Pancomputationalism and the Computational
Description of Physical Systems?

Neal G. Anderson
University of Massachusetts Amherst

Gualtiero Piccinini
University of Missouri — St. Louis

Abstract — According to pancomputationalism, all physical systems — atoms, rocks, hurricanes, and
toasters — perform computations. Pancomputationalism seems to be increasingly popular among some
philosophers and physicists. In this paper, we interpret pancomputationalism in terms of computational
descriptions of varying strength—computational interpretations of physical microstates and dynamics
that vary in their restrictiveness. We distinguish several types of pancomputationalism and identify
essential features of the computational descriptions required to support them. By tying various
pancomputationalist theses directly to notions of what counts as computation in a physical system, we
clarify the meaning, strength, and plausibility of pancomputationalist claims. We show that the force of
these claims is diminished when weaknesses in their supporting computational descriptions are laid
bare. Specifically, once computation is meaningfully distinguished from ordinary dynamics, the most
sensational pancomputationalist claims are unwarranted, whereas the more modest claims offer little
more than recognition of causal similarities between physical processes and the most primitive
computing processes.

1. Introduction

An ordinary rock implements every finite-state automaton. A pail of water is, for fleeting moments,
computationally equivalent to a conscious human brain. The universe is a computer. Everything
computes.

Such claims, which are increasingly common in both the philosophical and scientific literature, are
closely related to the broad thesis that all physical systems perform computations:
pancomputationalism (PC). Any pancomputationalist claim rests on some notion of what it means for a
physical system to implement a computation, and may be taken as patently absurd, empirically
substantive, or trivially self-evident depending on what counts physically as a computation.

! Version 2.8.17. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs License
(CC BY-NC-ND). The authors thank Mike Cuffaro, llke Ercan, Samuel Fletcher, Nir Fresco, Weibo Gong, John
Norton, Jack Mallah, Marcin Milkowski, Steve Selesnick, Oron Shagrir, and an anonymous referee for comments
and suggestions on an earlier version of this manuscript, some of which have been only partially addressed at this
stage. We also thank the participants in the Nature as Computation Workshop (Tempe, 2015)—especially Paul
Davies, Gregory Chaitin, and James Crutchfield—for helpful discussion after a presentation of this work.

1



In this work we adopt our earlier classification of pancomputationalism into three generic types
(Piccinini 2015) — unlimited PC, limited PC, and ontic PC. We then identify three general classes of
computational description—three explicit specifications of what counts as computation in physical
systems that vary in their restrictiveness—and characterize the various types of PC in terms of the
nature and strength of the computational descriptions required to support them. This allows
pancomputationalist claims to be evaluated in terms of what they inherently say about physical
computation itself.

We set the stage by considering computational states, computational processes, and usability, and
associating the strength of a computational description with its commitments regarding these
fundamental notions (Section 2). We then consider unlimited PC (Sec 3(a)). We identify several variants
of unlimited PC and show that they are supported only by the weakest form of computational
description. Next, we take up limited PC (Sec. 3(b)). We show that trivial forms of limited PC survive
when the restrictions on computational description that support unlimited PC are expanded moderately
— but only moderately — and argue that less trivial forms of limited PC are rendered untenable by these
additional restrictions. Here we address unique issues that arise when the would-be computing system
is the universe as a whole. Finally, we briefly consider ontic PC (Sec. 3(c)), which largely sidesteps the
requirements for computational description and is evaluated on other grounds elsewhere (Piccinini and
Anderson 2017).

Five aspects of our study should be noted:

First, we avoid the common formulation of PC to the effect that everything is a computer. The reason is
that in both computer science and common parlance the term “computer” usually refers to computing
systems with special features such as programmability and computational universality (up to their
memory limitations) in Turing’s (1936-7) sense. Many computing systems are not programmable or
computationally universal, so many computing systems are not computers in this sense. Instead, we
formulate pancomputationalism as the claim that everything performs computations or, equivalently,
everything is a computing system.

Second, in considering pancomputationalism, we accept that there is a sense in which a physical system
may perform computations even though it has no semantic properties and does not have the function to
compute. According to semantic accounts of computation, there is no computation without
representation; according to mechanistic accounts, computing systems are physical systems whose
function is to perform computations (Piccinini 2015). Given these accounts, anything that is has no
semantic properties or no functions, respectively, is ruled out of the class of computing systems. So
pancomputationalism is false according to these accounts. This may be acceptable in other contexts but
is too strong for present purposes. Since we wish to entertain pancomputationalism as a serious
possibility and give it due process, we admit accounts of physical computation that do not rule out
pancomputationalism almost from the start.

Third, we will focus on literal pancomputationalism — the thesis that all physical systems do perform
computations. Except where otherwise noted, we set aside metaphorical pancomputationalist theses to



the effect that all physical systems can be regarded or interpreted as computational. Metaphorical PC
may be useful and may open perspectives that yield valuable insights in both physics and computation,
but it says something fundamentally different and much less sensational than literal PC.

Fourth, we focus primarily on pancomputationalism related to deterministic classical (as opposed to
guantum) digital computation in systems with at least quasi-classical physical descriptions, as this is the
most common notion employed by pancomputationalists. Unless otherwise noted, for present purposes
we take a digital computing system to be a finite-state automaton, described abstractly by countable
sets of computational states C, inputs |, transition rules (C,1)=>C’ that govern the automaton’s behavior,
and outputs O(C) (or O(C,1)). Quantum computation will also be discussed in connection with ontic PC.
Much of our analysis would also apply, mutatis mutandis, to a hypothetical version of
pancomputationalism formulated in terms of classical analog computation (Pour-El 1974, Rubel 1989,
Mills 2008) and to probabilistic classical digital computation.

Fifth and finally, we emphasize that by “computational description of a physical system” we mean
ascription of would-be computational states and processes to physical microstates and their dynamics,
taking the microphysical to be primary and given. This is to be distinguished from what might be called a
physical description of a computational system, i.e., a description of a specified system or artifact—
deemed “computational” at the outset—that provides a physical account of the system’s presumed
computational capabilities. Descriptions of the latter sort, which can take highly sophisticated forms for
specific types of computing devices and are stock-in-trade for the engineers that create them, areill
suited for analysis of pancomputationalism. Evaluation of claims about the inherent computational
capacities of arbitrary physical systems requires the former sort of description—a description that starts
with physical microstates and their dynamics and delineates possible options for their connection to
computational states and processes. Such are the descriptions we employ in this work, as we now
discuss in detail.

2. Computational Description

What counts as a computational description of a physical system? More precisely, what sort of relation
between physical microstates and their dynamics, on one hand, and computational states,
computational processes, and interaction with users, on the other hand, renders physical systems
computational? There are many possible answers to this question, some compatible with particular
varieties of pancomputationalism and some incompatible with pancomputationalism in any form. In this
section we identify classes of possible computational descriptions, organized by the restrictiveness of
the commitments they require concerning the correspondence between the microphysical and the
computational. These classes of computational description will be used in Section 3 to analyze varieties
of pancomputationalism, highlighting the restrictiveness of the commitments they require.



2(a). Elements of Computational Description

We begin by discussing elements of computational description and identifying possible commitments
that one might make regarding their correspondence with microphysical description.

Computational States

In principle and in practice, there is a natural correspondence between physical microstates and
computational states. The simplest possible correspondence would be a one-to-one mapping between
the physical microstates of a system and its computational states. But ordinary computational
descriptions posit countably many computational states, while ordinary (continuous) microphysical
descriptions posit uncountably many states. Therefore, ordinarily there aren’t enough computational
states for a one-to-one mapping with physical microstates. Alternatively, one can select a countable
subset of the physical microstates and map the computational states onto them. More realistically,
computational states are taken to correspond to disjunctions of physical microstates, regions of the
physical system’s state space (each containing an uncountably infinite number of microstates), or — most
generally — disjunctions of these state-space regions. With this, a minimal commitment regarding
physical-computational state correspondence is the following:

S: Every computational state corresponds to a distinct physical microstate of a system, a
disjunction of physical microstates, a region of the system’s state space, or a disjunction of
non-overlapping state-space regions.

Note that, in whichever manner S is satisfied, no physical microstate can be shared by more than one
computational state if all computational states are to be perfectly distinguishable from one another, and
we will take this to be implicit in S. Note also that many physical microstates may go without any
computational state assignment at all. This is natural and common in ordinary computing systems; the
microstates accessed by a system during transitions between computational states, for example, may
not themselves be associated with any computational state. The physical state of a system need only
correspond to a computational state during time intervals deemed to be “computationally relevant
times.”

We emphasize that, by condition S alone, a physical microstate may encode much more than the
computational state with which it is associated. Given knowledge of a system’s dynamics, or,
alternatively, a complete record of the sequence of microstates visited by a system with unknown
dynamics, specification of the system’s microstate may be used to identify predecessor microstates. This
has nontrivial implications for computational descriptions that require nothing more than S when
associating physical states with computational states. To illustrate this, suppose that at time t the
physical microstates P(t) and Q(t) lie in the region of the state space corresponding to a given
computational state C. Suppose also that P(t) and Q(t) are known to have evolved from — or to



necessarily evolve from — microstates P(t-1) and Q(t-1), respectively, and that P(t-1) and Q(t-1) lie in
regions of the system’s state space that correspond to different computational states C’'4 and C’;.
Specification of the system’s physical microstate at time t as P(t) implies not only that the system is in
computational state C at time t, but also that it was in computational state C’a (and not C'g) at time t-1.
In a computational description, however, specification of a system’s computational state as C at time t
would imply that the system could have been in either C'4 or C'p at t-1 but would not identify the
predecessor as Cp’.

This implicit disjoining of physical microstates and their predecessor states into physical realizations of
static computational states goes beyond a simple correspondence between computational states and
physical states, and is not prevented by S alone. A physical microstate taken (via S) to correspond to a
given computational state may,, under some dynamics, actually correspond to a computational state
together with its predecessor physical microstate. In such cases, a physical microstate can encode both
a computational state and its computational predecessor state, even when there is more than one
possible computational predecessor state.

The admissibility of such representationally unfaithful mappings® — mappings that allow excess
information about the history of a computational state to be encoded in the fine-grained structure of its
physical representation — has nontrivial consequences for implementation. For example, in the absence
of a requirement for faithful representation, there is no objective basis for distinguishing an evolution of
a physical system that maps each of M computational states onto itself (i.e., it does nothing
computationally) from an evolution that maps M computational states into N computational states with
N<M (i.e., implements a logically irreversible transformation). The dissipative cost associated with
physical implementation of logically irreversible transformations, reflected in Landauer’s Principle
(Landauer 1961, Bennett 2003), can in fact be understood as the physical cost of generating
representationally faithful output states in such implementations (see Anderson 2010).

