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Summary. From known examples of theories T obtained by Hrushovski-construc-
tions and of infinite Morley rank, properties are extracted, that allow the collapse
to a finite rank substructure. The results are used to give a more model-theoretic
proof of the existence of the new uncountably categorical groups in [Bau2].

1 Introduction

In 1988 Ehud Hrushovski [Hr1] refuted Zil’bers Conjecture. He constructed
strongly minimal theories with non-locally-modular geometries and without any
infinite group interpretable in these theories. In [Bau2] uncountably categorical
groups are constructed that have non-locally-modular geometries and do not al-
low the interpretation of infinite fields. The essential Amalgamation Lemma in
that paper has a very long “bilinear-combinatorial” proof. The aim of this pa-
per is to find general properties of an ω-stable theory T such that the additive
collapse can be done. In [JG] Bruno Poizat gives a proof of Hrushovski’s result
above. First he constructs a theory of Morley rank ω already with that kind of
geometry he finally wants. In a second step he does the collapse to obtain the
desired theory.

By the fusion paper [Hr2] of Ehud Hrushovski new ideas come into the subject.
He constructs a strongly minimal fusion of two strongly minimal sets with DMP
over a common domain. The new theory has the old theories as reducts, that are
“very independent” from each other. Later these ideas are applied to obtain an
algebraically closed field with a “black” predicate such that the whole structure
has Morley rank 2 ([Po1], [BH]).

Ehud Hrushovski asks in [Hr2] whether the fusion is also possible over a common
vectorspace over a finite field. The next question goes in the same direction. In
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his book [Po0] Bruno Poizat asks whether there exists an algebraically closed
field with a “red” predicate for an additive infinite proper subgroup, such that
this structure has still finite Morley-rank.

Amador Martin-Pizarro, Martin Ziegler and the author have solved these prob-
lems positively in [BMPZ4] and [BMPZ3]. The ideas of these two papers are
the basis of the more general additive collaps developed in this paper. It should
be mentioned that they are also essential for the construction of a bad field of
characteristic 0 in [BHMPW].

In this paper we consider structures M that are expansions of an infinite vec-
torspace over a finite field Fq. We assume that the language L is at most count-
able and contains a predicate R(x). We consider seven properties P(I) – P(VII)
of the complete theories T of these structures M . If T has the properties P(I) –
P(IV), then all models M of T are generated their subspace R(M). We have a
notion of strongness for subspaces A ≤ R(M) and a pregeometry a ∈ cld(A) on
R(M). Both notions are part of tpM(A) and tpM(aA), respectively. The geomet-
rical closure of a strong subset A ≤ R(M) is given by algebraic and prealgebraic
extensions. The second kind of extension is given by generic solutions of strongly
minimal formulas that behave similar as the code formulas from [BMPZ3]. We
move to code formulas. P(I) – P(IV) imply ω-stability and allow us to introduce
a notion of difference sequences as in [BMPZ3].

Let C be a monster model of T . We define a class Kµ of strong subspaces U of
R(C) where a function µ gives a bound µ(α) to the length of difference sequences
for the code formula ϕα(x̄, ȳ). If we have in addition the properties P(V) and
P(VI) we can amalgamate finite subspaces in Kµ, such that we get a countable
strong subspace Rµ(C) of R(C) in Kµ. It is rich (B. Poizat’s notion of richness)
and therefore algebraically closed in R(C) in the sense of T . Let P µ(C) be the
substructure generated by Rµ(C). Then P µ(C) ∩ R(C) = Rµ(C). P µ can be
defined by one formula over Rµ. This is guaranteed by another property P(VII)
of T . Let Lµ be the extension of L by the predicate P µ. We axiomatize the
Lµ-theory of Cµ = (C, P µ(C)) and get an ω-stable theory T µ where Rµ = P µ ∩R
is strongly minimal and P µ is of finite Morley-rank. We show that the induced
Lµ-structure on P µ is the pure L-structure. Let Γ(T µ) be the L-theory of this
L-structure P µ(Cµ). It is the desired collapse to finite Morley rank. We can
present the new uncountably categorical groups, the red fields and the fusion
over a vectorspace in this way. Maybe we can only use less µ-functions but still
2ℵ0 many as in the original papers. This frame is designed for further concrete
applications.
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2 Group sets

For this chapter T is a countable ω-stable theory where the models of T are
expansions of vectorspaces over Fq. We use a version of a result of M. Ziegler in
[Z]. We work in T eq.

Lemma 2.1 Let M be a model of T as above and a, b, c be elements of M with

a+ b+ c = 0 and pairwise independence over some set B. Then we have:

1) The strong types of the elements a, b, c over B have the same stabilizer U
and U is connected.

2) a, b, and c are generic elements of acl(B)-definable cosets of U .

3) It follows that a, b, and c have the same Morley rank over B namely MR(U).
U is definable over acl(B).

Let C be the monster model of T . degM is used to denote Morley degree.

Definition Let X be a definable subset of Cn with degM(X) = 1.
X is called a group set (resp. torsor set) if its generic type is the generic type of
a definable subgroup G (resp. coset of a definable subgroup) of (Cn,+). We say
X is groupless, if X is not a torsor set.

Definition Two definable sets X and Y of Morley degree 1 are equivalent, if
MR(X) = MR(Y ) and MR(X∆Y ) < MR(X). We write X ∼ Y .

Lemma 2.2 Let X, Y be definable sets of Morley degree 1.

1) If X ∼ Y , X, Y ⊆ Cn, and X is a group set (resp. torsor set), then Y is a

group set (resp. torsor set).

2) If H is in GLn(Fp) and X ⊆ Cn is a torsor set, then H(X)+m̄ = {Hx̄+m̄ :
x̄ ∈ X} is a torsor set.

Lemma 2.3 Let ϕ(x̄, ȳ) be a formula such that C � ∃x̄ ϕ(x̄, b̄) implies that

ϕ(C, b̄) is a strongly minimal subset of Cn. Then {b̄ : ϕ(C, b̄) is a group set}
is definable. Similarly for torsor sets.

Proof . We consider the group case. The following statements are equivalent:
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i) ϕ(C, b̄) is a group set.

ii) There exist two generic b̄-independent realizations ā1 and ā2 of ϕ(x̄, b̄) such
that C � ϕ(ā1 + ā2, b̄).

iii) C � ∃∞ x̄1 ∈ Cn ∃∞ x̄2 ∈ Cn(ϕ(x̄1, b̄) ∧ ϕ(x̄2, b̄) ∧ ϕ(x̄1 + x̄2, b̄)).

The equivalence of i) and ii) follows from Lemma 2.1 as shown in [BMPZ3]. iii)
is first order since ϕ(x̄, b̄) is strongly minimal. It is clearly equivalent with ii) in
the strongly minimal context. �

Note that X is a torsor set if for some (every) x ∈ X the set X − x is a group
set.

Definition Given a group set X, its invariant group is the set Inv(X) = {H ∈
GLn(Fp) : H(X) ∼ X}.

For strongly minimal ϕ(x̄, b̄) "H ∈ Inv(ϕ(x̄, b̄))" is an elementary property of b̄.
As in [BMPZ3] it follows

Lemma 2.4 Let X be a B-definable set of Morley degree 1, and ē0 and ē1 be two

generic B-independent elements in X. If ē0 −Hē1 |⌣
B

ē0 for some H in GLn(Fp),

then X is a torsor set. Moreover, if X is a group set, then H is in Inv(X).

3 Starting theories

We consider countable theories T . Let M , N be models of T and C be the
monster model of T . 〈X〉 is used to denote the substructure generated by X.
〈X〉ℓ is the linear hull of X.

P(I) The models M of T are Fq-vectorspaces with additional structure, where
Fq is a finite field.
Furthermore we have a unary predicate R(x) for a subspace of M . For all
M � T we have 〈R(M)〉 = M .

Mainly we consider finite subspaces A, B, C of R(M). U , V , W are used for
arbitrary subspaces of R(M).
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P(II) We have a pregeometry "a ∈ cld(A)" on R(M) and a notion "A is a strong
subspace in R(M)" (short A ≤ M). Both notions are invariant under
automorphisms of C. 〈0〉ℓ ≤M . For every B there exists a finite algebraic
extension that is strong in M . Algebraic extensions of strong subspaces are
strong. IfM , N are models of T A ⊆ R(M), B ⊆ R(N), tpM(A) = tpN(B)
and a and b are geometrically independent of A and B respectively, then
tpM(a, A) = tpN(b, B). If furthermore A ≤ M , then 〈Aa〉ℓ ≤ M . The
geometrical dimension d(C) of R(C) is infinite.

We use d to denote the dimension function corresponding to cld. Note that P(II)
implies the following:

If A ⊆ R(M) and B ⊆ R(N) are the linear hulls of geometrically independent
subsets, where M , N are models of T , then l.dim(A) = l.dim(B) implies tp(A) =
tp(B).

We extend the notions in P(II) to infinite subspaces U of R(M) by the following
definitions:

Definition a ∈ cld(U), if a ∈ cld(A) for some finite subspace A of U .

Definition U ≤M , if for every finite B ⊆ U there is a finite A ⊆ U with B ⊆ A
and A ≤M .

P(III) There is a set X of formulas ϕ(x̄, ȳ) in Leq such that ϕ(x̄, b̄) is either
empty or strongly minimal. Furthermore ϕ(x̄, b̄) ∼ ϕ(x̄, b̄′) implies b̄ = b̄′.
Length(x̄) = nϕ ≥ 2, ϕ(x̄, ȳ) implies xi ∈ R and the linear independence
of x1, . . . , xnϕ

. If b̄ is in dcleq(U) and M � ϕ(ā, b̄), then ā ∈ cld(U). If
furthermore U ≤ M , then either ā ⊆ U or ā is a generic solution over U .
In the generic case 〈Uā〉ℓ ≤ M . X is closed under affine transformations.

In the construction of red fields [BMPZ3] the formulas ϕ(x̄, ȳ) in X are of the
form ψ(x̄, ȳ)∧

∧

1≤i≤n

R(xi) where ψ(x̄, ȳ) is a formula in the field language. There

we use that ACFq is a reduct of T and has the elimination of quantifiers and
imaginaries. In the fusion over a vectorspace [BMPZ4] ϕ(x̄, ȳ) in X is of the form
ϕ1(x̄, ȳ)∧ϕ2(x̄, ȳ) where ϕi(x̄, ȳ) is a formula of the theory Ti. We assume elimi-
nation of quantifiers for the theories Ti. For the construction of new uncountably
categorical groups in this paper we use formulas ϕ(x̄, ȳ) in L with the property
that ϕ(x̄, b̄) ∼ ϕ(x̄, b̄′) implies 〈b̄〉ℓ = 〈b̄′〉ℓ. Hence we have for these formulas
almost a canonical parameter.
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We say that a vector space isomorphism f of A onto B is an isomorphism if we
can extent it to an L-isomorphism of 〈A〉 onto 〈B〉.

P(IV) If A ≤ M , B ≤ M , and A ∼= B, then tp(A) = tp(B). If B ≤ M , A ≤ M
and B ⊆ A ⊆ cld(B), then there is a chain B = A0 ⊆ A1 ⊆ . . . ⊆ An = A
where Ai ≤ M and Ai+1 ⊆ acl(Ai) or Ai+1 is obtained from Ai adding a
generic solution of some ϕ(x̄, b̄) in X where b̄ ∈ dcleq(Ai).

Note that by P(III) and the first part of P(IV) Ai+1 over Ai can be described
by a quantifier-free L-formula. Let |⌣ be the non-forking independence in T .

Besides genericity of solutions ā of ϕα(x̄, b̄) we introduce |⌣
w-genericity for these

solutions. If b̄ ∈ dcleq(B), then in the known examples |⌣
w-genericity of ā over

B means that ā is linearly independent over B and δ(ā/B) = 0.

P(V) Let ϕ(x̄, ȳ) ∈ X , V a subspace of R(M), and b̄ ∈ dcleq(V ). Then the |⌣-

generic type of ϕ(x̄, b̄) over V is |⌣
w-generic over V and the |⌣

w-generics

of ϕ(x̄, b̄) over V have the same isomorphism type over V . They are |⌣
w-

generic over every U ⊆ V with b̄ ∈ dcleq(U). Furthermore if ϕ(x̄, ȳ) ∈
X , U ≤ M , b̄ ∈ dcleq(B), and ē0, ē1, . . . are solutions of ϕ(x̄, b̄) linearly
independent over B with ēi 6⊆ 〈U,B, ē0, . . . , ēi−1〉

ℓ, then there are at most
l.dim(B/U) many i such that ei is not |⌣

w-generic over 〈U,B, ē0, . . . , ēi−1〉
ℓ.

In P(V) it is possible to replace l.dim(B/U) by a fixed function f(l.dim(B/U))
if this is necessary. P(V) implies that a |⌣

w-generic solution of ϕ(x̄, b̄) over V is
linearly independent over V as a |⌣-generic solution.

P(VI) Assume C ⊇ B ⊆ A are strong subspaces of R(M) linearly independent
over B and both minimal strong extensions of B given by generic solutions
of formulas in X . If b ∈ dcleq(E), E ⊆ A + C, and there is a solution
ā ∈ A + C of some ϕ(x, b̄) in X |⌣

w-generic over C + E and over A + E,

then ϕ(x̄, b̄) defines a torsor set. If it defines a group set, then b̄ is in
dcleq(B).

Note that the assumptions in P(VI) imply that A + C is strong in R(M) and it
is the non-forking amalgam of A and C over B.

Since we assume M = 〈R(M)〉 for all M � T , there exists a quantifier-free
disjunction χ(x̄, y) of formulas that describe 〈R(M)〉 over R(M) such that
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(∗) M = {b : there exists ā in R(M) with M � χ(ā, b)}.

We want that the substructure P µ, that we will construct, will also satisfy (∗)
for some suitable χ. In the examples that we consider we have either M = R(M)
([BMPZ4]), or (∗) for all substructures H with acl(R(H)) ∩ R(M) = R(H) and
H = 〈R(H)〉 ([Bau2]), or some formula in X that provides the existence of χ(x̄, y)
([BMPZ3]). Hence we suppose:

P(VII) Either M = R(M) and therefore connected,

or M is connected and there is a quantifier free formula θ(x̄, y) in X
such that for every B ⊆ R(M) and every tuple ā of geometrically
independent generics over B in R(M) M � θ(ā, b) implies that the
canonical parameter b is a generic of M over B and for all ā b ∈ dcl(ā),

or for every substructure H ⊆ M � T with acl(R(H)) ∩ R(M) = R(H)
and 〈R(H)〉 = H we have some quantifier free definable function
η(x̄) = y such that

H = {b : M � η(ā) = b for some ā in R(H)}.

Definition A countable theory with the properties P(I) – P(VII) is called a
starting theory for the red collapse.

We will show that a suitable substructure of C � T has the wanted theory of
finite Morley rank.

Note that P(II) implies that acl(A) ≤M . From P(IV) follows:
If a ∈ cld(B), then there are B ⊆ A0 ⊆ A1 ⊆ . . . ⊆ An such that A0 ⊆ acl(B),
a ∈ An, Ai ≤ M , Ai+1 ⊆ acl(Ai) or there is some b̄ ∈ dcleq(Ai) and some generic
solution ā of some ϕ(x̄, b̄) ∈ X with Ai+1 = 〈Ai, ā〉

ℓ.

In the last case we call Ai+1 a prealgebraic minimal extension of Ai. Our aim
is to make it algebraic in the substructure. Note that non-generic solutions of
ϕ(x̄, b̄) are in Ai.

Let T be as above, M and N are T -models, ā is a tuple in R(M) and f(ā) is an
isomorphic copy of ā in R(N) in the language of Fq-vectorspaces. Then we want
to show that P(I) – P(IV) implies:

tpM(ā) = tpN(f(ā))
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if and only if f preserves a geometrical sequence for ā.

First we have to define the notions of geometrical sequence and construction:

Definition Assume B ≤ C, B ⊆ A, and A ≤ C. A geometrical sequence of A
over B is a sequence A0 ⊆ A1 ⊆ . . . ⊆ Am where B = A0, A = Am, and all Ai

are strong in M . Furthermore Ai+1 is a minimal strong extension of Ai in the
following sense:

1. Transcendental Case: Ai+1 = 〈Ai, a〉
ℓ, and a is geometrically independent

from Ai.

2. Algebraic Case: Ai+1 = 〈Ai, a〉
ℓ where a is in the algebraic closure of Ai

linearly independent over Ai.

3. Prealgebraic Case: Ai+1 = 〈Ai, c̄〉
ℓ where c̄ is a solution of some ϕ(x̄, b̄) ∈ X

generic over Ai where b̄ ∈ dcleq(Ai).

If case 1 does not occur we speak about a geometrical construction. In this case
A ⊆ cld(B).

