of G, we have by Fact 4.12(1)

B′ |= p∞3 | z ∧ (∃y)[q∞3 | (z + y) ∧ p∞1 | y]

(with our fixed element y ∈ B′ as witness). Therefore, we can apply Lemma 4.4(5)
(with F1 := {p3}, F2 := {p1}, ρ := q3 and P := P ∪ {u4,k}) to conclude that
z =

∑
aizi with ai ∈ [Z]u4,k,P .

Second, consider the case when k = 0. In this case, we have z =
∑
aizi where

each zi is the root of a [G(Σ0
3)]u4,0

component since there are no [G(Π0
3)]u4,0

com-

ponents. A root r of a [G(Σ0
3)]u4,0

component is infinitely divisible by p3 (since it
is a root at level 3), by u4,k (by the prime closure), by p4 (since k = 0 and hence r
is also the root of a G(Π0

4) or G(Σ0
4(m)) component) and by all the primes in P .

Furthermore, if r, r′ are roots of (distinct) G(Π0
4) or G(Σ0

4(m)) components within
the same Ci, then r − r′ is infinitely divisible by q5. (This divisibility does not add
to the infinite divisibility of either r or r′, but it does effect the isomorphism type
of B.) However, if r, r′ are roots of such components in different Ci, then r − r′ is
not divisible by q5. To smooth out this difference in divisibility and to simplify the
calculations, we work in [B]q5 .

The group [B]q5 is isomorphic to the direct sum of infinite many copies of[〈
[Z]p3,p4 ⊕

⊕
k∈ω

[Z]p1 ; q−t3 (r + rk) : k, t ∈ ω
〉]

u4,0,q5,P

(coming from the roots of the [G(Σ0
3)]u4,0

components and their G(Π0
2) subcompo-

nents). Since B is a pure subgroup of G and B is a subgroup of [B]q5 , we have by
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Fact 4.12(1) and Fact 4.12(2)

[B]q5 |= p∞3 | z ∧ (∃y)[q∞3 | (z + y) ∧ p∞1 | y]

with our fixed element y ∈ B as the witness. Applying Lemma 4.4(5) (with F1 :=
{p3, p4}, F2 := {p1}, ρ := q3 and P := P ∪ {u4,0, q5}), we conclude that ai ∈
[Z]P,u4,0,q5 . This completes the proof of (3)(a) when β = 5.

To prove (3)(b) when β = 5, assume z =
∑
aizi, where ai ∈ [Z]u4,k,P and each zi

is the root of a [G(Σ0
3)]u4,k

component. Let Gi denote the [G(Σ0
3)]u4,k

component
containing zi. We need to show that G satisfies

u∞4,k | z ∧ p∞3 | z ∧ (∃y)[u∞4,k | y ∧ q∞3 | (z + y) ∧ p∞1 | y].

Since zi is the root of Gi, we have p∞3 | zi. By Lemma 4.17 and the fact that Gi is
P ∪{u4,k}-closed, it follows that p∞3 | aizi and u∞4,k | aizi. Hence, we have p∞3 | z and

u∞4,k | z.
Let yi be the root of a G(Π0

2) component inside Gi and let y :=
∑
aiyi. Since

G(Π0
2) ∼= [Z]p1 , we have p∞1 | yi. As Gi is P ∪ {u4,k}-closed, it follows that p∞1 | aiyi

(by Lemma 4.17) and that u∞4,k | aiyi. Hence, both p1 and u4,k infinitely divide y.

By the definition of G(Σ0
3), we have q∞3 | (zi+yi) and applying Lemma 4.17 one more

time, we obtain q∞3 | (aizi + aiyi). Therefore G satisfies Φ
u4,k

3 (z) with witness y.
This completes the base case of β = 5.

Next, we show (3) for β > 5 supposing (2) holds for β − 2. To prove (3)(a), we
suppose G |= u∞β−1,k | z ∧ Φ

uβ−1,k

β−2 (z), recalling u∞β−1,k | z ∧ Φ
uβ−1,k

β−2 (z) is

(‡‡) u∞β−1,k | z ∧ p∞β−2 | z ∧ (∃y)[u∞β−1,k | y ∧ q∞β−2 | (z+y)∧Auβ−1,k

β−3 (y)∧Ψ
uβ−1,k

β−3 (y)].

We need to show that z =
∑
aizi with each ai ∈ [Z]uβ−1,k,qβ ,P and each zi a root

of a [G(Σ0
β−2)]uβ−1,k

component.

As in the β = 5 case, together u∞β−1,k | z and p∞β−2 | z imply that z =
∑
aizi,

where ai ∈ Q and each zi is the root of a [G(Σ0
β−2)]uβ−1,k

or [G(Π0
β−2)]uβ−1,k

com-

ponent. We endeavor to show that, in fact, each ai ∈ [Z]uβ−1,k,qβ ,P and each zi is

the root of a [G(Σ0
β−2)]uβ−1,k

component.

Fix a witness y for (‡‡). Our first goal is to show that y is a sum of roots of
G(Π0

β−3) components. Since u∞β−1,k | y, the element y lies within the [G(Σ0
β−2)]uβ−1,k

and [G(Π0
β−2)]uβ−1,k

components. Thus, we have y ∈ H := SpanG(X) where X

contains the roots of the [G(Σ0
β−2)]uβ−1,k

and [G(Π0
β−2)]uβ−1,k

components as well
as the roots of all the components nested via the recursive construction inside these
components. Note that H is the subgroup of G consisting of the elements infinitely
divisible by uβ−1,k. Because G satisfies A

uβ−1,k

β−3 (y) ∧ Ψ
uβ−1,k

β−3 (y), we have that H
satisfies Aβ−3(y) ∧ Ψβ−3(y) by Lemma 4.7.

