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When to expect violations of causal faithfulness and why it matters 
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Abstract: I present three reasons why philosophers of science should be more concerned 

about violations of causal faithfulness (CF). In complex evolved systems, mechanisms 

for maintaining various equilibrium states are highly likely to violate CF. Even when 

such systems do not precisely violate CF, they may nevertheless generate precisely the 

same problems for inferring causal structure from probabilistic relationships in data as do 

genuine CF-violations. Thus, potential CF-violations are particularly germane to 

experimental science when we rely on probabilistic information to uncover the DAG, 

rather than already knowing the DAG from which we could predict the right experiments 

to ‘catch out’ the hidden causal relationships.  

 

 

 

1. Introduction 

Several conditions must be met in order to apply contemporary causal modeling 

techniques to extract information about causal structure from probabilistic relationships 

in data. While there are slightly different ways of formalizing these requirements, three of 



	   2	  

the most important ones are the causal Markov, causal modularity, and causal faithfulness 

conditions. Potential failures of the first two of these conditions have already been the 

subject of discussion in philosophy of science (Cartwright 1999, 2002, 2006; Hausman 

and Woodward 1999, 2004; Steel 2006; Mitchell 2008; Woodward 2003, 2010). I will 

address failures in the third condition, causal faithfulness, and argue that failures of this 

condition are likely to occur in certain kinds of systems, especially those studied in 

biology, and are likely to cause a characteristic sort of trouble in experimental settings 

when using probabilistic relationships between variables to find the causal structure of 

the system under investigation.  

Faithfulness is the assumption that there are no precisely counterbalanced causal 

relationships in the system that would result in a probabilistic independence between two 

variables that are actually causally connected. While faithfulness failures have been 

discussed primarily in the formal epistemology literature, I will argue that violations of 

faithfulness can impact experimental techniques, inferential license, and issues 

concerning scientific practice that are not exhausted by the formal epistemology 

literature. 

In particular, a formal methodological perspective might suggest a distinction 

between genuine and merely apparent failures of CF, such that many apparent examples 

of CF-violating systems are not ‘really’ CF-violating. But as I will argue, this distinction 

is not epistemically justifiable in experimental settings: we cannot distinguish between 

genuine and merely apparent CF violations unless we already know the underlying causal 

structure. Without this information, merely apparent and genuine CF violations will be 

indistinguishable. Violations of CF faithfulness are particularly germane to experimental 
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science where the underlying causal structure is the subject of investigation, since CF is 

required to use causal modeling techniques to find directed acyclic graphs compatible 

with a given set of probabilistic relationships, such that further interventions can 

determine which is the correct underlying causal structure. Going from relationships in 

the data to unknown underlying causal structure is the most common direction of 

inference from the epistemic vantage point of science, and one that will be disrupted 

equally by genuine and ‘merely’ apparent CF violations.  

This means that failures of CF arguably have the most potential, compared to 

violations of modularity or causal Markov, for wreaking havoc in experimental settings. 

They also have interesting methodological consequences for the practice of science: we 

should expect to find epistemic practices that compensate for CF-violations in fields that 

study systems where faithfulness is likely to fail. Thus, these conditions are of interest not 

only to those working on formal modeling techniques, but also to broader discussions in 

philosophy of science, especially those that concern epistemic practices in the biological, 

cognitive, or medical sciences. 

 

2. Violations of the Causal Faithfulness Condition 

Violation of CF occurs when a system involves precisely counterbalanced causal 

relationships. These causal relationships are ‘invisible’ when information about 

conditional and unconditional probabilities is used to ascertain a set of possible causal 

directed acyclic graphs (DAGs) that are consistent with data from that system. More 

precisely: 
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Let G be a causal graph and P a probability distribution generated by G. <G, P> 

satisfies the Faithfulness Condition if and only if every conditional independence 

relation true in P is entailed by the Causal Markov Condition applied to G. (Spirtes, 

Glymour, and Scheines 2000, 31) 

 

One can think of faithfulness as the converse of the Causal Markov condition: 

faithfulness says that given a graph and associated probability distribution, the only 

independence relations are those that follow from the Causal Markov condition 

alone and not from special parameter values… (Woodward 2003, 65) 

 

Informally, CF ensures that variables are only probabilistically independent if they 

are causally independent in the true causal graph. When CF is violated, causal 

relationships cancel each other out by having precisely counterbalanced parameter 

values, and the variables involved in those balanced relationships are probabilistically 

independent even though they are not causally independent. Thus, in systems that have 

CF-violating causal relationships, the probabilistic relationships between variables 

include independencies that do not reflect the actual causal relationships between those 

variables.  