Definition The geometrical sequence above is a geometrical sequence for ā,
if A0 is the linear hull of geometrically independent elements from ā and in all
transcendental cases a ∈ 〈ā〉ℓ.

To obtain a geometrical sequence for ā in R(M) there is some A ≤ M with
ā ⊆ A ⊆ acl(ā) by P(II). Choose A0 = 〈0〉ℓ and Ai for i ≤ i0 by transcendental
steps with a ∈ 〈ā〉ℓ such that l.dim(Ai0) = d(Ai0) = d(ā). By P(II) Ai0 ≤ C and
A ⊆ cld(Ai0). By P(IV) there is a geometrical construction of A over Ai0 . This
gives a geometrical sequence of ā over A0 ⊆ ā.

Definition Let A0 ⊆ A1 ⊆ . . . ⊆ Am ⊆M � T be a geometrical sequence for ā.
Let f be an Fq-vectorspace embedding of 〈ā〉ℓ into R(N), where N � T , and f̄ be
an Fq-vectorspace embedding of Am into R(N) that extends f . Then f̄ preserves
the given geometrical sequence A0 ⊆ A1 ⊆ . . . ⊆ Am of ā over A0 if we have
f̄(A0) is f(A0),
in the transcendental case f̄(Ai+1) = 〈f̄(Ai), f̄(a)〉ℓ where f̄(a) is geometrically
independent from f̄(Ai),
in the algebraic case f̄(a) fulfils the image of the isolating formula in M , and
in the prealgebraic case f̄(ā) is a solution of ϕ(x̄, f̄(b̄)) generic over f̄(Ai) where
f̄(b̄) ∈ dcleq(f̄(Ai)) is isolated by the image of the corresponding formula for M .
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Lemma 3.1 Let T be a theory with P(I) – P(IV). We consider models M and N
of T . Let A0 ⊆ . . . ⊆ Am ⊆ R(M) be a geometrical sequence over A0 as defined

above and g be an Fq-vectorspace embedding of Am into R(N) that preserves the

geometrical sequence.

If tpM(A0) = tpN(g(A0)), then tpM(Am) = tpN(g(Am)).

Proof . We show tpM(Ai) = tpN(g(Ai)) by induction on i ≤ m.
We have tpM(A0) = tpN(g(A0)) by assumption. Assume tpM(Ai) = tpN (g(Ai)).
By P(II) g(Ai) is strong in N . For Ai+1 we have the three cases in the definition.

Case 1 Transcendental Case
Ai+1 = 〈Ai, a〉

ℓ where a is geometrically independent over Ai. Then g(Ai+1) =
〈g(Ai), g(a)〉

ℓ where g(a) is geometrically independent over g(Ai). By P(II)
tpM(Ai+1) = tpN(g(Ai+1)).

Case 2 Algebraic Case
Ai+1 = 〈Ai, a〉

ℓ, a algebraic over Ai. By definition g(a) is algebraically iso-
lated over g(Ai) by the g-image of an isolating formula for a over Ai. Hence
tpM(Ai+1) = tpN(g(Ai+1)).

Case 3 Prealgebraic Case
Ai+1 = 〈Ai, ā〉

ℓ where ā is a solution of some ϕ(x̄, b̄) ∈ X generic over Ai and
b̄ ∈ dcleq(Ai). By definition of preservation g(ā) is a solution of ϕ(x̄, g(b̄)). By
induction tpM(b̄) = tpN(g(b̄)). Hence ϕ(x̄, g(b̄)) is strongly minimal. Since
g(Ai) ≤ N and g(ā) 6⊆ g(Ai) the solution g(a) is generic over g(Ai). We get
tpM(〈Ai, ā〉

ℓ) = tpN(〈g(Ai), g(ā)〉
ℓ). �

Lemma 3.2 Let A0 ⊆ A1 ⊆ . . . ⊆ Am be a geometrical sequence of ā in C.

Assume ā ∈ M � C. Then there is a geometrical sequence f(A0) ⊆ . . . ⊆ f(Am)
of ā in M such that f preserves the geometrical construction.

Proof . By definition A0 ⊆ ā ⊆ M and in each transcendental case Ai+1 = 〈Ai, a〉
ℓ

we have a ∈ ā ⊆ M . We define f(a) = a for a in ā. Then f(A0) = A0. We
define f(Ai) by induction on i such that f preserves the geometrical sequence
A0 ⊆ A0 ⊆ . . . ⊆ Ai, and tpM(f(Ai)ā) = tpC(Aiā). We have f(A0) = A0 is part
of ā. Now we prove the induction step.

1. Transcendental Case Ai+1 = 〈Aia〉
ℓ and a is geometrically independent from

Ai. Then a ∈ ā and a is geometrically independent from f(Ai) since cld(Ai) =
cld(f(Ai)). Then f(Ai+1) = 〈f(Ai)ā〉

ℓ fulfils the assertion.
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2. Algebraic Case Ai+1 = 〈Aia〉
ℓ and a is algebraic over Ai. If a ∈ 〈Aiā〉

ℓ, then
f(a) is already defined. Otherwise there is an algebraic formula ψ(x, d̄) isolating
a over 〈Aiā〉

ℓ. Let f(a) = c for some c ∈M with M � ψ(c; f(d̄)).

3. Prealgebraic Case Ai+1 = 〈Ai, ē〉 where ē is a solution of some ϕα(x̄, b̄) in X
generic over Ai. If ē is algebraic over 〈Aiā〉

ℓ we proceed as above in the algebraic
case. Otherwise f(ē) is any solution of ϕα(x̄, f(b̄)) in M generic over 〈f(Ai)ā〉

ℓ.
Such a solution exists by P(II) and P(III). �

Lemma 3.3 Let T be a theory with P(I) – P(IV). Assume M,N � T , ā is in M ,

and f(ā) is an Fq-vectorspace-isomorphic copy of ā in N . Then the following are

equivalent:

i) tpM(ā) = tpN(f(ā)).

ii) Given a geometrical sequence for ā we can extend f in such a way that the

extension f̄ preserves the geometrical sequence.

iii) Some geometrical sequence for ā is preserved by an extension f̄ of f .

Proof . Lemma 3.1 gives us iii) ⇒ i), ii) ⇒ iii) is trivial.
Finally we show i) ⇒ ii). We assume that tpM(ā) = tpN(f(ā)). To show ii) let
A0 ⊆ A1 ⊆ . . . ⊆ Am be a geometrical sequence for ā. We consider M and N as
elementary substructures of the monster model C. Then we can extend f to an
automorphism g of C. We get that g preserves the given geometrical sequence in
C. By Lemma 3.2 we obtain the desired geometrical sequence in N . �

Lemma 3.4 If ā ∈ cld(A), then there is a geometrical sequence for 〈A, ā〉ℓ inside

acl(A, ā).

Proof . Choose A0 ⊆ A with l.dim(A0) = d(A0) = d(A). Then A0 ≤ M by P(II).
Again by P(II) there is some A′ with 〈A, ā〉ℓ ⊆ A′ ⊆ acl(A, ā) and A′ ≤ M . By
P(IV) there is a geometrical construction of A′ over A0. �

Lemma 3.5 If c /∈ cld(B), a ∈ cld(B), and a ∈ acl(Bc), then a ∈ acl(B).

Proof . We assume c0 /∈ cld(B), a0 ∈ cld(B) \ acl(B) and a0 ∈ acl(Bc0) and show
a contradiction.
Assume C � ψ(a0, c0, b̄) ∧ ∃≤nyψ(y, c0, b̄) where b̄ is in B. Then

x /∈ cld(B) ∪ {ψ(a0, x, b̄) ∧ ∃≤nyψ(y, x, b̄}
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is consistent. But by P(II) there is a unique type p(x) with x /∈ cld(B) over
cld(B).

(+) Hence every element d /∈ cld(B) fulfils p(x) and we have ψ(a0, d, b̄).

Let M � C be a model that contains Bc0 and a0. Since acl(B) ∩ 〈c0, a0〉
ℓ = 〈0〉ℓ

there are c1 and a1 such that 〈c1, a1〉
ℓ ∩M = 〈0〉ℓ with tp(c1a1/B) = tp(c0a0/B)

and c1 realizes p. If we apply (+), then we get � ψ(a0, c1, b̄). If we continue in
this way we get more than n solutions of ψ(y, cn+1, b̄) and ∃≤ny ψ(y, cn+1, b̄), a
contradiction. �

Lemma 3.6 Assume U ⊆ R(M), acl(U) = U , A ≤ M , and d(A/U) = d(A/U ∩
A). Then

i) A ∩ U ≤M , and

ii) U + A ≤M .

Proof . Let M be sufficiently saturated. Note that acl(U) = U implies U ≤ M .
First we show that ii) is a consequence of i). Using i), P(II), and P(IV) we get a
geometrical sequence A ∩ U = B0 ⊆ B1 ⊆ . . . ⊆ Bk = A. We show by induction
on i that U + Bi ≤ M . We have U + B0 = U ≤ M . If Bi+1 = 〈Bi, b〉

ℓ where
b is algebraic over Bi, then either b ∈ U + Bi or 〈UBib〉

ℓ ≤ M by P(II). In
the prealgebraic case the assertion follows from U + Bi ≤ M and P(III). In the
transcendental case Bi+1 = 〈Bib〉 with b /∈ cld(Bi) we have b /∈ cld(Bi + U) since
d(A/U) = d(A/B0). By P(II) Bi+1 + U ≤ M .

To show i) let A0 ⊆ A∩U be such that l.dim(A0) = d(A0) = d(A∩U). By P(IV)
we get a geometrical sequence A0 ⊆ A1 ⊆ . . . ⊆ Am = A. By the choice of A0

and by d(A/U) = d(A/U ∩A) we have that

(++) Ai+1 = 〈Aic〉
ℓ with c /∈ cld(Ai) implies c /∈ cld(Ai + U).

We show by induction on l.dim(A) that we can choose the geometrical sequence
for A over A0 in such a way that there is some i0 with Ai0 = A ∩ U .

We start with l.dim(A) = 0. To prove the induction step we assume that we have
A0 ⊆ A1 ⊆ . . . ⊆ Am and i0 such that Am−1 ∩ U = Ai0 ≤M . Assume m > 0.

1. Algebraic Case: Am = 〈Am−1, a〉
ℓ where a is in the algebraic closure of Am−1

linearly independent from Am−1.
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If Am ∩ U 6= Ai0 , then we can choose a in such a way that a ∈ U . Assume
i0 ≤ m− 2, since otherwise we are done.

If a ∈ acl(Am−2), then we apply the induction to A0 ⊆ . . . ⊆ Am−2 ⊆ 〈Am−2, a〉
ℓ.

We get A0 = A′
0 ⊆ . . . ⊆ A′

j0
⊆ . . . ⊆ A′

m′−1 = 〈Am−2, a〉
ℓ where A′

m′−1 ∩
U = A′

j0
≤ M . Then A′

0 ⊆ . . . ⊆ A′
m′−1 ⊆ Am is the desired sequence with

Am ∩ U = A′
j0 ≤M .

Now we assume a ∈ acl(Am−1) \ acl(Am−2).
First we assume Am−1 = 〈Am−2c〉

ℓ, where c /∈ cld(Am−2). Since a ∈ acl(〈Am−2, c〉
ℓ)\

acl(Am−2) we have a /∈ cld(Am−2) by Lemma 3.5. Hence by the Exchange-
Property for cld we get c ∈ cld(Am−2a) ⊆ cld(Am−2 + U) a contradiction to
(++).

Finally consider Am−1 = 〈Am−2, c̄〉
ℓ where c̄ is a solution of some ϕ(x̄, b̄) ∈ X

where b̄ ∈ dcleq(Am−2) and c̄ is a generic solution over Am−2. Hence a ∈
acl(Am−2, c̄) \ acl(Am−2). By the Exchange Lemma for acl in strongly minimal
sets c̄ ∈ acl(Am−2, a). By induction and ii) U +Ai ≤M for i ≤ m− 2. By P(III)
c̄ ⊆ U +Am−2. Since c̄ is linearly independent over Am−2 we get Am−1 ∩U 6= Ai0

a contradiction to our induction assumption.

2. Prealgebraic Case: Am = 〈Am−1, ā〉
ℓ where ā is a solution of ϕ(x̄, b̄) ∈ X

generic over Am−1 where b̄ ∈ dcleq(Am−1). By induction and ii) we have again
U+Am−1 ≤M . If Am∩U 6= Ai0, then some element in 〈ā〉ℓ \〈0〉ℓ is in U+Am−1.
By U + Am−1 ≤ M and P(III) we get ā ⊆ U + Am−1. Since X is closed under
affine transformations we can assume w.l.o.g. that ā is in U . If i0 = m − 1 we
are done.
Assume i0 < m − 1. There is some s with i0 < s < m − 1 such that Am−1 ⊆
acl(As) and As is a transcendental or a prealgebraic extension of As−1. Note that
Am−1 ⊆ acl(Ai0) is impossible since acl(U) = U would imply Am−1 ⊆ U .

First we assume that As = 〈As−1c〉 and c /∈ cld(As−1) and Am−1 ⊆ acl(As).
Then ā ∈ cld(As−1) since otherwise ā ∈ cld(As−1c) \ cld(As−1) and therefore
c ∈ cld(As−1ā) ⊆ cld(As−1 + U), a contradiction to (++).

In the next step we show that b̄ ∈ dcleq(cld(As−1)). Let f be an automorphism
that fixes cld(As−1) pointwise. We show f(b̄) = b̄. By the following argument we
can restrict us to the case where c and f(c) are geometrically independent over
As−1. If c and f(c) are not geometrically independent over As−1, then we choose
f1 such that f1(c) /∈ cld(As−1, c) and consider f1 and f2 = ff−1

1 . Then c and f1(c)
are geometrically independent over As−1 and also f(c) and f1(c). Furthermore
f2(f1(c)) = f(c). Hence we assume w.l.o.g. that c and f(c) are geometrically
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independent over As−1. Then 〈As−1, c, f(c)〉ℓ ≤ M . We have f(ā) = ā since we
have shown that ā ∈ cld(As−1). Since ā 6⊆ 〈As−1, c, f(c)〉ℓ it is a common solution
of ϕ(x̄, b̄) and ϕ(x̄, f(b̄)) generic over 〈As−1, c, f(c)〉ℓ by P(III). Hence f(b̄) = b̄
by P(III). Finally we show b̄ ∈ dcleq(As−1). Let f be an automorphism of C

that fixes As−1 pointwise. Since b̄ ∈ dcleq(Am−1) and Am−1 ⊆ acl(As−1, c), we
have that b̄ ∈ dcleq(As−1, c). Let g(x) be a function definable with parameters
in As−1 such that g(c) = b̄. Since tp(c/cld(As−1)) = tp(f(c)/cld(As−1)) and
b̄ ∈ dcleq(cld(As−1)), as shown above, we get g(c) = b̄ = g(f(c)) = f(b̄), as
desired.

Now we can apply the induction to A0 ⊆ . . . ⊆ As−1 ⊆ 〈As−1, ā〉
ℓ and can use

this to prove the assertion.

Next we assume As = 〈As−1, c̄〉
ℓ is a prealgebraic extension and Am−1 ⊆ acl(As).

W.l.o.g. we can assume that Am−1 ∩ acl(As−1) = As−1. Since U + As−1 ≤ M , c̄
is a solution of some ψ(x̄, d̄) in X generic over U + As−1, where d̄ ∈ dcleq(As−1).
By assumption Am−1 ∩ (U + As−1) = As−1. Let {fi(c̄) : i < ω} be a Morley
sequence of tp(c̄/U + As−1). We can speak about a Morley-sequence, if we use
the independence in the strongly minimal set ψ(x̄, d̄). Note Am−1 ⊆ acl(As−1c̄).
We can consider fi as an automorphism that fixes U + As−1 pointwise. Assume
f0 = id. Furthermore As−1 +

⊕

i<ω

fi(c̄) ≤ M and ā is a solution of all ϕ(x̄, fi(b̄))

for i < ω linearly independent over this strong subspace and therefore generic
over this space. It follows fi(b̄) = b̄. Since fi(b̄) = b̄ is in acleq(As−1, fi(c̄)) we get
fi(c̄) ∈ acl(As−1, b̄) by the Exchange Lemma for ψ(x̄, d̄). Then b̄ ∈ acleq(As−1, c̄)
implies fi(c̄) ∈ acleq(As−1, c̄). This contradicts the construction of our Morley-
sequence.

3. Transcendental Case: Am = 〈Am−1, a〉
ℓ where a /∈ cld(Am−1). By (++) we get

a /∈ cld(Am−1 + U). Hence Am ∩ U = Ai0 as desired. �

Lemma 3.7 Let T be a countable theory that satisfies the conditions P(I) –
P(IV). Then T is ω-stable. Furthermore the subspace R(x) is connected.