We describe the isomorphism type ofH in two cases: when k > 0 and when k = 0.
If k > 0, then the roots of the [G(Σ0

β−2)]uβ−1,k
and [G(Π0

β−2)]uβ−1,k
components are

not roots of components at any level other than β − 2. Thus, the group H is an
infinite direct sum of [G(Σ0

β−2)]uβ−1,k,P and [G(Π0
β−2)]uβ−1,k,P groups.

If k = 0, then note that there are no [G(Π0
β−2)]uβ−1,0

components. Each root

of a [G(Σ0
β−2)]uβ−1,0

component is also the root of a G(Σ0
β−1(m)) or a G(Π0

β−1)

component. Thus, each such root is infinitely divisible by pβ−1 (in addition to the
divisibility imposed at level β − 2). Furthermore, if r, r′ are roots of G(Σ0

β−1(m))

or G(Π0
β−1) components from the same Ci, then q∞β | (r− r′). If they are roots from
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different Ci, then we have no such qβ divisibility. To incorporate the extra divisibility
by pβ−1 and to smooth out this divisibility difference by qβ , we study [H]qβ ,pβ−1

.

The group [H]qβ ,pβ−1
is isomorphic to an infinite direct sum of [G(Σ0

β−2)]P ′ groups

where P ′ := P ∪ {uβ−1,0, qβ , pβ−1}.
In each of the k > 0 and k = 0 cases, we can apply Part (2)(a) for H or [H]qβ ,pβ−1

and β− 2 to conclude that y =
∑
bjyj is a sum of roots yj of G(Π0

β−3) components

in G (with appropriate coefficients, which depend on which case we are in). Thus,
we have established our first goal.

Our second goal is to show that in the sum z =
∑
aizi, where each zi is the root

of a [G(Σ0
β−2)]uβ−1,k

component (as opposed to a [G(Π0
β−2)]uβ−1,k

component) and

each coefficient ai lies in [Z]pβ−1,qβ ,P . We have z, y ∈ B := SpanG(X) where X con-

tains the roots of the [G(Π0
β−2)]uβ−1,k

components, the roots of the [G(Σ0
β−2)]uβ−1,k

components, and the roots of their G(Π0
β−3) components. We split into cases de-

pending on whether k > 0 or k = 0 and proceed with an analysis of the infinite
divisibilities as in the β = 5 case.

First, suppose that k > 0. A root r of a [G(Π0
β−2)]uβ−1,k

or [G(Σ0
β−2)]uβ−1,k

component is infinitely divisible by pβ−2 (being a root at level β − 2), by uβ−1,k

(by prime closure), and by the primes in P (by prime closures). Since β− 2 is odd,
the element r is not a root at a lower level; since k > 0, the element r is not a root
at a higher level.

A root r of a G(Π0
β−3) subcomponent of a [G(Σ0

β−2)]uβ−1,k
component is infinitely

divisible by pβ−3 (being a root at level β − 3), by uβ−1,k (by prime closure), and
by the primes in P (by divisible closures). In addition, if β − 3 is not a limit
ordinal, then r is also the root of a [G(Σ0

β−4)]uβ−3,0
component and hence is infinitely

divisible by pβ−4 and uβ−3,0. Notice that the recursion stops at this point because
β − 4 is an odd ordinal and hence r is not the root at any lower level. If β − 3
is a limit ordinal, then r is also the root of a [G(Σ0

fβ−3(0))]uβ−3,0
component and

hence is infinitely divisible by pfβ−3(0) and uβ−3,0. Again, the recursion stops at
this point because fβ−3(0) is an odd ordinal. Recall that if β − 3 is not a limit,
then fβ−3(0) = β − 4. Thus, we can also describe the infinite divisibility by pβ−4

(in the case when β − 3 is not a limit) as infinite divisibility by pfβ−3(0). In future
analyses, we will combine these cases in this manner.

From this analysis, when k > 0, the group B is isomorphic to the direct sum of
infinitely many copies of [Z]pβ−2,uβ−1,k,P (from the roots of [G(Π0

β−2)]uβ−1,k
compo-

nents) and infinitely many copies of

(3)

〈[Z]F1 ⊕
⊕
j∈ω

[Z]F2 ;
x+ yj
ρk

: j, k ∈ ω
〉

P,uβ−1,k

where F1 := {pβ−2}, F2 := {pβ−3, uβ−3,0, pfβ−3(0)} and ρ := qβ−2 (from the roots

of [G(Σ0
β−2)]uβ−1,k

components and their G(Π0
β−3) subcomponents). A divisibility

argument almost identical to the one used in the β = 5 case (using the fact that
q∞β−2 | (z+y)) shows that none of the zi elements can come from the [Z]pβ−2,uβ−1,k,P

summands. Therefore, each zi is the root of a [G(Σ0
β−2)]uβ−1,k

component.

Let B′ be the subgroup of B consisting of the direct sum of infinitely many copies
of the group in Equation (3). Since B′ is a pure subgroup of G containing y and z
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and G satisfies

p∞β−2 | z ∧ q∞β−2 | (z + y) ∧ p∞β−3 | y,
we have that this formula is also satisfied in B′ (by Fact 4.12(1)). Applying
Lemma 4.4(5) to B′ with the above values for F1, F2, and ρ yields that each
ai ∈ [Z]P,uβ−1,k

, completing the case when k > 0.
Second, suppose k = 0. The analysis of the isomorphism type of B is almost

identical to the case when k > 0 except for three points. First, there are no com-
ponents of the form [G(Π0

β−2)]uβ−1,0
and hence no argument is needed to conclude

that each zi is the root of a [G(Σ0
β−2)]uβ−1,0

component. Second, the root of a

[G(Σ0
β−2)]uβ−1,0

component is also the root of a G(Σ0
β−1) or G(Π0

β−1) component
and hence is infinitely divisible by pβ−1 in addition to the infinite divisibilities given
above. Third, to smooth out the fact that qβ infinitely divides r− r′ when r, r′ are
roots of G(Σ0

β−1) or G(Π0
β−1) components from the same Ci, we work with [B]qβ .