Probabilistic relationships are used to generate possible causal graphs. There may 

be multiple distinct causal graphs which all imply the observed set of probabilistic 

relationships. The candidate graphs can then be used to generate further interventions in 

the system that will distinguish between the graphs; if two candidate graphs make 

different predictions for the consequences of an intervention on variable A, then 
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performing this intervention on A should return an answer as to which of the candidates 

graphs matches the observed results. The use of probabilistic data to generate candidate 

causal graphs that can then be used to suggest further interventions can save huge 

amounts of time and energy by highlighting a few candidates from an indefinitely large 

number of candidate causal structures. 

DAGs of CF violations may take several forms. For example:  

Figure 1a         Figure 1b 

                         

Some authors (Pearl 2000, Woodward 2010) rely on a stronger constraint, causal 

stability, which requires that probabilistic independence relationships be stable under 

perturbation of parameter values across some range, to eliminate “pathological” (i.e. CF-

violating) parameter values.  

 

Definition 2.4.1 Stability:  

Let I(P) denote the set of all conditional independence relationships embodies in P. 

A causal model M = <D, Θ> generates a stable distribution if and only if P(<D, 

Θ>) contains no extraneous independences – that is, if and only if I(P(<D, Θ>)) ⊆ 

I(P(<D, Θ`>)) for any set of parameters Θ`. (Pearl 2000) 
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Violating causal stability would require a system to respond to changes in one parameter 

value with compensating changes in another parameter, so that the values remain exactly 

counterbalanced for some range of values.  

The potential for CF-violations to reduce the reliability of methods for extracting 

causal structure from data is well-known in formal epistemology. However, I will argue 

that philosophers of science in general should pay more attention to such violations; 

understanding the difficulties that CF-violations pose will enhance our ability to 

accurately characterize features of experimental practice, and should be included in 

normative considerations regarding evidence and inference. This paper provides three 

main arguments in support of this: 

 

(1) Even if CF-violating systems are measure 0 with respect to the set of causal 

systems with randomly distributed parameter values, this does not imply that we 

will only encounter them with vanishing probability. CF-violating systems may be 

of particular interest for modeling purposes compared to non-CF-violating systems, 

or because certain kinds of systems have features that render CF-violating 

parameter values more likely. 

 

(2) As an example of point 1, structural considerations regarding dynamically 

stable systems that are the result of evolutionary processes should lead us to expect 

CF-violations in various biological systems. For systems that have evolved to 

maintain stable equilibrium states against external perturbation, we should also 
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expect violations of the stronger condition, causal stability. An example of this is 

briefly presented: mechanisms for salinity resistance in estuary nudibranchs. 

 

(3) ‘Apparent’ CF-violations in equilibrium-maintaining systems can be generated 

in certain experimental conditions even though the actual causal relationships in 

question are not be exactly balanced. Some measurement circumstances will result 

in a data set that violates CF, even if the actual system being measured does not 

genuinely violate CF. We should be as concerned with merely apparent as with 

genuine CF-violations, since both kinds of violations lead to the same difficulties in 

moving from probabilistic relationships in data to accurate DAGs of systems.  