Thus, in constructing a computational description of a physical system, one may reasonably go beyond a
simple correspondence between computational states and collections of a system’s microstates (i.e., S)
and also insist that nothing about the computational history — about the sequence of predecessor
computational states (including the initial state) — can be inferred from any physical microstate that
cannot also be inferred from the computational state to which this physical microstate belongs.
Supplementing S with such a requirement — a requirement that computational states have faithful
physical realizers — yields a much stronger commitment concerning physical-computational state
correspondence:

S’: Every computational state corresponds to a distinct physical microstate of a system or to a
statistical state defined on a disjunction of physical microstates, on a region of the system’s
state space, or on a disjunction of non-overlapping state-space regions.

? The notion of faithful representation was discussed by (Ladyman 2007) in the context of classical thermodynamic
systems that implement logical transformations (classical L-machines). This notion was generalized and
formalized, and a quantitative faithfulness measure introduced, for generally noisy, generally quantum-mechanical
L-machines in (Anderson 2010).



Critically, by "statistical state" we mean an assignment of a probability p(s,C)—at computationally
relevant times— to each microstate s associated with the computational state C, with no conditioning
on predecessor computational states or the microstates that belong to them.? This is to say that all
transitions into computational state C ultimately “land in” physical microstate s with probability p(s,C)
regardless of their source microstate, and that all transitions out of computational state C “depart from”
microstate s with probability p(s,C) regardless of their destination microstate. Stated more formally, if
computational state C evolved from predecessor computational state C', then (i) every microstate s in C
evolved from microstate s' in C' with probability p(s',C') and (ii) every microstate s' in C' evolves to
microstate s in C with probability p(s,C). Similarly, if computational state C evolves to successor
computational state C", then (i) every microstate s" in C" will evolve from every microstate s in C with
probability p(s", C"') and (ii) every microstate s in C will evolve to microstate s" in C'" with probability

p(s,C).4

If the dynamics of a physical system are such that this condition cannot be met for a given mapping onto
a computational description, at least at or during time intervals for which the computational states are
defined (i.e., at “computationally relevant” times), then commitment to S’ would require rejection of
such a mapping. If the dynamics of a physical system are such that this condition cannot be met for any
nontrivial mapping —i.e., any mapping that disjoins multiple physical microstates into computational
states — then commitment to S’ rules out any such mapping.

A few remarks are in order regarding S’. First, it may appear that §’, which is supposed to be about
computational states, is about both computational states and computational processes since it implicitly
requires that the dynamics randomize microstates “within” the state subspaces belonging to the various
computational states. On the contrary, it is this condition that selects only microphysical-to-
computational state mappings for which physical microstates encode nothing more than computational
states. It precludes association of a physical microstate with a computational state if the microstate
encodes information about the system’s dynamical history that is more finely grained than that available
from an abstract computational description (i.e. description of the system’s dynamics at the level of the
computational states alone).

*Ina quantum-physical description of these computational states, the role of p(s,C) is played by a density operator
or density matrix—specifically a reduced density operator or density matrix if the system is not isolated from its
environment.

* Here the introduction of probabilistic state descriptions recognizes that physical systems generally interact
uncontrollably with their surrounding environments, and that such system-environment interactions result in
system dynamics that are partially nondeterminisitic. This applies to most systems considered by
pancomputationalists (e.g., rocks and pails of water), with the exception of the universe as a whole (discussed in
Sec. 3(b)). Randomness in dynamical evolution necessitates statistical description of states that evolve from a
specified initial state or from initial states within a specified state subspace. Microstate-level physical descriptions
of computational states for systems that interact with environments are thus necessarily statistical, even when
transitions between the computational states are deterministic (see text). Statistical state description does no
violence to systems that are isolated from their environments and thus evolve deterministically, since
deterministic evolution is a special case of stochastic evolution where the probability is unity for single dynamical
microstate trajectory and vanishes for all other trajectories.

6



Second, note that the probabilistic nature of S’ does not in any way preclude its application to
deterministic computation. S’ generalizes S to allow for microscopically stochastic processes that
randomize (i) the physical microstates within the region of a system’s state space that corresponds to a
given computational state and/or (ii) the physical microstate-to-microstate transitions that enable
computational state transitions by bridging the state-space regions corresponding to computational
states and their deterministically specified successors. Such randomizing processes, which can occur
only in systems interacting with an environment, are required for computational states corresponding to
more than one physical microstate to “forget” enough about their detailed dynamical history to have
faithful microphysical realizers. These processes are taken for granted in standard notions of
computational state realization for conventional computing devices. In the registers used in
deterministic digital computers, for example, where the register state is encoded in the coarse-grained
spatial distribution of charge density, nothing in the microstate of the system of charged particles—the
detailed roster of all electron positions and velocities in the register system—is presumed to encode
anything more than the register state at times that the register state is considered “valid” (i.e., at
computationally relevant times).

Third, we note that, in typical computing systems, the microphysical state space corresponding to any
given computational state is vast, and it is entirely reasonable to expect that, throughout the entire life
of the system, (i) no microstate belonging to any computational state will be visited more than once,
and (ii) an exceedingly small fraction of the microstates corresponding to this computational state will
ever be visited. Thus, for macroscopic physical computing systems, it is not plausible that satisfaction of
S' could be empirically confirmed from a record of its dynamical history even if the microstate's
trajectory through the state space could be precisely tracked. This precludes the possibility, even in
principle, of building "sufficient statistics" for empirical confirmation of S'; acceptance of S' for a given
system thus relies on acceptance that physical laws are such that it will be satisfied — at least to a
sufficiently good approximation — under operating conditions of interest. Nothing that follows relies on
direct empirical confirmation of S', despite the necessity of S' for establishing a one-to-one
correspondence between computational states and (generally statistical) physical states. It is equally
important, particularly for the discussion of unlimited pancomputationalism in Sec. 3(a), that nothing in
S’ precludes any given microstate from being revisited when the computational state to which it belongs
is revisited in the course of a computation. By §’, when any given computational state is visited more
than once, any given microstate belonging to that computational state may or may not be revisited.

Fourth, note that S’ could be satisfied by systems with completely random dynamics, in which every
physical microstate evolves from every other microstate with equal probability, if we allow for
computational descriptions with probabilistic state transitions. Even though our concern is deterministic
machines, this observation is a red flag that motivates the additional restrictions on computational
descriptions discussed below.

Computational Processes

If physical microstates are associated with computational states, then transitions between
computational states naturally require time evolution of physical microstates. In a computational



description of a physical system that involves a finite number of computational states, each associated
with a region of the system’s physical state space, transitions between different computational states
are specifically associated with families of physical microstate transformations that evolve microstates
belonging to one computational state into microstates belonging to another. A minimal commitment
regarding the correspondence between physical and computational processes is this:

P: Every computational state transition corresponds to one or more time evolutions of a
system’s physical microstate along physically possible state-space trajectories, possibly
restricted to specific time intervals.

Here, by a “physically possible state-space trajectory”, we mean a state-space trajectory that is lawfully
consistent with the system’s dynamics and the external influences (applied and/or environmental) that
act on the system. The temporal restriction allows computational processes to be defined only over time
intervals that bridge the “computationally relevant” time intervals over which computational states are
defined.

Note that, by P alone, the evolution of any physical system that takes its physical microstates along a
trajectory passing through microstates or state space regions that have been assigned to computational
states would qualify as a computational process, since any such trajectory necessarily corresponds to
some sequence of computational states. Consider a leaf falling from a tree. Different positions of the
leaf may be mapped onto different computational states and, by P alone, the leaf would generate a
succession of computational state transitions simply by floating to the ground.

An obvious and reasonable objection is that P cannot capture important features of computational
processes, such as the conditional dependence of computational state transitions and outputs on
computational inputs and previous computational states. Philosophers have gone to surprising lengths
in trying to accommodate these features, or at least the observational consequences of these features,
within computational descriptions that require only P in relating the dynamics of physical systems to
computational processes (cf. Putnam 1988, Chalmers 1996; more on this below). The resulting
computational descriptions are not, however, counterfactually robust in the right way, as they fail to
capture the kind of causal structure that characterizes bona fide computational processes. In our falling-
leaf example, whether the leaf ends up at a certain location depends not only on where it was before

I”

(its previous “computational” state), but also on how it is oriented and how its shape interacts with the
random wind currents that blow it about. There is no way to determine a priori where the leaf would go
from a certain position (its “computational” state transition) solely on the basis of its position, velocity,

and orientation (its “computational” state).

Thus, in constructing a computational description of a physical system, one may reasonably require that
one go beyond a simple correspondence between computational state transitions and physical
microstate transitions (i.e., P) and also require that computational state transitions correspond to
physical state transitions that are causal and counterfactual-supporting and, if the system receives
inputs, are affected by the inputs in the right way. By “inputs” we mean external influences on the
system that conditionally alter its internal dynamics to produce computational state transitions, and we



will similarly define “outputs” as influences the system exerts on the outside world that depend
exclusively on the system’s computational state or on transitions the system undergoes between
computational states. These definitions of inputs and outputs, while very general, are sufficient for
present purposes; they will be expanded upon later in this section.

Now, supplementing P with such requirements on state transitions yields a much stronger commitment
concerning physical-computational process correspondence:

P’: Every computational state transition corresponds to one or more time evolutions of a
system’s physical microstate along physically possible state-space trajectories, possibly
restricted to specific time intervals, such that during the relevant time intervals each
physical microstate that corresponds to a given computational state evolves from (into) a
microstate that corresponds to its predecessor (successor) computational state as specified
by a set {(C,1)=>C’} of deterministic state transition rules.

If the dynamics of a physical system are such that — for a given mapping from physical microstates to
computational states — there exist no nontrivial sets {(C,1)=> C’} of state transition rules for which this
condition is satisfied, then commitment to P’ requires rejection of such a mapping. If the dynamics of a
physical system are such that this condition cannot be met for any such mapping for any nontrivial set of
state transition rules, then commitment to P’ is untenable and possible computational descriptions of
the system are limited to those sufficiently weak to require nothing more restrictive than P.