With these observations, the group [B]qβ is isomorphic to the direct sum of infinitely
many copies of〈[Z]F1

⊕
⊕
j∈ω

[Z]F2
;
x+ yj
ρk

: j, k ∈ ω
〉

P,uβ−1,k,qβ

where F1 := {pβ−2, pβ−1}, F2 := {pβ−3, uβ−3,0, pfβ−3(0)} and ρ := qβ−2. Since B is
a pure subgroup of G and G satisfies

p∞β−2 | z ∧ q∞β−2 | (z + y) ∧ p∞β−3 | y
this formula is also satisfied in B (by Fact 4.12(1)). Since [B]qβ is an expansion
of B, it remains true in B′ (by Fact 4.12(2)). We apply Lemma 4.4(5) to conclude
that each ai ∈ [Z]P,uβ−1,k,qβ .

To prove (3)(b) when β > 5, fix an element z =
∑
aizi with each ai ∈ [Z]uβ−1,k,P

and each zi the root of a [G(Σ0
β−2)]uβ−1,k

component (which we denote by Gi). We

have u∞β−1 | zi and p∞β−2|zi as a consequence of the structure of [G(Σ0
β−2)]uβ−1,k

components and zi being the root. As ai ∈ [Z]uβ−1,k,P and Gi is {uβ−1,k, P}-closed,
it follows that u∞β−1 | aizi and p∞β−2|aizi and hence that u∞β−1 | z and p∞β−2|z.

Let y :=
∑
aiyi, where yi is the root of a G(Π0

β−3) subcomponent of Gi. Since

each Gi is a [G(Σ0
β−2)]uβ−1,k

component, it follows from the structure of these compo-

nents that u∞β−1,k | y and q∞β−2 | (z+y). It remains to show that G satisfies A
uβ−1,k

β−3 (y)

and Ψ
uβ−1,k

β−3 (y).

Let B := SpanG(X) where X contains the roots of the [G(Σ0
β−2)]uβ−1,k

compo-
nents and the roots of any component nested via the recursive construction inside
such a component. Note that y, z ∈ B and that B is the subgroup of G consisting
of the elements which are infinitely divisible by uβ−1,k. Applying Part (2)(b) to B
with β − 2 and P = P ∪ {uβ−1,k}, we get that B satisfies Aβ−3(y) ∧ Ψβ−3(y).
Since B consists of the elements of G which are infinitely divisible by uβ−1,k, we
have that G satisfies A

uβ−1,k

β−3 (y) ∧ Ψ
uβ−1,k

β−3 (y) by Lemma 4.7 as required.

(2) We show (2) for β supposing (3) and (4) hold for values less than or equal to β.
To show (2)(a), we suppose G |= Aβ−1(z) ∧ Ψβ−1(z), recalling Aβ−1(z) is

p∞β−1|z ∧ (∃w)
[
uβ−1,1|w ∧ v∞β−1,0|(z + w)

]
.
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Since p∞β−1 | z, we can express z as z =
∑
aizi where ai ∈ Q and zi is the root of

a G(Σ0
β−1(m)) or G(Π0

β−1) component (which we denote by Gi). Since zi is also

the root of the [G(Σ0
fβ−1(0))]uβ−1,0

component inside this G(Σ0
β−1(m)) or G(Π0

β−1)

component, we have that zi is infinitely divisible by pfβ−1(0) and uβ−1,0. As above,
the recursion stops here since fβ−1(0) is an odd ordinal and hence zi is the element 1
in a copy of [Z]pfβ−1(0)

.

Fix an element w witnessing G |= Aβ−1(z). The condition u∞β−1,1 |w implies

that w is a sum of elements from [G(Σ0
fβ−1(1))]uβ−1,1

and [G(Π0
fβ−1(1))]uβ−1,1

com-

ponents. The condition v∞β−1,0 | (z + w) implies (by divisibility arguments similar

to those already given many times) that w =
∑
biwi, where each bi ∈ Q and

each wi is the root of a [G(Σ0
fβ−1(1))]uβ−1,1

or [G(Π0
fβ−1(1))]uβ−1,1

component. Since

fβ−1(1) is an odd ordinal, the root of such a component is the element 1 in a copy
of [Z]pfβ−1(1)

. Thus, the element wi is infinitely divisible by pfβ−1(1) and uβ−1,1

but the recursion stops at this point. (Note that for the same reason, the roots
of [G(Σ0

fβ−1(k))]uβ−1,k
and [G(Π0

fβ−1(k))]uβ−1,k
components for k ≥ 2 are infinitely

divisible only by pfβ−1(k) and uβ−1,k.)
To find the coefficients ai in z =

∑
aizi, let B := SpanG(X) where X contains the

roots of the [G(Σ0
fβ−1(k))]uβ−1,k

and [G(Π0
fβ−1(k))]uβ−1,k

components for k ∈ ω. As

in the proof of Part (3), we work in [B]qβ since, for roots r, r′ of [G(Σ0
fβ−1(0))]uβ−1,0

components (which are also roots of G(Σ0
β−1(m)) or G(Π0

β−1) components), it is

the case that qβ infinitely divides r − r′ if and only if these roots come from the
same Ci summand of G.