 

These three points highlight why philosophers of science in general should be concerned: 

causal systems may not genuinely violate CF, but yet pose the same problems for 

experimental investigations as if they did. Apparent CF-violations occur when systems do 

not in principle violate CF but appear to due to measurement issues connected with data-

gathering. In both genuine and merely apparent CF-violations, probabilistic relationships 

in the data will suggest a set of candidate causal graphs that are inaccurate; as a result, 

further interventions will yield conflicting answers. Scientists could in principle ‘catch 

out’ these merely apparent CF-violations if they knew exactly how to test for them. But to 

do this, they would need the DAG, and this is the information that they lack when 

proceeding from the data to underlying causal structure. When we have incomplete 

knowledge of the causal structure of the system under investigation, we lack this ability 

to distinguish between merely apparent and genuine CF-violations.  
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3. The measure of CF-violating systems 

Spirtes, Glymour, and Scheines (2000) offer a proof that CF-violating systems are 

Lebesgue measure 0 with respect to possible causal systems, while non-CF-violating 

systems are measure 1. “The parameter values—values of the linear coefficients and 

exogenous variances of a structure—form a real space, and the set of points in this space 

that create vanishing partial correlations not implied by the Markov condition have 

Lebesgue measure 0” (41). From this, they conclude that we are vanishingly unlikely to 

encounter CF-violating systems, and so proceed with the presumption that any given 

causal system is not CF-violating. This proof may be part of the reason why 

comparatively little attention has been paid to causal faithfulness compared to the causal 

Markov and modularity conditions. However, the fact that CF-violating systems are 

measure 0 in this class does not imply that we will not encounter them with any 

frequency.  

To motivate this, consider an analogy with rational numbers. They are also 

measure 0 with respect to the real numbers, while irrational numbers are measure 1. And, 

there are circumstances under which we are vanishingly unlikely to find them. If a 

random real number were to be chosen from the number line, the probability that we will 

draw an irrational number is so overwhelming as to warrant ignoring the presence of 

rational numbers. However, this does not imply that rational numbers are unlikely to be 

encountered simpliciter: bluntly put, we don’t encounter numbers by randomly drawing 

them from the number line. Rational numbers are encountered, and used, overwhelmingly 
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more often than one would expect from considering only the proof that they are measure 

0 with respect to real numbers. 

The Spirtes, Glymour, and Scheines proof assumes that all parameter values 

within the range of a continuous variable are equally probable (Zhang and Spirtes 2008). 

Without this assumption, one can’t presume that the CF-violating values are vanishingly 

unlikely. It is true that if causal systems took on parameter values randomly from their 

range, we would expect to encounter CF-violating systems with vanishingly small 

probability, and in that scenario, we could safely ignore CF-violations as a real possibility 

on any given occasion. However, some systems survive, and become scientifically 

interesting targets for investigation, precisely because they achieve long-term dynamic 

equilibrium via mechanisms that rely on balanced parameter values. In such systems, the 

parameter values are not equally probable over their range, but disproportionately likely 

to be centered around the balanced value(s). In fields like biology, neuroscience, 

medicine, etc., we are interested in modeling systems that involve equilibrium 

maintaining mechanisms. This suggests that our modeling interests are focused on CF-

violating systems in a way that is disproportionate to their measure when considered 

against all possible causal systems, and that CF-violating parameter values are 

disproportionately probable in the first place. Thus, we cannot conclude from the fact that 

CF-violating parameter values have measure 0 with respect to all possible parameter 

values that we will not encounter such violations on a regular basis. 

Zhang and Spirtes (2008) discuss some circumstances in which systems may 

violate CF. However, their discussion makes it seem like CF-violations occur primarily in 

artificial or constructed circumstances. One such example is homeostatic systems, which 
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maintain equilibrium against some range of perturbations, such as thermostats 

maintaining a constant temperature in a room. Zhang and Spirtes demonstrate that CF can 

be replaced with two distinct subconditions, that, taken together, provide almost the same 

inferential power as causal faithfulness. If systems violate only one of these 

subconditions, such violations can be empirically detected. This is an extremely useful 

result, and increases the power of Bayes’ nets modeling to recover DAGs from data. 

However, this result should not be taken as resolving the problem.  

In particular, their use of a thermostat as example of a homeostatic system does 

not do justice to the incredibly complex mechanisms for homeostasis that can be found in 

various biological systems. Considering these more sophisticated examples provides a 

clearer view of the potential problems involved in modeling such systems under the 

assumption of causal faithfulness.  

