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Abstract. Jean van Heijenoort was best known for his editorial work in
the history of mathematical logic. I survey his contributions to model-
theoretic proof theory, and in particular to the falsifiability tree method.
This work of van Heijenoort’s is not widely known, and much of it remains
unpublished. A complete list of van Heijenoort’s unpublished writings on
tableaux methods and related work in proof theory is appended.
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1. Introduction

Jean van Heijenoort was best known as a historian of logic. He was famous for
his editorial work, and especially for his anthology From Frege to Gödel (1967)
[164], which, as a representative documentary history of modern logic during
the formative period of 1879–1931, has attained, in the words of Feferman
[51, p. 5], [53]“the status of a classic.” Not very well known, however, is van
Heijenoort’s non-historical work in logic, which consisted primarily of results
in model-theoretic proof theory and which circulated in the narrow circle of
his students and colleagues and remain largely unpublished. It is not known
why these technical contributions remained unpublished, although van Hei-
jenoort’s well-known perfectionism may have played a prominent role in his
decision that the writings in which these results appeared did not satisfy his
standard of excellence. Many of the papers in this category circulated in man-
uscript form; and even those which circulated in typescript were frequently

This is a much expanded reprinting of the revised and corrected English version of [13] that
originally appeared as [16].
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only drafts. It is the object of this paper to survey the technical content of
van Heijenoort’s contributions to model-theoretic proof theory. The physical
description of the unpublished works in which these contributions were made
was given in [11].

In order to understand the choice of topics on which van Heijenoort
worked, it is necessary to view his technical interests in the history of logic.
Trained as a geometer and topologist (his doctoral thesis was in the field of
convex sets), van Heijenoort traced questions in metamathematics and founda-
tions of mathematics to problems of axiomatization of mathematics. It should
also be kept in mind that, making the transition from geometry and topol-
ogy to logic, van Heijenoort was guided in his early studies by Georg Kreisel
(b. 1923), and one finds, among van Heijenoort’s Nachlaß (his research notes
on Kreisel’s considerations of the work of Jacques Herbrand (1908–1931).1

Van Heijenoort and Kreisel enjoyed an excellent rapport, and van Heijenoort
admitted that Kreisel was the logician who influenced him most (see [51,
p. 262]). This is not to say that van Heijenoort followed Kreisel’s lead in
research or adopt Kreisel’s views; rather, he listened carefully to Kreisel, and
took Kreisel’s views seriously, and it was Kreisel, as much as anyone, who
aroused van Heijenoort’s incipient interests in logic. As William Alvin Howard
(b. 1926) [97, pp. 282–283] has noted, Kreisel held that proof theory could be
seriously advanced, and required correction, by the application of model-the-
oretic considerations and of recursion theory.

Van Heijenoort saw the development of quantification theory, beginning
with the work of Frege, as the crucial factor in the history of mathematical
logic. He understood the primary goal of quantification theory to be the eluci-
dation of the concepts of consistency, completeness, and (being a) proof. In this
sense, van Heijenoort’s technical work belongs to the tradition of Hilbertian
metalogic, elaborated by David Hilbert (1862–1943) and Paul Isaac Bernays
(1888–1977) as Beweistheorie as the logical study of the proofs of logic. Let
us begin, then, by reviewing van Heijenoort’s study of the relevant history.
Indeed, for van Heijenoort, proof theory meant precisely the same as it did for
Hilbert, who, as Kreisel [112, p. 321] explained in the first installment (1968)
of his “Survey of Proof Theory”, understood Beweis to be the study of formal
derivations (proofs) within a formal system. Likewise, in his 1967 “Informal
Rigour and Completeness Proofs” Kreisel [111, p. 138] defined formal rigor as
consisting in “setting out formal rules and checking that a given derivation
follows these rules.” In the course of the development of proof theory after
Hilbert, proof theory, Kreisel [112, p. 321] averred, also came to take into
account an analysis of intuitive proofs, and consideration of the choice of for-
mal systems. Thus, when Kreisel wrote the first part of his “Survey of Proof

1 Van Heijenoort’s notes of 1968 on “Herbrand—Kreisel on Herbrand” [166] is found in
Box 3.8/86-33/2 of the van Heijenoort archive; see [160] for the Nachlaß. Most of the

unpublished typescripts and manuscripts on the tree method and related proof-theoretic

methods of various calculi are to be found in Box 3.8/86-33/1. The Stanford University

Libraries Department of Special Collections and University Archives includes the Kreisel-van

Heijenoort correspondence in Box 21, folder 5 of the Georg Kreisel Papers (SCM0136).
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Theory” [112], proof theory considered not only formal derivations, but also
intuitive proofs. Van Heijenoort for his part noted [190, p. 185] Hilbert “worked
with axioms and rules [of inference],” regarding quantifiers as ranging over
restricted, well-defined collections—say points, lines and planes; or over tables,
chairs, and beer mugs,2 but not both at once or, as did Frege and Russell, over
“everything”—be it, as Hilbert indirectly imputed to Frege (q.v. [60, p. 13]),
love, laws, and chimney sweeps; and that whereas second-order logic has its
own important place, it increases complexity, such that it is crucial first and
foremost, to “see what can be done” in first-order logic.” Establishing albeit
tacitly, a connection with van Heijenoort’s treatment of the role of the syntac-
tic/semantic distinction as an aspect of the difference between the “Booleans”
and the “Fregeans”, Van Heijenoort characterized Hilbert’s position as lying
between that of the adherents of logic as calculus (Boole, De Morgan, et alii),
and those of logic as language (Frege and Russell),3 and Hilbert himself, in
his “Axiomatisches Denken” of 1918 [89], readily acknowledged Russell’s axi-
omatization of logic to be the “crowning work” of axiomatization in general
[89, p. 412]. Joong Fang (1923–2010) identified the differences between Rus-
sell and Hilbert as rooted in the fact that whereas Russell approached the
task of axiomatization from the standpoint “that was “more logical or philo-
sophical than mathematical,” Hilbert “marched straightforward into meta-
mathematics directly through his professional studies of mathematics proper”
[49, p. 168].

In his letter of 29 December 1895 to Frege, Hilbert considered a universe
of discourse indiscriminately populated by love, laws, and chimney sweeps, and
anything and everything else (see [60, p. 13]): “Ja, es ist doch selbstverständ-
lich eine jede Theorie nur ein Fachwerk oder Schema von Begriffen nebst ihren
nothwendigen Beziehungen zu einander, und die Grundelemente können in
beliebiger Weise gedacht werden. Wenn ich unter meinen Punkten irgendwel-
che Systeme von Dingen, z.B. das System: Liebe, Gesetz, Schornsteinfeger. . .,
denke und dann nur meine sämmtlichen Axiome als Beziehungen zwischen
diesen Dingen annehme, so gelten meine Sätze, z.B. auch der Pythagoras