A few remarks concerning P’. First, we saw that §’ adds to S that the microstates contain no more
information about the system’s computational history —i.e., predecessor computational states and
inputs specified by {(C,1)=>C’} —than is encoded in the computational states themselves. P’ adds the
further restriction that the microstates contain at least as much information about the system’s
computational history as is encoded in the computational states. We say that computational
descriptions satisfying this condition exhibit perfect computational fidelity.” State transition rules in such
descriptions are necessarily deterministic at the level of computational states but need not be at the
level of physical microstates.

Second, note that §’ and P’ jointly ensure that the computational description and the microphysical
description contain exactly the same information about the computational process {(C,1)=>C’}. This is
equivalent to saying that the computational description captures an objective aspect of the system’s
causal structure—the physical microstates that correspond to each computational state all share causal
powers whose effects are captured by the computational description. We call this condition robustness.®

> Like the representational faithfulness, a quantitative measure for the computational fidelity has been defined for
physical implementation of classical logical transformations in generally noisy, generally quantum mechanical
systems (quantum L-machines) in (Anderson 2010); both measures are unity for systems with computational
descriptions that satisfy S’ and P’.

® Robustness comes at a dissipative physical cost, which is lower bounded for physical systems that implement
logical transformations—robust and otherwise—in (Anderson 2010) and for robust physical FSA in (Ganesh 2013).

9



Robust descriptions support all and only the counterfactuals captured by the computational description,
whereas non-robust descriptions fail to support such counterfactuals. For example, consider a system in
physical microstate s, corresponding to computational state C, which evolves from predecessor state C’
into successor state C”. S’ (faithfulness) guarantees that all computationally relevant microstates of the
system encode no more information about the system’s dynamical history than is contained in the
computational state transition rules; P’ (fidelity) guarantees that they encode all such information.
Therefore, if the system had been in any other arbitrary state s’ corresponding to computational state
C"” (possibly identical to C), a robust description guarantees that it would have evolved from the
computational state that precedes C"”” and would have evolved into the computational state that
succeeds C'”. If P’ (fidelity) is not satisfied, the right counterfactuals may not be satisfied; if the system
had been in s’, it may have evolved from (evolve into) any arbitrary computational state. If §’
(faithfulness) is not satisfied, the wrong counterfactuals may be satisfied; if the system had been in s’
where s’ also corresponds to C (as s does), it may be guaranteed to have evolved from a specific
computational state C"””” distinct from C’, even though nothing in the computational state transitions
distinguishes between s and s’ in this way. This shows that S’ and P’ jointly ensure that a computational
description captures an objective aspect of the causal structure of a physical system in a counterfactual-
supporting way.

Usability

In attempting to single out physical systems that are truly computational, one may regard criteria tying
computational states and processes to their physical counterparts as insufficient and also require that a
system be usable for computation by an agent (cf. Piccinini 2015, Hughes 2009, Houkes & Vermaas
2010, Anderson 2016a). Specifically, one may require a use plan that would enable an agent to use the
system to evaluate a function (or functions) for arguments of the agent’s choosing. Note that such a
requirement does not preclude consideration of natural systems as computational systems, since use
plans may exist for harnessing computational capacities of natural systems appropriated for
computational purposes as well as human-made computing machines.’

A use plan, among other things, must specify the actions an agent would have to take to enter
computational inputs for evaluation of a specified function, commence the computational process (if it
does not occur spontaneously), and read the resulting computational outputs. This implies specification
of physical degrees of freedom that are associated with computational inputs and outputs, as well as
user accessibility to these degrees of freedom so the required input states can be prepared and
appropriate measurements can be selected to read output states. It also implies ex ante assignment of
all computational inputs and outputs to specified physical system (or subsystem) states (or state-space
regions) and/or user-system interactions required to prepare and ascertain these states.

With these considerations in mind, we may formulate a commitment on usability:

7 Nevertheless, the existence of agents using a natural system according to use plan turns the system into
something that has functions in the sense in which biological systems and ordinary artifacts have functions. Thus, a
natural system with a use plan satisfied the mechanistic account of computation (Piccinini 2015).

10



U: A usable computing system is a physical system that (a) supports computational processes
on computational states, and (b) for which there exist use plans that would enable an agent
to use the system to evaluate a function or functions for arguments of their choosing.

Note that acceptance of S (or S’) and P (or P’) is implicit in U. Elsewhere (Anderson 2016b), we have
called systems that satisfy (a) protocomputing systems and systems that satisfy both (a) and (b)
computing artifacts.

2(b). Classes of Computational Description

We now identify and discuss three broad classes of computational description, defined and ordered
according to the strictness of their commitments. These classes will guide our evaluation of
pancomputationalist theses in the following section.

Weak: A computational description of a physical system is weak if it satisfies only S and
P,S’ and P, or S and P’.

Robust: A computational description of a physical system is robust if it satisfies S' and P’
but not U.

Strong: A computational description of a physical system is strong if it satisfies S', P', and
u.

The commitments S and P seem to be required for any computational description of a physical system,
so computational descriptions that satisfy S and P (and nothing more) are absolutely minimal. The
account of computation that requires these and only these minimal commitments is sometimes called
the simple mapping account (Godfrey-Smith 2009). Slightly stronger computational descriptions that
satisfy S’ and P or S and P’, but not S’ and P’, are also weak, simply because they fail either to require
faithful physical representations of computational states or to provide a nontrivial specification of
computational state transitions in terms of microphysical state transitions.

Robust computational descriptions are stronger, in that they include additional restrictions on the
physical representation of computational states and/or the nature of the system’s dynamics, but they
do not include any usability criteria. As noted above, the robustness condition (S’ and P’) that we require
of robust descriptions harmonizes the computational and the microphysical, ensuring that specification
of a system’s physical microstate and state-space trajectory says no more and no less about the system’s
computational state and state transitions than does specification of the computational state and state
transition to which that microstate and state-space trajectory belong.

11



Our robustness condition belongs to a family of conditions suggested by various authors to make
computational description nontrivial. Specifically, counterfactual accounts of computation require that
computational state transitions support counterfactuals (Block 1978, Maudlin 1989, Copeland 1996,
Rescorla 2014); causal accounts require that computational state transitions mirror the causal structure
of the physical system (Chrisley 1995, Chalmers 1995, 1996, 2011, Scheutz 1999, 2001); dispositional
accounts require that computational state transitions follow from the system’s dispositions (Klein 2008);
a final account requires that the physical microstates correspond to a computational state must be
similar to each other in a causally relevant way (Godfrey-Smith 2009). Our robustness condition
improves upon each of these individual proposals by being more comprehensive—capturing the spirit of
all of them—and by being more precise.?

Finally, we take strong computational descriptions to be those that require P’ — the strongest
commitment regarding computational processes — and the usability criterion U, which together with §’
seem to constitute the minimal commitments required for computing artifacts such as computing
machines. (Familiar electronic digital computing devices unambiguously admit strong computational
descriptions.) We ignore computational descriptions that require U but only P or S (or both) on the
following grounds: processes whose computational structure does not correspond to their physical
causal structure —i.e., that do not satisfy P’ — simply could not be used by agents to evaluate pre-
specified functions for arbitrary inputs. Processes that satisfy P’ but violate S’ — so they do not produce
faithful physical realizers of computational states — are usable in a strict sense but are not very useful as
they leave computational work undone; the agent must do more to complete evaluation of the desired
function. These exclusions will be substantiated in the section 3(a), where we give examples of systems
that satisfy only P’ but not $’ (such as a falling apple) or vice versa (such as a random system). These
systems clearly cannot be used to evaluate functions for arguments of one’s choosing.

3. Varieties of Pancomputationalism

Pancomputationalist theses vary with respect to how many computations—all, many, a few, or just
one—they attribute to each system. We now analyze unlimited and limited PC and the classes of
computational descriptions that are required to support them. After that we discuss ontic PC, which is a
kind of limited PC.

3(a). Unlimited PC

The strong version of pancomputationalism is unlimited PC (Putnam 1988, Searle 1992):

8 Using the representational faithfulness and computational fidelity measures together, it is possible to quantify
the degree to which the robustness condition is satisfied in concrete scenarios.

12



Unlimited PC: Every physical system performs every computation —or at least, every
sufficiently complex system implements a large number of non-equivalent
computations.

We now consider various forms of unlimited PC in detail.

The first argument for something like unlimited PC is known as Hinckfuss’s pail, after its proponent lan
Hinckfuss. According to William Lycan’s first published account of Hinckfuss’s pail, a pail of water
contains a large number of microscopic processes, which are complex enough to realize computations
equivalent to those of a human mind—and by implication, any computation—at least for a brief time
period (Lycan 1981, 39).

Other authors articulate similar arguments in greater detail. John Searle argues that whether a physical
system implements a computation depends on how it is interpreted by an observer. Therefore, for any
sufficiently complex system—such as a piece of wall with all its interacting particles—and any
computation, the system can rightfully be regarded as performing that computation at least for a brief
time period. Since Searle’s conclusion is based on the premise that physical computation depends on
the free interpretation of physical systems, it may be called interpretive unlimited PC.

Hilary Putnam gives a more rigorous argument for unlimited PC. With respect to finite automata without
inputs and outputs, he argues that every ordinary open system implements every finite automaton
(Putnam 1988, 122-3). With respect to finite automata with inputs and outputs, he argues that any
physical system whose inputs and outputs are isomorphic to those of the finite automaton implements
the finite automaton. Putnam’s conclusion about automata with inputs and outputs is far weaker than
his conclusion about automata without inputs and outputs, since, for nontrivial abstract automata,
physical systems with inputs and outputs that can be regarded as being “isomorphic” to those of the
abstract automata will be of an exceedingly special nature and thus not particularly relevant to
consideration unlimited PC (which is supposed to apply to all physical systems). We thus focus on his
arguments that are germane to FSA without inputs and outputs, except in a relatively weak sense to be
discussed below.

Unlike Searle, Putnam does not appeal explicitly to the notion of interpretation in defending unlimited
PC. But his argument relies on slicing and aggregating a system’s dynamics in arbitrary ways. Each
arbitrary slicing and aggregating is one of indefinitely many possible computational interpretations of
the system. In this sense, Putnam’s view is an example of interpretive unlimited PC. Indeed, some form
of free computational interpretation of a physical system appears to be behind every defense of
unlimited PC to be found in the literature, and it is unclear how else unlimited PC could be motivated. By
the same token, the rejection of unlimited PC hinges on devising privileged, objective computational
interpretations of a physical system.