The group [B]qβ is isomorphic to the P ′ := P ∪ {qβ} closure of〈
F ;

xk,j
σ`k

,
xk,j + xk+1,j

ρ`k
: j, k, ` ∈ ω and all σk ∈ Fk

〉
where F is the free abelian group on xk,j (for k, j ∈ ω), F0 := {pfβ−1(0), pβ−1, uβ−1,0},
Fk := {pfβ−1(k), uβ−1,k} (for k > 0) and ρk := vβ−1,k. In this presentation, for

each fixed j, the element xk,j is the root of a [G(Σ0
fβ−1(0))]uβ−1,k

component or a

[G(Π0
fβ−1(0))]uβ−1,k

component within a fixed G(Σ0
β−1(m)) or G(Π0

β−1) component

of G. As j varies, we range over all G(Σ0
β−1(m)) and G(Π0

β−1) components of G.

If β − 1 is a limit ordinal, then pfβ−1(k) 6= pfβ−1(k′) for k 6= k′. If β − 1 is not
a limit ordinal, then pfβ−1(k) = pβ−2 for all k. In this case, we can remove the
primes pfβ−1(k) from Fk and add pβ−2 to P ′ (since [B]qβ is pβ−2 closed). This
change has the effect of including infinite divisibility by pβ−2 for our coefficients ai.

Since B is a pure subgroup of G, the group B is a subgroup of [B]qβ , and z, w ∈ B,
we have (applying both Fact 4.12(1) and Fact 4.12(2)) that [B]qβ satisfies Aβ−1(z)
with our element w as witness. Therefore, by Lemma 4.5(3), we obtain that z =∑
aizi with ai ∈ [Z]P,pβ−2,qβ (if β− 1 is not a limit ordinal) or ai ∈ [Z]P,qβ (if β− 1

is a limit ordinal).
Next, we use the fact that G |= Ψβ−1(z) to show each Gi is a G(Π0

β−1) compo-

nent. For if one were not, then some G` would be a G(Σ0
β−1(m0)) component for

some m0 ∈ ω. With m := m0 + 1, we fix a sequence g0, g1, . . . , gm witnessing
that G satisfies the m-th conjunct of Ψβ−1(z). Since G satisfies u∞β−1,m | gm and

Φ
uβ−1,m

fβ−1(m)(gm), we have by Part (3) or Part (4) (depending on the form of fβ−1(m))
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that gm =
∑
cjyj where each yj is the root of a [G(Σ0

fβ−1(m))]uβ−1,m
component.

Since g0 = z =
∑
aizi and v∞β−1 | (gk + gk+1) for 0 ≤ k < m, one of the yj roots

in the summand for gm must lie in the component G`. However, the group G` is a
G(Σ0

β−1(m0)) component with m0 < m, so it does not contain a [G(Σ0
fβ−1(m))]uβ−1,m

component, yielding the desired contradiction. This completes the proof of (2)(a).
To prove (2)(b), fix an element z =

∑
aizi with ai ∈ [Z]P and zi a root of a

G(Π0
β−1) component of G (which we denote Gi). We need to show that G |= Aβ−1(z)

and G |= Ψβ−1(z). For the former, we need to show that G satisfies

p∞β−1|z ∧ (∃w)[u∞β−1,1 |w ∧ v∞β−1,0 | (z + w)].

From the structure of G(Π0
β−1) components, we have each zi is the root r0 of the[

G(Σ0
fβ−1(0))

]
uβ−1,0

component of Gi. By Lemma 4.17, the condition p∞β−1|z is

satisfied since ai ∈ [Z]P and p∞β−1|zi for each zi.

To generate the witness w, for each i, let wi be the root r1 of the
[
G(Σ0

fβ−1(1))
]
uβ−1,1

component of Gi. The conditions u∞β−1,1 |wi and v∞β−1,0 | (zi+wi) are satisfied since

zi = r0 and wi = r1 in Gi. As each ai ∈ [Z]P , it follows from Lemma 4.17 that
G |= Aβ−1(z) with witness w :=

∑
aiwi.

To see that G |= Ψβ−1(z), we reason as follows. Fix m ∈ ω. We show how to
pick the witnessing elements g0, . . . , gm for the m-th conjunct. For each zi, pick a
sequence of elements gi,0, gi,1, . . . , gi,m in Gi by setting gi,0 := zi (which is the r0

root in Gi) and gi,k := rk (the root of the [G(Σ0
fβ−1(k))]uβ−1,k

component of Gi) for

0 < k ≤ m. Since ai ∈ [Z]P and each Gi is P -closed, we have (from the structure of
G(Π0

β−1)) that u∞β−1,k | aigi,k for k ≤ m and v∞β−1,k | (aigi,k + aigi,k+1) for k < m.

For each 0 ≤ k ≤ m, let gk :=
∑
i aigi,k. By the divisibility conditions above,

we have u∞β−1,k | gk for k ≤ m and v∞β−1,k | (gk + gk+1) for k < m. Furthermore,

g0 = z. Therefore, it only remains to show that Φ
uβ−1,m

fβ−1(m)(gm). We already have

u∞β−1,m | gm. Since gm =
∑
i aigi,m where ai ∈ [Z]P and gi,m is the root of a

[G(Σ0
fβ−1(m))]uβ−1,m

component, it follows from Part (3)(b) or Part (4)(b), depend-

ing on the form of fβ−1(m), that G satisfies Φ
uβ−1,m

fβ−1(m)(gm) and hence G |= Ψβ−1(z).

(4) As fβ−1(k) is an odd ordinal and fβ−1(k) < β − 1 for all k ∈ ω, the proof
of Part (4) is essentially the same as the proof of Part (3) with the appropriate
notational changes to reflect that β − 1 is a limit ordinal.