2 Hilbert, as quoted by Otto Blumenthal (1876–1944) reads [32, p. 403]: ,,Man muss jederzeit
an Stelle von Punkten, Geraden und Ebenen Tische, Stühle oder Bierseidel sagen konnen.“
3 We may also include in this group the American postulate theorists and their students,
who took their cue, directly or indirectly, from the algebraic tradition of Boole, De Morgan,
Peirce, and Schröder on the one hand and Hilbert on the other; among them, Edward Vermi-
lye Huntington (1874–1952); Oswald Veblen (1880–1960); Eliakim Hastings Moore (1862–
1932); and George Bruce Halsted (1853–1922). Veblen, for example, produced a critical
discussion [204] of the first edition of Hilbert’s 1899 Die Grundlagen der Geometrie [88] and
was a colleague at Princeton of Peirce’s former student Allan Marquand (1853–1924). Aspray
[19, p. 55] describes the purpose of Veblen, Huntington, Moore and other American postu-
late theorists as “investigat[ing] the logical adequacy of axiom systems for mathematics” and
in the process “develop[ing] the concepts of completeness, independence, and categoricity”
for purposes of applying these to axiom systems for algebra, geometry, and analysis. For
more background on the American postulate theorists, stressing the work in particular of
Huntington and Vebeln, see [149].
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auch von diesen Dingen. Mit andern Worten eine jede Theorie kann stets
auf unendliche viele Systeme von Grundelementen angewandt werden.” Roman
Murawski [130] explains that in contrast with Frege’s system which requires
a linguistic Universum underwritten by a run-away metaphysics, Hilbert was
attempting to explain to Frege that he, on the contrary, merely sought “to
secure the validity of mathematical knowledge by syntactical considerations
without appeal to semantic ones.” As Murawski [130, pp. 94–95] noted, the
program of the Beweistheorie for Hilbert was “never intended as a compre-
hensive philosophy, of mathematics; its purpose was instead to legitimate the
entire corpus of mathematical knowledge”; moreover, he “sought to justify
mathematical theories by means of formal systems, i.e., using the axiomatic
method.” For Hilbert, the goal of Beweistheorie, or metamathematics, was to
establish the credentials of a mathematical system, and most especially its
completeness and consistency. For Hilbert’s own summary of his position, see
his “Axiomatische Denken” of 1918 [89], where the efforts at axiomatization
pertain in each case to “the facts of “a specific more or less comprehensive
field of knowledge”—“die Tatsachen eines bestimmten mehr oder minder umf-
assenden Wissensgebietes” [89, p. 405]. Hilbert forthwith made it clear that
the primitve elements of one’s axiom system, as well as the axioms themselves,
are determined by the [mathematical] theory being axiomatized. His student
Bernays took this view one step further, by arguing that the constructabil-
ity of a piece of mathematics as a theory that entertains no inconsistency
counts as sufficient cause to establish the existence of the element of that field.
This is the thesis stated by the title of, and presented in, Bernays’ “Mathe-
matische Existenz und Widerspruchsfreiheit” [26] which was reviewed by van
Heijenoort [161]. In relating existence and consistency, the mathematician is
freed from dependence upon appeal to Platonic “ideal entities” [“eines ideal
Sein”]. The existence–consistency relation is not, however, transitive, since
existence axioms do not necessarily guarantee the consistency of a theory,
which is a property of the theory as whole. Thus, there is no absolute require-
ment for an underlying metaphysics to construct a mathematical theory axi-
omatically. This, I suggest, is the philosophical import of Hilbert’s remark that
it should not matter in designing an axiomatic system whether our terms are
points, lines and planes or tables, chairs and beer mugs, and that, if our system
is deductively sound, then the theorems drawn will be true, i.e. logically valid
in accordance with the inference rules, under either interpretation. In under-
taking axiomatizations of geometry, of algebra, and in algebra, of group theory,
of Boolean algebra, etc., it transpires that for each of these axiomatizations
[89, p. 406]: “Diese grundegenden Sätze können von einem ersten Standpunkte
aus als die Axiome der einzelnen Wissenschaftsgebiete angesehen werden”
[Hilbert’s emphasis]—thus, one set of axioms for one discipline. The Amer-
ican postulate theorists, jointly influenced to various degrees by both Peirce
and by Hilbert, produced sets of postulates for different branches of mathe-
matics, and even for different subfields within these branches. And, like Hilbert
and his students, their concern for each of these systems of postulates was to
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establish its completeness, consistency, independence, and categoricity.4 What
is of central concern for Hilbert (and the Postulate theorists) is the charac-
ter of the various axiomatic systems and of the mathematical theories which
they were constructed to elaborate, and in particular the logical nature of
the deductive proofs of the theorems obtained within these axiomatic systems
(so that it does not, in a metaphysical sense, matter whether the system is
operating with points, lines and planes or with tables, chairs and beer mugs).
The concern of Beweistheorie is specifically with the nature ofbeing a proof,
whereas, for Frege and Russell, the general concern of the Begriffsschrift is the
elaboration of a logical language for the mechanical development of any and
every science and the specific concern is the reduction, or rendition, of all of
mathematics in the universal ideal language of formal logic. In the original,
unabridged, edition of his Survey of Symbolic Logic of 1918 [116], Clarence
Irving Lewis (1883–1964) who had served as a teaching assistant in the logic
course of Josiah Royce (1855–1916) and had been given the task of cataloguing
the Peirce papers when they were delivered to Harvard, and who, like Royce
himself had corresponded with Peirce, defined a mathematical system, in a
manner highly reminiscent of the formalism of Hilbert, as “any set of strings
of recognizable marks in which some of the strings are taken initially and the
remainder [are] derived from these by operations performed according to rules
which are independent of any meaning assigned to the marks” [116, p. 355].

Introducing Stefan Bauer-Mengelberg’s English translation of Löwen-
heim’s 1915 “Über Möglichkeiten im Relativkalkul” [119], Jean van Heijenoort
[164, p. 228], noticed that the “problems dealing with the validity, in differ-
ent domains, of formulas of the first-order predicate calculus and with various
aspects of the reduction and the decision problems” which Löwenheim’s article
treated “had remained alien to the trend that had by then become dominant in
logic, that of Frege–Peano–Russell” until Hilbert and the postulate theorists
raised the questions of the categoricity and completeness of axiom systems.
Jean van Heijenoort’s introduction to the collected papers of Herbrand; there
van Heijenoort [165, p. 2] wrote:

Le mémoire de Löwenheim de 1915 ouvre une nouvelle époque dans
le développement de la logique moderne. Dans ce mémoire, Löwen-
heim établit un théorème troublant: si un formule de la théorie de
la quantification est satisfiable, elle es satisfiable dans un domaine
dénombrable. Mais, plutôt que le résultat même, ce sont les notions
et les méthodes employées par Löwenheim qui doivent maintenant
retenir notre attention. Löwenheim n’a ni axiomes ni règles d’infer-
ence. Il laisse de côté la notion démonstrabilité. Ce qu’il manie,

4 Thus, for example, in his “A Complete Set of Postulates for the Theory of Absolute Con-
tinuous Magnitude” of 1902, Huntington (at [98, pp. 264–268]) introduced the notion of

categoricity for interpretable propositions, under the name “sufficiency”. Huntington’s def-

inition [98, p. 264] of sufficiency was that there is only one set possible for axiomatizing
the reals by means of sequences that satisfy a given set of axioms. For background on the
American postulate theorists, see [36] and [140, esp. p. 988].



416 I. H. Anellis Log. Univers.

c’est la notion de validité (ou, ce qui revient au même, de satis-
fiabilité). Sa logique est, comme le dira plus tard Skolem (1938,
p. 25) [145] «une logique du prédicat fondée sur la théorie des ensem-
bles» . Cette manière d’aborder les problèmes logique, Löwenheim
l’a trouvée, avec la notation qu’il emploie, chez Schröder, lui-même
inspiré par Boole et Peirce.
For van Heijenoort, proof theory remained the investigation of formal

derivations of proofs and the elucidation of the model-theoretic properties of
formal proof-theoretic methods, in particular their soundness and complete-
ness, and the bulk of his work in proof theory was devoted to the investigation
of the various procedures for formal derivations in various calculi, propositional
calculus, first-order calculus, second- and higher-order calculi, the comparison
of the various systems, the axiomatic method, natural deduction, the Gentzen
sequent calculus, Herbrand’s method, and especially tableaux methods, most
particularly the falsifiability tree method, i.e. Smullyan’s analytic tableaux in
which proofs are carried out by contradiction, and of the completeness and
soundness of these methods for various classical and non-classical calculi. This
work by van Heijenoort included general considerations of the falsifiability tree
method for sentential calculus and classical quantification theory and their
properties, in particular the soundness and completeness of the method (e.g.
[163,167,174,176,180,182,183,188,189]); intuitionistic propositional calculus
and quantification theory (e.g. [178,179,185,186]); and the study of related
methods, including Beth tableaux (e.g. [175,179,189]); Grzegorczyk’s method
[177]; Gentzen’s system of natural deduction (e.g. [181,189]); and Herbrand’s
method (e.g. [165–167,171,187,189,191–193,197,198,201,202]); and applica-
tion of the falsifiability tree method to modal logics (e.g. [194,195]).5