Proof . Since 〈R(M)〉 = M for M � T it is sufficient to count tp(ā/M) where
ā is in R(C) and M countable. We choose a geometrical sequence A0 ⊆ A1 ⊆
. . . ⊆ Am with d(Am/M) = d(Am/M ∩ Am) and ā ⊆ Am. By Lemma 3.6
Am ∩ M ≤ C. Hence w.l.o.g. A0 = Am ∩ M . By Lemma 3.1 tp(Am/A0) is
given by the geometrical sequence. The same remains true if we replace A0 by
a larger strong subspace in R(M). Hence tp(Am/M) is uniquely determined by
the geometrical sequence A0 ⊆ A1 ⊆ . . . ⊆ Am. If there is a preservation map
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between two such geometrical sequences over A0, then they present the same type
over M . There are only countably many A0 inM and countably many geometrical
sequences A0 ⊆ . . . ⊆ Am with A0 = Am ∩M and d(Am/M) = d(Am/A0) up to
preservation. Hence there are only countably many types over M .

Note that a /∈ cld(M) gives the only generic 1-type in R(C) over M . Hence R(C)
is connected. �

Lemma 3.8 Assume A0 ≤ C and ā ∈ cld(A0). Let A0 ⊆ A1 ⊆ . . . ⊆ Am be a

geometrical construction for ā over A0. Then there is a geometrical construction

for ā over A0 inside of Am ∩ acl(A0 ∪ {ā}).

Proof . Let U be acl(A0 ∪ {ā}). By definition Am ≤ C and d(Am/U) = 0 =
d(Am/U ∩Am) since A0 ⊆ U ∩Am. By Lemma 3.6 Am ∩ U = D ≤ C. By P(IV)
there is the desired geometrical construction of D over A0. �

Note that by Lemma 3.4 there is a geometrical construction for ā over A0 inside
acl(A0 ∪ {ā}).

Lemma 3.9 Let A0 ⊆ A1 ⊆ . . . ⊆ Am be a geometrical sequence in C. If A0 ⊆ U ,

U ≤ C, U ∩Am = A0, and d(Am/A0) = d(Am/U). Then Ai +U is a geometrical

sequence. Hence U + Am is strong in C.

Proof . We use induction on i and start with A0 + U = U ≤ C. If we have the
transcendental case Ai+1 = 〈Aia〉

ℓ with a /∈ cld(Ai), then a /∈ cld(Ai + U) and
Ai+1 +U ≤ C, as desired. In the algebraic case 〈Aia〉

ℓ +U = Ai+1 +U = Ai +U
or a is algebraic over Ai + U ≤ C. Hence Ai+1 + U ≤ C. The prealgebraic case
uses P(III) and the induction hypothesis Ai + U ≤ C. �

Lemma 3.10 Assume U ≤ C and B finite. Then there is some V with U +B ⊆
V , V ≤ C, l.dim(V/U) finite and d(V/U) = d(U +B/U).

Proof . Choose B0 ⊆ B such that l.dim(B0/U) = d(B0/U) = d(B/U). By P(II)
U + B0 ≤ C. Extend B0 to A0 with A0 = (A0 ∩ U) + B0, d(A0) = l.dim(A0)
and B ⊆ cld(A0). Note A0 ≤ C and U + A0 ≤ C by P(II). Choose a geometrical
construction A0 ⊆ A1 ⊆ . . . ⊆ Am such that B ⊆ Am. There are only algebraic
and prealgebraic steps. As in the proof of Lemma 3.9 we can show by induction,
that Ai + U ≤ C. Then Am + U is the desired subspace V . �

Similarly as in the finite case we define

14



Definition Let D ⊆ D′ be strong subspaces of R(C) with l.dim(D′/D) finite. A
geometrical sequence for D′ over D is a sequence D = D0 ⊆ D1 ⊆ . . . ⊆ Dm = D′

where Di ≤ C and for Di+1 over Di we have one of the following cases:

1. Transcendental minimal extension Di+1 = 〈Di, a〉
ℓ and a /∈ cld(Di).

2. Algebraic minimal extension Di+1 = 〈Di, a〉
ℓ and a ∈ acl(Di).

3. Prealgebraic minimal extension Di+1 = 〈Di, ā〉
ℓ, where ā is a solution of

some ϕ(x̄, b̄) in X generic over Di and b̄ ∈ dcleq(Di).

Lemma 3.11 Let D ⊆ D′ be strong subspaces of R(C) where l.dim(D′/D) is

finite. Then there is a geometrical sequence for D′ over D.

Proof.. Choose A ≤ D′, A ≤ C such that D + A = D′ and d(D′/D) = d(A/A ∩
D). By Lemma 3.6 A0 = acl(D) ∩ A is strong. By P(II) and P(IV) there is a
geometrical sequence A0 ⊆ A1 ⊆ . . . ⊆ Am = A. Note d(Am/A0) = d(Am/D).
By P(II) there is a geometrical sequence for D+A0 over D. By Lemma 3.9 there
is a geometrical sequence D+A0 ⊆ D+A1 ⊆ . . . ⊆ D+A. We combine the two
sequences to get the desired one. �

Lemma 3.12 Assume T satisfies P(I) – P(IV). Geometrical independence im-

plies non-forking independence in R(C).

4 Codes and difference sequences

In this chapter we assume that T satisfies P(I) – P(IV) as defined in Chapter 3.
Let C be the monster model. We work in T eq. Many notions and proofs in
this chapter are taken from [BMPZ3]. But we work in a different context. In
[BMPZ3] T is the theory of an algebraically closed field of characteristic p > 0. It
is a reduct of the final theory. For the construction of red fields of finite Morley
rank in this paper the considered theory T is already the theory of such a field
with a (red) additive subgroup. It is obtained by an amalgamation procedure
(see [Po2]) and has infinite Morley rank.

Lemma 4.1 a) Let ϕ(x̄, ȳ) and ψ(x̄0, . . . , x̄µ, ȳ) be formulas where x̄ and x̄i

are in the home sort. Assume that ϕ(x̄, b̄) is strongly minimal where b̄ is

in Ceq. Then we can express that any Morley sequence ā0, . . . , āµ of ϕ(x̄, b̄)
fulfils � ψ(ā0, . . . , āµ, b̄).
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b) X ∼ Y for strongly minimal sets can be expressed.

Proof . b) follows from a) and

∃∞ x̄0 ∃
∞x̄1 . . .∃

∞ x̄µ

(

∧

i≤µ

ϕ(x̄i, b̄) ∧ ψ(x̄0, . . . , x̄µ, b̄)
)

is the desired formula in a). �

Definition If X is a strongly minimal subset of Cn and X ∼ ϕ(x̄, b̄) where
b̄ ∈ Ceq, then we say that X is encoded by ϕ(x̄, ȳ).

We define codes similarly as in [BMPZ3]. This is a modification of E. Hrushovski’s
definition [Hr2] to the vectorspace case.

Definition ϕα(x̄, ȳ) is a code formula or short a code, if it fulfils the following
conditions:

a) Length(x̄) = nα ≥ 2, and ϕα(x̄, ȳ) implies R(xi) for all xi.

b) The set ϕα(x̄, b̄) is either empty or strongly minimal.

c) nα is the linear dimension for all solutions.

d) ϕα(x̄, b̄) ∼ ϕα(x̄, b̄′) implies b̄ = b̄′.

e) If some non-empty ϕα(x̄, b̄) is groupless, then all ϕα(x̄, b̄′) are.

f) ϕα(x̄+ m̄, b̄) is encoded by ϕα for all m̄.

g) For all H in GLnα
(Fq) the set ϕα(Hx̄, b̄) is encoded by ϕα.

By d) b̄ is the canonical parameter of the generic type of Morley rank 1 determined
by ϕα(x̄, b̄).

Lemma 4.2 There is a set C of codes ϕα(x̄, ȳ) that encodes the strongly minimal

sets that are encoded by the formulas in X .
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Proof : The proof is a copy of the proof in [BMPZ3]. But in [BMPZ3] we work
in ACFq. To get the red fields in this paper we start already with coloured
fields. The formulas in X have the properties a)–d). Using Lemma 2.3 we can
assume w.l.o.g. that the formulas in X satisfy a)–e). Since X is closed under
affine transformations by compactness there are finitely many ϕ1, . . . , ϕr in X
that encode all possible affine transformations of some given ϕ(x̄, b̄). Moreover
we know that either all or none encode groupless sets by Lemma 2.2.
Choose a sequence w1, . . . , wr of different definable elements in T eq. Define

θ1
i (b̄) = ”No ϕj (j < i) encodes ϕi(x̄, b̄)”

θ2
i (b̄) = ”ϕi(x̄, b̄) is equivalent to some ϕ(H(x̄) + m̄, b̄′)”

ϕ′
i(x̄, ȳ) = ϕi(x̄, ȳ) ∧ θ

1
i (ȳ) ∧ θ

2
i (ȳ)

Finally let ϕα(x̄, y1, ȳ) =
r
∨

i=1

(ϕ′
i(x̄, ȳ) ∧ y1 = wi). ϕα has the properties a)–e). To

show f) and g) let b̄, m̄, H̄ be given. By construction ϕα(x̄, b1, b̄) is equivalent to
some ϕ(H ′x̄+ m̄′, b̄′). Hence

ϕα(Hx̄+ m̄, b̄) ∼ ϕ((H ′H)x̄+H ′m̄+ m̄′, b̄′)

and the right side is encoded by ϕα by construction. �

Theorem 4.3 There is a set C of codes such that for every ϕ(x̄, b̄) in X there is

a unique ϕα(x̄, c̄) in C such that ϕ(C, b̄) ∼ ϕα(C, c̄).

Proof : (as in [BMPZ3])
Let αi be a list of all codes from Lemma 4.2. Again define:

θi(b̄) = ”No ϕαj
(j < i) encodes ϕαi

(x̄, b̄)” and ϕ′
αi

(x̄, ȳ) = ϕαi
(x̄, ȳ) ∧ θi(ȳ).

ϕ′
αi

satisfies a)–e) we have to show f) and g). By construction ϕ′
αi

(Hx̄ + m̄, b̄)
is encoded by ϕαi

. We need only to show that no ϕαj
with j < i encodes it.

Suppose that
ϕαi

(Hx̄+ m̄, b̄) ∼ ϕαj
(x̄, b̄′).

Then
ϕαi

(x̄, b̄) ∼ ϕαj
(H−1x̄−H−1m̄, b̄′) ∼ ϕαj

(x̄, b̄′′)

for some b̄′′. This contradicts the definition of ϕ′
α. Hence C = {α′

i : i < ω} has
the desired properties. �

A set of codes as in Theorem 4.3 is called a set of good codes.
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Corollary 4.4 In the definition of P(I) – P(VII) we can replace X by a set C of

good codes.

For each α ∈ C we choose a natural number mα such that the existence of mα

common solutions of ϕα(x̄, b̄) and ϕα(x̄, b̄′) implies ϕα(x̄, b̄) ∼ ϕα(x̄, b̄′). This is
possible by the strong minimality of ϕα(x̄, ȳ).

Theorem 4.5 For each α ∈ C and λ ≥ mα there is a formula ψα(x̄0, . . . , x̄λ)
with the following properties:

a) For any initial segment {ē0, . . . , ēλ, f̄} of a Morley sequence of ϕα(x̄, b̄)

ψα(ē0 − f̄ , . . . ēλ − f̄)

holds.

b) For each realization (ē0, . . . , ēλ) of ψα there is a unique b̄ with � ϕα(ēi, b̄)
for 0 ≤ i ≤ λ. Moreover b̄ ∈ dcleq(ēi1 , . . . , ēimα

) for any i1 < . . . < imα
.

(We call b̄ the canonical parameter of the sequence ē0, . . . , ēλ).

c) Each realization of ψα is Fq-linear independent.

d) If � ψα(ē0, . . . , ēλ), then for i ∈ {0, . . . , λ} :

� ψα(ē0 − ēi, . . . , ēi−1 − ēi,−ēi, ēi+1 − ēi, . . . , ēλ − ēi).

e) Given a realization (ē0, . . . , ēλ) of ψα with canonical parameter b̄ as in b),
we have the following:

Suppose α is groupless:

1) If ēi is a generic solution of ϕ(x̄, b̄), then ēi − Hēj 6 |⌣
b̄

ēi for all H ∈

GLnα
(Fq) and j 6= i.

Suppose α is a coset code, then:

2) ϕα(x̄, b̄) is a group-set.

3) ψα(ē0, . . . , ēi−1, ēi − ēj, ēi+1, . . . , ēλ) for j 6= i.

4) ψα(ē0, . . . , ēi−1, Hēi, ēi+1, . . . , ēλ) for all H ∈ Inv(ϕα(x̄, b̄)).
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5) Moreover, if ēi is generic in ϕα(x̄, b̄), then ēi −Hēj 6 |⌣
b̄

ēi for all j 6= i

and H ∈ GLnα
(Fq) \ Inv(ϕα(x̄, b̄)).

Proof : (Copy of the corresponding proof in [BMPZ3] but in another theory.)
We consider the following partial type

Σ(ē0, . . . , ēλ) = "There is some b̄′ and some Morley sequence
ā0, . . . , āλ, f̄ of ϕα(x̄, b̄′) with ēi = āi − f̄ ."

Claim. Σ has the properties a) – e).

Proof of the claim. a) is clear.
Given a realization ē0, . . . , ēλ of Σ, there are some b̄′ and ā0, . . . , āλ, f̄ as above.
Hence {ēi}0≤i≤λ is a Morley sequence of ϕα(x̄+f̄ , b̄′). Then ϕα(x̄+f̄ , b̄′) ∼ ϕα(x̄, b̄)
for some b̄ by f) in the definition of codes. Since b̄ is the canonical parameter of the
generic type determined by ϕα(x̄, b̄), the sequence {ēi}0≤i≤λ is a Morley sequence
for ϕα(x̄, b̄). Given another b̄∗ which satisfies ϕα(ēi, ȳ) for mα many i’s, it follows
that ϕα(x̄, b̄∗) ∼ ϕα(x̄, b̄) by the choice of mα. By d) in the code-definition b̄∗ = b̄.
Hence b) is true for Σ.

The linear independence in c) is clear.

Since ā0, . . . , āi−1, f̄ , āi+1, . . . , āλ, āi is again a Morley sequence for ϕα(x̄, b̄′) we
have

(ā0 − āi, . . . , āi−1 − āi, f̄ − āi, āi+1 − āi, . . . , āλ − āi) � Σ

and hence

(ē0 − ēi, . . . , ēi−1 − ēi,−ēi, ēi+1 − ēi, . . . , ēλ − ēi) � Σ.

We get d).

To prove e) we assume first that α is groupless. That means ϕα(x̄, b̄) is not a
torsor set. By Lemma 2.4 the assertion follows.
Otherwise X = ϕα(C, b̄′) is a torsor set. Hence X − f̄ ∼ ϕα(x̄, b̄) is a group set
since f̄ is in X.
We extend the Morley sequence {ēi : 0 ≤ i ≤ λ} by an element d̄. Then

ē0 + d̄, . . . , ēi−1 + d̄, ēi − ēj + d̄, ēi+1 + d̄, . . . , ēλ + d̄, d̄

is again a Morley sequence for ϕα(x̄, b̄). Hence

Σ(ē0, . . . , ēi − ēj , . . . , ēλ).
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Similarly we get e4).

e5) follows again by Lemma 2.4. �(Claim)

Using compactness we get a finite part ψ′
α of Σ that implies a), b), c), e1), e2),

e5).

If α is groupless consider the following operations:

Vi(x̄0, . . . , x̄λ) = (x̄0 − x̄i, . . . , x̄i−1 − x̄i,−x̄i, x̄i+1 − x̄i, . . . , xλ − x̄i)

and V be the subgroup generated by these operations. V is finite. Then

ψα(x̄0, . . . , x̄λ) =
∧

v∈V

ψ′
α(V (x̄0, . . . , x̄λ))

satisfies d) and is also part of Σ.
If α is an coset code, property d) follows from e3) and e4). Hence it is sufficient
that ψα satisfies e3) and e4). Let W(x̄0, . . . , x̄λ) be the subgroup of GLnα(λ+1)

(Fq)
generated by the operations mentioned in e3) and e4). Again W is finite, and
depends on Inv(ϕα(x̄, b̄)). Note that λ ≥ mα, hence b̄ remains constant in b)
after applying these operations. Set therefore:

ψα(x̄0, . . . , x̄λ) =
∧

W∈W(x̄0,...,x̄λ)

ψ′
α(W (x̄0, . . . , x̄λ)),

which has the required properties. �

Definition Let α, λ and ψα be as above. A realization of ψα is called a dif-
ference sequence for α. Moreover, given a realization ē0, . . . , ēλ of ψα, we denote
by a derived difference sequence one obtained by composition of the following
operations:

ē0 − ēi, . . . , ēi−1 − ēi,−ēi, ēi+1 − ēi, . . . , ēλ − ēi.