�

Lemma 4.18. Let β = δ+ 2`+ 1 ≥ 3. Then for G =
⊕

n∈ω Gn, where Gn is either

[G(Σ0
β)]dn or [G(Π0

β)]dn , the following holds:

G |= [(∃x)Φβ(x)]dn if and only if Gn ∼= [G(Σ0
β)]dn .

Proof. Since Gn is the subgroup of elements of G which are infinitely divisible by dn,
we have by Lemma 4.7 that

G |= [(∃x)Φβ(x)]dn if and only if Gn |= (∃x)Φβ(x).

Therefore, it suffices to show that G(Σ0
β) |= (∃x)Φβ(x) and G(Π0

β) 6|= (∃x)Φβ(x).
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First, we show that G(Σ0
β) |= Φβ(r) where r is the root of G(Σ0

β). That is, we

show that G(Σ0
β) satisfies

p∞β | r ∧ (∃y)[q∞β | (r + y) ∧ Aβ−1(y) ∧ Ψβ−1(y)].

Since r is the root of G(Σ0
β), we immediately obtain p∞β | r. We claim that the root rk

of a G(Π0
β−1) component works for the choice of y in Φβ . From the definition of

G(Σ0
β), we have q∞β | (r+rk) and by Lemma 4.14(2)(b), we have that G(Σ0

β) satisfies

both Aβ−1(rk) and Ψβ−1(rk) as required.
Second, assume for a contradiction that G(Π0

β) |= (∃x)Φβ(x) and fix the wit-

ness x. The condition p∞β |x implies that x is a multiple of the root of G(Π0
β). Fix

the witness y such that q∞β | (x+ y) ∧ Aβ−1(y) ∧ Ψβ−1(y). By Lemma 4.14(2)(a),

the condition Aβ−1(y)∧Ψβ−1(y) implies that y is a sum of multiples of the roots of
G(Π0

β−1) components. However, the group G(Π0
β) has no such components, giving

the desired contradiction. �

We continue by constructing sentences connected semantically to H(Σ0
β) and

H(Π0
β). We first give lemmas similar to Lemma 4.14 for the groups H(Σ0

β) and

H(Π0
β).

Lemma 4.19. Let β = δ + 2l + 2 ≥ 4 and let H ∼= H(Π0
β). Let y ∈ H be a sum

y =
∑
bjyj where each bj ∈ Z and each yj is the root of a (distinct) G(Σ0

β−1)

component of H. Then H |= Φβ−1(y).

Proof. We need to show that H satisfies

p∞β−1 | y ∧ (∃w)[q∞β−1 | (y + w) ∧Aβ−2(w) ∧Ψβ−2(w)].

By the structure of G(Σ0
β−1), we have p∞β−1 | yj for all j. Since bj ∈ Z, we have

p∞β−1 | bjyj and hence p∞β−1 | y. For each j, let wj be the root of a G(Π0
β−2) component

within the G(Σ0
β−1) component with root yj and let w :=

∑
bjwj . It follows from

the structure of G(Σ0
β−1) that q∞β−1 | (y+w). Therefore, it remains to show that H

satisfies Aβ−2(w) ∧Ψβ−2(w).
The group H is built by taking a direct sum of the groups [Z]pβ (with root r) and⊕
k∈ω G(Σ0

β−1) (with roots rk) and then adding extra elements (from the divisible

closure of this sum) to witness q∞β | (r + rk). Since w =
∑
bjwj with each bj ∈ Z,

we can view w as an element of the group
⊕

k∈ω G(Σ0
β−1) in this construction of H.

By Lemma 4.14(2)(b) applied to w as an element of
⊕

k∈ω G(Σ0
β−1), we have that⊕

k∈ω G(Σ0
β−1) satisfies Aβ−2(w) ∧ Ψβ−2(w). Since

⊕
k∈ω G(Σ0

β−1) is a subgroup

of H, Fact 4.13 implies that H satisfies Aβ−2(w) ∧Ψβ−2(w) as required. �

Lemma 4.20. Let β = δ + 2l + 2 ≥ 4 and let H ∼= H(Σ0
β). Let r be the root of a

G(Π0
β−1) component of H. Then H 6|= Φβ−1(r).

Proof. We show that there is no w ∈ H such that H satisfies

q∞β−1 | (r + w) ∧Aβ−2(w) ∧Ψβ−2(w).

For a contradiction, fix such an element w ∈ H. To simplify dealing with qβ
divisibility in H, we work in the prime closure [H]qβ and note that if w satisfies this
formula in H, then by Fact 4.13, it also satisfies the formula in [H]qβ .
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The group [H]qβ decomposes as a direct sum

[Z]pβ ,qβ ⊕
⊕
i∈ω

[Ci]qβ

where each Ci is isomorphic to G(Σ0
β−1) or G(Π0

β−1). The divisibility condition

p∞β−2 |w (from the fact that [H]qβ |= Aβ−2(w)) implies that w =
∑
aiwi where each

ai ∈ Q and each wi is the root of a G(Σ0
β−2(m)) or G(Π0

β−2) component. Therefore,

as an element of [H]qβ , we have w ∈⊕i∈ω[Ci]qβ . In addition, by arguments similar
to previous ones, the condition q∞β−1 | (r + w) implies that at least one wi is the

root of a G(Σ0
β−2(m)) subcomponent of the G(Π0

β−1) component with root r (as

this component has no G(Π0
β−2) subcomponents).

Assume for a moment that
⊕

i∈ω[Ci]qβ satisfies Aβ−2(w) ∧ Ψβ−2(w). Under

this assumption, Lemma 4.14(2)(a) implies that w is a sum of roots of G(Π0
β−2)

components, contradicting the fact that at least one wi is the root of a G(Σ0
β−2(m))

component. Therefore, to complete our proof, it suffices to show that
⊕

i∈ω[Ci]qβ
satisfies Aβ−2(w) ∧Ψβ−2(w).