Kreisel’s conception of model-theoretic logical consequence, as given in
“Informal Rigor. . . ” [111], according to which, whenever an argument (of a
standard first-order language) exhibits the condition of model-theoretic logi-
cal consequence, the completeness theorem guarantees that its conclusion is
derivable (according to well known and provably sound rules of inference) from
its premises, also played a role in van Heijenoort’s proofs of the completeness
and soundness of the falsifiability tree method for various calculi. More specif-
ically, Kreisel [111] distinguished between V alα or intuitive validity, and V α,
or formal validity, where V α → αε requires that α be true in the structure
consisting of all sets (with the membership relation), that is, must be true in
every model, and for some property P applied all sets α in αεPαε is provable
and thus holds in every set-theoretic structure.

Defining clashing in terms of some formula F of a theory T in which both
F and ∼ F are derivable, let L be the language of T (say Zermelo set theory)
and A be the set of elementary axioms of T, and assuming that A has finite
models; Kreisel [111, p. 173] states, and then proves, the following theorem:

5 See the Appendix “Proof-theoretic and Related Writings of van Heijenoort’s in the
Nachlaß [160]; Box 3.8/86-33/1] (exclusive of research notes and unfinished work)” attached
to the references for a more comprehensive listing.
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Theorem. Suppose F (X1, . . .,Xr) is a formula of LP built up from prime
formulae tηXi, (i ≤ r) using the operations of L only, where t denotes
the terms of L. Let A be a set of formulae of L itself. Then U,PL �
∃X1, . . .,XrΦ(X1, . . .,Xr) iff there are formulae Fi(x, u1, . . ., up)(i < r) of
L such that U � ∃u1. . .upΦ(F1, . . ., Fr) where Φ(F1, . . ., Fr) is obtained from
(F1, . . ., Fr) by replacing tηXi by: Fi(t, u1, . . ., up); it is supposed that all the
variables in Fi are distinct from all the variables in Φ(F1, . . ., Fr) to avoid
clashing.

From this theorem the two corollaries are obtained:

Corollary 1. If Φ is a formula of L and U,PL � Φ, then also U � Φ.

Corollary 2. Suppose Ψ(X) is built up from prime formulae tηX by using the
operations of L only. Then, for Φ in L,U,∀XΨ(X) � Φ iff there is an F in L
such that U � ∀u1 . . . upΨ(F ) → Φ.

2. Van Heijenoort’s View of the History of Proof Theory

In El desarrollo de la teoŕıa de la cuantificación (1976) [189] van Heijenoort
gave an exposition and historical analysis of the theory of quantification from
a metamathematical perspective. He argued that quantification theory is a
“family of formal systems” (“la teoŕıa de la cuantificación es una familia de
sistemas formales” [189, p. 7], the creator of which was Gottlob Frege (1848–
1925) in 1879 in the Begriffsschrift [59]. The family members of quantifica-
tion theory are the axiomatic method, Herbrand quantification, the Gentzen
sequent calculus, and natural deduction as developed by Stanis�law Jaśkow-
ski (1906–1965) and Gerhard Karl Erich Gentzen (1909–1945). The axiom-
atic method has two distinct branches, Frege-type systems and Hilbert-type
systems. A Hilbert-type system is distinguished by being simply a set of well-
formed formulae (wffs), including a list of axioms, a set of “rules of passage”,
that is derivation rules, for which a proof is a sequence of wffs, the last wff
of the sequence being the formula which is proven. A Frege-type system is
a formal language (“Begriffsschrift”) containing an arbitrary set of axioms,
a set of equivalence and inference rules, and in which nothing exists outside
of proofs. These represent for van Heijenoort the four principal methods of
approach to first-order predicate calculus. Van Heijenoort’s research notes and
uncompleted work include undated writings on the axiomatic method [203],
on Herbrand [202] and considerations of Herbrand’s method for non-classical
logics [201]. In Desarrollo, van Heijenoort traced the mutual relations among
these four approaches, and traced their histories. He examined each in its clas-
sical, intuitionistic, and minimal versions, and pointed out the strengths and
weaknesses of each.6 Thus, for example, he noted that Herbrand’s method
is particularly suited for use with computers, but is not easily generalized

6 As presented in 1937 by Ingebrigt Johansson (1904–1987) [103], a “minimal version” is
a reduced intuitionistic formalism, in which only one of (1) � (¬a ∨ b) → (a → b)or(2) �
(a → b) → (¬a ∨ b) holds.
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to second-order logic. However, he showed in his 1975 paper on “Herbrand”
[187, p. 6] that we can establish the constructive equivalence of a second-order
Herbrand formula to a classical second-order formula, provided the formula
(∀x)(�Q F ⇔�QH F ), properly gödelized, that is having an infinite list {0, 1,
2,. . . } of variables of Q not occurring in F, can be shown to be provable in
primitive recursive arithmetic, where Q is classical quantification theory and
QH is Herbrand quantification theory.

In Desarrollo, van Heijenoort treated the principal methods of quantifi-
cation theory proof-theoretically. The axiomatic method attains results based
on the concept of formal system and provides an analysis of theorems, but is
not yet itself a study of proofs. For Herbrand’s system, quantifier-free formulae
can be obtained effectively from quantified formulae, such that these quanti-
fier-free formulae are sententially valid, by using Herbrand expansions. Thus,
Herbrand helped introduce a new conception of validity into logic, where for
Leopold Löwenheim (1878–1957) the essential consideration was still satisfi-
ability, or validity invariant with respect only to a particular model.

Gentzen’s work in the sequent calculus rests on the results given by
Herbrand. Herbrand’s Fundamental Theorem, for example, can be understood
to be a special case of Gentzen’s verschärfter Hauptsatz, and Gentzen’s Mittel-
sequenz corresponds to Herbrand’s valid disjunction Dk. Beyond that, Gentzen
also gives an analysis of the sentential parts of the proof of validity. Thus, van
Heijenoort was particularly interested in the ways in which proofs are carried
out in the axiomatic, Herbrand, Gentzen sequential, and natural deduction
methods. Indeed, it could be said that, for van Heijenoort, quantification the-
ory is a family of methods of logical deduction.