If ν ≤ λ and we use the operations above only for i ≤ ν, then we speak about a
ν-derived sequence.

Corollary 4.6 A permutation of a difference sequence is a difference sequence.

Proof . Note that all permutations of a difference sequence are obtained by the
operation in d) of Theorem 4.5. �

Corollary 4.7 If D ≤ C and D′ is a prealgebraic minimal extension of D, then

there is a unique good code α such that there is a unique b̄ in dcleq(D) and a

generic solution ā of ϕα(x̄, b̄) that generates D′ over D.

Proof . This follows from Theorem 4.3 and poperties f) and g) of the codes. �
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5 Bounds for difference sequences

T is again a starting theory for a red collaps as described in Chapter 3. As
shown in Corollary 4.4 we can assume that X is a set C of good codes as given
by Theorem 4.3. We work in T eq. A, B, C, D are subspaces of R(C).

Lemma 5.1 For every code formula ϕα(x̄, ȳ) and every natural number r there

is some λ(r, α) = λ > 0 such that for every D ≤ C, and every difference sequence

ē0, . . . , ēµ for ϕα(x̄, ȳ) with canonical parameter b̄ and µ ≥ λ either

i) the canonical parameter of some λ-derived sequence of ē0, . . . , ēµ lies in

dcleq(D)

or

ii) for every nα-tuple m̄ the sequence contains a subsequence ēi0 , . . . , ēir−1 such

that mα ≤ ij and eij is |⌣
w
-generic over 〈ēi0, . . . , ēij−1

〉ℓ + D + B, where

B = 〈ē0, . . . , ēmα−1 , m̄〉ℓ.

Proof . If assertion i) is not true, then every coset of Cnα/Dnα contains at most
mα-many elements ēi of the difference sequence under consideration with i ≤ λ.
Otherwise we could substract one of these elements ēj (j ≤ λ) and would get
ēi0 − ēj , . . . , ēimα−1

− ēj in D for some i0, . . . , imα−1 different from j. Hence the
canonical parameter of the corresponding derived sequence would be in dcleq(D)
by property b) of a difference sequence. Now we have to choose λ(r, α) such that
ii) is true.
Let s = l.dim(ē0, . . . , ēλ/〈D +B〉ℓ). Then l.dim(ē0, . . . , ēλ/D) ≤ s+ (mα + 1)nα.
By the considerations above we get

λ+ 1 ≤ mαq
(s+(mα+1)nα)nα.

Let X be the set of all i ≤ λ such that

l.dim(ēi/D +B + 〈ēj : j < i〉ℓ) > 0.

Then s ≤ |X| · nα and hence

λ+ 1 ≤ mαq
(|X|·nα+(mα+1)nα)nα.

If we choose λ(r, α) large enough, then we get |X| ≥ r + (mα + 1)nα. Since
l.dim(B) ≤ (mα + 1)nα P(V) provides us a subsequence ēi0 , . . . , ēir−1 such that
ēij is |⌣

ω-generic over D +B + 〈ēi0 , . . . , ēij−1
〉ℓ. �
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Now we consider all finite-to-one functions µ∗ and µ defined on the good codes
α ∈ C with values in N. We assume that the following inequalities hold:

• µ(α) ≥ mα,

• µ∗(α) ≥ max(λ(mα + 1, α) + 1, nα + 1),

• µ(α) ≥ λ(µ∗(α), α) + 1.

• µ∗(α) > r, if in θ(x̄, y) ∈ X from P(VII) x̄ is an r-tuple.

For the definition above we fix a function λ(r, α) given by Lemma 5.1 and we
assume that it is monotonous in the first argument.

Finally we will get for each such function µ as above a countable "generic" sub-
space Rµ(C) of R(C) such that

Rµ(C) ≤ C, acl(Rµ(C)) ∩R(C) = Rµ(C).

We will extend the language L by a new predicate P µ and consider the structure
〈C, P µ(C)〉 in the new language Lµ, where P µ(C) = 〈Rµ(C)〉. P µ(C) will be the
desired L-structure of finite Morley rank. We will get Rµ(C) by amalgamation in
the class Kµ of strong subspaces of R(C) defined below.

Definition Let Kµ be the class of all strong subspaces U of R(C), such that for
every good code α there is no difference sequence for α of length µ(α) + 1 in U .
K

µ
fin are the finite spaces in Kµ.

Note that difference sequences are given by realizations of the formulas
ψα(x̄0, . . . , x̄µ(α)) in Theorem 4.5. Their realizations are contained in R(C).

Let D ⊆ D′ be strong subspaces of C with l.dim(D′/D) finite. By Lemma 3.11
there is a geometrical sequence for D′ over D. In the next lemmas we will in-
vestigate the minimal steps in this sequence, especially the prealgebraic minimal
steps for the case that D ∈ Kµ but D′ /∈ Kµ.

Lemma 5.2 Assume D ≤ C, D ∈ Kµ, D′ is a prealgebraic minimal extension

of D and D′ is not Kµ. Let ē0, . . . , ēµ(α) be a difference sequence for a good code

α in D′, such that its canonical parameter c̄ is in dcleq(D). Then we find a

difference sequence d̄0, . . . , d̄µ(α) for α in D′ with the same canonical parameter

such that d̄0, . . . , d̄µ(α)−1 are in D, and d̄µ(α) is a D-generic realization of ϕα(x̄, c̄)
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that generates D′ over D.

If we cannot find the new sequence by a permutation of the old one, then α is

a group code and the new sequence is obtained using operations as ēj is replaced

by some Hēj − ēi where H is in Inv(ϕα(x̄, c̄)). α is the unique good code that

describes D′ over D.

Proof . Since D ∈ Kµ, there is some ēi not completely in D. Since D ≤ C by
P(III) ēi is D-generic and generates D′ over D. If there is some other ēj not
completely in D, then again ēj is D-generic and generates D′ over D. Hence
ēi = Hēj − m̄j where H is in GLnα

(Fp) and m̄j is in D. Then Hēj − ēi is in D.
Since ēj is D-generic, we have

ēj |⌣
c̄

Hēj − ēi.

By the properties of a difference sequence it follows that α is a group code and
H is in Inv(ϕα(x̄, c̄)). If we replace ēj by Hēj − ēi we obtain again a difference
sequence with the same canonical parameter and this sequence has one more
element in M . We can iterate the argument to obtain the assertion.
Finally every strongly minimal set that gives us D′ over D determines a unique
code by Theorem 4.3. All such generic solutions of code formulas ϕα can be
transformed into each other by elements of GLnα

(Fq) and translations. By the
properties of good code we use only one formula. �

Corollary 5.3 Let D be in Kµ and D ≤ D′ be a minimal extension. If D′ has

linear dimension one over D, then D′ is in Kµ. Otherwise, in the prealgebraic

case, D′ is in Kµ if and only if none of the following two conditions holds:

a) There is a code α ∈ C and a difference sequence ē0, . . . ēµ(α) for α in D′ such

that

i) ē0, . . . , ēµ(α)−1 are contained in D.

ii) D′ = 〈Dēµ(α)〉
ℓ.

iii) In this case α is the unique good code that describes D′ over D.

b) There exists a code α ∈ C and a difference sequence for α in D′ of length

µ(α) + 1 with canonical parameter b̄ and with a subsequence ē0, . . . , ēµ∗(α)−1

of length µ∗(α) such that ēi is |⌣
w
-generic over D+B+〈ē0, . . . , ēi−1〉

ℓ where

B is generated by the first mα elements of the given difference sequence.
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Proof . Consider first the case where l.dim(D′/D) = 1. Assume that D′ is not
in Kµ. That means there is a difference sequence ē0, . . . , ēµ(α). If the canonical
parameter b̄ lies in dcleq(D), then all ēi would be in D, since no ēi is linearly
independent over D. This contradicts D ∈ Kµ.
Otherwise by Lemma 5.1 some ēj is a realization of ϕα(x̄, b̄) linearly independent
over D since µ(α) ≥ λ(1, α). Again we have a contradiction.

Finally we assume that D′ is minimal prealgebraic over D. Again we assume
that there is a difference sequence ē0, . . . , ēµ(α) in D′ for some good code for-
mula ϕα(x̄, b̄) where b̄ is the canonical parameter. If b̄ lies in dcleq(D), then by
Lemma 5.2 we get case a). Otherwise since µ(α) ≥ λ(µ∗(α), α) our sequence
contains a subsequence of length µ∗(α) as described in b) by Lemma 5.1. �

Corollary 5.4 Assume there is a formula θ(x̄, y) ∈ X given by P(VII), D is in

Kµ, d ∈ dcleq(D) and θ(x̄, d) has no solution in D. Let D′ = 〈Dā〉 where ā is a

generic solution of θ(x̄, d). Then D′ is in Kµ.

Proof . Note that x̄ in θ(x̄, y) has length r and µ∗(α) > r for all α. Hence
l.dim(D′/D) = r. Assume D′ /∈ Kµ. Case a) of Corollary 5.3 is not fulfilled, since
the unique code that describes D′ is given by θ(x̄, y). Hence Case b) provides us
more than r solutions of some ϕα(z̄, ȳ) linearly independent over D. This is a
contradiction. �

6 Amalgamation in Kµ

Let T be a starting theory for a collapse as above. Again we work in T eq.

Lemma 6.1 Let B ⊆ A and B ⊆ C all be strong subspaces of C such that A
and C are linearly independent over B. Assume that A and C are prealgebraic

extensions of B and that ē0, . . . , ēµ(α) is a difference sequence for a good code α
in A+ C. Then there is a derived difference sequence of the above sequence with

the canonical parameter in dcleq(C) or in dcleq(A).

Proof . We assume that the assertion of the lemma is not true. Let E =
〈e0, . . . , emα−1〉

ℓ. By Lemma 5.1 we get a subsequence ēi0 , . . . , ēiµ∗(α)
, such that

ēij is |⌣
w-generic over 〈ēi0, . . . , ēij−1

〉ℓ + C + E. Since µ∗(α) ≥ λ(mα + 1, α) + 1
we get a subsequence of this sequence of length mα +1 such that every element is
|⌣

w-generic over C +E and over A+E. Again we have applied Lemma 5.1. By
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P(VI) ϕα(x, y) defines a torsor set and by the properties of a difference sequence
a group set. Hence by P(VI) b̄ ∈ dcleq(B), a contradiction to the assumption.�

Note that all subspaces in Kµ are strong subspaces of C. By Lemma 3.3 tpC(A)
for A ≤ R(C) is given by any geometrical sequence for A. On the other hand for
strong A tpC(A) is given by the isomorphism type of 〈A〉 (P(IV)). The partial

elementary maps B
≡
→֒A of strong subspaces of R(C) are the strong embeddings

〈B〉 →֒ 〈A〉.

Theorem 6.2 Assume that T satisfies P(I) – P(VI). The class K
µ
fin has the amal-

gamation property with respect to partial elementary maps.

Proof . We assume that B ⊆ C, B ⊆ A are all strong subspaces of R(C) in
K

µ
fin. We need to show that there is an extension D of B in Kµ and partial

elementary maps f : A →֒ D and g : C →֒ D extending the inclusion of B in D
such that tp(A/B) = tp(f(A)/B) and tp(C/B) = tp(g(C)/B). Splitting A and
C into chains of minimal extensions in Kµ we can assume w.l.o.g. that A and C
are minimal extensions. Let D+ be a non-forking amalgam of A and C over B.
W.l.o.g. C and A are linearly independent over B and D+ is A+ C.

Case 1: l.dim(C/B) = 1 or l.dim(A/B) = 1.
By Corollary 5.3 the amalgam D+ is in Kµ.

Case 2: Both extensions C/B and A/B are prealgebraic.
We assume that D+ is not in Kµ and show in this case that C and A have the
same type over B.

There is a good code α with a difference sequence ē0, . . . , ēµ(α) in D+. By
Lemma 6.1 and symmetry we may assume w.l.o.g. that its canonical parame-
ter b̄ lies in dcleq(C). By Lemma 5.2 we may assume that ē0, . . . , ēµ(α)−1 are in C
and ēµ(α) is an C-generic realization of ϕα(x̄, b̄) which generates D+ over C.

Assume that A = 〈Bā〉ℓ where ā is a B-generic solution of some ϕγ(x̄, c̄) with
canonical parameter c̄ in dcleq(B). Since C is strong, ā is C-generic. We consider
three subcases:

Case 2.1: ēµ(α) ∈ A.

Then ēµ(α) is generic over Bb̄ ⊆ C. On the other hand A = 〈Bā〉ℓ and ā is a
B-generic solution of some ϕγ(x̄, c̄), where c̄ is in dcleq(B). Then 〈B, eµ(α)〉

ℓ = A,
since 〈C, ēµ(α)〉

ℓ = 〈C, ā〉ℓ = D+. We have ēµ(α) = H(ā)+ ē, where ē ∈ B. We get
that ēµ(α) is a solution of ϕα(x̄, b̄) and ϕγ(x̄, d̄) where d̄ ∈ dcleq(B) generic over
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C. Here we use the properties f) and g) of codes. The new parameter d̄ is again
in dcleq(B) since ē ∈ B. By Theorem 4.3 we have α = γ and by P(III) we get
b̄ = d̄ ∈ dcleq(B).
By minimality of A over B we have that A = 〈B, ēµ(α)〉

ℓ. Since A is in Kµ there
exists an ēi which lies in C but not in B. Since B is strong ēi is B-generic. Hence
〈Bēi〉

ℓ = C by minimality and

tp(A/B) = tp(〈B, ēµ(α)〉
ℓ/B) = tp(〈B, ēi〉

ℓ/B) = tp(C/B).

Case 2.2: ēµ(α) /∈ A and the canonical parameter for some (µ(α) − 1)-derived
difference sequence is in dcleq(B).

Hence w.l.o.g. b̄ ∈ dcleq(B). Then ēµ(α) is A-generic and C-generic. By P(V)
ēµ(α) is |⌣

w-generic over A and C. By P(VI) ϕα(x̄, b̄) defines a torsor set. Since

we consider a difference sequence, ϕα(x̄, b̄) defines a group set. Since 〈C, ēµ(α)〉
ℓ =

〈C, ā〉ℓ we can choose ā such that ā = ēµ(α) + m̄, where m̄ ∈ C. As above
γ = α. Since ēµ(α) is generic over A and C we have that ā, −m̄, and −ēµ(α)

are pairwise |⌣-independent over B. By Lemma 2.1 they are generic elements

in acl(B)-definable cosets of the B-definable connected group given by ϕα(x̄, b̄).
Since ēµ(α) is a generic element of this group, a and m are generic elements of
the same coset. Therefore tp(m̄/B) = tp(ā/B) as desired and C = 〈B, m̄〉ℓ by
minimality.

Case 2.3: Neither Case 2.1 nor 2.2

Again we have ēµ(α) /∈ A. Since 〈C, ā〉ℓ = 〈C, ēµ(α)〉
ℓ w.l.o.g. ēµ(α) = ā + m̄

where m̄ ∈ C. By application of Lemma 5.1 to B ≤ C and the choice of µ(α)
there exists a subsequence of elements ēi in C that are |⌣

w-generic over B +

〈ē0, . . . , ēmα−1, m̄〉ℓ. Hence ēi and ēµ(α) are solutions of ϕα(x̄, b̄) |⌣
w-generic over

B + 〈ē0, . . . , ēmα−1, m̄〉ℓ and therefore isomorphic over this subspace by P(V).
Hence ēi − m̄ and ā = ēµ(α) − m̄ are isomorphic over B and fulfil ϕγ(x̄, c̄) by
P(IV). This gives an embedding h of A in C over B with tp(h(ā)/B) = tp(ā/B).
By minimality C = h(A). �

Remember that subspaces in Kµ are strong and in R(C).

Definition Let D be a subspace of R(C). D is called rich if it is in Kµ and if
for every finite B ⊆ A in Kµ with B ⊆ D, there exists an A′ with B ⊆ A′ ⊆ D
and tp(A′/B) = tp(A/B). By P(II) A′ ≤ C. Richness is a property of the
elementary type of D in C. Hence, it makes sense in every model M � T . We
call a substructure V of C rich, if 〈R(V )〉 = V and R(V ) is rich.
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Now we can use Theorem 6.2 to produce a countable rich structure via a Fraïssé-
style-argument:

Corollary 6.3 There is a unique (up to automorphisms) countable rich subspace

of R(C).

Corollary 6.4 Let D be a rich subspace of R(C). Then

a) acl(D) ∩R(C) = D.

b) d(D) ≥ ℵ0.