To show
⊕

i∈ω[Ci]qβ satisfies Aβ−2(w)∧Ψβ−2(w), we use the fact that
⊕

i∈ω[Ci]qβ
is a pure subgroup of [H]qβ (since it is a direct summand) along with the following
observation. Because [H]qβ is a direct sum, any element z ∈ [H]qβ can be written
(uniquely) in the form z = z0 + z1 where z0 ∈ [Z]pβ ,qβ and z1 ∈

⊕
i∈ω[Ci]qβ . If ρ

is a prime and ρ∞ | z, then ρ∞ | z0 and ρ∞ | z1. Therefore, if ρ∞ | z and ρ is not pβ
or qβ , we can conclude that z ∈⊕i∈ω[Ci]qβ .

Using this observation, we show that the following implications hold for all γ
with 2 ≤ γ ≤ β− 2. Let ϕ(x) be either Aγ(x) or Ψγ(x) (if γ is even) or Φγ(x) (if γ
is odd), and let ρ be any prime number. For any x ∈⊕i∈ω[Ci]qβ , we have

[H]qβ |= ϕ(x) implies
⊕
i∈ω

[Ci]qβ |= ϕ(x) and

[H]qβ |= ϕρ(x) implies
⊕
i∈ω

[Ci]qβ |= ϕρ(x).

Notice that establishing this property finishes our proof as w ∈ ⊕i∈ω[Ci]qβ and
[H]qβ |= Aβ−2(w)∧Ψβ−2(w), so by the property

⊕
i∈ω[Ci]qβ |= Aβ−2(w)∧Ψβ−2(w).

First, consider the case when ϕ(x) is Aγ(x) and assume [H]qβ |= Aγ(x). In
this case, the existential witness y in Aγ(x) is infinitely divisible by uγ,1. As uγ,1 6∈
{pβ , qβ}, we have y ∈⊕i∈ω[Ci]qβ . Since

⊕
i∈ω[Ci]qβ is a pure subgroup containing x

and y, the group
⊕

i∈ω[Ci]qβ satisfies Aγ(x). The same proof works for Aρβ(x).

Second, consider the cases when ϕ(x) is Φγ(x) (for odd γ), Ψγ(x) (for even γ)
or a prime relativization of one of these formulas. We proceed by induction on γ
and note that in each case the proof for the relativized formula is identical to the
proof for the unrelativized formula. In each case, we assume x ∈ ⊕i∈ω[Ci]qβ and
[H]qβ |= ϕ(x).

The first base case is when β = 2. Since Ψ2(x) is p∞1 |x, x ∈ ⊕i∈ω[Ci]qβ , and⊕
i∈ω[Ci]qβ is a pure subgroup, we have

⊕
i∈ω[Ci]qβ |= Ψ2(x).

The second base case is β = 3. The existential witness y in the formula Φ3(x)
satisfies p∞1 | y (from Ψ2(y)). As p1 6∈ {pβ , qβ}, we have y ∈ ⊕i∈ω[Ci]qβ . Since⊕

i∈ω[Ci]qβ is a pure subgroup containing x and y, we have
⊕

i∈ω[Ci]qβ |= Φ3(x).
For the inductive cases, suppose γ is even and 4 ≤ γ ≤ β − 2. Consider the

m-th conjunct of Ψγ(x). The witnesses x0, . . . , xm satisfy u∞γ,k |xk and thus are in
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i∈ω[Ci]qβ as uγ,k 6∈ {pβ , qβ}. Since

⊕
i∈ω[Ci]qβ is a pure subgroup and it satisfies

Φ
uγ,m
fγ(m)(xm) by the inductive hypothsis, we have that

⊕
i∈ω[Ci]qβ |= Ψγ(x).

If γ is odd and 4 < γ ≤ β − 2, then the existential witness y in Φγ(x) satisfies
p∞γ−1 | y from Aγ−1(y). Thus, as pγ−1 6∈ {pβ , qβ}, we have y ∈ ⊕i∈ω[Ci]qβ . Since⊕

i∈ω[Ci]qβ is a pure subgroup and satisfies Aγ−1(y) and Ψγ−1(y) by the inductive
hypothesis, we have

⊕
i∈ω[Ci]qβ |= Φγ(x). �

Definition 4.21. If β ≥ 4 is not a limit ordinal, define Bβ(x) to be the formula

Bβ(x) := p∞β |x ∧ (∃w)
[
p∞β−1 |w ∧ q∞β | (x+ w)

]
.

Definition 4.22. If β = δ + 2`+ 2 ≥ 4, define Θβ to be the formula

Θβ(x) := (∀y)
[(
Bβ(x) ∧Bβ−1(y) ∧ q∞β | (x+ y)

)
→ Φβ−1(y)

]
.

Lemma 4.23. The complexity of Bβ(x) is Σc3 (independent of β).
If β = δ + 2`+ 2 ≥ 4, then Θβ(x) ∈ Πc

β.

Proof. These statements follow immediately from p∞ |x being Πc
2 and Lemma 4.11.

�

Lemma 4.24. Let β = δ + 2` + 2 ≥ 4. Let x ∈ H(Π0
β) satisfy Bβ(x) with fixed

witness w. Then x = ar where a ∈ Z and r is the root of H(Π0
β) and w =

∑
bjwj

where bj ∈ [Z]pβ−1,qβ and each wj is the root of a G(Σ0
β−1) component of H(Π0

β).

Proof. Since p∞β |x, the element x must have the form x = ar where a ∈ Q and r is

the root of H(Π0
β). Since p∞β−1 |w, the element w must have the form w =

∑
bjwj

where bj ∈ Q and wj is the root of a G(Σ0
β−1) component of H(Π0

β).