The various methods for quantification theory, according to van Hei-
jenoort, taken together, represent an evolution or development (desarrollo)
of quantification theory, starting from the definition of the Hilbert program
and Herbrand quantification, through the Gödel incompleteness results, to
the Gentzen sequences and natural deduction, rather than provide an oppor-
tunity for possible conflict. The Hilbert program of metamathematical study
of proofs arose just because the axiomatic method fails to study proofs even
while it provides an analysis of theorems. It was Hilbert who undertook to
define and carry out systematically the construction of mathematics within
his system. This required a fully developed concept of proof, for the Hilbert
program had two aspects: to define the technical apparatus which would per-
mit a finitist construction of all of mathematics, and to ensure that the set of
(mathematical) sentences derived within the axiomatic system was consistent.
Frege’s Begriffsschrift-program, however, focused almost exclusively on only
part of the first aspect of the Hilbert program, namely the attempt to derive
all of mathematics from the Begriffsschrift’s logical apparatus. The focus of
much of van Heijenoort’s work centered in particular on Herbrand and his
method, and his edition of Herbrand’s logical writings [85] was second only
to From Frege to Gödel as his most significant contribution to his editorial
enterprises.
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Consistency and completeness were raised as questions for quantifica-
tion theory as soon as the universality of logic was proclaimed and deductive
validity replaced satisfiability as the defining characteristic of being a proof.
Universality, raised as an issue by Frege, required that all of mathematics
should be constructed within the logical theory presented by the Begriffssch-
rift. It also required that the Begriffsschrift theory deal with what we now call
“metamathematical” problems, such as completeness and consistency, since
there is no extrasystematic or metasystematic apparatus to be distinguished
from the system. Frege also required that every function in the system be
defined for every argument in the universe of the system’s syntax, that is, that
every object in the semantics of the system be in the range of every function.
Thus, there was no longer a question of restricting a theory to a select model.
Thanks to Frege, the model was the universal domain—the Universe—rather
than some arbitrary domains that acted as interpretations for submodels of the
universal domain. This universal domain in effect contained only two objects,
the True and the False. In practice, every object of the universe was, according
to the assignment of truth-values, an element of either the True or the False.
Now, as understood semantically by van Heijenoort, a formula (or theory)
is satisfiable if there is some (at least one) assignment of truth-values which
makes the formula (or theory) true, and valid if the formula (or theory) is true
for every assignment of truth-values. These definitions by van Heijenoort of
satisfiability and validity were based on Löwenheim’s work, and in particular
the realization that (a) a formula may be valid in some domain but false in
another, and that (b) a formula may be valid in every finite domain but not
valid in every domain.

Van Heijenoort’s definition of proof was in essence model-theoretic. If Φ
is a sequence of formulae F0, F1, . . . , Fn, Q,then Φ is a proof of Q provided the
deduction theorem holds, according to which Φ � Q if and only if Φ → Q and

(F0 ∧ F1 ∧ . . . ∧ Fn−1 → (Fn → Q)
...

(F0 → F1 → · · · → Fn) → Q

The proof is satisfiable if there exists a model of Φ � Q for which |= Φ → Q
for at least one assignment of truth-values to Φ, and the proof is valid if Φ → Q
for every such assignment of truth-values to Φ. Defining a proof as an extended
formula built up from a sequence of formulae, van Heijenoort’s model-theoretic
approach makes no distinction between deductive validity, that is the validity
of proofs, and the validity of formulae. Extending these definitions, he was
able to assert that satisfiability can be understood as validity with respect to a
specific model, while validity can be understood as satisfiability invariant with
respect to any particular model. The contrapositive gives us validity invariant
with respect to a particular model as our definition of satisfiability. This def-
inition is closely akin to the definition of validity introduced by Kreisel as an
unpublished appendix to the paper “Set-theoretic Problems Suggested by the
Notion of Potential Totality” in Infinitistic Methods [110] presented in Warsaw
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in 1959. It is a generalization of Alfred Tarski’s (1901–1995) calculus of sys-
tems as extracted from his paper “Über den Begriff der logischen Folgerung”
of 1936 on the concept of logical consequence ([158, p. 7]; see also [159, p. 415])
according to which:

If, in the sentences of the class K and in the sentence X, the constants—apart
from purely logical constants—are replaced by any other constants (like signs
being everywhere replaced by like signs), and if we denote the class of sentences
thus obtained from K by ‘K′’, and the sentence obtained from X by ‘X′’, then
the sentence X′ must be true provided only that all sentences of the class K′

are true.

In the no-counterexample interpretation of validity due to Kurt Friedrich
Gödel (1906–1978) in “Über eine bisher noch nicht benützte Erweiterung des
finiten Standpunktes” of 1958 [67] that Kreisel [9], [112, pp. 332–333] described,
we have:

(i) to each formula A is associated an interpretation of the form ∃s∀tA1(s, t),
A1 quantifier-free, and (ii) the laws of (classical) logic are valid for this
interpretation when applied to suitably restricted classes of formulae, pro-
videdenoort correspondence is found the closure conditions formulated in
[67] are satisfied by the functions considered (for negations of prenex for-
mulae in both interpretations, for formulae built up from ¬,∧,∀.)

This is the solution which Gödel propounded when he first detected the error
in Herbrand’s lemma 3.3 [81, p. 101] connection with Herbrand’s proof of the
Fundamental Theorem. Gödel did not publish his findings until the issue was
raised in 1963 by Dreben.7 Kreisel [9] [112, p. 333] notes that he first heard
of it from Gödel in 1955, and spoke with him about it in 1957 at the Summer
Institute of the Association for Symbolic Logic on the campus of Cornell Uni-
versity, and he adds that Gödel informed him that he first presented the tech-
nical details in lectures at Princeton University as early as 1941. The details,
including those of its relation to Herbrand, are elaborated by S, Feferman [54,
esp. pp. 250–254].

In his comments on the work of Löwenheim and Herbrand, van Heijenoort
stated (in From Frege to Gödel and elsewhere) that Herbrand’s work on elu-
cidating the concept of proof for Hilbert’s axiomatic system was inspired by
questions raised by the Löwenheim–Skolem theorem. To the two theses pre-
sented by van Heijenoort in Desarrollo that quantification theory is a family of
formal systems, and that the four principal theories, rather than being in com-
petition, represent a natural development, I add a third (introduced in [7,8]
and detailed in [15]), namely that the technical developments in Hilbert-type
systems, including the development of Beweistheorie by Hilbert and Bernays,
and the development of alternative theories of quantification, are primarily
due to questions raised about the Löwenheim–Skolem theorem.

7 See [72, pp. 9–10]. For the details of how this came about, see [6]. A summary is given
below, in Sect. 4.
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It is clear from Herbrand’s own comments in his thesis of 1930 Recherches
sur la théorie de la démonstration [81] that his investigations were undertaken
to clarify the concept of being a proof for a Hilbert-type quantification sys-
tem. This, as van Heijenoort recorded in one of his manuscript notes on Her-
brand [202], led Burton Spencer Dreben (1927–1999) and John Stanton Denton
[46, p. 419] to remark that “the Herbrand approach is perhaps best viewed
as a reformulation of Hilbert’s evaluation method, a reformulation that frees
that method from its customary (and in our opinion obfuscating) depen-
dence on the ε-calculus.” On the next page of the manuscript notes on Her-
brand, van Heijenoort raised the possibility that “dans sa signification, le
théorème de Herbrand ne feut être considere comme un substitut de celui
de Löwenheim, dans les applications. . . .” The link between Herbrand and
Hilbert is emphasized by van Heijenoort in a manuscript page of the notes
on Herbrand [202] where it is remarked that, although Herbrand early on
read the Principia Mathematica (1910–1913) [205], if only the first volume,
he took from Bertrand Russell (1872–1970) an interest only in the first-
order predicate calculus, and was left unaffected by and uninterested in
the theory of types. Referring to Goldfarb’s introduction [72, p. 1] to the
English translation [86] of Herbrand writings, van Heijenoort, in an iso-
lated note of [202] quotes Goldfarb to the effect that “one of the meth-
ods Whitehead and Russell use to construct quantificational logic seems
to be the source of two key concepts in Herbrand, namely, those of nor-
mal identity and property A.” One is then sent to Goldfarb’s introduction
[72, p. 5],8 where a formula F is said to have Property A if a quantifier-free
tautology results from given instantiations. Elsewhere in his manuscript notes
on Herbrand [202], van Heijenoort remarked that, whereas Herbrand studied
the Principia Mathematica, or at least the first volume of Principia, it had
little influence on him, and that he took from it only the first-order predicate
calculus; rather, it was Hilbert who “gave Herbrand a view of logic and of its
role in the foundations of mathematics. . . ,” and evinced little interest other-
wise in the work of Russell in general or in the theory of types in particular.