Proof . a) Let A be a finite subspace of D and a ∈ acl(A). W.l.o.g. we assume
that A is a strong subspace of C since D is a strong subspace. By property P(II)
and Corollary 5.3 every extension A′ of A by an element algebraic over A is strong
and in Kµ. By richness follows the assertion.

b) Let U ≤ C be a maximal subspace of D linearly generated by geometrically
independent elements. Then U is strong in C and U is in Kµ (Axiom P(II),
Corollary 5.3). U cannot be finite since in this case an extension U ′ of U by
an geometrically independent element would be in Kµ and had to be realized
in D. �

We extend our language L by a predicate P µ. Let Lµ be the extended language.
We are interested in the Lµ-structure (M0, 〈D〉) where M0 � C is a model T , D is
a countable rich subspace of R(M0), and d(R(M0)/D) ≥ ℵ0. The interpretation
of P µ is 〈D〉. We use aclL and often acl only for the algebraic closure in the
L-reducts. aclµ is the algebraic closure in the full Lµ-structure.

Lemma 6.5 We consider Lµ-structures 〈M0, D〉 as above.

i) There is a formula χ(x̄, y) = ∃z1z2 ∈ Rµ(η(x̄, z1, z2) = y) where η(x̄, z1, z2) =
y is a quantifier-free L-definable function such that

〈D〉 = {e : 〈M0, D〉 � χ(d̄, e), d̄ ∈ D}.

ii) 〈D〉 = {e : 〈D〉 �L ∃z1z2 ∈ R (η(d̄, z1, z2) = e), d̄ ∈ D}.
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Proof . ii) follows from i). By P(VII) we have three cases:

If M0 = R(M0), then 〈D〉 = D since acl(D) = D by Corollary 6.4 a). In the
third case of P(VII) we use again acl(D)∩R(C) = D. Then R(〈D〉) = D. Hence
P(VII) provides the desired formula. It remains the second case of P(VII). We
define

χ(x̄1, x̄2, y) ≡ ∃z1z2 ∈ Rµ(θ(x̄1, z1) ∧ θ(x̄2, z2) ∧ z1 + z2 = y),

where θ(x̄, z) is given by P(VII). For d̄1, d̄2 in D χ(y, d̄1, d̄2) defines a unique
element in 〈D〉. If e is in 〈D〉, then there exists B ≤ M0 such that B ⊆ D
and e ∈ 〈B〉. By Corollary 6.4 there is d̄1 in D a sequence of generics of R(C)
geometrically independent over B. By P(VII) there is a unique e1 ∈ 〈D〉 such
that M � θ(d̄1, e1) and e1 is generic over 〈B〉 in M . Then e− e1 is an element of
〈D〉 generic over 〈B〉. There is a solution d̄2 of θ(x̄, e− e1) in D. The noexistence
in D would imply that there is an extension A of B given by a solution ā of
θ(x̄, e − e1). Then A is in Kµ by Corollary 5.4. By richness of D there is a
solution in D in contrast to the assumption. �

Let D be a rich subspace of M0

L
�C such that d(R(M0)/D) ≥ ℵ0. Then M =

(M ↾ L, 〈D〉) is an Lµ-structure, where M ↾ L = M0 and we interpret P µ as 〈D〉.
By Lemma 6.5 P µ(M) is definable over P µ(M) ∩ R(M) = Rµ(M). Hence M
fulfils the conditions of the next definition.

Definition We call an Lµ-structure M = (M ↾ L, P µ(M)) rich, if M ↾ L �

T , P µ(M) ∩ R(M) = Rµ(M) is rich. P µ(M) is defined over Rµ(M) by χ in
Lemma 6.5, and d(R(M)/Rµ(M)) ≥ ℵ0.

Corollary 6.3 provides us a rich Lµ-structure.

Lemma 6.6 Let M be a Lµ-structure where M ↾ L � T , R(M) ∩ P µ(M) =
Rµ(M) ∈ Kµ, and ϕα(x̄, b̄) a code formula. Then ϕα(x̄, b̄) has only finitely many

solutions in Rµ(M).

Proof . Choose a finite strong subspace B ≤ M such that b̄ ∈ dcleq(B). Each
coset in Cnα/Bnα contains only qnα·ldim(B) elements. As in the proof of 5.1 there
is a number s = s(α, ldim(B)) such that every sequence ē0, . . . , ēs of solutions of
ϕα(x̄, b̄) contains a subsequence ēi0 ēi1 . . . ēiµ(α)+1

with eij /∈ 〈Bēi0 , . . . ēij−1
〉ℓ. By

the property P(III) and induction 〈Bēi0 , . . . , ēij−1
〉ℓ is strong and eij is generic

28



over Bēi0 . . . ēij−1
. Hence ēi0 − ēiµ(α)+1

, . . . , ēiµ(α)
− ēiµ(α)+1

is a Morley-sequence
and therefore a difference sequence of length µ(α) + 1. If the starting sequence
ē0, . . . , ēs was in Rµ(M), then the canonical parameter of this difference sequence
is in dcleq(Rµ(M)) and we get a contradiction. �

Definition Let M be a rich Lµ-structure and A be a subspace of R(M). A
satisfies the condition (∗) if

(∗) A ≤M , and d(A/A ∩ Rµ(M)) = d(A/Rµ(M)).

The condition d(A/A ∩ Rµ(M)) = d(A/Rµ(M)) says that the union of every
geometrical basis of A ∩Rµ(M) and every geometrical basis of A over Rµ(M) is
a geometrical basis of A. This implies

cld(R
µ(M)) ∩A = cld(A ∩Rµ(M)) ∩A.

Note that Lemma 3.6 implies for A with property (∗) that

A ∩Rµ(M) ≤M and A ∩ cld(R
µ(M)) ≤M.

Lemma 6.7 Let M be a rich Lµ-structure.

i) Every ā ⊆ R(M) is contained in a finite subspace A that satisfies (∗).

ii) If A has property (∗) then there is a geometrical sequence

A0 ⊆ . . . ⊆ Ai0 ⊆ . . . ⊆ Ai1 ⊆ . . . ⊆ Am = A

such that

Ai0 = A ∩Rµ(M), Ai1 = A ∩ cld(R
µ(M)).

Proof . i) Choose step by step a geometrical independent set XY such that
X ⊆ Rµ(M), Y is geometrically independent over Rµ(M) and ā ⊆ cld(XY ).
Then any A ≤ M with 〈XY, ā〉ℓ ⊆ A ⊆ cld(XY ) fulfils (∗).

ii) By Lemma 3.6 A ∩ Rµ(M) and A ∩ cld(R
µ(M)) are strong in M . Then P(II)

and P(IV) provide the desired geometrical sequence. �

Theorem 6.8 Let M and N be rich Lµ-structures. Assume A ≤ R(M) and

f(A) ≤ R(N) satisfy (∗) where f is an Fq-vectorspace isomorphism of A onto

f(A), tpM
L (A) = tpN

L (f(A)), and f(A ∩ Rµ(M)) = f(A) ∩ Rµ(N). Then (M,A)
and (M, f(A)) are Lµ

∞,ω-equivalent.
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Note: f can be extended to an L-isomorphism of 〈A〉 onto 〈f(A)〉 if an only if
tpM

L (A) = tpN
L (f(A)). This follows from P(IV) since A ≤ R(M) and f(A) ≤

R(N).

Corollary 6.9 The Lµ-theory T µ of the rich Lµ-structures is complete.

Corollary 6.10 Let M and N be rich Lµ-structures, ā ∈ Rµ(M) and b̄ ∈ Rµ(N).
If tpM

L (ā) = tpN
L (b̄), then (M, ā) and (N, b̄) are Lµ

∞,ω-equivalent.

Proof . Adding elements from the algebraic closures we can assume w.l.o.g. that
〈ā〉ℓ and 〈b̄〉ℓ are strong subspaces. Then they fulfil (∗). �

Proof of Theorem 6.8. We show that the conditions in the theorem describe a win-
ning strategy for the Ehrenfeucht-Fraïssé-game between (M,A) and (N, f(A)):
Since M = 〈R(M)〉 and N = 〈R(N)〉 we can assume w.l.o.g. that the players
choose only elements in R(M) and R(N). The situation is completely symmetric.
Hence we can assume that player I has choosen some element a in R(M). We
show that there are A ∪ {a} ⊆ D ≤ R(M) and g extending f such that:

(∗∗) D and g(D) fulfil (∗), tpM
L (D) = tpN

L (g(D)), and

g(D ∩ Rµ(M)) = g(D) ∩ Rµ(N).

(∗∗) describes again the winning strategy of player II in our Fraïssé-Ehrenfeucht-
game for (M,A) and (N, f(A)).

Case 1: a ∈ Rµ(M).

1.1 a /∈ cld(A). Since N is a rich Lµ-structure there is some b ∈ Rµ(N)\cld(f(A)).
Let D = 〈A, a〉ℓ and g = f on A and g(a) = b. (∗∗) is true.

1.2 a ∈ cld(A). By Lemma 3.6 C0 = A ∩ Rµ(M) ≤ M . By (∗) we have
d(A/C0) = d(A/Rµ(M)) and therefore a ∈ cld(C0). By Lemma 6.4 acl(Rµ(M))∩
R(M) = Rµ(M). Hence by P(II) there is some finite C ≤ Rµ(M) with 〈C0, a〉

ℓ ⊆
C ⊆ acl(C0, a) ⊆ Rµ(M). By P(IV) there is a geometrical construction C0 ⊆
C1 ⊆ . . . ⊆ Cm = C ⊆ Rµ(M). By richness of N we get g extending f to A + C
such that g ↾ C preserves the geometrical construction above. By Lemma 3.9
A = A+C0 ⊆ A+C1 ⊆ . . . ⊆ A+Cm ≤M and g(A) = g(A+C0) ⊆ g(A+C1) ⊆
. . . ⊆ g(A + Cm) ≤ N are geometrical constructions. They are preserved by g.
By Lemma 3.3 tpM

L (A + C) = tpN
L (g(A + C)). A + C and g(A + C) fulfil (∗).

Furthermore (A+C)∩Rµ(M) = C and g(A+C)∩Rµ(N) = g(C). Hence A+C
and g fulfil (∗∗).
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Case 2: a ∈ cld(R
µ(M))

Using Case 1 we add elements of Rµ(M) to A such that we can assume w.l.o.g.
that a ∈ cld(R

µ(M)∩A). Let C be a strong subspace of R(M) in cld(R
µ(M)∩A)

such that {a} ∪ (cld(R
µ(M)) ∩ A) ⊆ C. By Lemma 3.6 C ∩ Rµ(M) ≤ M .

Furthermore C ∩ cld(R
µ(M)) ⊇ A ∩ cld(R

µ(M)) by construction. Let C0 be
C ∩ Rµ(M). Using Case 1 we can assume w.l.o.g. that C0 is a subspace of A.
By P(IV) there is a geometrical construction C0 ⊆ C1 ⊆ . . . ⊆ Cm = C. By
Lemma 3.9 A = A+ C0 ⊆ A+ C1 ⊆ . . . ⊆ A + Cm is a geometrical construction
and all A + Ci ≤ M . We show the assertion for each A + Ci by induction
on i. By Lemma 3.6 A ∩ cld(R

µ(M)) is strong. Hence we can assume w.l.o.g.
A ∩ cld(R

µ(M)) = A ∩ cld(C0) = Ci0 and A + Ci+1 6= A + Ci for i ≥ i0. The
induction starts with the trivial case i0. We assume there is g with (∗∗) for
A + Ci. That means we have property (∗) for A + Ci and g(A + Ci), where g is
an extension of f that preserves tpL(A+ Ci) and satisfies

f(C0) = g(C0) = g(Rµ(M) ∩ (A+ Ci)) = Rµ(N) ∩ g(A+ Ci).

First we assume that 〈Cic〉
ℓ = Ci+1 (i ≥ i0) where c is isolated over Ci by an

algebraic L-formula ψ(x, d̄) with d̄ in Ci. By construction c /∈ Rµ(M)+ (A+Ci).
We can assume that ψ(x, d̄) isolates c over A + Ci with respect to the L-theory.
Now we choose g(c) as a solution of ψ(x, g(d̄)). This formula is algebraic and
isolates g(c) over g(A + Ci) by induction. A + Ci+1 and g(A + Ci+1) satisfy (∗)
and they have the same L-type. It remains to show that g(c) /∈ Rµ(N)+g(A+Ci).
g(c) ∈ Rµ(N) + g(A+ Ci) would imply g(c) ∈ Rµ(N) + g(Ci) since

cld(R
µ(N)) ∩ g(A+ Ci) = g(Ci).

Hence w.l.o.g. g(c) ∈ Rµ(N). Otherwise we can change c. c /∈ acl(C0), since
otherwise c ∈ Rµ(M). Hence there is some s > 0 such that c ∈ acl(Cs)\acl(Cs−1).
Then Cs = 〈Cs−1ē〉

ℓ and ē is a solution of some ϕα(x̄, b̄) with b̄ ∈ dcleq(Cs−1) and
ē is generic over Cs−1. Since Ci ∩ R

µ(M) = C0 we have ē 6⊆ Rµ(M) + Cs−1 and
therefore ē is generic over Rµ(M) + Cs−1. Since g(c) fulfils g(tpL(c/A + Ci)),
we have g(c) ∈ acl(g(Cs−1, g(ē))) \ acl(g(Cs−1)). By the Exchange Property for
strongly minimal sets we get g(ē) ∈ acl(g(Cs−1), g(c)) ⊆ acl(g(Cs−1) + Rµ(N)).
g(ē) is linearly independent over Rµ(N)+g(Cs−1)). Hence by P(III) g(ē) is generic
over Rµ(N) + g(Cs−1). This is the desired contradiction to g(ē) ∈ acl(g(Cs−1) +
Rµ(N)).

Now we assume Ci+1 = 〈Ci, c̄〉
ℓ where c̄ is a solution of some ψα(x̄, d̄) ∈ X where

d̄ ∈ dcleq(Ci) and c̄ is generic over Ci. By assumption c̄ 6⊆ A + Ci. Hence
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c̄ is generic over A + Ci by P(III). Since (A + C) ∩ Rµ(M) = A ∩ Rµ(M) we
have c̄ 6⊆ Rµ(M) + (A + Ci). Since by Lemma 3.9 Rµ(M) + A + Ci ≤ M c̄
is also generic over this space. Now we consider ψα(x̄, g(d̄)). This formula is
again strongly minimal. By Lemma 6.6 there are only finitely many solutions
of ψα(x̄, ē) in Rµ(N) for every parameter ē and therefore also in every coset of
this subspace. Hence we have infinitely many solutions of ψα(c, g(d̄)) generic over
Rµ(N) + g(A+Ci) ≤ N . Let g(c̄) be one of them and define g(Ci+1) = 〈g(c)Ci〉

ℓ

accordingly. Then A+Ci+1 and g(A+Ci+1) satisfy again (∗) and have the same
L-type and by the choice of g(c̄) we have

g(Rµ(M) ∩ (A+ Ci+1)) = Rµ(N) ∩ g(A+ Ci+1).

Case 3: a ∈ cld(A)

Using induction we consider an algebraic or prealgebraic extension 〈Ac̄〉ℓ of A.
Using Case 2 we can assume that c̄ /∈ cld(R

µ(M)). Note that this implies

〈c̄〉ℓ ∩ cld(R
µ(M)) = 〈0〉ℓ.

Then we choose g(c̄) such that tpM
L (Ac̄) = tpN

L (g(A)g(c̄)). This is possible, since
c̄ is isolated over A. Hence by P(II) g(c̄) has the same geometrical behaviour over
g(A) as c̄ over A. By the conditions (∗∗) of the game

d(g(A)/Rµ(N)) = d(g(A)/Rµ(N) ∩ g(A)).

Since c̄ ∈ cld(A) \ cld(A ∩ Rµ(M)) we get g(c̄) ∈ cld(A) \ cld(A ∩ Rµ(N)). But
g(c̄) ∈ cld(R

µ(N)) would contradict the above equation. Hence 〈Ac̄〉ℓ and g ensure
the conditions of the game.

Case 4: a /∈ cld(A)

If a ∈ cld(A + Rµ(M)) then we use the cases before to play the game. We add
the necessary element from Rµ(M) to A. Otherwise a /∈ cld(A + Rµ(M)). Since
N is rich there is some g(a) /∈ cld(g(A) + Rµ(N)). Again the conditions (∗∗) of
the game are fulfilled. �

Corollary 6.11 Let M be a rich Lµ-structure. The code formulas ϕα(x̄, b̄) with

b̄ in P µ(M)eq are minimal.