 

4. Evolved dynamical systems and equilibrium-maintaining mechanisms 

The tendency for evolved systems like populations, individual organisms, 

ecosystems, and the brain to involve precisely balanced causal relationships can be easily 

explained by the role these balanced relationships play in maintaining various 

equilibrium states (see, for instance, Mitchell 2003, 2008). Furthermore, the mechanisms 

by which organisms maintain internal equilibrium with respect to a huge variety of states 

need to be flexible. They need to not simply maintain a static equilibrium, but maintain it 

against dynamic perturbation from the outside. This means that many mechanisms for 

equilibrium maintenance can maintain a fixed internal state over some range of values in 

other variables. Thus, a system that survives because of its capacity to maintain stability 
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in the face of changing causal parameters or variable values will be likely to display CF-

violating causal relationships, and will also violate the stronger condition of causal 

stability. 

An intriguing example is nudibranchs, commonly known as sea slugs (see 

especially Berger and Kharazova 1997). Many nudibranchs live in ecosystems such as 

reefs, where salinity levels in the water change very little. In cases where salinity levels 

vary over narrow ranges, nudibranchs respond to changes in salinity levels by a cellular 

mechanism for osmoregulation, where cells excrete sodium ions or take in water through 

changes in cell ion content and volume. This mechanism provides tolerance, but not 

resistance, to salinity changes, because it maintains equilibrium by exchanging ions and 

water with the surrounding environment. In cases of extremely high or low salinity, this 

mechanism will cause the animal to extrude too much or take in too much. 

Euryhaline nudibranchs, found in estuary environments where saline levels may 

vary dramatically between tides and over the course of a season or year, display a much 

higher level of resistance to salinity changes. There is a pay-off, in the form of increased 

food sources with reduced competition, to withstanding the wider variation in saline 

levels. But in these environments, the osmoregulatory mechanism for salinity tolerance is 

insufficient. Further mechanisms have evolved in nudibranchs (and in molluscs more 

generally) for maintaining constant internal salinity levels in conditions of extreme 

salinity variations in the external environment. The osmoregulation mechanism is 

supplemented with an additional mechanism which involves hermeticization of the 

mantle, which prevents water and ion exchange with the outside environment. Mantle 

hermeticization and osmoregulation are distinct mechanisms, but in contexts of extremely 
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high or low salinity, they both act such that the variables of external and internal salinity 

are rendered independent. 

Further, there are two distinct mechanisms in muscle cells that work in coordination 

in extreme salinity to maintain a balance of sodium and potassium ions inside the muscle 

cell. There are two ion pumps in the cell that maintain overall ion concentration at 

equilibrium across a fairly substantial range of salinity variation in the external 

environment. Even though external salinity has several causal effects on the internal ion 

balance of a cell, these two variables will be probabilistically independent for a range of 

external salinity values (in particular, for the range in which the organisms are naturally 

found). 

 

The ion balance of muscle cells during adaptation to various salinities could not be 

achieved by virtue of the Na/K-pump alone, removing sodium and accumulating 

potassium. As it is clear from the data obtained, the concentration of both ions 

drops at low salinity and increases at high salinity. Therefore, the effective ion 

regulation in molluscan cells can be provided only by cooperative action of two 

pumps – the Na/K-pump and Na,Cl-pump, independent of potassium transport. 

(Berger and Karazova 1997, 123-4) 

 

It’s worth clarifying that not all variables in the nudibranch salinity regulation 

mechanisms will be independent: only two variables, internal and external salinity, will 

be rendered independent by the balanced parameter values. But, because those variables 
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are actually connected by a chain of causal relationships, this is a spurious independence, 

one that violates CF.  