Let B := SpanH(Π0
β)(X) where X contains the root of H(Π0

β) and the roots of

the G(Σ0
β−1) components of H(Π0

β). Then x,w ∈ B, B is a pure subgroup of H(Π0
β),

and B is isomorphic to〈
[Z]pβ ⊕

⊕
k∈ω

[Z]pβ−1
; q−tβ (r + rk) : k, t ∈ ω

〉
.

Since B satisfies p∞β |x, p∞β−1 |w, and q∞β | (x+w), we can apply Lemma 4.4(5) (with

P = ∅) to conclude that a ∈ Z and each bj ∈ [Z]pβ−1,qβ . �

Lemma 4.25. Let β = δ + 2`+ 2 ≥ 4. If x, y ∈ H(Π0
β) satisfy

Bβ(x) ∧Bβ−1(y) ∧ q∞β | (x+ y),

then x = ar and y =
∑
bjyj where a, bj ∈ Z, r is the root of H(Π0

β), and yj is the

root of a G(Σ0
β−1) component of H(Π0

β).

Proof. By Lemma 4.24, the fact that Bβ(x) holds implies x = ar with a ∈ Z
and r the root of H(Π0

β). Since Bβ−1(y) implies p∞β−1 | y and since q∞β | (x + y),

the element y works as a witness w in the formula Bβ(x) for our fixed element x.
Therefore, by the previous lemma y =

∑
bjyj where bj ∈ [Z]pβ−1,qβ and yj is the

root of a G(Σ0
β−1) component. It remains to show the stronger conclusion that

bj ∈ Z.
Fix a witness w for Bβ−1(y). Since p∞β−2 |w, the element w must have the form

w =
∑
ciwi where ci ∈ Q and wi is the root of a G(Σ0

β−2(m)) component inside

a G(Σ0
β−1) component of H(Π0

β). Therefore y, w ∈ B where B := SpanH(Π0
β)(X)
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where X contains the roots of the G(Σ0
β−1) components and the roots of their

G(Σ0
β−2(m)) subcomponents.

To determine the isomorphism type of B, we consider which primes infinitely
divide the roots of such components. The root of a G(Σ0

β−1) component is infinitely

divisible by pβ−1. The roots of G(Σ0
β−2(m)) components are infinitely divisible

by pβ−2 and uβ−2,0 from the definition of G(Σ0
β−2(m)). Each of these roots is

also the root of a G(Σ0
fβ−2(0)) component (inside G(Σ0

β−2(m))) and hence is also

infinitely divisible by pfβ−2(0). However, the recursion stops at this point since the

root of G(Σ0
fβ−2(0)) is the element 1 in a copy of [Z]pfβ−2(0)

. Therefore, the group B
is isomorphic to〈⊕

i∈ω
[Z]F1 ⊕

⊕
i,j∈ω

[Z]F2 ;
si + ti,j
qlβ−2

: i, j, l ∈ ω
〉

where F1 = {pβ−1}, F2 = {pβ−2, uβ−2,0, pfβ−2(0)}, the si elements generate the

copies of [Z]F1 (representing the roots of the G(Σ0
β−1) components) and the ti,j

elements generate the copies of [Z]F2
(representing the roots of the G(Σ0

β−2(m))

subcomponents of the G(Σ0
β−1) component with root si). Since y, w ∈ B and B

is a pure subgroup of H(Π0
β) satisfying p∞β−1 | y, p∞β−2 |w, and q∞β−1 | (y + w), we

can conclude from Lemma 4.4(5) (with P = ∅) that the coefficients in the sum
y =

∑
bjyj come from Z. �

Lemma 4.26. Let β = δ + 2` + 2 ≥ 4. Then for H =
⊕

n∈ωHn, where Hn is

either [H(Σ0
β)]dn or [H(Π0

β)]dn , the following holds:

H |= [(∀x)Θβ(x)]
dn if and only if Hn ∼= [H(Π0

β)]dn .

Proof. Since Hn is the subgroup of elements of H which are infinitely divisible
by dn, we have

H |= [(∀x)Θβ(x)]dn ⇔ Hn |= (∀x)Θβ(x)

Therefore, it suffices to show that H(Π0
β) |= (∀x)Θβ(x) and H(Σ0

β) 6|= (∀x)Θβ(x).

First, we show that H(Π0
β) |= (∀x)Θβ(x). Fix elements x, y ∈ H(Π0

β) satisfying

Bβ(x) ∧ Bβ−1(y) ∧ q∞β | (x + y). By Lemma 4.25, we can write y =
∑
bjyj where

each bj ∈ Z and yj is the root of a G(Σ0
β−1) component. By Lemma 4.19, the

element y satisfies Φβ−1(y) as required.
Second, we show that H(Σ0

β) 6|= (∀x)Θβ(x) by proving that H(Σ0
β) 6|= Θβ(r)

where r is the root of H(Σ0
β). Let y be the root of a G(Π0

β−1) component of

H(Σ0
β). It is immediate that H(Σ0

β) |= Bβ(r)∧Bβ−1(y)∧ q∞β | (r+ y). However, by

Lemma 4.20, the group H(Σ0
β) does not satisfy Φβ−1(y). �

Finally, we are in a position to define the sentences {Υn}n∈ω required for Lemma 4.1
and to demonstrate their correctness.

Definition 4.27. Define sentences Υn for n ∈ ω as follows.

• If α = δ + 2`+ 1 ≥ 3, let Υn := [(∃x)Φα(x)]
dn .