Proof . By Lemma 6.6 there are only finitely many solutions in Rµ(M). Let
B ≤ M be a strong subspace of Rµ(M) such that b̄ ∈ dcleq(B). We show that
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any two solutions ā, c̄ that are not in B have the same Lµ-type over B. ā and c̄
are solutions of ϕα(x̄, b̄) generic over B. Then 〈Ba〉ℓ and 〈Bc〉ℓ with f(B) = B
and f(a) = c fulfil the conditions in Theorem 6.8. Hence tpLµ(a/B) = tpLµ(c/B).
�

Lemma 6.12 For every good code α there is a Lµ-sentence χα such that for

all Lµ-structures M where M ↾ L � T , R(M) ∩ P µ(M) = Rµ(M) ∈ Kµ and

〈Rµ(M)〉 = P µ(M):
M � χα if and only if every minimal prealgebraic extension of Rµ(M) given by

ϕα(x̄, b̄) with b̄ ∈ P µ(M)eq is not in Kµ.

Proof . Let ā be a solution of ϕα(x̄, b̄) not in Rµ(M). By P(III) ā is a generic
solution. If 〈Rµ(M)ā〉ℓ is not in Kµ we have the cases a) or b) of Corollary 5.3. In
case a) 〈Rµ(M)ā〉ℓ contains a difference sequence for ϕα(x̄, b̄) of length µ(α) + 1
for α. In case b) there is a difference sequence of length µ(β)+1 for a good code β,
which contains a subsequence of length µ∗(β) linearly independent over Rµ(M).
Hence µ∗(β)nβ ≤ nα in this case. Since µ∗ is finite-to-one, only a finite set Cα

of codes β can occur. Let C ′
α = Cα ∪ {α}. Then Rµ(M) has no prealgebraic

minimal extensions in Kµ given by α if and only if

M � ∀b̄ ∈ P µ
∨

β∈C′
α

∃ȳ0 . . . ȳµ(β) ∈ Rµ(M)[∃x̄ϕα(x̄, b̄) −→

∃∞x̄(ϕα(x̄, b̄) ∧ ∃z̄0 . . . z̄µ(β) ∈ 〈x̄〉 ψβ(ȳ0 + z̄0, . . . ȳµ(β) + z̄µ(β)))].

W.l.o.g. ϕα(x̄, ȳ) is in L. Note that the formula after ∃∞x̄ is in L and ϕα(x̄, b̄) is
strongly minimal in M ↾ L. In this way we express "for x̄ generic over Rµ(M)",
since by Lemma 6.6 ϕα(x̄, b̄) has only finitely many solutions in Rµ(M). �

7 Axiomatization of T µ

We assume that T satisfies P(I) – P(VII). Let T µ be the theory of rich Lµ-
structures. By Corollary 6.9 T µ is a complete theory. We use the notation
Rµ = P µ ∩ R. Using the Amalgamation Theorem 6.2 we get a countable rich
subspace D of R(C). Let P µ be 〈D〉. This subspace is L-definable over D
(Lemma 6.5). Then (C, P µ(Cµ)) is a rich Lµ-structure. We call it our standard
model. The following is true in T µ and can be expressed in Lµ. Let M be a
model of T µ:
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T µ 1) M ↾ L is a model of T .

T µ 2) aclL(Rµ(M)) ∩ R(M) = Rµ(M) and P µ(M) = 〈Rµ(M)〉 described by
Lemma 6.5. d(Rµ(M)) and d(R(M)/Rµ(M)) are infinite for ω-saturated
models.

T µ 3) Rµ(M) is in Kµ.

T µ 4) If b̄ is in dcleq(Rµ(M))) and ā is a solution of ϕα(x̄, b̄) in R(M) generic
over Rµ(M) for some code formula ϕα(x̄, b̄), then Rµ(M) + 〈ā〉ℓ is not in
Kµ.

These sets of axioms are elementary. For T µ 1) this is clear. Using Lemma 6.5
there is no problem to express T µ 2). For T µ 3) note that Rµ(M) is strong since
it is closed under aclL in R(M). The absense of difference sequences for ϕα(x̄, ȳ)
of length µ(α) + 1 in Rµ(M) can be expressed by Theorem 4.5. For T µ 4) we use
Lemma 6.12. Finally for all axioms we find Lµ-formulas.
It is clear that rich Lµ-structures satisfy T µ 1), T µ 2) and T µ 3). That they also
satisfy T µ 4) is part of the following theorem:

Theorem 7.1 An Lµ-structure M that satisfies T µ 1), T µ 2) and T µ 3) is rich if

and only if it is an ω-saturated model of T µ.

Proof . First assume that M = (M ↾ L, P µ(M)) is an ω-saturated model of T µ.
We show that M is rich. Let B ⊆ A be in Kµ. Then B and A are strong in R(C).
Assume B ≤ Rµ(M). W.l.o.g. A is a minimal strong extension of B. There are
three cases:

i) If A = 〈Ba〉ℓ and a is algebraic over B, then A is in Rµ(M) by T µ 2).

ii) Let A be a minimal prealgebraic extension of B: A = 〈Bā〉ℓ where ā is the
generic solution of some code formula ϕα(x̄, b̄) where b̄ is in dcleq(B). There
is a solution ā in R(M) generic over the strong subspace Rµ(M). By Axiom
T µ 4) this free amalgam Rµ(M)⊕〈ā〉ℓ over B is not in Kµ. By Theorem 6.2
and P(III) there is a partial L-elementary map of ā over B into Rµ(M) as
desired.

iii) A is a minimal transcendental extension. Then Axiom T µ 2) ensures the
assertion.
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Now let M be a rich Lµ-structure. M satisfies T µ 1) − T µ 3). We show T µ 4).
Choose a strong subspace B in Rµ(M) such that b̄ ∈ dcleq(B). Assume there is
a solution ā of ϕα(x̄, b̄) generic over Rµ(M) such that Rµ(M) + 〈ā〉ℓ is in Kµ.
Since M is rich there is a partial elementary copy A0 ⊇ B of 〈Bā〉 over B in
Rµ(M). Since B ≤ M A0 ≤ M . In the next step we get a copy A1 of 〈A0ā〉

ℓ

over A0 inside Rµ(M). We can continue this process as long as we want and get
a contradiction to the fact that Rµ(M) is in Kµ. By Corollary 6.3 there exists a
rich Lµ-structure. Hence T µ is consistent and we have an ω-saturated model N
of T µ. As shown above N is a rich Lµ-structure. By Theorem 6.8 M and N are
Lµ
∞,ω-equivalent. Hence M is an ω-saturated model of T µ. �

Corollary 7.2 The deductive closure of T µ 1) – T µ 4) is the complete theory T µ.

Proof . This follows from Theorem 7.1 and Corollary 6.9. �

Let Cµ be the monster model of T µ where we work in.

Lemma 7.3 Let M � Cµ be a model of T µ.

i) Rµ(Cµ) and M are geometrically independent over Rµ(M).

ii) In Rµ(Cµ) cld(X) is part of aclµ(X).

iii) Rµ(x) is strongly minimal.

iv) P µ(x) is of finite Morley rank.

Proof . i) If ā in M is geometrically dependent over Rµ(M), then there is a
geometrically construction over a proper subspace A′ of 〈ā〉ℓ and Rµ(M) that
contains an element of 〈ā〉ℓ \A′. Hence “ ā is geometrically independent over Rµ”
is part of the Lµ-type of ā. Since tpM(ā) = tpCµ

(ā) it follows the assertion.

ii) W.l.o.g. we assume B ≤ R(Cµ), B ⊆ Rµ(Cµ) and a ∈ cld(B) ∩ Rµ(Cµ). Let
A ≤ R(Cµ) be a geometrical construction over B that contains a and has only
algebraic and prealgebraic steps. By Lemma 3.4 we can assume w.l.o.g. that
A ⊆ Rµ(C). By Lemma 6.6 A ⊆ aclµ(B).

iii) To show the strong minimality of Rµ(x), we consider again some ω saturated
M � Cµ � T µ and a, c ∈ Rµ(Cµ) \M . By ii) a and c are not in cld(R

µ(M)).
By i) they are both not in cld(M). By Lemma 6.7 every finite subspace of R(M)
is contained in some A ⊆ R(M) that satisfies (∗). If we define f = id on A
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and f(a) = c, then 〈Aa〉ℓ and f satisfy the conditions of Theorem 6.8. Hence
tpLµ(A, a) = tpLµ(A, c) and therefore tpLµ(a/M) = tpLµ(c/M) as desired.

iv) Since P µ(Cµ) = 〈Rµ(Cµ)〉 and Rµ(Cµ) is strongly minimal, P µ(x) has finite
Morley rank. �

Theorem 7.4 T µ is ω-stable.

Proof . Let M be a countable elementary submodel of Cµ. We show that there
are only countably many types tp(ā/M) where ā is a finite tuple in Cµ . W.l.o.g.
we can restrict us to ā ⊆ R(Cµ). Furthermore we will consider finite subspaces
ā ⊆ A ⊆ R(C) with certain properties only. For a given ā ⊆ R(Cµ) it is easy to
find a set XYZW of geometrically independent elements (short geo. basis) such
that the following is true:

(0) ā ⊆ cld(XY ZW )

(1) X ⊆ Rµ(M)

(2) Y ⊆ R(M) is geometrically independent over Rµ(M).

(3) Z ⊆ Rµ(Cµ) (short Rµ) is geometrically independent over Rµ(M).

(4) W is geometrically independent over R(M) +Rµ.

By Lemma 7.3 i) Y is geometrically independent over Rµ and Z over M . Now we
choose any A such that XY ZW ⊆ A ⊆ cld(XY ZW ), ā ⊆ A and A ≤ Cµ. Then

A ∩Rµ(M) ⊆ A ∩ cld(R
µ(M)) ⊆ cld(X),

A ∩R(M) ⊆ A ∩ cld(R(M)) ⊆ cld(XY ),

A ∩Rµ ⊆ A ∩ cld(R
µ) ⊆ cld(XZ),

A ∩ (R(M) +Rµ) ⊆ A ∩ cld(R(M) +Rµ) ⊆ cld(XY Z).

By Lemma 3.6 the eight intersections above are strong in Cµ. Note that A ∩
(R(M)+Rµ) contains the free sum of A∩R(M) and A∩Rµ over A∩Rµ(M). Let
D̄ be a geometrical construction for A over XY ZW that starts with a geometrical
construction of A∩Rµ(M) over X, then extends this to A∩R(M) and A∩Rµ.

Now we consider XY Z ′W ′ ⊆ A′ ⊆ cld(XY Z
′W ′) with A′ ∩ R(M) = A ∩ R(M),

XY Z ′W ′ satisfy the properties (1)–(4) and there is a vectorspace isomorphism f
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of A onto A′ that extends the identity on A ∩ R(M), preserves the geometrical
construction D̄, and

f(Z) = Z ′, f(W ) = W ′, f(Rµ ∩ A) = Rµ ∩A′.

Then A and A′ satisfy the conditions in Theorem 6.8: A and A′ have (∗) and
f(A∩Rµ) = f(A)∩Rµ. By Lemma 3.3 tpL(A) = tpL(A′). Hence by Theorem 6.8
tpLµ(A) = tpLµ(A′).
For any subspace E ⊆ R(M) we can enlarge X to XE , Y to YE, A to AE ,
A′ to A′

E , D̄ to D̄E and f to fE such that the conditions above remain true
E ⊆ M ∩ AE = M ∩ A′

E, AE = A + (M ∩ AE) and A′
E = A′ + (M ∩ A′

E). Then
again tpLµ(AE) = tpLµ(A′

E).

Since E was arbitrary we have shown that tpLµ(A/M) = tpLµ(A′/M) if A and
A′ are given as above. The conditions above define an equivalence relation for
subspaces A with only countably many classes. hence T µ is ω-stable. �

Let Ti (i = 0, 1) be complete Li-theories. Let ∆ be an interpretation of the theory
T0 in the theory T1. In [Bau1] is defined that ∆ is an interpretation of T0 in T1

without new information, if for every M � T1 every subset X of ∆(M) defined
in M by a L1-formula without parameters is definable by a L0-formula without
parameters. If T1 is stable, then we have the same for formulas with parameters.
In [Bau1] the following result of Lascar is published:

Lemma 7.5 (Lascar) If T1 is stable and ∆ is an interpetation of T0 in T1 with-

out new information, then for every model N of T0 there is some model M � T1

such that ∆(M) ∼= N .

Definition If M is a model of T µ, then let Γ(M) be the L-substructure of M
with domain P µ(M). Let Γ(T µ) be the complete L-theory of all Γ(M) where
M � T µ.

Γ defined above is an interpetation. We get:

Theorem 7.6 Let T be a theory with P(I) – P(VII). Γ(T µ) is uncountably cat-

egorical, R(x) is a strongly minimal formula in this theory. The pregeometry of

R is given by acl = cld. For models N of Γ(T µ) we have N = 〈R(N)〉.

Proof . Rµ(x) is strongly minimal for T µ by Lemma 7.3 iii). Hence R(x) is strongly
minimal in Γ(T µ). Since Γ(M) = 〈R(Γ(M))〉 we have that Γ(T µ) is uncountably
categorical. Since cld contains acl we get acl = cld by Lemma 6.6. �
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Theorem 7.7 Let T be a theory with P(I) – P(VII). Every subset of P µ(Cµ)n

defined in Cµ is L-definable in Γ(Cµ). Hence Γ is an interpretation without new

information and every model of Γ(T µ) has the form Γ(M) with M � T µ.

Proof . Let M be a ω-saturated model of T µ. Since T µ is ω-stable P µ is stably
embedded in M . Hence it is sufficient to consider ∅ − Lµ-definable sets X. By
Lemma 6.5 we can assume that X ⊆ Rµ(Cµ)n. We have to show the following: If
ā and b̄ are tuples in Rµ(M) with tpΓ(M)(ā) = tpΓ(M)(b̄) then tpM(ā) = tpM(b̄).

tpΓ(M)(ā) = tpΓ(M)(b̄) is equivalent to tp∗Rµ(M)(ā) = tp∗Rµ(M)(b̄). tp∗Rµ(M)(a)
is used to denote the subset of all formulas of tpM(ā) with quantifiers that are
restricted to Rµ. By Corollary 6.10 it is sufficient to show that

tpM↾L(ā) = tpM↾L(b̄).

For this we use Lemma 3.3. Let A0 ⊆ A1 ⊆ . . . ⊆ Am be a geometrical construc-
tion for ā over A0 where A0 ⊆ 〈ā〉ℓ is the linear hull of geometrically independent
elements and ā ⊆ Am ⊆ cld(A0). We can choose Am ⊆ aclL(ā) and therefore
Am ⊆ Rµ(M). Now we use that there are quantifier free formulas that describe
the geometrical construction (P(IV)).
Assume x̄0 are variables for a vector basis ā0 for A0.
x̄1 are variables for some ā1 such that ā0ā1 is a vector basis for 〈ā〉ℓ. W.l.o.g.
ā = ā0ā1.
ȳ are variables for some c̄ such that ā0ā1c̄ is a vector basis for Am.
tp∗Rµ(M)(ā, c̄) contains a description of the geometrical construction and the in-
formation about the geometrical independence of the subset ā0 of ā. There is a
quantifier free formula ϕ(x̄0, x̄1, ȳ) that describes the algebraic and prealgebraic
extensions of A0 necessary to obtain Am.
The geometrical independence of the elements of ā0 can be described by formulas
¬∃z̄(z̄ ∈ Rµ ∧ ψ(x̄0, z̄)), where ψ(x̄0, z̄) is quantifier free and describes a possible
geometrical construction over a proper subset of ā0 that uses only algebraic and
prealgebraic steps. Note we can restrict us to z̄ ∈ Rµ since such a geometrical
construction would exist inside aclL(Rµ(M)) ∩ R(M) = Rµ(M). These formulas
are all in tp∗Rµ(M)(ā) = tp∗Rµ(M)(b̄). They ensure 〈ā0〉 ≤M and M � ϕ(ā0, ā1, c̄)
describes the geometrical construction over A0. By Lemma 3.3 these facts fix
tpM↾L(ā0ā1c̄).
By ω-saturation there is some d̄ inRµ(M) such that tp∗Rµ(M)(ā, c̄) = tp∗Rµ(M)(b̄, d̄).
Hence there is some vectorspace isomorphism f of 〈āc̄〉ℓ onto 〈b̄d̄〉ℓ that preserves
the geometrical construction. By Lemma 3.3 tpM↾L(āc̄) = tpM↾L(b̄d̄) as desired.

�
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8 A new uncountably categorical group

We consider 2-nilpotent graded Fq-Lie algebras M . If we say this we mean the
following:
Let Fq be the finite field with q elements. M is an Fq-vectorspace M1⊕M2 with a
Lie-multiplication [ , ] such that [M1,M1] ⊆M2, [M1,M2] = 0 and [M2,M2] = 0.
Furthermore we assume that 〈M1〉

M = M , where 〈X〉M is the Lie subalgebra
generated by X. That means 〈[M1,M1]〉

ℓ = M2.