There are several points that this example illustrates. The first is that of the 

comparative probability that a complex system, such as an organism like a nudibranch, 

will display CF-violating causal relationships in the form of mechanisms that maintain 

equilibrium. We can see how the assumption that all parameter values are equally likely 

falls apart in the case of evolved systems. Let’s grant that, in some imaginary past 

history, all the parameter values for causal relations in mechanisms such as these two ion 

pumps were equally likely. This would have resulted in a vast number of organisms that 

died rapidly with internal ion imbalances. The organisms that managed to stick around 

long enough to leave offspring were, disproportionately, those with mechanisms that 

were precisely counterbalanced to maintain this internal equilibrium. Having CF-

violating mechanisms would be a distinct advantage. The same applies for other 

important equilibrium states –organisms with less closely matched values are less capable 

of maintaining that equilibrium state. Over time, those with the closest matches for 

parameter values will be more likely to survive. Thus, even if we grant the assumption 

that all parameter values start out as equally likely, we can see how rapidly the CF-

violating ones would come to be vastly overrepresented in the population. 

The second point it illustrates is how such sophisticated equilibrium-maintaining 

mechanisms can violate CF in a much more problematic way than the comparatively 

simplistic thermostat example considered by Zhang and Spirtes.1 The two ion pump 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Note that a DAG representing the two mechanisms for the ion pumps is not of the 
triangular form that is potentially detectable using the methods in Zhang and Spirtes 
(2008). 
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mechanisms are not balanced merely for a single external salinity value: they are 

balanced for a range of values. Thus, this example violates not merely CF but also the 

stronger condition of causal stability. This example is interesting in that we know that 

salinity matters to slugs: finding a probabilistic independence between internal and 

external salinity is the cue to go looking for an explanation, since we know there is a 

causal connection between those variables. But we know this because of additional prior, 

mechanistic, knowledge that we have about those variables. If we did not already have 

this prior knowledge about the causal connection between internal and external salinity, 

and were relying on probabilistic relationships alone to find DAGs compatible with our 

data, we would be systematically misled by this independence. 

I am not claiming that all causal relationships in such systems, or all such 

systems, will violate CF or causal stability. Rather, for any given system that involves 

equilibrium-maintaining mechanisms, and especially for those with sophisticated evolved 

equilibrium-maintaining mechanisms, there may be at least some causal relationships that 

violate either or both of these conditions. This changes the stance we take at the 

beginning of an investigation: rather than starting from the assumption that CF-violations 

are vanishingly unlikely, and only revisiting this assumption in the face of difficulties, we 

should start investigations of such systems with the assumption that it is likely that there 

will be at least one such spurious probabilistic independence. 

 

5. Apparent CF-violations and their experimental consequences 

Consider a possible response to the argument in the previous section. One might 

be concerned that the examples I offer do not involve genuine CF-violations–when 
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examined more closely, it may turn out that the causal relationships in questions are not 

exactly balanced, but merely close. This response might involve the claim that even in the 

case of biological systems, CF is not genuinely violated, because there are slight 

differences in parameter values that could be identified, especially if one performed the 

right interventions on the systems to ‘catch out’ the slight mismatch in parameter values. 

Or, by taking recourse to causal stability, one might say that while the equilibrium state 

of some systems involves precisely counterbalanced causal relationships, in the case of 

perturbation to that equilibrium, these relationships will be revealed. Perturbation of 

systems that return to equilibrium would thus be a strategy for eliminating many (or 

most) merely apparent CF-violations. 

Answering this challenge brings us to the heart of why CF-violations deserve 

broader discussion. Considered from a formal perspective, there is a deep and important 

difference between systems that actually violate CF, or, causal stability, and those that do 

not. From a purely formal perspective, merely apparent CF-violations are not 

methodologically problematic in the same way that genuine ones are. But the ways in 

which merely apparent CF-violations can be ‘caught out’ generally will require 

information about the DAG for the system, in order to predict precisely which variables 

should be intervened on, within what parameter ranges, in order to uncover closely-but-

not-exactly matched parameter values. While it is in principle possible to do this, it 

requires knowing precisely which intervention to perform, and it is this information that 

will be lacking in a large number of experimental situations where we are looking fir but 

don’t already have the DAG for the system. 
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A particular data set drawn from a target system for which investigators are 

seeking the DAG may have spurious independencies between variables (i.e. violate CF) 

even though in the true DAG, those parameters are not precisely balanced. In other 

words, depending on how the data is obtained from the system, the data set may violate 

CF even though the system itself doesn’t. How could this happen? There are a soberingly 

large number of ways in which a data set can be generated such that a merely apparent 

CF-violation occurs. The point to note here is that merely apparent violations will cause 

exactly the same problems for researchers looking for an unknown DAG as would 

genuine CF-violations. Here are some ways in which a dynamically complex non-CF-

violating system may nevertheless result in a dataset that is CF-violating. 