• If α = δ + 2`+ 2 ≥ 4, let Υn := ¬ [(∀x)Θα(x)]
dn .
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Proof of Lemma 4.1. By Lemma 4.18 and Lemma 4.26, the sentences Υn have the
desired semantic properties. As a consequence of Lemma 4.11 and Lemma 4.23, the
formulas Υn have the desired quantifier complexity. Moreover, all the (sub)formulas
are computable with all possible uniformity, so Υn is uniformly computably Σcα. �

4.2. Proof of Lemma 4.2. The construction of an X-computable copy of GαS if
S ∈ Σ0

α(X) is also done by recursion. We treat only the case when X = ∅, the
more general case following by relativization.

Lemma 4.28. For every even ordinal β = δ > 0 or β = δ + 2` + 2 ≥ 2 and
Σ0
β set S, there is a uniformly computable sequence {Gn}n∈ω of rooted torsion-free

abelian groups such that Gn ∼= G(Σ0
β(m)) for some m ∈ ω if n ∈ S and Gn ∼= G(Π0

β)
if n 6∈ S.

For every odd ordinal β = δ + 2` + 1 ≥ 3 and Σ0
β set S, there is a uniformly

computable sequence {Gn}n∈ω of rooted torsion-free abelian groups such that Gn ∼=
G(Σ0

β) if n ∈ S and Gn ∼= G(Π0
β) if n 6∈ S.

Moreover the passage from an index for the set S to an index for the sequence is
effective.

Proof. The proof is done by induction on β. We treat the cases β = 2, β =
δ + 2`+ 2 ≥ 4, β = δ + 2`+ 1 ≥ 3, and β = δ > 0 separately. In all cases, we fix a
predicate (∃s) [R(n, s)] describing membership of n in S, where R(n, s) is Π0

fβ(k) for

some k. Without loss of generality, we suppose R(n, s0) implies (∀s ≥ s0) [R(n, s)].
Indeed, we suppose this property of all existential subpredicates.

For β = 2, it suffices to start with the group Z with root rn = 1 for Gn. When
we see ¬R(n, s) for a new existential witness s, we introduce the element 1/ps into
the group. It is easy to see the sequence {Gn}n∈ω has the desired properties.

For β = δ+ 2`+ 1 ≥ 3, it suffices to start with the group [Z]pβ with root rn = 1

for Gn. For each integer s, we construct (via induction as ¬R(n, s) is Σ0
δ+2`) a

rooted torsion-free abelian group Gn,s with root rn,s and introduce elements (rn +
rn,s)/q

t
β for all t ∈ ω. For each integer m, we construct infinitely many copies of

G(Σ0
β−1(m)) with root rn,k,m (where k is the copy number) and introduce elements

(rn + rn,k,m)/qtβ for all t ∈ ω. Again, it is easy to see the sequence {Gn}n∈ω has
the desired properties.

For β = δ + 2` + 2 ≥ 4, we construct (via induction as ¬R(n, s) is Σ0
δ+2`+1

10)
rooted torsion-free abelian groups Gn,s with root rn,s. Within Gn,0, we introduce
elements rn,0/p

t
β for all t ∈ ω. Within each group Gn,s, we introduce elements

x/utβ,s for all t ∈ ω and x ∈ Gn,s. For each integer s, we introduce elements

(rn,s + rn,s+1)/vtβ,s for all t ∈ ω. Again, it is easy to see the sequence {Gn}n∈ω has
the desired properties.

For β = δ, we construct (via induction) rooted torsion-free abelian groups Gn,s
with root rn,s, where Gn,0 ∼= G(Σ0

fβ(0)) and where, for s > 0, Gn,s ∼= G(Π0
fβ(s))

if ∅fβ(s) suffices to witness n ∈ S and Gn,s ∼= G(Σ0
fβ(s)) otherwise. Within Gn,0,

we introduce elements rn,0/p
t
β for all t ∈ ω. Within each group Gn,s, we introduce

elements x/utβ,s for all t ∈ ω and x ∈ Gn,s. For each integer s, we introduce elements

10More precisely, we use the Σ0
δ+2`+1 predicate ¬R(n, s) to control the construction of Gn,s+1

and build Gn,0 ∼= G(Σ0
β−1). This index shift is necessary as G(Σ0

β(m)) has m+ 1 (rather than m)

subcomponents of type G(Σ0
β−1).
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(rn,s + rn,s+1)/vtβ,s for all t ∈ ω. Again, it is easy to see the sequence {Gn}n∈ω has
the desired properties. �

Lemma 4.29. For every even ordinal β = δ + 2`+ 2 ≥ 4 and Σ0
β set S, there is a

uniformly computable sequence of rooted torsion-free abelian groups {Hn}n∈ω such
that Hn ∼= H(Σ0

β) if n ∈ S and Hn ∼= H(Π0
β) if n 6∈ S.

Proof. We fix a predicate (∃s) [R(n, s)] describing membership of n in S, where
R(n, s) is Π0

β−1. Without loss of generality, we again suppose R(n, s0) implies

(∀s ≥ s0) [R(n, s)]. Indeed, we suppose this property of all existential subpredicates.
It suffices to start with the group [Z]pβ with root rn = 1 for Hn. For each

integer s, we (via Lemma 4.28) construct a rooted torsion-free abelian group Gn,s
with root rn,s and introduce elements (rn+rn,s)/q

t
β for all t ∈ ω. We also construct

infinitely many copies of G(Σ0
β−1) with root rn,k (where k is the copy number) and

introduce elements (rn+ rn,k)/qtβ for all t ∈ ω. Again, it is easy to see the sequence

{Gn}n∈ω has the desired properties. �

Proof of Lemma 4.2. Fix a Σ0
α set S. From Lemma 4.28 (if α is odd) or Lemma 4.29

(if α is even), there is a uniformly computable sequence {Gn}n∈ω of groups given by
the Σ0

α predicate. Since it is possible to pass from the group Gn to [Gn]dn uniformly
in an index for the group Gn and dn, the group GαS is computable. �
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