We use an elementary language L that is an extension of the language of Fq-
vectorspaces by [ , ] for the Lie multiplication, R = R1 and R2 for M1 and M2,
respectively. Note that a free algebra F (M1) over M1 is given by (F (M1))2 =
Λ2M1 where Λ2M1 is the exterior square over M1. Then M ∼= F (M1)/N(M)
where N(M) is a subspace of Λ2M1.

If H1 is a subspace of M1, then

H = 〈H1〉
M ∼= F (H1)/N(M) ∩ Λ2H1

,

since there is a canonical embedding of F (H1) into F (M1).

Definition We define δ(H) = l. dim(H1)−l. dim(N(H)) where N(H) = N(M)∩
Λ2H1.

This is the approach in [Bau2]. We follow the ideas of the first four chapters
in this paper to get a theory T with P(I) – P(VII). Omitted proofs are in that
paper. We use A, B, C to denote finite subspaces of M1 where M is as above.
Let U , V be arbitrary subspaces of M1. If we write δ(E) for E ⊆ M1, then this
is δ(〈E〉).

Definition We say B ≤ U for B ⊆ U ⊆M1 (B is self-sufficient or strong in U),
if δ(B) ≤ δ(A) for all B ⊆ A ⊆ U .
We define B≤

n
U (B is n-strong in U) if we consider only A with l.dim(A/B) ≤ n.

V ≤ U if for every B ⊆ V there is some A such that B ⊆ A ⊆ V and A ≤ U .
We also use A ≤M and U ≤M instead of A ≤M1 and U ≤M1.

Lemma 8.1 δ(A+B) ≤ δ(A) + δ(B) − δ(A ∩B).

Assumption We consider only M with 〈a〉 ≤ M for all a ∈M .

That means δ(A) ≥ 1 for all A 6= 〈0〉 in M . Hence we can define
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Definition d(A) = min{δ(B) : A ⊆ B ⊆M}. a ∈ cld(A1), if d(A) = d(A∪{a}).
We also use d(H1) = d(H).

Lemma 8.2 For δ defined above the following is true:

i) The intersection of strong subspaces is strong.

ii) cld defines a pregeometry on the subspaces of M1 with dimension function

d.

iii) Strongness is transitiv.

iv) If V ≤ U , then X ∩ V ≤ X ∩ U for every subspace X.

By i) we can define CSS(A) as the intersection of all B that are strong in M and
contain A. Then CSS(A) ⊆ aclM(A).
Let K be the class of all 2-nilpotent graded Fq-Lie algebras M with M = 〈M1〉
such that

i) [a, b] 6= 0 for linearly independent a, b in M1.

ii) 〈a〉ℓ ≤M1 for all a ∈M1.

Note that i) implies δ(A) = l.dim(A) for A ⊆M with l. dim(A) ≤ 3.

In [Bau2] a class is considered where i) is replaced by d(A) = l. dim(A) for
l. dim(A) ≤ 3.

If H and K are 2-nilpotent graded Fq-Lie algebras as above with a common
subalgebra E, then the free amalgam H ∗

E
K of H and K over E is the Lie algebra

M such that M1 = H1 ⊕
E1

K1 and M2 = Λ2M1/N where N = N(H)+N(E). Note

that Λ2H1, Λ2E1, and Λ2K1 are naturally embedded in Λ2M1 and therefore also
N(H), N(E) and N(K).

If B ≤ M , B ⊆ A, and A ≤ M , then A is a minimal strong extension of B if
there is no A′ with B ( A′ ( A and A′ ≤ M . There are three possibilities of
minimal strong extensions:

a) Transcendental Case: l. dim(A) = l.dim(B) + 1 and δ(A) = δ(B) + 1.

b) Algebraic Case: l. dim(A) = l. dim(B) + 1 and δ(A) = δ(B).
In this case A1 = B1 ⊕ 〈a〉ℓ and N(A) = N(B) ⊕ 〈[a, b] + ψ〉ℓ where ψ ∈
Λ2(B1) and b ∈ B1. By property i) in the definition of K 〈a〉ℓ is uniquely
determined modulo 〈b〉ℓ. We call a a b-divisor of ψ.
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c) Prealgebraic Case: l. dim(A) > l. dim(B)+ 1 and δ(A) = δ(B). In this case
B ( A′ ( A implies δ(B) < δ(A′).

As in [Bau2] we obtain:

Theorem 8.3 i) K has the amalgamation with respect to strong embeddings.

ii) If B ≤
l.dim(A/B)+n

U and B ≤ A for A, B, U in K, then there is an amalgam

D of 〈A〉 and 〈U〉 over 〈B〉 in K such that U ≤ D and A≤
n
D.

Proof . As above A, B are finite and U can be infinite. We prove ii). i) follows
from ii). Consider B = A0 ⊆ A1 ⊆ . . . ⊆ An = A where all Ai are strong in A and
minimal over Ai−1 with this property. Using induction it is sufficient to assume
that A is a minimal strong extension of B. First we assume that B ≤ A = 〈B, a〉ℓ

is given by [a, b] + ψ = 0, where ψ ∈ Λ2(B1) and b ∈ B1 (algebraic case) and
[x, b] + ψ = 0 has already a solution c in U . By A in K c is not in B. Then
we embed A over B into U . This is possible because of B≤

1
U . Note: If B ≤

n+1
U

then the image of A is n-strong in D.

In all other cases let D be the free amalgam of U and A over B. We have to show
i) and ii) in the definition of K. Let E be a finite subspace of D. We assume the
non-trivial situation E 6= 〈0〉, E 6⊆ U and E 6⊆ A.

a) Transcendental Case: Ki) is clear. Furthermore E = E∩U+〈e〉ℓ with e /∈ U
and δ(E) = δ(E ∩ U) + 1 ≥ max{1, δ(E ∩ U)}, since N(E) = N(E ∩ U).

b) Algebraic Case: A1 = B1 ⊕〈a〉ℓ, N(A) = N(B) + 〈[a, b] +ψ〉ℓ where b ∈ B1

and ψ ∈ Λ2(B1).

First we show Ki). Assume [c, d] = 0 for c, d ∈ D1. Let XuXbba be a vector
basis of D1 where Xbb is a basis of B1, Xbba a basis of A1 and XuXbb a
basis of U1. Let c = uc + wc + rcb+ sca and d = ud + wd + rdb+ sda where
uc, ud ∈ 〈Xu〉

ℓ, wc, wd ∈ 〈Xb〉
ℓ rc, sc, rd, sd ∈ Fq. W.l.o.g. {sc, sd} ⊆ {0, 1}

and sc = 1 or sd = 1. a must be involved since U is in K. Let us work in
Λ2D1. Then

(c∧d) = (uc+wc+rcb∧ud+wd+rdb)+(sd(uc+wc+rcb)−sc(ud+wd+rdb)∧a).

(∗) Every element of N(D) has the form t((a ∧ b) + ψ) + Φ where
Φ ∈ N(U) and t ∈ Fq.

41



Hence sd = 1 implies uc = 0, and sc = 1 implies ud = 0. sd = sc = 1 is
impossible since then uc = ud = 0 and c, d ∈ A. Hence w.l.o.g. sd = 1,
ud 6= 0, and sc = 0. Then we get

c ∧ d = ((wc + rcb) ∧ a) + ((wc + rcb) ∧ (ud + wd + rdb)).

By (∗) we get wc = 0. If also rc = 0 then c = 0. Hence w.l.o.g. c = b and
c∧d = (b∧a)+(b∧(ud+wd)). If c∧d ∈ N(D), then b∧(ud+wd)−ψ ∈ N(U)
and −(ud + wd) is a solution of the equation that defines the considerd
algebraic case. This contradicts our assumption.

To show Kii) let E be as above. Then l.dim(N(E)) ≤ l.dim(N(E ∩U)) + 1
and therefore δ(E) ≥ δ(E ∩ U) > 0 or E ∩ U = 〈0〉, E = 〈e〉 and δ(e) = 1.

c) Prealgebraic Case: A1 = B1 ⊕ 〈ā〉ℓ.
Again we show Ki) first. We work with a vector basis XuXbā where Xb is
a basis for B1, XuXb for U1, and Xbā for A. We have

c = uc + wc + ac and d = ud + wd + ad

with uc, ud ∈ 〈Xu〉
ℓ, wc, wd ∈ 〈Xb〉 and ac and ad in 〈ā〉ℓ. In Λ2D1 we have

c ∧ d = (uc + wc ∧ ud + wd) − (ud + wd) ∧ ac + (uc + wc) ∧ ad.

Since U ∈ K we can assume ac 6= 0 or ad 6= 0. If l.dim(〈ac, ad〉
ℓ) = 1, then

w.l.o.g. ac = ad or ac 6= 0 and ad = 0. In the first case c∧ (d− c) = 0. Since
c and d are linearly independent, this implies an equation ac∧b+ψ ∈ N(A),
a contradiction to the prealgebraic case. Hence we can assume that we are
in the case ac 6= 0 and ad = 0. Then ud = 0 and wd 6= 0. We have that N(A)
contains an element wd ∧ ac + ψ with ψ ∈ Λ2(B1). But then δ(ac/B) = 0
a contradiction to l.dim(ā) ≥ 2 and the minimality of A over B. Now we
assume that ac and ad are linearly independent. Again ud = 0 = uc, since
N(U)+N(A) cannot produce elements that contain ud ∧ ac or uc ∧ ad. But
then c and d are in A and [c, d] = 0 is impossible since A ∈ K.

It remains to show Kii). Again we consider E in D1 with E 6⊆ U , E 6⊆ A.
Let c̄ with ci = a′i + di (1 ≤ i ≤ m) be a vector basis of E over E ∩ U
where a′i ∈ 〈ā〉ℓ and di ∈ U . Then a′1, . . . , a

′
m are linearly independent over

B1 and therefore over U1. Since N(D) = N(U) +N(A) N(E)/N(E ∩ U)
has a basis ψi(a) + ψi(u) (1 ≤ i ≤ ℓ) where ψi(a) ∈ N(A) and ψi(u) ∈
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N(U). Then ψi(a) ∈ Λ2(B1 ⊕ 〈a′1, . . . , a
′
m〉

ℓ) and ψ1(a), . . . , ψℓ(a) have to
be linearly independent over Λ2B1. Since B ≤ A we get ℓ ≤ m. Hence
δ(E) = δ(E ∩ U) + m − ℓ ≥ δ(E ∩ U) > 0, if E ∩ U 6= 〈0〉. Now assume
E ∩ U = 〈0〉. If E ∩ A 6= 〈0〉, then we get similarly that δ(E) ≥ δ(E ∩ A),
since l.dim(E/B) ≤ l.dim(A/B) and B is l.dim(A/B) + n strong in U . If
E ∩ U = 〈0〉 and E ∩A = 〈0〉, then δ(E) = l.dim(E). The proof of K ii) is
finished.

By the considerations above we have U ≤ D. Similarly we get for E ⊇ A
with l.dim(E/A) ≤ n δ(E) ≥ δ(A) since B ≤

l.dim(A/B)+n
U . Hence A≤

n
D. �

By the usual procedure we get a countable Fraïssé-Hrushovski-Limit MG in K:

Theorem 8.4 There is a countable structure MG in K that satisfies the following

condition:

(rich) If B ≤ A are in K and there is a strong embedding f of B in MG, then it

is possible to extend f to a strong embedding f̄ of A in MG.

MG is uniquely determined up to isomorphisms.

Definition A structure M in K that satisfies the condition (rich) is called a rich
K-structure.

Also the following result is easily proved by standard methods.

Theorem 8.5 Let M and N be rich K-structures, 〈ā〉 ≤M , 〈b̄〉 ≤ N and 〈ā〉 ∼=
〈b̄〉. Then (M, ā) ≡L∞,ω

(N, b̄).

By Theorem 8.5 all rich K-structures have the same elementary theory T . To
axiomatize T we write the following sets of L-sentences:

T 1) M is a 2-nilpotent graded Fq-Lie algebra.

T 2) ∀xy ∈ R1("x and y are linearly independent"→ [x, y] 6= 0)
∀xz∃y(x ∈ R1 ∧ x 6= 0 ∧ z ∈ R2 → [x, y] = z).

T 3) 〈a〉 ≤M for all a ∈M .

T 4) If B ≤
l.dim(A/B)+n

M , B ≤ A are in K, then there is an n-strong embedding

of A in M .
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It is easily seen how to formulate this axioms in L. The strong form of 〈M1〉 = M
in T2) follows from the richness.

Theorem 8.6 i) A rich K-structure satisfies T1)–T4).

ii) Let M be a model of T1), T 2) and T3). Then M is a rich K-structure if

and only if M is a ω-saturated model of T1)–T4).

Proof . Let M be a rich K-structure.

i) First we show

M � ∀xz∃y(x ∈ R1 ∧ x 6= 0 ∧ z ∈ R2 → [xy] = z).

Take 0 6= b ∈ M1 and 0 6= w ∈ M2. Since M ∈ K there is some strong subspace
B1 of M such that 〈B1〉

M contains b and w. If there is some element c ∈ B1 such
that [b, c] = w, then we are done.
Otherwise we define A1 = B1⊕〈a〉ℓ and A2 = Λ2A1/N(B) + 〈(b ∧ a) − ŵ〉ℓ

where

ŵ is a preimage of w in Λ2B1. We show that A ∈ K. Kii) is clear. It remains to
show Ki). If [b1 + r1a, b2 + r2a] = 0, where bi ∈ B1 and b1 + r1a and b2 + r2a are
linearly independent, then [b1, b2] + [r1b2 − r2b1, a] = 0. r1 = 0 = r2 is impossible
since 〈B1〉

M satisfies Ki). If r1b2 = r2b1, then r2(b1 + r1a) = r1(b2 + r2a), a
contradiction to the linear independence.
Otherwise we assume w.lo.g. r2 6= 0. Then w.l.o.g. 0 6= r1b2 − r2b1 = b and
w = [b1, b2]. It follows

[ 1

−r2
b, b2

]

= [b1, b2] = w

a contradiction to the assumption that [b, x] − w = 0 has no solution in 〈B1〉
M .

Since A is in K and M is rich there is a strong image of A over B in M . We
have [b, a′]−w = 0 for some a′ in M as desired. Now we know that M is a model
of T 1), T 2) and T3). To show T4) assume B ≤

l.dim(A/B)+n
M and B ≤ A be K.

Then B ⊆ C ≤ M . By Theorem 8.3ii) there is an amalgam D ≥ C of A and C
over B. We have A≤

n
D. By the condition (rich) there is a strong embedding of

D over C in M . This gives the desired embedding of A over B in M . The image
of A is n-strong in M .

ii) Let M be an ω-saturated model of T 1)–T4). Then M is a K-structure and
we have to show that M is rich. Assume B ≤ M and B ≤ A are in K. W.l.o.g.
A is minimal over B. If A is algebraic, we get the strong embedding by T2). In
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the prealgebraic case we use T4). Since B ≤ M the image of A in M is strong.
In the transcendental case we get some a ∈M1 \ cld(B) by T4) and ω-saturation.
It remains to show that rich models M of T 1)–T3) are ω-saturated models of
T 1)–T4). Since the ω-saturated models N of T 1)–T4) are rich as shown above
we get by Theorem 8.4 that M ≡L∞,ω

N . Therefore also the rich models M are
ω-saturated. �

Let T be the theory T1)–T4). To show that T satisfies P(I) – P(VII) let R be
R1. Strongness ≤ and the pregeometry cld are given by the δ-function defined
above. The Lemmas 8.1 and 8.2 provide us that a ∈ cld(A) defines a pregeometry.
By the definitions it is clear that “a ∈ cld(A)” is part of tp(aA) and “A ≤ R(M)”
is part of tp(A). 〈0〉ℓ ≤M is true in all models of T .
Furthermore CSS(A) is strong in M and is part of the algebraic closure of A. If
A ≤ M and A ⊆ C ⊆ acl(A), then δ(C/A) = 0. Then w.l.o.g. C = CSS(C) and
therefore C is strong in M . It follows A = A0 ⊆ A1 ⊆ . . . ⊆ An = C where Ai+1

is a strong minimal extension of Ai. But then Ai+1 is a minimal strong algebraic
extension of Ai for all i, as described above. By Theorem 8.6 the geometrical
dimension of every ω-saturated model of T is infinite.
To prove the rest of P(II) assume A ⊆ M and B ⊆ N with tpM(A) = tpN(B).
W.l.o.g. M andN are ω-saturated and therefore rich (Theorem 8.6). Furthermore
w.l.o.g. A ≤ M and B ≤ N . If a is geometrically independent over A and b is
geometrically independent over B, then 〈aA〉 ∼= 〈bB〉, 〈A, a〉 ≤ M , 〈B, b〉 ≤ N
and by Theorem 8.5 tpM(aˆA) = tpN(bˆB). Hence we know that P(I) and P(II)
are satisfied.