If unlimited PC is correct, then the claim that a physical system performs a computation becomes almost
trivially true and vacuous; it fails to distinguish that system from anything else (or perhaps from anything
else with the same inputs and outputs). Because of this, unlimited PC is incongruous with computer
science and engineering, where objective differences in the computational capacities of different

13



systems are critical and great effort is expended to realize physical systems with desired computational
capacities. Where exactly, in this respect, does unlimited PC fall short?

Unlimited PC is Supported Only Under Weak Computational Descriptions

We will now argue that unlimited PC is supported only under weak computational descriptions because
it violates §’, P’, or both. We show explicitly that this is the case for five different pancomputationalist
claims.

Since we are going to discuss inputless and outputless FSA, however, we should first discuss the sense in
which they can be said to evaluate a function defined over inputs. There are two ways to think about
inputs and how FSAs can compute over them. The two ways are not completely distinct, but we'll talk
about them separately for clarity. First, a string of inputs can be fed into an FSA as it is evolving, with (at
least some) state transitions conditioned on some "incoming" input values until the desired
computation has been completed. (This is expressed in the branching of FSA state diagrams.) Second,
the same computation could be done over the same input string by a different FSA—an "inputless"
FSA—by mapping all possible input strings into initial FSA states and letting the FSA evolve (without
further input influence) until the computation has been completed. An example of the latteris a
microprocessor that performs a computation on input data initially stored in its internal registers and
then halts; no external inputs influence evolution of the processor state during the computation.

This second possibility opens the door to claims that FSA that are inputless (in the first sense) can
perform computations over inputs or strings of inputs (in the second sense), with the crucial proviso that
various initial states can be associated with various inputs. For strong computational descriptions,
however, users must be able to prepare these initial states, which, alas, amounts to an external
influence affecting at least one state transition—the "zeroeth" state transition—and becomes a special
case of the first possibility. (In the above example, a user would have to be able to load data into the
processor register states.) For weak and robust descriptions, instead, users need not be able to prepare
these initial states — the initial states are assumed to be present regardless of any user’s intervention.

Similarly, one can claim that outputless FSA perform computations by taking the final states to be
encodings of the output. For example, a pancomputationalist could claim that the output of a
computation performed by a falling leaf is instantiated in its final resting position on the ground, without
being required to specify a unique logical mapping between the leaf position and some abstract symbol
from an output set.

With this, we proceed to analyze several constructions and examples that motivate unlimited
pancomputationalism.

14



Putnam’s Construction

We begin with Putnam’s construction, which aims to show that any sufficiently complex open system,
such as a rock, implements any inputless and outputless finite-state automaton. His assumptions are
minimal: First, electromagnetic and gravitational fields are assumed to be continuous. Second, physical
systems are assumed to be in different maximal states—different physical microstates—at different
times, with no microstate ever visited more than once as a system evolves along any dynamically
supported trajectory. This second condition, which Putnam calls the Principle of Non-Cyclical Behavior, is
assumed to hold for any system that cannot be completely shielded from the fields associated with
external systems that have an arrow of time, and it effectively builds a “time stamp” into physical
microstates.

Putnam considers a finite automaton that goes through the sequence of states ABABABA, and an
arbitrary physical system S over the arbitrarily chosen time interval from 12:00 to 12:07 on an arbitrary
day. Putnam argues that S implements the sequence ABABABA. Since both the automaton and the
physical system are arbitrary, Putnam claims, the argument generalizes to any physical system and any
(inputless and outputless) automaton. Putnam's argument goes as follows:

Let the beginnings of the intervals during which S is to be in one of its stages A or B be t,t,... t,
(in the example given, n = 7, and the times in question are t; = 12:00, t, = 12:01, t3 = 12:02, t; =
12:03, t5 = 12:04, tg = 12:05, t; = 12:06). The end of the real-time interval during which we wish S
to “obey” this [computational description] we call t,.; (=tg = 12:07, in our example). For each of
the intervals t; to ti,1, i = 1, 2, ..., n, define a (honmaximal) interval state s; which is the “region” in
phase space consisting of all the maximal states ... with t; <t < t;,3. (i.e., Sisin s; just in case Sis in
one of the maximal states in this “region.”) Note that the system Sis in s; from t; to t,, in s, from
t tots, ..., in s, from t, to t,.1. (Left endpoint included in all cases but not the right — thisis a
convention to ensure the “machine” is in exactly one of the s; at a given time.) ...

Define A=s,VsS3VSsVSy;;B=5,Vs,Vsg.

Then, as is easily checked, S is in state A from t; to t,, from ts3 to t4, and from ts to ts, and from t;
to tg, and in state B at all other times between t; and ts. So S “has” the table® we specified, with
the states A,B we just defined as the “realizations” of the states A,B described by the table.
(Putnam 1988, 122-3, emphasis original)

To sum up, Putnam begins with an arbitrary physical system (e.g., an ordinary rock), slices up its
continuous dynamics into arbitrary time intervals, and then aggregates the slices so that the aggregated
slices correspond to arbitrary computational states and the system’s dynamics correspond to an
arbitrary sequence of computational states. He concludes that every physical system implements every
inputless and outputless finite automaton. Allowing that inputless finite-state automata may be defined

° “Table” is Putnam’s term for the transition rules that determine the computational state transitions of a finite-
state automaton. He calls the physical state subspace s; visited in the time interval t; to t;;; an “interval state”,
although it is not a properly defined physical state.

15



so that their initial states encode (finitely many) arbitrary digital inputs and their final states encode
(finitely many) arbitrary digital outputs, Putnam’s conclusion might in this sense be supposed to
generalize to all finite-state automata with inputs and outputs.

The first thing to notice is that Putnam’s construction seems to satisfy S, which requires that
computational states correspond to distinct physical microstates of a system or disjunctions of physical
microstates. To be sure, S requires that this hold for any trajectory of the system through state space,
whereas Putnam defines his construction only for one trajectory. But the trajectory selected by Putnam
is an arbitrary one, and every trajectory is presumed to be similarly “time stamped”, so his construction
generalizes to all possible dynamically supported trajectories.

By the same token, Putnam’s construction seems to satisfy P, which requires that computational state
transitions correspond to time evolutions of a system’s physical microstates, possibly restricted to
specific time intervals. Again, for P to actually be satisfied, Putnam’s construction needs to be
generalized to all trajectories of the system, but this alone is unproblematic. By satisfying S and P,
Putnam’s construction for inputless automata qualifies at least as a weak computational description in
the present sense. We now address whether it can also satisfy S’ and P’, as robust and strong
computational descriptions require, and whether it does indeed generalize to include inputs and outputs
that are themselves encoded in FSA states.

S’ requires that computational states correspond to distinct physical microstates of a system, or to
statistical states defined independently on disjoint regions of a system’s state space. The computational
states defined by Putnam do correspond to disjoint regions of a system’s state space, but not to
statistical states as we have defined them in Sec. 2(a)—as statistical states that encode nothing more
about the system’s dynamical history than is provided by the computational description. Putnam’s
construction fails in this respect, as we now argue.

In Putnam’s construction, it is clearly not the case that every microstate belonging to a given
computational state evolves from every microstate belonging to its predecessor computational state
with the same probability, i.e., that statistical physical states can be unconditionally assigned to
computational states. A microstate in the subspace s,, for example, belongs to computational state B,
which is always preceded by computational state A. But this microstate can only have evolved from
microstates in subspace s; of computational state A; it could not have evolved from the microstates in
subspaces s; and ss that also constitute A. This is a straightforward violation of S’.

This may seem to suggest that S’ is overly restrictive. After all, Putnam’s construction ensures that a
microstate in computational state B (e.g. in s;) evolves from a microstate in computational state A (e.g.
in s;) and that it will evolve into a microstate in computational state A (e.g. in s3), thus respecting the
state transitions of the FSA under consideration and perhaps seeming to satisfy the “spirit” of S’.
However, the example FSA of Putnam’s construction has the property that every computational state
has a unique predecessor, and is far from arbitrary in this sense. His example need only be complicated
slightly to more clearly reveal the failure to satisfy $’ and the consequences of this failure. We illustrate

16



this with two example FSA that augment Putnam’s example FSA with a third state and that include one
computational state that has more than one predecessor.

First, consider an FSA with computational states A, B and C. A and B obey the same transition rules as in
Putnam’s example, but C is an initial state that cannot be “reached” by either A or B and always
transitions to B. Over the time interval considered in Putnam’s example, this FSA thus goes through the
sequence CBABABA. State B now has two predecessors—state C and state A—which transition into B at
different times. To say that the system is in a microstate belonging to subspace s, says not only that the
system is in computational state B, but also that its predecessor was computational state C rather than
computational state A; the microstate encodes more information about the system’s dynamical history
than is available in the computational description (computational states and transition rules). Second,
consider a three-state FSA where A always transitions to B, B always transitions to C, and C always
transitions to itself (i.e. C is a halting state). Suppose that over the time interval considered in Putnam’s
example, this FSA goes through the sequence ABCCCCC. Here, state C has two predecessors—state B
and itself. Retaining Putnam’s time intervals and associated state subspace labels, this system is in
computational state C when its microstate belongs to the subspaces s3-s;. However, its predecessor
computational state is identifiable as A if the microstate is in s3 and as C if the microstate is in s4-s7. Here,
physical microstates are again encoding more about the system’s computational history than the
system’s present computational state.

Failure to satisfy §’ in both spirit and letter, established above, is enough to preclude association of
Putnam’s construction with anything stronger than a weak computational description. It is instructive,
however, to also consider potential satisfaction of P’.

P’ requires that during the relevant time intervals, each physical microstate that corresponds to a given
computational state evolve from (into) a microstate that corresponds to its predecessor (successor)
computational state as specified by a set {(C,1)>C’} of deterministic state transition rules. Since
Putnam’s construction is specifically for inputless FSA, satisfaction of P’ can only be tested for sets
{C>C’} of deterministic state transition rules. If we want to separately consider the possibility of inputs
encoded in initial states of otherwise “inputless” FSA, then we must also consider situations where
multiple possibilities for initial FSA computational states are defined.

Putnam’s construction can indeed accommodate computational state transitions for arbitrary inputless
FSA, as mentioned above, and does satisfy P’ for such FSA provided that there is only one possible initial
state. Such FSA are, however, of a very restricted and trivial class.

If we wish to broaden this class just enough to accommodate multiple possibilities for initial states, and
thus accommodate inputs in the only sense that FSA with no state branching can be regarded as
accommodating inputs, we must associate distinct subspaces of the physical system’s state space at the
initial time (t; in Putnam’s construction) with separate initial FSA computational states—one for each
FSA input or input string. (Even S would require as much.) If the inputs encoded in this manner are to
influence the FSA behavior—and thus have any meaning as FSA inputs—then the FSA must at later times
be in computational states that depend upon the initial states and depend upon them in the right way.