In the introduction to his Recherches [81], Herbrand spoke of the recur-
sive method to “prove that every true proposition has a given property A” (see
the translation by Goldfarb [86, p. 49]), and he immediately tied this to the fin-
itist limit on recursive proofs enunciated by Hilbert. For Herbrand, this finitist
limit challenges the transfinitist proofs of Löwenheim, in terms of ℵ0-satisfi-
ability, and requires that Löwenheim’s infinite conjunction be reinterpreted
as Herbrand expansion, the basis for Herbrand’s method of quantification.
Thus, as van Heijenoort stated [164, p. 526] in his introduction to Herbrand’s
Recherches, “Herbrand’s work can be viewed as a reinterpretation, from the
point of view of Hilbert’s program, of results of Löwenheim and Skolem,” and
that Herbrand’s fundamental theorem is, as Herbrand himself stated [83, p.
4] in his paper “Sur la non-contradiction de l’arithmétique” (1931), “a more

8 This is clearly a typographical error in [72, p. 1], since Goldfarb’s characterization of Prop-
erty A occurs at [72, p. 5].
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precise statement of the Löwenheim–Skolem theorem.”9 In an isolated com-
ment in his notes on Herbrand, van Heijenoort [202] remarked that: “La cri-
tique que Herbrand fait de Löwenheim est sévère mais il n’est pas toujours
quels sont précisément les points que Herbrand attaque.” Elsewhere in the
same set of manuscript notes, van Heijenoort, referring to Skolem’s “Sur la
portée de théorème du Löwenheim–Skolem” of 1938 [145], notes that Tho-
ralf Albert Skolem (1887–1963) ‘gives Herbrand as “praising” Löwenheim”; to
which van Heijenoort emphatically replies: “no” [van Heijenoort’s underlining
— I.A.]. Van Heijenoort [202] elaborated upon the comment on Herbrand’s
critique of Löwenheim in his notes on Herbrand’s article “Le bases de la log-
ique hilbertienne” in the Revue de Métaphysique et de Morale of 1930 [82],
writing that Herbrand:10

states Löwenheim’s fundamental result thus: If a formula of quanti-
fication theory is valid, it is provable. What Löwenheim’s Theorem 2
in fact says (if we leave aside the question of identity) is: If a formula
of quantification theory is ℵ0-valid, it is valid. Löwenheim could not
bring in the question of provability because he has no proof proce-
dure (where through axioms and rules of inference or through any
other means that would single out/mark off a recursively enumera-
ble set of (provable) formulas). Löwenheim has no explicit definition
of ‘valid’, but the notion is perfectly clear to him and he handles it
without difficulties [81, p. 110], but cannot be asking for a definition
of ‘valid”’, which is there to be seen in Löwenheim’s paper, but that
the notion of validity used by Löwenheim belongs to näıve set the-
ory. This is in fact what Herbrand means [81, p. 118] when he writes
that Löwenheim gives to the notion ‘true in an infinite domain’ an
intuitive meaning. What he reproaches Löwenheim [with] is the use
of a notion that belongs to näıve set theory.
Regarding ‘true in an infinite domain’, van Heijenoort adds, by way of a

footnote, that that notion
belongs to Herbrand theory and Löwenheim never uses it. If a for-
mula is true in an infinite domain, it is, by a non-finitistic argument,
ℵ0-satisfiable, and conversely. But ‘true in an infinite domain’ and
‘ℵ0-satisfiable’ have entirely different definitions. Here, Herbrand
uses ‘true in an infinite domain’ for ‘ℵ0-satisfiable’ because, accord-
ing to him, the first notion, as understood by him, is the finitistic
reformulation of the second.
Recalling, then, that is Desarrollo [189] van Heijenoort stated that for

Herbrand’s system, quantifier-free formulae can be obtained effectively from
quantified formulae, such that these quantifier-free formulae are sententially

9 For a more detailed consideration of the role of the Löwenheim–Skolem theorem on the
work of Herbrand and on the rise of quantification theory from the proof-theoretic perspec-
tive, see [15].
10 On the next page of the notes, this passage is partially rewritten; I have here taken the
liberty, for the sake of clarity, of integrating the two versions.
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valid, by using Herbrand expansions, and that Herbrand thereby helped intro-
duce a new conception of validity into logic, where for Löwenheim the essential
consideration was still satisfiability, or validity invariant with respect only to a
particular model. It was, then, Herbrand, working with applications of Löwen-
heim’s concepts to Hilbert’s system, who initiated the shift from satisfiability
to validity, and Hilbert who explicitly made Beweistheorie a fundamental task
for the logician.

The details of van Heijenoort’s treatment for repairing Herbrand’s error,
which remained unpublished and are to be found in the paper “Herbrand”
of 1975 [187], is the subject of Claus-Peter Wirth, who presents the correc-
tion and an analysis of it [207]. Van Heijenoort’s approach is to dispense with
Herbrand’s inference rules in favor of a generalized quantification rules, thus
removing the problematic results that Herbrand’s application of modus ponens
introduced. Wirth, quite understandably, wonders why van Heijenoort failed
to publish his correction. The answer to that question is, I suggest, the same as
the answer to the question of why so much of van Heijenoort’s work remained
unpublished: that he viewed it as “work-in-progress”, continually perfectable,
but still imperfect, and hence, “unpublishable”. It is van Heijenoort’s approach
to Herbrand quantification as Herbrand expansion—Herbrand disjunction for
existentialoid quantifiers and Herbrand conjunction for universaloid quantifi-
ers—that enables his repair of Herbrand’s error.

3. Herbrand Quantification

For van Heijenoort, Herbrand is a major figure in the history of logic, and he
devoted much attention to the work of Herbrand, defending Herbrand against
such critics as Roland Fräıssé (1920–2008), whose criticisms in “Réflexions
sur la complétude selon Herbrand,” [58] of Herbrand’s concept of validity had
already been dealt with by van Heijenoort in his edition of Herbrand’s Écrits
logiques [85] and in the introduction to Herbrand’s “Sur la non-contradiction
de l’arithmétique” [83] (in [164, pp. 618–620]; see also [73], for example).

Fräıssé’s claims ([58]; see [73], which also summarizes Jean-Pierre
Bénéjam’s [24]) included the incorrect assertions that Herbrand was concerned
with establishing the equivalence of quantificational validity and the property
A and that Herbrand had no concept of syntactic truth apart from that prop-
erty, whereas Herbrand’s goal was precisely to establish the equivalence of
syntactic truth in the usual sense of derivability in a standard axiomatic for-
mulation of quantification theory. Moreover, Herbrand’s property C, which a
formula F has in case there is a truth-functionally valid Herbrand expansion
of F , is the basis of Herbrand’s work.

In his “Préface” to Herbrand’s Écrits logiques, van Heijenoort [165,
pp. 1–12] briefly traced the history of the development of quantification the-
ory, with special emphasis on Herbrand’s role as the focal point in that history.
Van Heijenoort pointed out in particular that Herbrand studied Löwenheim’s
treatment of satisfiability for Hilbert’s axiomatic system and in Recherches
generalized the results in Löwenheim’s 1915 paper “Über Möglichkeiten im
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Relativkalkül” [120] to validity by showing how to obtain, from the satisfiable
quantified formulae of Hilbert’s system, quantifier-free formulae that are sen-
tentially valid. Thus, if F is a formula in Hilbert’s system which is satisfiable,
then it is provable. Using methods developed by Löwenheim and strength-
ened by Skolem in his “Logisch-kombinatorische Untersuchungen über die
Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme
über dichte Mengen” of 1920 [144], F is rewritten in Skolem normal form as
a new formula F ′. Employing the method now known as Herbrand expansion,
quantifiers are eliminated from F ′ to obtain a quantifier-free formula FQ, where
F= Exp[F ′,D], i.e. FQ is the Herbrand expansion of F ′, and D is the domain
containing the elements that are terms of Hilbert’s quantification theory.