To continue we have to define X . We consider minimal prealgebraic extensions
〈Bā〉 = A in a model M � T . If ā = (a0, . . . , an−1) has linear dimension n over
B, then there are n “relations” Φi (i < n) in Λ2A linearly independent over Λ2B,
that are a basis of N(A) over N(B):

(+) Φi =
∑

ℓ<j<n

ri
ℓj(aℓ ∧ aj) +

∑

j<n

(bij ∧ aj) + ψi

where ri
ℓj ∈ Fp, bij ∈ B1 and ψi ∈ Λ2B1.

Remark

• If we choose another basis of N(A) over N(B), then 〈bij : i, j < n〉ℓ and
〈ψ0, . . . , ψn−1〉

ℓ ⊆ Λ2B1 in (+) do not change.

45



• Let H be a vectorspace automorphism of 〈ā〉ℓ. The representation (+) of
〈H(ā)B〉 over B uses the same spaces 〈bij : i, j < n〉ℓ and 〈ψ0, . . . , ψn−1〉

ℓ.

To describe 〈Bā〉 over B as above, let ϕ(x̄; ȳ, z̄) = ϕ1(x̄; ȳ, z̄) ∧ ϕ2(ȳ, z̄). ȳ is
used for an enumeration b̄ of the bij ’s above and z̄ for the images ψ̂i of the ψi’s

in M . ϕ2(ȳ, z̄) describes the isomorphism-type of 〈b̄〉 and of ψ̂0, . . . , ψ̂n−1 over
〈b̄〉2. ϕ1(x̄, ȳ, z̄) says that ā (represented by x̄) is linearly independent over b̄ and
describes N(〈Bā〉) over N(B) by the equations corresponding to (+) and suitable
unequations. That means (〈ā, b̄〉)2 + 〈ψ̂0, . . . , ψ̂n−1〉

ℓ is described. All formulas
can be chosen quantifier free.

Definition Let X home be the set of formulas ϕ(x̄, ȳ, z̄) above.

Remark

• If M � T , D ≤ M , d̄, ē in D with M � ϕ2(d̄, ē) and ā is a solution of
ϕ(x̄, d̄, ē), linearly independent over D1, then ā is a generic solution and de-
fines a minimal prealgebraic extension of D. ϕ(x̄, d̄, ē) is strongly minimal.

• A subset of M that is an affine transformation of a set defined by a formula
in X home is again encoded by a formula in X home.

Lemma 8.7 Let ϕ(x̄; ȳ, z̄) be in X home, M � T , and f ∈ Aut(M) that fixes the

generic type of ϕ(x̄; b̄, c̄) where M � ϕ2(b̄, c̄). Then f fixes the vectorspaces 〈b̄〉ℓ

and 〈c̄〉ℓ setwise.

Proof . Let M � C, where C is the monster model of T and ā ∈ C, such that
tp(ā/M) is the generic type of ϕ(x̄, b̄, c̄). Let f be an automorphism of C that fixes
ā pointwise and M setwise. f can be naturally extended to Λ2C. We consider as
above

Φi =
∑

ℓ<j<n

ri
ℓj

(aℓ ∧ aj) +
∑

j<n

(bij ∧ aj) + ψi

f(Φi) =
∑

ℓ<j<n

ri
ℓj

(aℓ ∧ aj) +
∑

j<n

(f(bij) ∧ aj) + f(ψi)

in Λ2C over Λ2(M). SinceM is strong in C f must fix the subspace 〈Φ0 . . .Φn−1〉
ℓ

over Λ2M . That means 〈Φ0 − ψ0, . . . ,Φn−1 − ψn−1〉
ℓ = f〈Φ0 − ψ0, . . . ,Φn−1 −
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ψn−1〉
ℓ. Hence f(〈bij : i, j < n〉ℓ) = 〈bij : i, j < n〉ℓ. Then for every i f(Φi) =

∑

j<n

si
jΦj modulo Λ2M and therefore

f(Φi) −
∑

j<n

si
jΦj = f(ψi) −

∑

j<n

si
jψj ∈ N(M).

If ψ̂i is the image of ψi in M , then f(ψ̂i) =
∑

j<n

si
jψ̂j in M . Hence 〈c̄〉ℓ = f(〈c̄〉ℓ).

�

Definition Let X be the formulas we get from X home if we work with the canon-
ical parameters of the generic types of the formulas in X home.

Lemma 8.7 says that we can work with the quantifier free formulas in X home if
the we want to check P(III) – P(VII).

By the definition of X , Lemma 8.7, and δ-computations P(III) is clear. The first
part of P(IV) is Theorem 8.5. The rest follows from the description of minimal
strong extensions Ai+1/Ai where δ(Ai+1/Ai) = 0.

To obtain P(V)let ā be a solution of some ϕ(x̄, b̄) ∈ X home and b̄ ⊆ B ⊆ R(C).
We say ā is |⌣

w-generic over B, if δ(ā/B) = 0 and ā is linearly independent over
B. Note that different |⌣

w-generics over B are isomorphic over B. The first part
of P(V) is clear. To show the second part consider U ≤M and solutions ē0, ē1, . . .
with ēi 6⊆ 〈U,B, ē0, ē1, . . . , ēi−1〉

ℓ. Then we compute

0 ≤ δ(Bē0 . . . ēi/U) = δ(B/U) +
∑

j≤i

δ(j)

where δ(j) = δ(ēj/UBē0 . . . ēj−1). Since δ(j) ≤ 0 there are at most l.dim(B/U)
many j with δ(j) < 0. δ(j) = 0 implies that ēj is |⌣

w-generic over 〈U,Bē0 . . . , ēj−1〉
ℓ

since ēj 6⊆ 〈U,B, ē0, . . . , ēj−1〉
ℓ.

It remains to show P(VI). Let C ⊇ B ⊆ A be strong subspaces of R(M) linearly
independent over B and both minimal strong extension of B given by generic
solution of formulas in X home. Then A + C is a free amalgam over B. Let
ē ∈ A + C be a solution of ϕ(x̄, b̄, d̄) where b̄, d̄ ∈ A + C and ē is |⌣

w-generic

over A + E and C + E where 〈E〉 ⊇ b̄d̄. Since A + C is the free amalgam over
B N(A+C) = N(A)

⊕

N(B)

N(C). Therefore the Φi in the definition of ϕ1(ē, b̄, ψ̄)

have the form
∑

j<n

ej ∧ b
i
j + ψi where bij ∈ B
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and ej = aj + cj where a0, . . . , an−1 is linearly independent over C + E and
c0, . . . , cn−1 is linearly independent over A+ E. Hence

Φi =
∑

j

(aj ∧ b
i
j) + ψa

i +
∑

j

(cj ∧ b
i
j) + ψc

i

where
∑

j(aj∧b
i
j)+ψ

a
i ∈ N(A) and

∑

j(cj∧b
i
j)+ψ

c
i ∈ N(C). We see that ϕ(x̄, b̄, ψ̄)

defines a torsor set where the underlying group set is defined by
∑

j<n(xj ∧ bij)
and has the parameter in B as desired.

P(VII) is true, since for each H with 〈R1(H)〉 = H and acl(H)∩R1(H) = R1(H)
we can use the following function:

η(a, b) =

{

a, if 〈a〉ℓ = 〈b〉ℓ,
[a, b], otherwise.

Then H = {η(a, b) : a, b ∈ H1}.

We have shown

Theorem 8.8 T is a theory that satisfies the conditions P(I) – P(VII).

Corollary 8.9 T provides us uncountably categorical theories Γ(T µ) of Morley

rank 2 where R1(x) is a strongly minimal set. By interpretation we get the cor-

responding theories of nilpotent groups of class 2 and exponent p > 2.

9 Red fields and fusion over a vectorspace

In this chapter it is shown, how the results in [BMPZ3] and [BMPZ4] can be
proved using the results of this paper. B. Poizat [Po2] has constructed alge-
braically closed fields of characteristic p > 0 with a (red) predicate R(x) for a
subgroup of the additive group of the field, such that its theory TR,p is ω-stable of
infinite Morley rank. To give a short description of TR,p consider fields in ACFp

(p > 0) as Fp-vectorspaces with extra structure. We add a predicate R(x) for a
subspace and define for every finite subspace H of such a structure M

δ(H) = 2tr deg(H) − l.dimR(H).
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This definition is due to B. Poizat [Po2]. tr deg(H) is the transcendence degree
of H , and R(H) = R(M) ∩ H . Furthermore tr deg(H/K) is the transcendence
degree of H +K over K and

δ(H/K) = 2tr deg(H/K) − l.dim(H/K).

Now we use the δ-function as in Chapter 8. Note that we do not restrict the
subspaces H , K to R(M). We define strongness as there. We get

Lemma 9.1 δ(H +K) ≤ δ(H) + δ(K) − δ(H ∩K).

Definition Let K be the class of all M in ACFp with extra predicate for a
subspace such that 〈0〉ℓ ≤ M .

We work in structures M in K. Then we define d and cld as in Chapter 8 and
again we have

Lemma 9.2 i) The intersection of strong subspaces is strong.

ii) cld defines a pregeometry on subspaces of R(M) with dimension function d.

iii) Strongness is transitive.

iv) If V ≤ U , then X ∩ V ≤ X ∩U for every subspace X. (U , V not restricted

to R(M).)

By i) we can define CSS(H) as the intersection of all K that are strong in M and
contain H . Then CSS(H) ⊆ aclM(H).

Theorem 9.3 ([Po2]) The class K has the amalgamation property with respect

to strong embeddings and the asymmetric amalgamation.

By standard methods we obtain

Corollary 9.4 There is a countable structure MR,p in K that satisfies the follow-

ing condition:

(rich) If K ≤ H ⊆ M ∈ K and there is a strong partial Lfield-elementary

embedding f of K into MR,p then there exists an extension f̄ of f , that

extends f and is a partial Lfield-elementary strong embedding of H in

MR,p.
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B. Poizat has defined that a structure in K is rich if it satisfies the condition
(rich). He showed

Theorem 9.5 If M and N are rich K-structures 〈ā〉ℓ ≤ M , 〈b̄〉ℓ ≤ N , and

tpM
field(ā) = tpN

field(b̄) then (M, ā) ≡L∞,ω
(N, b̄).

Hence we have a complete theory TR,p of rich K-structures. B. Poizat gave an
axiomatization of T and showed

Theorem 9.6 Rich K-structures are the ω-saturated models of TR,p.

Let K ≤ H ⊆M ∈ K, such that H is minimal over K. That means that there is
no K ( J ( H with J ≤ H . Then we have the following cases:

1. H = 〈K, a〉ℓ, R(H) = R(K)

a) If a is transcendental over K, then we say H is white transcendental
over K.

b) If a is algebraic over K, then we say H is algebraic over K.

2. H = 〈K, ā〉ℓ and ā is a basis of R(H) over R(K).

a) l.dim(ā) ≥ 2 and δ(H/K) = 0. Then we call H prealgebraic over K.

b) l.dim(ā) = 1 and a transcendental over K. Then we call H red tran-
scendental over K.

Theorem 9.7 TR,p fulfils P(I) – P(VII).

Proof . P(I) is clear. Every white generic is a product of two red generics. Hence
every element of M is the sum of two products of red elements.

P(II) Let A,B ⊆ R(M) and a ∈ R(M). By the definitions A ≤ M and a ∈ cld(A)
is part of tp(A) and tp(a, A), respectively. Furthermore A ⊆ CSS(A) ≤ M and
CSS(A) ⊆ acl(A)∩R(M). Algebraic extensions A of strong spaces B are algebraic
with respect to ACFp and white over B. Hence they do not exist in R(M). The
rest of P(II) follows from Theorem 9.5.

P(III) Codes are already used by B. Poizat. We choose the codes from [BMPZ3].
They describe the minimal prealgebraic extensions.

P(IV) The first part is given by Theorem 9.5 and 9.6. The δ-analysis of finite
strong extension of strong subspaces implies P(IV). Only prealgebraic extensions
occur, since we consider subspaces of R(M).
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For P(V) and P(VI) the relation |⌣
w is non-forking in ACFp and therefore |⌣

w-

generic means |⌣
ACFp-generic.

P(V) follows by a computation as in Chapter 8. ēi 6⊆ 〈UBe0, . . . , ei−1〉
ℓ and

δ(ēi/〈U,B, ē0, . . . , ēi−1〉
ℓ) = 0 implies that ei is |⌣

w-independent from ē0, . . . , ēi−1

over 〈U,B〉ℓ.

P(VI) will be proved as in [BMPZ3]. Note that non-forking in that proof is
non-forking for ACFp.

P(VII) As mentioned above the formula θ(x1, x2, y) is x1 · x2 = y.

The elimination of quantifiers and the elimination of imaginaries in ACFp provides
quantifier-free formulas in P(IV). �

Corollary 9.8 The red fields from [BMPZ3] can be obtained using the approach

of this paper.

This is not a surprise, since the frame developed in this paper uses strongly the
ideas of [BMPZ3].

Now we turn to the fusion. The fusion over a vectorspace without the collapse is
described in [HH]. We start with two strongly minimal theories T1 and T2 with
the DMP. Let L1 and L2 be the corresponding languages and L1 ∩ L2 = L0 the
language of a vectorspace over a finite field. We assume quantifier elimination
for both theories. W.l.o.g. we assume that Li contains only relational symbols
besides L0. Our language is L = L1 ∪L2. Note that R(x) is the predicate x = x!
Furthermore 〈 〉 = 〈 〉ℓ.

We consider models U of T ∀
1 ∪T ∀

2 . Then U is a vectorspace and a substructure of
the monster models C1 � T1 and C2 � T2. For finite models of T ∀

1 ∪ T ∀
2 we write

again A,B, . . . We define

δ(A) = tr1(A) + tr2(A) − l.dim(A).

Let K = {U : U � T ∀
1 ∪ T ∀

2 and δ(A) ≥ 0 for all A ⊆ U}. It is easy to check that

δ(A+B) ≤ δ(A) + δ(B) − δ(A ∩ B).

As above we can use δ to define strongness “≤”, the pregeometry a ∈ cld(A), the
dimension function d and CSS(A).

We have the following minimal strong extensions A ≤ B.
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i) δ(A/B) = 0, A = 〈B, a〉ℓ for some a ∈ A \ B algebraic over B either in T1

or T2. We call it algebraic minimal extension.

ii) δ(A/B) = 0. A is neither algebraic in T1 nor in T2. We call it minimal
prealgebraic extension.

iii) δ(A/B) = 1 and A = 〈B, a〉ℓ where a is neither algebraic over B in T1 nor
in T2. We call it minimal transcendental extension.

Again K has the amalgamation property with respect to strong embeddings and
the asymmetric amalgamation. We get a Fraïssé-Hrushovski-Limit MFu. We
define that a structure M in K is rich, if for all B ≤ A in K and B ≤ M we
find an embedding of A in M over B. Since rich structures in K are infinite and
closed under aclL1 and aclL2 they are models of T1 ∪ T2. Then we obtain that
rich structures are (L1 ∪ L2)∞,ω-equivalent. If 〈ā〉ℓ ≤ M , where M is rich, then
tpL1(ā) ∪ tpL2(ā) determines the type of ā in M . Let TFu be the theory of the
rich K-structures. TFu can be axiomatized by

i) M ∈ K.

ii) M � T1 ∪ T2.

iii) M is rich with respect to B ≤ A minimal algebraic or prealgebraic. This
can be expressed using the asymmetric amalgamation.

Theorem 9.9 Let M be a model of TFu.

i) M is rich if and only if it is ω-saturated.

ii) For every finite subspace A of M we have

l.dim(A) ≤ tr1(A) + tr2(A).

iii) If A ≤M , then tpL1(A) ∪ tpL2(A) implies tpM(A).

iv) Let M ⊆ N be models of TFu. Then M � N if M is an elementary

substructure of N in the sense of T1 and T2.

For TFu we introduce |⌣
w as independent in the sense of T1 and T2. Furthermore

we choose the prealgebraic codes from [BMPZ4] as the set of formula X . Then
we get the following
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Theorem 9.10 TFu
satisfies P(I) – P(VII).

Note P(VII) follows from M = R(M) for M � TFu. As in Corollary 7.2 we get
a Lµ-theory T µ

Fu with an extra predicate Rµ = P µ. If M � T µ
Fu then Rµ(M) is

closed under aclL1 and aclL2 . Hence Rµ(M) is again a model of T1 ∪ T2. We can
go back to the original languages of T1 and T2 and get

Theorem 9.11 Γ(T µ
Fu) is a strongly minimal theory that contains T1 ∪ T2. Fur-

thermore i) – iv) from Theorem 9.9 are also true for this theory.
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