17



This requires that we associate distinct subspaces of the physical system’s state space at every
computationally relevant time t> t; with each FSA computational state that, given the possibilities for
initial states and the FSA table, could be accessed at that time. This alone is unproblematic and utterly
conventional. However, it also requires that all microstates belonging to a particular state subspace at
initial time t; evolve into the right state subspace at later times, necessitating the imposition of
constraints on the system’s dynamics. Without such constraints, nothing prevents two microstates
associated with different initial computational states at t; from evolving into the same microstate at
some computationally time t;> t;—even when the FSA transition rules would require that these initial
computational states end up in different computational states at t;. For the arbitrary dynamics of
Putnam’s construction, which admit temporally intersecting microstate trajectories, there are by
definition no such dynamical constraints and P’ cannot be satisfied for FSA with multiple initial states.
No modified construction that includes dynamical constraints ensuring satisfaction of P’ in such
scenarios could be considered a variant of Putnam’s, which is supposed to demonstrate that arbitrary
dynamics of arbitrary physical systems implement arbitrary FSA.

In conclusion, Putnam’s construction is supported only under weak computational descriptions of
physical systems—it fails to satisfy both S’ and P’. More specifically, while it satisfies P’ for FSA that are
inputless and outputless in the usual sense, it fails to satisfy P’ for FSA with inputs encoded in their initial
states and, more importantly, always fails to satisfy S’. Putnam’s construction comes closest to satisfying
both S’ and P’ for FSA with only one possible initial computational state and without any computational
states that have more than one predecessor computational state—an exceedingly special and trivial
subclass of FSA—but fails to satisfy S’ even here.

One final remark on Putnam’s construction is in order before we move on. The physical microstates that
lie along any given trajectory in Putnam’s construction are again distinguished from one another by their
implicit “time stamp”—a signature of interaction with fields generated by an external “clock” system
(e.g. the solar system). This time stamp renders other details of the microstate trajectories unimportant
for the purposes of associating microstates with time intervals and thus with computational states in his
construction. It is indeed reasonable to assume that every system is unavoidably bathed is such fields
and necessarily interacts with them. It is not, however, clear that such fields provide the time stamp on
the physical microstates that Putnam requires: the evolution of physical microstates is indeed
influenced by externally applied fields, but particle microstates themselves are typically defined in terms
of time-independent coordinates, velocities, etc. and not the forces acting upon them. In the above, we
have given Putnam the benefit of the doubt and assumed that the microstates are indeed “time
stamped” as he requires.

If one did not wish to accept that all microstates lying along every trajectory are distinguished by the
external clock field, then there are two alternatives. First, if one wanted all microstates along every
trajectory to be distinguished by a time stamp as in Putnam’s construction but did not want to rely on
external fields to provide it, one could just glue a stopwatch to Putnam’s rock or any other system to
build an internal clock into that system. Although this would not weaken Putnam’s conclusion very
much—it would still be radical to claim that a rock glued to a stopwatch implements every FSA—it
would not immunize his argument from the objections we have advanced here. Alternatively, if one

18



wanted to abandon the requirement for time stamping of the physical microstates altogether, they
could simply distinguish the microstates belonging to different computational states solely by standard
state variables (e.g. coordinates and velocities). This comports with the conventional practice of
mapping between computational states and physical states—with no temporal reference—assumed for
real computing systems. Here, however, the association of microstate trajectories with sequences of
computational states is no longer arbitrary. With no notion of time stamping, and under arbitrary
dynamics, there is no prohibition against any given microstate being visited more than once along a
dynamically supported trajectory (even if this is unlikely in all but the smallest physical systems). The
non-cyclic behavior required for Putnam’s argument—that any physical system implements any FSA—is
thus incompatible with this more conventional view of computational-to-physical state mapping. Thus,
neither of the above alternatives to Putnam’s external clock allows his brand of unlimited PC to be
supported by anything stronger than a weak computational description.

Searle’s Wall and Hinckfuss’s Pail

Searle’s wall and Hinckfuss’ pail contain no more resources than does Putnam’s rock, so they fail to
provide computational descriptions any stronger than those provided by Putnam’s construction.
Although these examples go beyond Putnam’s in that they are purported to implement programs that
depend on inputs—word processing and “a human program” —their random and unconstrained
dynamics can only fail to produce the right dependencies between states and inputs exactly as in
Putnam’s construction. At best, one can try to interpret trajectories through the state space
computationally as Putnam does for his rock, which, even with inputs encoded in initial computational
states, cannot be achieved in a manner that satisfies both S’ and P’ as we have demonstrated above.°

A Falling Apple

A physical system with simple deterministic dynamics, such as an apple falling from a tree, may satisfy
not only P but also P’ without time-stamping of its physical states. The dynamics are such that there are
no physical states—defined here by the position of the apple’s center-of-mass and the velocity with
which it is falling—that will be revisited as the apple falls to the ground, and these state variables alone
distinguish the states. If segments of its state-space trajectory are labeled as computational states, it
follows that, as P’ requires, computational state transitions correspond to time evolutions of a system’s
physical microstates such that during the relevant time intervals each physical microstate that
corresponds to a given computational state evolves from (into) a microstate that corresponds to its
predecessor (successor) computational state as specified by the computational description. This only
works if we are not looking for any dependence on inputs in the usual sense—the dynamics of the
system are too simple to allow for that—although the inputs could be encoded in initial states by

% While Searle explicitly acknowledges that computation requires more than unconstrained dynamical evolution,
he leaves the required constraints unspecified and employs an example—a wall—with random and essentially
unconstrained microphysical dynamics. His key point is that, because computational descriptions are
underdetermined by the microphysical dynamics, interpretation necessarily plays a role in using a physical system
for computation. We agree that interpretation is necessary—if grossly insufficient—for such use. In this work we
are addressing what else is required for sufficiency—specifically, the minimal requirements on a system's state
transformations that would enable a user to give them meaningful computational interpretations.

19



dropping the apple from various lateral positions. But systems of this kind violate S§’. Contrary to §’, all
computational state transitions cannot “arrive at” or “depart from” an arbitrary physical microstate s
belonging to computational state C with probability p(s,C) regardless of their source. Instead, the system
goes through a specific sequence of microstates in accordance with its deterministic dynamics, so the
“entry” and “departure” microstates for a computational state C can only be those unique microstates
that the system is in at the beginning and end of the time interval associated with C. By violating §’, this
would-be (Falling) Apple Computer is supported only under weak computational descriptions.

A Random System

A system with completely random transitions between microstates that are not time-stamped, in which
each state transitions into some other state is selected completely at random, satisfies not only S but
also S’ by definition—the probability that the system goes into (or comes out or) any given state is
independent of where it comes from (goes into). However, for this same reason that S’ is satisfied,
individual microstates will fail to always evolve from (into) predecessor (successor) microstates in a way
that respects any deterministic computational state transition rule and P’ is violated even for inputless
FSA. (If state transitions depend on inputs, then the same successor computational state must be
reached every time a given input is received while in a certain computational state, but then the state
transitions cannot be random in the first place.) So, under some conditions, a completely random
system can satisfy S’ but fail to admit a robust computational description.

Chalmers’s Clock-and-Dial System

David Chalmers (1996) offers a refinement of Putnam’s construction to the effect that every physical
system containing a clock and a dial implements every (inputless and outputless) finite-state automaton.
By “clock,” Chalmers means a subsystem that reliably transitions through a sequence of states ¢y, ¢, ...,
regardless of environmental conditions. By “dial,” Chalmers means a subsystem, with an arbitrary
number of states dy, d,, ...,, which reliably stays in any given state regardless of environmental
conditions. This system implements every (inputless and outputless) automaton because for any initial
state of the automaton, a dial state can be selected, and the sequence of computational states that
corresponds to that initial state can be used to label the clock’s sequence of states in the same way
Putnam labels the microstates in his construction. With enough dial positions, there will be clock-dial
state sequences available for mapping onto a sufficient number of computational state sequences that
the full transition table of any FSA can be respected.

There are two differences between Putnam’s construction and Chalmers’s dial-and-clock system. First,
the latter’s states and state transitions are intrinsic to the system—they do not rely on interactions
between the system and its environment. As a result, one need not rely on Putnam’s Principle of
Noncyclical Behavior to ensure that no physical state is visited more than once at computationally
relevant times along any dynamically supported trajectory; the state variables associated with the
effective “hand position” of the internal clock effectively provide an internal time-stamp that is built
explicitly into the state specification. Second, Chalmers’s system (unlike Putnam’s) is explicitly defined

20



for all state space trajectories even with inputs encoded in initial states. Thus, Chalmers’s system is
defined more restrictively than Putnam’s.

By adding the clock and dial, Chalmers solves three problems with Putnam’s construction. First, the time
stamping of microstates—required to ensure that no state is visited more than once along any
dynamically supported trajectory—is unambiguously provided by the clock. Second, states and state
transitions that are reflected in an FSA state table but that cannot all be visited in a given “run” of the
FSA—some of which are necessarily neglected in Putnam’s construction for such FSA—are captured
through use of the dial. Third and finally, the clock and dial together ensure that distinct inputs encoded
in initial FSA states can be assigned to distinct FSA state sequences that would result from any arbitrarily
chosen FSA transition table, with the distinguishability of the dial states precluding temporal
intersection of microstate trajectories (and thus violation of P’) for systems with inputs encoded in
multiple possible initial states.

Chalmers’s construction is still not as general as we might like, since inputs can only be encoded in the
initial state of the clock-and-dial apparatus and thus can affect the evolution of the system’s state only
by being encoded in the system’s state. But it does unambiguously enable satisfaction of P’ for arbitrary
FSA with inputs, even though the assignment of physical to computational states is otherwise just as ad
hoc as it is in Putnam’s construction. Regardless of which trajectory is followed, a given computational
state evolves from (into) a microstate that corresponds to its predecessor (successor) computational
state, as required by P’. This improves significantly on Putnam’s construction in ways that suggest it can
provide stronger support for unlimited PC.