Let us consider the details.
We may begin with Kreisel’s 1958 [108, p. 161] account in “Mathematical

Significance of Consistency Proofs” of Herbrand’s Fundamental Theorem:

Herbrand’s theorem provides an interpretation of the classical pred-
icate calculus (with or without equality) by the elementary calculus
with free variables (with or without equality): the latter is obtained
from the former by suppressing quantifiers.

Consider (x)(Ey)(z)A(x, y, z): with it are associated disjunc-
tions of the form A[x, λ0(x), z]∨A[x, λ1(x, z), z1]∨ . . .∨A[x, λk(x, z,
. . ., zk−1] where λi are terms made up of the function symbols occur-
ring in A and individual variables, not containing variables zp, with
p ≥ i (Informally: the ‘function’ λ0(x). . . satisfies A[x, λ0(x), z]
for all z or, if it does not for z = z̄, then λ1(x, z̄) satisfies
A[x, λ1(x, z̄), z1] for all z1, etc.). From each of these disjunctions
(x)(Ey)(z)A(x, y, z) can be proved.

(Kreisel had already, in 1951 in “On the Concepts of Completeness and Inter-
pretation of Formal Systems” [107], established that the concept of interpre-
tation presupposes a relation between two systems.)

A quantifier of a classical formula F is existentialoid (universaloid) if
it would become existential (universal) if F were put in prenex form. In the
matrix of F , each existentialoid variable y is replaced by a functional term
whose arguments are the universaloid variables that are superior to y, where
a variable x is superior to a variable y in case the quantifier binding y is in
the scope of the quantifier binding x. In his survey “Historical Development
of Modern Logic”, composed in 1974 and posthumously published in 1992
([200]; also this issue), van Heijenoort illustrated the procedure for creating
the matrix table and enumerated the rules for its construction.

In the manuscript notes on Herbrand [202], on a page labeled “A survey
of logic: Herbrand”, the quantification rules for Herbrand’s system are stated
as follows:

Rule of universalization. If F2 contains a subformula QyG occurring within
the scope of no quantifier in F2, and Qy is general, and F1 is obtained from
F2 by replacing QxG by G(y/z), the F2 may be inferred from F1.
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Rule of existentialization. If F2 contains a subformula QxG, and Qx is
restricted, and F1 is obtained from F2 by replacing QxG by G(x/z),11 then F2

may be inferred from F1.

In his informally published paper “Herbrand” of 1975 [187], in which
excerpts from the “Préface” [165] to his edition of Herbrand’s writings
appeared, van Heijenoort detailed very carefully the technical apparatus which
Herbrand developed and which was briefly outlined in the “Préface”. In addi-
tion, this 1975 “Herbrand” paper [187] discusses the “rules of passage” in Her-
brand quantification theory; in particular, van Heijenoort discussed in detail
the rules of existentialoid quantification and universaloid quantification that
are the basis for Herbrand expansion.

A formula of Herbrand’s system QH is called rectified if it contains no
vacuous quantifiers, no variable has free or bound occurrences in it, and no
two quantifiers bind occurrences of the same variable. A quantifier in a recti-
fied formula is called existentialoid if it existential and in the scope of an even
number of negation symbols, or universal and in the scope of an odd number
of negation symbols; otherwise, it is universaloid. A variable in a rectified for-
mula is an existentialoid variable or is restricted if and only if it is bound by
an existentialoid quantifier, and is a universaloid variable if and only if it is
bound by a universaloid quantifier. Thus, a quantifier of a classical formula F
is existentialoid (universaloid) if it would become existential (universal) if F
were put in prenex form. In the matrix of F , each existentialoid variable y is
replaced by a functional term whose arguments are the universaloid variables
that are superior to y, where a variable x is superior to a variable y in case
the quantifier binding y is in the scope of the quantifier binding x.12

In his paper on the historical development of modern logic, [200, p. 248],
van Heijenoort constructed this matrix as follows.

Let Γ = {0, 1, 2, . . .} be an infinite list of variables of Q not occurring
in F . Assume that the restricted variables of F are x1 and x2, that its non-
restricted variables are y1, y2, and y3, y1 being free, the quantifier binding y2

being in the scopes of the quantifiers binding x1 and x2, and the quantifier
binding y3 being in the scope of the quantifier binding x2 (where we call x1

and x2 the ‘arguments’ of x1 and call x2 the ‘argument’ of y3). Then we may
write the table:

Line x1 x2 y1 y2(x1, x2) y3(x2)
1 0 0 1 2 3
2 0 1 1 4 5
3 1 0 1 6 3
4 1 1 1 7 5
5 0 2 1 8 9

11 Van Heijenoort here wrote, and then crossed out: “where z is a variable not occurring
in F2.”
12 See [187, p. 1], [197, p. 58], [199, p. 100].
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according to the rules:

(1) Under the restricted variables we shall write elements of Γ occurring on
the previous lines of the table, except for the first line, on which we write
0 under each restricted variable; on a given line these elements form an
ordered pair, and the order in which these ordered pairs are written is
determined by the following rules: if max(i, j) < max(k, l), 〈i, j〉 precedes
〈k, l〉; if max(i, j) = max(k, l), the relative order of 〈i, j〉 and 〈k, l〉 is their
lexicographic order.

(2) On a given line, the element of Γ written under an unrestricted variable
is different from any element of Γ previously written in the table (on a
line above or on the same line but to the left) except in the following
case: if on line q the ‘arguments’ of the nonrestricted variable u have
been assigned the same symbols as on line p, with p < q, then under u
on line q we write the symbol occurring under u on line p (if the nonre-
stricted variable v has no ‘argument’, then on every line the same symbol
is written under v).

Each line of the table determines a substitution instance of F . We delete
all quantifiers in F and replace each variable by the symbol assigned to it in
the line. Let Ak, with k = 1, 2, 3, . . ., be the substitution instance obtained by
the use of line k. The formula Dk obtained by this operation on F is a quanti-
fier-free formula of Q called the kth Herbrand disjunction of F , i.e. Exp[F,Dk].

Next, van Heijenoort, following Bernays in his “Über den Zusammen-
hang der Herbrand’schen Satzes mit den neueren Ergebnissen von Schütte
und Stenius” of 1954 [27], concluded that Herbrand’s “Fundamental Theo-
rem,” according to which a formula F is provable in any classical quantifica-
tion theory without identity if and only if there is a k such that Exp [F, Dk]
is sententially valid, is the central theorem of quantification theory. Gentzen
[61, p. 409], for example, thought that Herbrand’s Fundamental Theorem was
simply a special case of his own verschärfter Hauptsatz. But while the Hau-
ptsatz presents cut-elimination and is analogous to Herbrand’s elimination of
modus ponens for QH, and his Fundamental Theorem applies to a sequent
whose antecedent is empty and whose succedent is a single prenex formula
(while Gentzen’s verschärfter Hauptsatz applies to any prenex formulae), Gent-
zen’s cut-elimination for prenex formulae is neither as general nor as strong as
Herbrand’s elimination of modus ponens for QH, since Herbrand’s result is not
necessarily restricted in its application to prenex formulae. One of the most
important contributions of Herbrand’s Fundamental Theorem—if not the most
important contribution—is that it gives us a truth-functional test of the valid-
ity of quantified formulae. It is precisely in this sense that Herbrand understood
his Fundamental Theorem to be an improvement of the Löwenheim–Skolem
Theorem.

With this apparatus, we are now able to give an example of the sentential
validity of the Herbrand expansion of a provable formula of classical quanti-
fication theory. Suppose that Exp[F,Dk] is a Herbrand expansion of F over
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Dk (where Dk is the kth element of the sequence D containing the individ-
ual constants and universaloid variables of F and the elements D0, . . . , Dk−1,
where initial D0 contains the individual constants and the existentialloidally
free universaloid variable of F , and where, if F contains none of these, then
the one element of D0 is an arbitrary constant u0), then the formula F is prov-
able in classical quantification theory if and only if there exists a k such that
Exp[F,Dk] is sententially valid. Thus, for the formula FQ of classical quantifi-
cation theory without identity, for the kth Herbrand expansion FQHk

for any
k,� FQ → FQHk

, and FQHk
is sententially valid.