The first is quite obvious: parameter values that are not exactly counterbalanced 

may nevertheless be close enough that their true values differ by less than the margin of 

error of measurements. Consider the parameter values in diagram 1a. A genuine CF-

violation will occur if a=-bc. However, an apparent CF-violation will occur if a±ε1=-

bc±ε2. Concerns about the precision of measurements and error ranges are well-known, 

but it is useful to consider them here with respect to the issue of causal faithfulness as 

another way to flesh out their role in investigatory practices. 

Other ways in which apparent CF-violations may occur stem from temporal 

factors which play a role in the ‘catching’ of equilibrium-balanced causal relationships. 

Consider the time scale of a system that involves balanced causal relationships for the 

purposes of restoring and maintaining some equilibrium state: this may be on the order of 

milliseconds for some cellular processes, tens to hundreds of milliseconds for many 

neurological processes, minutes to days for individual organisms. After a perturbation 
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takes place, the system will re-establish equilibrium during that range of time. In order to 

successfully ‘catch’ the counterbalanced causal relationships in the act of re-

equilibrating, the time scale of the measurements must be on a similar or shorter time 

scale. If the time scale of measurements is long with respect to the time scale for re-

establishing equilibrium, these balanced causal relationships will not be caught.  

This basic point about taking state change data from dynamic processes has 

particular implications for CF-violations. For processes that re-equilibrate after 50 ms, for 

instance, a measurement device that samples the process at higher time scales, such as 

500ms, will miss the re-equilibration. Thus, even though the system does not violate 

causal stability, it will behave as if it does, as it will appear that there is a conditional 

independence between two variables across some range of values, namely, the range 

between the initial state and the state to which the system was perturbed. In particular, if 

we do not know what the time scale is, or is likely to be, for re-equilibration, we cannot 

ensure that a persisting probabilistic independence between two variables in question is 

genuine and not a consequence of an overly fast re-equilibration timescale. 

There are also possibilities for phase-matched cycles that that will make a non-

CF-violating oscillating system appear to violate CF. Some systems develop equilibrium 

mechanisms that result in slight oscillations above and below a target state. If the 

measurements from this system are taken with a frequency that closely matches that of 

the rate of oscillation, then the measurements will pick out the same positions in the 

cycle, essentially rendering the oscillation invisible. This would constitute an apparent 

CF-violation as well. 
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Predicting possible CF-violations, real or apparent, requires information about the 

dynamic and evolved complexity of the systems in question, the particular equilibrium 

states they display, the time scale for re-establishment of equilibrium compared with the 

time scale of measurement, and/or the cycle length for cyclical processes. 

 

6. Conclusion 

To summarize briefly: some kinds of systems, especially those studied in the so-

called ‘special sciences’, are likely to display the kinds of structural features that lead to 

CF-violations, such as mechanisms for equilibrium maintenance across a range of 

variable values. Some systems that do not have CF-violating DAGs may nevertheless 

generate CF-violating data sets. When we are considering the inferences made from 

probabilistic relationships in data to a DAG for the underlying system when we do not 

already have the DAG in hand, we cannot distinguish between genuine and merely 

apparent CF-violations. Both will cause the same epistemic difficulties for scientists, 

which is why merely apparent CF-violations deserve broader attention. 

It’s important to note that I am not discounting the extraordinary achievements in 

formal epistemology and causal modeling that have marked the last two decades of 

research on this topic. The steps forward in this field have been monumental, including 

the development of methods by which to reduce some of the issues arising from CF-

violations (such as Zhang and Spirtes 2008). Rather, my goal is to clarify the ways in 

which apparent CF-violations can arise, the kinds of structural features a system might 

display that would increase the likelihood of CF-violation, and to bring this issue from 

discussion in formal epistemology into consideration of scientific practice more broadly.
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