However, while Chalmers’s construction goes beyond Putnam’s by satisfying S and P’ even for FSA with
inputs, it fails to satisfy S’ and thus—Ilike Putnam’s—is supported only under weak computational
descriptions. Computational states do correspond either to distinct physical microstates of a system or
to statistical states defined independently on disjoint regions of a system’s state space, as required by
S’. Asin Putnam’s construction, however, the physical microstates belonging to the various
computational states contain more information about the dynamical history of the system than do the
computational states themselves.™

Chalmers’s dial-and-clock construction thus provides a weak computational description at best. Other
authors have offered variants of Chalmers’s construction (Brown 2012, Scheutz 2012). They are more
complex than Chalmers’s original construction in that they employ many dials and clocks distributed
over many subcomponents of a physical system. But the constraints they impose on the physical system
are essentially the same. Therefore, they also satisfy only weak computational descriptions.

! Chalmers also offers a slightly modified construction for input-output FSAs. He claims that “every physical
system with an input memory and a dial implements every FSA with the right input/output dependencies” (1996,
322), where an input memory is a subsystem that goes into a distinct state for every possible sequence of inputs.
Chalmers does not explain how the correct outputs are supposed to come out at the end of a process that, as he
defines is, does not depend on the input (or input memory state) in any way; in fact, in a later paper he points out
that his dial-and-input-memory construction is mistaken (Chalmers 2012, 236).

21



Taking Stock

As we have seen, examples and constructions that motivate unlimited PC are supported only under
weak computational descriptions—descriptions that set a low bar for “qualification” of physical states
and/or processes as computational states and processes. We have shown explicitly why the descriptions
that support them are weak, appealing to notions of representational faithfulness and computational
fidelity. To conclude our discussion of unlimited PC, we review objections that have been raised in the
literature and show how they are captured and made precise within our analysis.

One critique of unlimited PC is that the mappings between computational and physical microstates it
relies on are illegitimate because they are constructed ex post facto (Copeland 1996). In other words,
given these mappings, the work of generating successor computational states or outputs is not done by
the physical system itself but by the person who constructs the mapping relation. We are now in a
position to see exactly what this means. Weak computational descriptions may be weak because they
violate P’, which means that the microphysical state transitions do not correspond to the computational
dynamics. But weak computational descriptions may also be weak because they violate §’, which means
they contain too much information—information about specific predecessor computational states of a
physical microstate that is not included in the computational description.

Another critique of unlimited PC is that the mappings invoked by unlimited PC violate the counterfactual
relations that must obtain between the computational states (Chalmers 1995, 1996, Copeland 1996).
This observation gives rise to the counterfactual account of computation. We can now make more
precise what is right about this objection. As we’ve seen, unlimited PC requires weak computational
descriptions, and weak computational descriptions fail to support only and all of the right
counterfactuals between computational states. Specifically, descriptions that violate P’ fail to support
the counterfactual relations encoded in the transition rules {(C,1)=>C’} and descriptions that violate S’
support counterfactuals not encoded in these rules. As a result, even descriptions that have been
claimed to support the right counterfactuals—such as Chalmers’s dial-and-clock construction (which
satisfies P’)—can in fact fail to support the only and all of the right counterfactuals by violating S’.
Descriptions that violate $’ support counterfactuals they should not support—namely, counterfactuals
from specific microstates corresponding to one and the same computational state to specific
predecessor states, counterfactuals that are not supported by the transition rules {(C,1)>C’}.

Another popular response to unlimited pancomputationalism is that its mappings fail to construct an
isomorphism between the causal structure of the physical system and the state transitions specified by
the computational description, and non-causal mappings are illegitimate (Chrisley 1995, Chalmers 1995,
1996, 2011, Scheutz 1999, 2001). This objection gives rise to the causal account of computation,
according to which acceptable mappings must respect the causal structure of a system. Indeed, weak
descriptions either fail to mirror the causal structure encoded in the computational state transitions (if it
violates P’), or it contains too much causal structure (if it violates S’). As we have argued above, in order
to capture all and only the causal structure of a system that is encoded in the computational state
transitions, a description must satisfy both §’ and P’—that is, it must be robust. Thus, robustness is a
more precise and adequate replacement of the causal account of computation.

22



Yet another response to unlimited pancomputationalism is implicitly given by Godfrey-Smith (2009).
Although Godfrey-Smith is primarily concerned with functionalism as opposed to computation per se,
his argument is relevant here. Godfrey-Smith argues that for a mapping to constitute a genuine
implementation, the physical microstates that are clustered together (to constitute a given
computational state) must be physically similar to one another—there cannot be arbitrary groupings of
arbitrarily different physical states. Godfrey-Smith suggests that his similarity restriction on legitimate
mappings may be complemented by the kind of causal and localization restrictions proposed by
Chalmers (1996). Our faithfulness and fidelity conditions quantify and make precise the similarity that is
needed to make Godfrey-Smith’s argument go through. The similarity between microstates must be
such as to satisfy P’, but the microstates must not be so similar as to violate S’. Thus, our fidelity and
faithfulness conditions make more precise and capture what is right about the counterfactual, causal,
and similarity-based accounts of computation.

In summary, we have offered a more precise account of where unlimited PC goes astray. Unlimited PC
relies on mappings between computational and physical descriptions that lack faithfulness, fidelity, or
both. We can now tackle limited PC.

3(b). Limited PC

The weak version of pancomputationalism is limited PC.
Limited PC  Every physical system objectively performs at least one computation.

Limited PC is weaker than its unlimited namesake. It holds that every physical system performs at least
one computation, which may be labeled in different ways and may encode other (similarly or less
complex) computations, or a small number of nonequivalent computations that satisfy appropriate
conditions. Exponents of limited PC (e.g., Chalmers 1996, 331, Scheutz 1999, 191) usually reject
unlimited PC and maintain that although every physical system performs some computation, which
computation is performed by which physical system is an objective matter that depends on the
properties of the system such as its causal structure at an appropriate level of abstraction.

One reason given for limited PC is that everything has causal structure. According to some, computation
is the causal structure of physical processes at some level of abstraction (Chrisley 1995, Chalmers 1995,
1996, Scheutz 1999, 2001). If every physical system has causal structure, it follows that every physical
system performs the computation constituted by its causal structure. This is causal limited PC.

Some people reject the notion of causation as non-fundamental and dispensable from fundamental
physics (e.g., Norton 2003). But qualms about causation are not a reason against limited PC. Causation
skeptics can recover an analogue of causal pancomputationalism by formulating an argument for limited
PCin terms they like—e.g., in terms of the dynamical properties of physical systems.

23



Another alleged reason for limited PC is that every physical state carries information combined with the
popular view that computation is information-processing. It follows that every physical system performs
the computations constituted by the manipulation of its information-carrying states (cf. Shagrir 2006,
Milkowski 2013). The view that computation is information-processing remains controversial."?

Unlike unlimited PC, limited PC does not trivialize the claim that a physical system is computational
completely. Different systems generally have different objective properties; thus, according to limited
pancomputationalism, different systems generally perform different computations. Computer scientists
and engineers would overwhelmingly agree with this aspect of limited PC and would go even further,
taking it for granted that relatively few physical systems—mostly those of their deliberate creation—
perform computations. By contrast, limited PC maintains that the digital computers created by
computer scientists and engineers through enormous investments of ingenuity and labor perform
computations in the same sense in which rocks, hurricanes, and planetary systems do—because they all
have causal structure or because they all process information.

Limited PC is Supported Only Under Robust Computational Descriptions (At Best)

We will now argue that limited PC is supported only under robust computational descriptions because it
requires satisfaction of §’ and P’ but cannot satisfy U. Before showing this, we need to set aside a trivial
version of limited PC.

According to trivial limited PC, every physical system objectively performs some computation no matter
how trivial that computation may be. For example, consider an ordinary toaster initially holding an
untoasted piece of bread. Take the slider to be one input (“up” encoding 0 and “down” encoding 1), the
electrical plug to be another input (“unplugged” encoding 0 and “plugged in” encoding 1), and the state
of the bread to be the output (“untoasted” for 0 and “toasted” for 1), all defined at “computationally
relevant” times. The toaster computes the AND function — or any of the other two-input, one-output
Boolean function that can be obtained by relabeling the inputs and outputs of the AND function — since
the slider has to be depressed and the toaster has to be plugged in if toasted bread is to result. But the
two-input AND is a trivial computation with only two inputs and one output. If this kind of trivial
computation is accepted, then limited PC is supported even under strong computational descriptions at
least for any inputs and outputs that can be prepared and observed by users.

This being said, we will set trivial limited PC aside. Claims that, in the above sense, a toaster implements
the AND function, a switch implements the NOT function, a coin sitting on a table implements the
identity function — that any system implements some function of similarly low complexity— would be
unimpressive, even if they held up under the harshest scrutiny. We should not be surprised that
processes are to be found in our complex universe with causal structures coinciding with those of
elementary, abstract mappings that we call computational primitives, and should not make too much of
it. We could find many examples of common objects that objectively implement trivial computational

2 The present authors’ perspectives on this question are provided in (Anderson 2016b) and (Piccinini 2015).

24



primitives (like the toaster AND gate), but would be much harder pressed to identify objects that
implement nontrivial computations (like a tree stump or garden trowel that performs image
compression). From now on, we thus consider only nontrivial versions of limited PC, according to which
every physical system performs a limited number of nontrivial computations.

We will now argue that (nontrivial) limited PC violates U; therefore, it requires computational
descriptions that are at most robust (as opposed to strong). We begin by assuming the opposite of our
conclusion: an arbitrary physical system computes nontrivial function f: | -> O so that the system may be
used to evaluate f for arguments of an agent’s choosing. We also assume that, if we can identify a
nontrivial function f: | -> O computed by the system, we can then construct a robust computational
description of the system, that is, a computational description that satisfies S’ and P’.

These assumptions are highly nontrivial. First, satisfying both S’ and P’ requires specific properties that
go beyond simply possessing causal structure or processing physical information. Thus, it takes more
than the standard reasons given by supporters of limited PC to identify objective computations in any
physical system. Second, that an arbitrary physical system performs nontrivial computations is dubious
and remains to be shown. Thus, we are far from assuming that limited PC is true. But we need to assume
that both S’ and P’ are satisfied so that the system’s putative computations are “objective” in the sense
of having robust physical implementations. We aim to show that even an arbitrary system that satisfies
these assumptions still fails to satisfy U and thus its computations are not usable.

Select an arbitrary physical system S. We wish to identify the function f computed by S. To do that, we
need to identify S’s inputs and outputs. As we pointed out above, inputs may be identified either with
influences that enter a system as it is evolving or with “initial” states. Similarly, outputs may be either
signals that exit the system as it evolves or “final” states. We will now list challenges that make it hard or
impossible to identify a strong computational description (i.e., one that satisfies U and therefore makes
the computation usable).