The connection between Löwenheim and Herbrand was made explicit
for van Heijenoort precisely through Herbrand’s Fundamental Theorem.
“Herbrand’s work can be viewed,” van Heijenoort, recall, wrote [164, p. 526]
“as a reinterpretation, from the point of view of Hilbert’s program, of the
results of Löwenheim and Skolem,” adding that “of his fundamental theorem,
Herbrand writes (in “Sur la non-contradiction de l’arithmétique” [83, p. 4]
‘that it is a more precise statement of the Löwenheim–Skolem theorem’.” In
an unmarked page of his manuscript notes on Herbrand [202], van Heijenoort
remarked that expansion in Löwenheim is a notion which “may have been sug-
gested, vaguely, by the expansion of quantifiers, but it [is] much more sophisti-
cated.” On the following page, van Heijenoort referenced Goldfarb, remarking
that a “key notion in Löwenheim’s 1915 paper [120] is that of a quantifier-free
expansion of a quantified formula.”

A much more extensive and systematic account of Herbrand’s work
and its historical significance was given by van Heijenoort in his 1982 paper
“L’ouevre logique de Jacques Herbrand et son contexte historique” [197], also
translated into English, with revisions [199], where he said of Herbrand’s
Fundamental Theorem and its converse—that, given a Herbrand formula
Exp[F,Dk], we can work backwards to obtain the original formula F of
classical quantification theory from whence Exp[F,Dk] came—that they are
“resultats de grande importance pour la théorie de la quantification” [197,
p. 57], “results of great importance for quantification theory” [199, p. 99]. A
series of nachgelassene notes develop the details of various aspects of Her-
brand’s work, including in particular “The Herbrand Approach to Predicate
Logic” (1976) [191] and “On Herbrand’s Systems” (1980) [196]. In the latter,
van Heijenoort sketches the three distinct systems which Herbrand presented
in his papers “Sur la théorie de la démonstration” (1928) [77], “Non-contra-
diction des axiomes arithmétiques” (1929) [78], and “Sur quelques propriétés
des propositions vraies et leurs applications” (1929) [79]. In the nachgelas-
sene typescript “Proof of the ‘Semantic’ Herbrand Theorem” (1976) [192], van
Heijenoort went beyond exposition and presented a proof of the equivalence
between the semantic approach to quantification theory concerning the valid-
ity of a classical formula if it is sententially valid and the Herbrand approach,
according to which � FQ → FQHk

, and FQHk
is sententially valid. Moreover,

in this paper in particular and in “Herbrand” of 1975 [187], van Heijenoort
explored the details of Herbrand’s proof of his Fundamental Theorem and
sketches the error in the proof.
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Several of van Heijenoort’s reviews in 1970 and 1971 (e.g. [168–170,172,
173]) centered on the work of Grigori Efroimovich Mints (Gregory Minc) (e.g.
[15,99,124,126,127]) which examine the relations of Herbrand’s work to that of
Gentzen and give generalizations of Herbrand’s Fundamental Theorem using
Gentzen’s Hauptsatz. Moreover, using the extension of this method from Gent-
zen’s classical sequent calculus LK to Gentzen’s intuitionistic calculus LJ,
Mints [125] was able, as van Heijenoort [172] showed in his review of one of
Mints’s papers, to obtain an analogue of Herbrand’s Fundamental Theorem for
intuitionistic predicate calculus. In his appendix on Herbrand’s theorem [126]
to the Russian translation of various papers in proof theory prepared by Alex-
ander Vladimirovich Idel’son and Mints [99], Mints undertakes, as summarized
by van Heijenoort [169, pp. 323–324], to “formulate and prove a generalization
of Herbrand’s [fundamental] theorem for the classical predicate calculus with
identity and function symbols”, using Gentzen’s Hauptsatz for classical sequent
calculus LK.13 Van Heijenoort’s nachgelassene notes “Herbrand— Non-clas-
sical” [201] deal with the intuitionistic interpretation of Gentzen’s sequence
calculus through the apparatus provided by Herbrand, and in particular with
Mints’s extension to Gentzen’s LJ of Herbrand’s Fundamental Theorem. These
notes include excerpts from Kreisel’s [109] paper “Elementary Completeness
Properties of Intuitionistic Logic. . . ” as well as the complete English version of
Mints’s paper “Disjunctive Interpretation of the LJ Calculus” [127] reviewed by
van Heijenoort [173]. Mints’s work relies upon Kreisel’s [109, pp. 326–327, 328–
329] proofs of the theorems that The negation of a prenex formula is provable
intuitionistically if and only if it is provable in the classical predicate calculus
and that there is a Herbrand type theorem for negations of prenex formulæ
of the predicate calculus. In fact, as van Heijenoort [162, p. 351] pointed out
in 1957 his review of Robert Feys’(1889–1961) preface [55] to Jean Ladrière’s
(1921–2007) French translation [62] of Gentzen’s “Untersuchungen über das
logische Schließen” (1934) [61], Feys’ “preface underlines the fact that Gent-
zen’s methods lead ‘naturally’ to intuitionistic, and not to classical, logic.”
Mints’s analogue, however, as van Heijenoort noted both in his [172, p. 526]
review of Mints’s paper [125] and again in his informally published paper [187,
p. 9] “Herbrand,” is not without difficulty and does not apply to arbitrary
formulae of intuitionistic logic. There is some confusion regarding Herbrand’s
use of “intuitioniste”, however, as van Heijenoort in his manuscript notes on
Herbrand remarked, in that Herbrand does not use the term in every case in
precisely the same sense, although it is evident that he intends by it the same
meaning as Hilbert in his use of “finit”;14 we find this sense clearly articulated
in those of van Heijenoort’s manuscript notes on Herbrand [202] labeled “On
Herbrand’s Finitism” (see also [143, p. 6]). Elsewhere, Herbrand sometimes
uses “intuitioniste” as synonymous with Hilbert’s use of “metamathematics”,
or in some cases, van Heijenoort, in his notes on Herbrand [202] considers even

13 Van Heijenoort [170] dismissed [124], in one sentence, as a brief and earlier version of
[126].
14 Herbrand’s Hilbertian conception of “intuitioniste” as finitism is discussed in [208,
pp. 204–205].
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the suggestion of Arend Heyting (1898–1980) in his 1955 Les fondements des
mathématiques; intuitionnisme, théorie de la démonstration [87, p. 61] that
finitism pertains to informal, or intuitive, mathematics.

There is nothing in either van Heijenoort’s notes on Herbrand or in his
review of Mints’s studies on Herbrand, for example in his [172] review of the
paper in which Mints was able to obtain an analogue of Herbrand’s Funda-
mental Theorem for intuitionistic predicate calculus, or in particular in own
his later papers on Herbrand (e.g. [199], to justify the assertion by Jean-Yves
Girard [63, p. 257], [64, p. 10], that van Heijenoort ever presented Herbrand’s
system as a synthesis of Brouwer and Hilbert. On the contrary, van Heijenoort
made it clear once more (e.g. in [199, pp. 114–116]) that Herbrand was largely
indebted to Hilbert, and that Herbrand meant by “intuitionism” precisely, as
Hilbert did, “finitism”.

What is of interest respecting Ladrière’s [62] translation of Gentzen’s
[61] “Untersuchungen über das logische Schließen” is that, in addition to the
preface by Feys [55], there are abundant notes, by Feys and by Ladrière. Note
C, by Feys, “Méthodes N de Jaśkowski, Bernays et Johansson” [56] in particu-
lar compares Gentzen’s sequent calculus and his method of natural deduction
with alternative techniques, including method of the natural deduction that
Jaśkowski [100] developed and published at precisely the same time (1934) as
Gentzen published his “Untersuchungen. . . ”. Another note by Feys, Note F,
“Signification des sequences et de schemas de structure” [57], demonstrates
how to translate Gentzen’s sequences using only implication (and Λ for empty
sequences).