A first challenge is that all relevant features of a physical system (states, external influences, and signals
from the system) can be described at different levels of granularity. They can be described at different
temporal and spatial scales, more finely or more coarsely. So, no matter how we choose the inputs and
outputs, there are indefinitely many possible descriptions of the inputs and outputs and, corresponding
to those, indefinitely many functions putatively computed by the system.

The cleanest solution to this problem would be to identify the fundamental physical level (if there is
one) and define inputs and outputs at that level. This is the solution pursued by ontic PC (more on this in
Section 3(c)). But this solution won’t work for present purposes for two reasons. First, we don’t know
what the fundamental physical level is. Second, given our current technology we have no direct way to
manipulate the fundamental physical level to select arbitrary values on which to evaluate f and observe
the results of the putative computation. Therefore, we need to operate at a nonfundamental physical
level. But there are many of those, and it’s not clear which one we should choose. Let’s pick an arbitrary
level L. From now on, the function putatively computed by our system S is relative to level L. (At levels
different from L, the system may compute different functions.)

25



A second challenge is that most systems are out of our reach. They are too big, too small, too distant in
space, too far in the past or future, or insufficiently understood for us to observe and manipulate their
inputs and outputs, which we must do in order to evaluate the function they putatively compute on
arguments of our choosing. Therefore, we need to restrict our attention to systems that are within our
reach.

A third challenge is that there are indefinitely many computational formalisms which we could use to
define f. Any given formalism (finite-state automata, cellular automata, register machines, etc.) gives
rise to different computational descriptions of f. For present purposes, we will stick with finite-state
automata as our canonical computational description.

A fourth challenge is that in an arbitrary physical system, there is no well-defined distinction between
computationally relevant degrees of freedom—those constituting the inputs, internal states, and
outputs of the computation—and computationally irrelevant degrees of freedom, including those
pertaining to the inflow of energy into the system, outflow of heat from the system, and any other
arbitrary influences on the system and its dynamics. For instance, consider a falling leaf again. Are the
air currents that push it around inputs to a computational system or random disturbances to its
computational dynamics? Depending on how we answer this question, we end up with radically
different computational descriptions. And regardless of how we answer this question, air currents are
probably too disorderly to be captured in a perspicuous computational description, such that it is clear
which argument of which function is being computed by the system and which step of the computation
is being performed at any given time. A clean way around this challenge is to take the whole universe to
be the computing system (more on this below). When only a subset of the universe is considered,
however, the lack of a clean boundary between an arbitrary system’s putative computational structure
and other factors is a serious challenge.

This leads to our fifth and perhaps greatest challenge: (nontrivial) dynamical descriptions of arbitrary
physical systems are not exact but approximate in a number of ways. To begin with, the microstates of a
system can be measured and specified only with finite precision, so that there is a gap between what a
microphysical description says and what the system does. Secondly, some aspect of the system’s
dynamics may be unknown, which enlarges the gap. Thirdly, including every known factor in the
microphysical description of an arbitrary system (from which the computational description is to be
constructed) typically makes the model mathematically or computationally intractable. Because of this,
typical microphysical descriptions incorporate simplifications and idealizations, which may further
enlarge the gap between what the microphysical description says and what the system does. Fourthly,
accuracy in representing the dynamics of a system requires computational resources. The more accuracy
is desired, the more resources are needed. Since computational resources are always finite, this
introduces a further gap between what a microphysical description says and what the system does.
Fifth, typical deterministic dynamics are nonlinear, and typical nonlinear dynamics are so sensitive that
the system’s actual dynamical evolution diverges exponentially from any dynamical description based
on a finite specification of the system.

26



The approximate nature of ordinary dynamical descriptions, in combination with the lack of any sharp
boundary between putative computational structure and external influences on an arbitrary (nontrivial)
system, have a dire consequence: even if we succeeded in constructing a robust computational
description of an arbitrary physical system as computing nontrivial function f, it is unlikely that we would
be in a position to use the system to evaluate f for arguments of our choosing with any reliability. This is
because, even if we could observe or prepare the system as being in a desired initial state |, we have no
guarantee that the gap between our description and the actual behavior of the system, plus any other
disturbances, would lead the system to yield the desired value O.

In conclusion, nontrivial limited PC is less compelling than it may have seemed. Even if we set aside the
difficulties with identifying nontrivial robust computational descriptions of an arbitrary physical system
such that the system computes function f, in general it is extremely unlikely that we could ever use the
system to evaluate f for desired arguments. It takes a lot of careful regimentation for a system to let a
user evaluate a function reliably. It takes regimentation in how the microstates are clustered, in how
they transition over time, as well as in shielding the relevant state transitions from external
disturbances. Most systems lack this regimentation. It is unlikely that systems that are not evolved or
designed and built for computation will possess the exquisitely fine-tuned regimented structure that
would allow them to perform nontrivial computations reliably. This is not to argue against the possibility

I”

that some artificial or natural systems—systems not commonly regarded as “computational”—may
indeed possess this regimentation, which workers in the fields of unconventional and natural

computation seek to discover and even utilize. But the nontrivial limited pancomputationalist’s burden
is to show that any sufficiently complex physical system performs one or more nontrivial computations.

This burden has not been met.

Universe as a Computing System within Limited PC

Further questions arise about the strength of supporting computational descriptions for limited PC when
we consider the notion that the whole universe computes. This notion is natural for ontic
pancomputationalists, as discussed in Sec. 3(c), but the notion can and should be considered
independently of ontic PC since all forms of pancomputationalism are supposed to apply to all physical
systems. We could do this by taking those microstates of the universe that have been visited so far to be
computational states, the transitions between these states to have been governed by the evolution of
the universe, and the “function” computed by the universe to be its own evolution. Such a claim would
belong to limited PC, but not unlimited PC (since only one computation is claimed for the system) and
not ontic PC (since a mapping between physical and computational states is involved, rather than the
claim that they are one and the same or are on an equal footing). We now consider computational
states, computational processes, and usability for the universe-as-a-computing-system, and assess the
implications for limited PC. For consistency, this discussion assumes a classical, causal, globally closed,
deterministically evolving universe. (We will discuss the quantum mechanical universe in the next
section.)

27



Selection of the past microstates of the universe as the computational states of the "universe-as-a-
computing system" is the only objective choice for these states, as a computation constructed from the
sequence of these states that has been carved out in the universe's past history would encode any
computation constructed from any disjunction or coarse graining of these states. Thus, no statistics are
involved in mapping statistical physical states to computational states and the stronger condition S' on
computational states is trivially supported.

The stronger condition P' on computational processes is also supported, but also trivially. Assuming that
there is one universe with a unique history, no universe microstate - and thus no computational state -
has been visited more than once. Construction of any computation from this sequence of states can thus
have no branching, and is analogous to a non-cyclic, inputless FSA. P' is easily satisfied for this case.

One could argue that, if the universe is governed by causal physical laws, we need not be restricted to a
computational description constructed solely from the universe's history. We could use these physical
laws to build more complex computational descriptions of the universe-as-a-computing-system that
accommodate the possibility of inputs and computational branching, with causal properties and
counterfactual robustness underwritten by regularities described by these laws. It is not clear, however,
what could possibly count as an "input" to the universe as a whole, at least with the common
conception of an input as an external influence. Any input that is somehow "internal" to the system is
necessarily reflected in the complete specification of the system’s state, and everything in the universe
is by definition internal to the universe. Paradoxically, if the computation implemented throughout the
universe's history is indeed without inputs, it is in this sense a trivial (if long) computation.

The usability criterion also takes on a different light when the universe as a whole is considered as a
computing system. There are two reasons for this. First, it is not clear that an "agent" can be defined
that is not internal to the universe. While we are living proof that internal agents do exist, our relevance
to the universe-as-a-computing-system is limited since the computing systems we use are subsystems of
the universe (such as laptop computers) and not the universe as a whole. Second, even if an external
agent can be defined, it is not clear what it would mean to say that they use the universe-as-a-
computing-system to evaluate the universe-function for an argument of their choice. If such a function
could, in principle, be identified, and if we allow that an argument was encoded in the initial state of the
universe (since there are no external influences), then the function is (or is being) evaluated for one and
only one argument. There is no chance of evaluating it for another argument without reenacting the
entire history of the universe with different initial conditions.

In conclusion, consideration of the universe as a computing system upholds the above conclusion - that
the robustness condition (S' and P'), but not the usability condition U, are supported by limited PC - but
only in the sense that S' and P' are trivially satisfied and U goes unsatisfied because it is of dubious
applicability in this context.

28



3(c). Ontic PC

Some authors—mostly physicists—argue that the physical universe is fundamentally computational. It’s
not just that the universe itself is a computing system and everything in it is a computing system too,
which is limited PC. It’s that there is a fundamental level of physical reality at which the one and only
fundamental computation performed by each physical system can be identified. In addition, that
fundamental computation is all there is to the nature of a physical system.

An alternative formulation is that information is what makes up the universe. Proponents of the first
formulation typically think of computational states as bearers of information, and proponents of the
second formulation typically think of information dynamics as computations. Since typical proponents of
ontic PC think of computation as information processing and vice versa, then, the two formulations are
roughly interchangeable for present purposes. We will continue to use the computational formulation of
ontic PC—as opposed to the informational formulation—and define:

Ontic PC Every physical system objectively performs one computation, which exhausts the
nature of the physical system.

Ontic PC includes both an empirical claim and a metaphysical one. The empirical claim is that
fundamental physical magnitudes and their state transitions are exactly and exhaustively describable by
an appropriate computational formalism—without the approximations that are ubiquitous in standard
computational descriptions of physical systems. This empirical claim takes different shapes depending
on which computational formalism is assumed to describe the universe exactly. We will briefly discuss
the two most widely held forms of ontic PC are “digital ontic PC” based on cellular automata— a
classical computational formalism—and “quantum ontic PC” rooted in quantum computing. The
metaphysical claim of ontic PC is that computation is what makes up the physical universe. This point is
sometimes made by saying that, at the most fundamental physical level, there are brute differences
between states—nothing more need or can be said about the nature of the states. This claim requires
elucidation. Before we get to that, we will discuss the empirical component of ontic PC.

Ontic PC sidesteps the requirements of computational description. Specifically, by reducing the physical
to the computational, ontic PC resists rigorous classification via the criteria we use in this work to gauge
the strength of the underlying computational description required for its support. These criteria are
germane to presumed distinctions between physical description and computational description that are
not recognized in ontic PC. For this reason, rather different considerations must be brought to bear on
detailed evaluation of ontic PC, and we provide such an evaluation in (Piccinini and Anderson 2017).
That said, we note that ontic PC—in both the classical-digital and quantum —is most closely associated
with limited PC: the computational descriptions posited by ontic PC are stronger than weak
computational descriptions because they objectively assign a unique computational trajectory to every
possible dynamical evolution of the universe, but, by erasing the distinction between a computing
system and an agent that would employ it to evaluate a function, they cannot satisfy the usability
criterion required of strong descriptions.

29



4. Conclusion

In this work, we have characterized three different versions of pancomputationalism (PC)—unlimited
PC, limited PC, and ontic PC—in terms of the nature and strength of the computational descriptions
required to support them. To this end, we distinguished three classes of computational description that
reflect distinct views of the relationships between physical microstates and computational states, the
relationship between physical dynamics and computational state transitions, and the usability of
physical systems for computation by agents.

Weak computational descriptions admit mappings between computational states and physical
microstates that lack robustness, i.e. mappings that allow physical microstates to embody either more
or less information about the computational history (i.e. previous computational states) of a system
than is embodied in the computational states themselves.

Robust computational descriptions require that the amount of information about a system’s dynamical
history that is encoded in the physical microstates is identical to that encoded in the computational
states, but not that the system is usable by an external agent to evaluate a function for arguments of the
agent’s choice.

Finally, strong computational descriptions are robust and are usable by an agent to evaluate a function
for arguments of the agent’s choice. Needless to say, strong computational descriptions apply to the
digital computing devices that we buy, sell, and use every day. Strong computational descriptions are
the gold standard.

Unlimited PC claims that every physical system performs a large number of nonequivalent
computations. This claim can be supported only under weak computational descriptions.

Limited PC claims that every physical system performs a limited number of computations that satisfy
some condition depending on the objective properties of the system. While limited PC may be
supported under robust or even strong computational descriptions for systems that perform trivial
computations, limited PC has not been established for any nontrivial computations. Furthermore, even if
limited PC were established for nontrivial computations, it would be supported at best by robust (as
opposed to strong) computational descriptions.

Ontic PC is a special version of limited PC. It claims that every physical system is at bottom just a
computational system. This means that the nature of every physical system is exhausted by the
computation it performs at its most fundamental physical level. Ontic PC thus cannot be classified
according to scheme employed in this work—i.e. by the strength of the computational description that it
supports—so we have provided a separate analysis elsewhere (Piccinini and Anderson 2017). The
underlying requirement for its acceptance is essentially acceptance that two systems that are formally
or observationally equivalent in some (though not all) respects are the same. Even more is required for
acceptance of universal ontic PC, which views the universe as a computer simulating its own behavior.

30



This erases the distinction between a simulator and its simulated target system, requiring that we
accept a system as a simulation of itself.

Strong computational descriptions, which are the gold standard, do not support any version of PC that
we considered here or that we are otherwise aware.

Perhaps the best way to illustrate our conclusions is to consider what it might mean to associate time
evolution of the state of a physical system with performance of a specified computation f. Possible
meanings include “that particular evolution of the system was consistent with having computed f,” “the
system’s evolution will always objectively compute f,” or “the system’s evolution can always be
harnessed by an agent to perform f,” where computation of f refers to a full mapping from a set of
physical input (or initial) states to physical output (or final) states that has a structure similar to the
structure of the function f.

The weak computational description we have associated with unlimited PC would sanction only
something like this: “For any given sequence of physical microstates visited in the arbitrary time
evolution of any sufficiently complex system (e.g. a rock), there exists an assignment of physical
microstates to computational states such that time evolution of the microstates is consistent with the
system having performed the computation f.” This is not very impressive, in part because of the freedom
to specify computational states ex post facto and without constraint, and is certainly less sensational
than unlimited pancomputationalist headlines announcing that rocks and walls have the capacity to
compute everything or that pails of water are occasionally computationally equivalent to a conscious
mind.

The robust computational description we have associated with limited PC is stronger than this, in that it
requires regularities in the behavior of physical systems that allow us to state that — for computational
states specified ex ante — the system “always objectively performs” computation of some function f.
For trivial limited PC, however, fis too simple to impress; the recognition that a toaster reliably
implements the AND function is unsurprising and will not prompt Intel to begin building computers from
kitchen appliances. Even the trivial limited PC that would regard the “universe as a computing system” is
unimpressive, since it corresponds to a single trial of a system that is in the process of computing an
unknown f for one and only one input (initial condition) and can never be used again. The dearth of even
toy examples illustrating nontrivial limited PC — something like a doorstop that objectively performs
matrix multiplication or a spatula with the capacity for natural language processing — suggests that
nontrivial limited PC is implausible. It is simply exceedingly unlikely that systems that are neither
designed nor evolved for computation (like iPads and possibly brains) will possess regimented structure
that would give them the capacity to perform nontrivial computations. The existence of particular
physical systems that may unexpectedly possess nontrivial computational capacities when harnessed in
specific ways, such as those studied in the fields of natural and unconventional computing, does not
help the pancomputationalist, who asserts that all physical systems possess computational capacities
without the need for us to constrain or harness them in any way.

31



Finally, although ontic PC is of a special nature that frees it from some constraints used to analyze
unlimited and non-ontic versions of limited PC —and may be rich in insights when throttled back to a
more metaphorical form of PC — its dramatic pronouncements lose much of their force when the
required hypotheses or redefinitions of familiar terms are explicitly acknowledged. A claim that “the
universe is a computing system” is not particularly impressive if it simply acknowledges that the freely
evolving physical universe qualifies as a computing system under a definition of “computing system”
that admits the freely evolving physical universe.

References

Anderson, N. G. (2010). On the physical implementation of logical transformations: Generalized L-
machines. Theoretical Computer Science, 411(48), 4179-4199.

Anderson, N. G. (2016a). Information Processing Artifacts. Presented at the Twenty-Fifth Biennial
Meeting of the Philosophy of Science Association (Poster Forum), Atlanta, November 3-5, 2016.
Manuscript in preparation.

Anderson, N. G. (2016b). Information as a physical quantity. Under review. Preprint available: DOI
10.5072/FK2SB42W08.

Bennett, C. H. (2003). Notes on Landauer's principle, reversible computation, and Maxwell's Demon.
Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics,
34(3), 501-510.

Block, N. (1978). “Troubles with Functionalism,” in Perception and Cognition: Issues in the Foundations
of Psychology, C. W. Savage (ed.), Minneapolis, University of Minnesota Press, pp. 261-325.

Brown, C. (2012). Combinatorial-state automata and models of computation. Journal of Cognitive
Science, 13(1), 51.

Chrisley, R. L. (1995). Why everything doesn't realize every computation. Minds and Machines, 4(4), 403-
420.

Chalmers, D. J. (1995). “On Implementing a Computation,” Minds and Machines, 4: 391-402.
Chalmers, D. J. (1996). Does a rock implement every finite-state automaton?. Synthese, 108(3), 309-333.

Chalmers, D. J. (2011). A Computational Foundation for the Study of Cognition. Journal of Cognitive
Science, 12(4), 323-357.

Chalmers, D. (2012). The varieties of computation: A reply. The Journal of Cognitive Science, 13, 211-248.

Copeland, B. J. (1996). What is computation? Synthese, 108(3), 335-359.

32



Ganesh, N., & Anderson, N. G. (2013). Irreversibility and dissipation in finite-state automata. Physics
Letters A, 377(45), 3266-3271.

Godfrey-Smith, P. (2009). Triviality arguments against functionalism. Philosophical Studies, 145(2), 273-
295.

Houkes, W., & Vermaas, P. E. (2010). Technical functions: On the use and design of artefacts (Vol. 1).
Springer Science & Business Media.

Hughes, J. (2009). An artifact is to use: an introduction to instrumental functions. Synthese, 168(1), 179-
199.

Klein, C. (2008). Dispositional implementation solves the superfluous structure problem. Synthese,
165(1), 141-153.

Ladyman, J., Presnell, S., Short, A. J., & Groisman, B. (2007). The connection between logical and
thermodynamic irreversibility. Studies In History and Philosophy of Science Part B: Studies In History and
Philosophy of Modern Physics, 38(1), 58-79.

Ladyman, J. (2009). What does it mean to say that a physical system implements a computation?.
Theoretical Computer Science, 410(4), 376-383.

Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM journal of
research and development, 5(3), 183-191.

Lycan, W. G. (1981). Form, function, and feel. The Journal of Philosophy, 24-50.
Maudlin, T. (1989). Computation and consciousness. The Journal of Philosophy, 407-432.
Mitkowski, M. (2013). Explaining the computational mind. MIT Press.

Mills, J. W. (2008). The nature of the extended analog computer. Physica D: Nonlinear Phenomena,
237(9), 1235-1256.

Norton, J. D. (2003). Causation as folk science. Philosophers’ Imprint, 3(4).

Piccinini, G. (2010). “The Mind as Neural Software? Understanding Functionalism, Computationalism,
and Computational Functionalism.” Philosophy and Phenomenological Research, 81(2): 269-311.

Piccinini, G. (2015). Physical Computation: A Mechanistic Account. Oxford: Oxford University Press.

Piccinini, G. and N. G. Anderson (2017), “Ontic Pancomputationalism ,” in Computational Perspectives on
Physics, Physical Perspectives on Computation, S. Fletcher and M. Cuffaro (eds.), Cambridge University
Press, (forthcoming).

33



Pour-El, M. B. (1974). Abstract computability and its relation to the general purpose analog computer
(some connections between logic, differential equations and analog computers). Transactions of the
American Mathematical Society, 199, 1-28.

Putnam, H. (1988). Representation and reality (Vol. 454). Cambridge, MA: MIT press.
Rescorla, M. (2014). A theory of computational implementation. Synthese, 191(6), 1277-1307.

Rubel, L. A. (1989). Digital simulation of analog computation and Church's thesis. The Journal of Symbolic
Logic, 54(03), 1011-1017.

Scheutz, M. (1999). When physical systems realize functions... Minds and Machines, 9(2), 161-196.
Scheutz, M. (2001). Causal versus computational complexity. Minds and Machines, 11(4), 534-566.

Scheutz, M. (2012). What it is not to implement a computation: A critical analysis of Chalmers’ notion of
implemention. Journal of Cognitive Science, 13(1), 75-106.

Searle, J. R. (1992). The rediscovery of the mind. MIT press.

Shagrir, O. (2006). Why we view the brain as a computer. Synthese, 153(3), 393-416.

34