The existential quantifiers are eliminated by Herbrand disjunction, so
that

∃xFx = (F (x/t1,D) ∨ (F (x/t2),D) ∨ . . . ∨ (F (x/tk),D)

where D is a k-ary model and t1, t2, . . . , tk are the terms of D that are argu-
ments for the functions of the formula of Hilbert’s system; and universal quan-
tifiers are eliminated by Herbrand conjunction, so that

∀xFx = F (x/t1,D) ∧ (F (x/t2),D) ∧ . . . ∧ (F (x/tk),D)

for the k-ary model D and its terms. Van Heijenoort’s account of Herbrand
conjunction and disjunction is also given in an unpublished manuscript from
1976 specifically devoted to “Herbrand Expansions and Herbrand Disjunc-
tions” in which the details of Herbrand’s method are treated [193]. As a result,
we obtain a sentential formula to which appropriate tree decomposition rules
are applicable. The resolution method, as first presented in detail by in 1965 in
“A Machine-oriented Logic based on the Resolution Principle” [136] by John
Alan Robinson (b. 1930), applied to clauses rather than to the terms of either
sentential or first-order classical calculus, is a direct descendant of Herbrand’s
method.15 The inverse method of Sergei Yure’evich Maslov (1939–1982), first
presented in 1968 [122], is a close relative of the resolution method, as Maslov

15 See [2–4] and [17]; [see also especially [115].
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himself [123] recognized in 1969.16 Indeed, Maslov established that there is
a one-to-one correspondence between his inverse method and Robinson’s res-
olution ([123]; see also [113]). Gennadi Valentinovich Davydov [37], in fact,
was able to obtain a synthesis of the two methods. The application of the
resolution method to computerized proof-finding was enhanced by Robinson’s
development in “Automatic Deduction with Hyper-resolution” [137] of a type
of resolution called hyper-resolution. This is a resolution whose search space is
considerably more sparse than the search space of general resolution. Here, we
have a sequence of connected search trees which converge to a ground resolu-
tion; these converging trees connect several levels of resolutions. Resolution is
described by Jean-Pierre Jounnaud and Claude Kirchner in their paper for the
Robinson Festschrift as the “first really effective mechanization of first-order
logic” [104, p. 257]. They add the historical remark that solving equations on
first-order terms emerged with Herbrand’s work on proof theory” in his doc-
toral thesis Recherches sur la théorie de la démonstration (1930) [81], “and was
coined unification by Alan Robinson” in his first major paper [136]. Robinson
[138, p. 290] defined Herbrand in Recherches. . . as essentially having demon-
strating that: “the provability of any provable formula A by a proof that does
not introduce any formulas that are not subformulas, in a suitable sense, of
the formula A,” which is Robinson’s conception of Herbrand’s Fundamental
Theorem, and which is, as he asserts [38, p. 290] equivalent to Gentzen’s result
that true sequents can always be given cut-free proofs.

Despite their clear connections with Herbrand’s method, van Heijenoort
never took account either of Robinson’s resolution method or Maslov’s inverse
method.

Whereas Hilbert’s universe was finite, Herbrand’s need not necessarily
be so (although, in fact, Herbrand himself supported Hilbert’s finitism and
sought to define validity as satisfiability strictly of finite models, that is, as sat-
isfiability invariant with respect to finite models). Thus, Löwenheim accepted
Hilbert’s finitism, according to which every interpretation that gives the truth-
value t (true) to the lth expansion of a classical formula F gives the value t
to the kth expansion, where k < l. If F is provable in (classical) quanti-
fication theory, then that proof is finitary. Löwenheim thus obtained a finite
notion of satisfiability which is invariant with respect to one’s model and where
the cardinality of that model helps determine whether formulæ of that model
are satisfiable or not. But since Herbrand expansion may be finite or infinite
(despite Herbrand’s own rejection of the infinite), satisfiability is no longer
model-dependent; instead, Herbrand expansion allows us to obtain formulae
which are sententially valid, and therefore valid.

In an undated one-page manuscript in the Herbrand file [202] labeled
“Relation between the Falsifiability Tree Method and the Herbrand Method”
related to his 1968 “On the Relation between the Falsifiability Tree Method
and the Herbrand Method in Quantification Theory” [167], van Heijenoort

16 See [12], see also [17, p. 172] and [117, pp. 18–19; 78–97] gives a detailed exposition of
Maslov’s inverse method and its applications.
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remarked that “[i]n the falsifiability tree method the ∃-rule or the ∀-rule is
applied to a quantifier according as the quantifier is existentialoid or universa-
loid in ∼ F .” He proceeds to explicate the procedure, as follows:

Let Qy1, . . . , Qyn0 be the accessible existentialoid quantifiers of ∼F, and
Qx1, . . . , Qxm0 its accessible universaloid quantifiers. Delete Qy1, . . ., Qyn and
replace y1, . . ., yn0

by b1, . . ., bn0 , which are n0 distinct individual constants new
to ∼F.

Delete Qx1, . . . , Qxm and replace x1, . . ., xm by a1, . . . am0 which are m
constants (distinct or not) taken among b1, . . . , bn0 .

Let ∼ F1 be the formula thus obtained.
Let Qyn0+1,..., Qyn1 be the accessible existentialoid quantifiers of ∼ F1,

and Qxm0+1,..., Qxm1 its accessible universaloid quantifiers. Delete Qyn0+1,...,
Qyn1 and replace yn0+1,...,yn1 by bn0+1, . . ., bn1 , which are n1 −n0 distinct indi-
vidual constants new to ∼ F1.

As in the case of Löwenheim’s 1915 paper [120], this expansion of quanti-
fied formulae in a k-ary universe as formulae in propositional calculus as logi-
cal conjunctions and disjunctions in terms of logical sums and logical products
was directly borrowed from the Vorlesungen über die Algebra der Logik (Ex-
akte Logik), Bd. II/I [141, §30, p. 35] of 1890 of Ernst Schröder (1841–1902),
as

n∑

1

λaλ = a1 + a2 + a3 + · · · + an−1 + an

n∏

1

λaλ = a1a2a3 . . . an−1an

who in turn borrowed it directly from Charles Sanders Peirce’s (1839–1914)
translation in his algebra of relatives of quantified equations as logical sums
and logical products. (Löwenheim had already done previous work on the logic
of relatives [119], and in the first decade of the twentieth century, it remained
a topic of continued work; thus, for example, between 1900 and 1910, Karl
Eugen Müller (1865–1932), Schröder’s editor, undertook to systematize the
Gebietkalkul [128,129], and Olga Hahn (later Oga Hahn-Neurath; 1882–1937)
undertook to axiomatize the system in 1909 [76]). In “The Logic of Rela-
tives” (1883) [134], Peirce defined the existential and universal quantifiers,
designated by ‘Σi’ and ‘Πi’ respectively, as logical sums and products, e.g.,
Σixi = xi + xj + xk + · · ·, and Πixi = xi∃xj∃xk, and individual variables,
i, j, . . ., are assigned both to quantifiers and predicates. Thus, van Heijenoort
[164, p. 228]), in his introduction to Löwenheim’s 1915 [120] paper, acknowl-
edges that “Löwenheim’s work links up with that of Peirce and Schröder,”
adding that Löwenheim took his notation directly from Schöder’s Algebra der
Logik, and in discussing, for example, universes of discourse, Löwenheim explic-
itly refers to Schröder’s Gebietkalkül in 1895 in Bd. III/I of the Algebra der
Logik [142, pp. 122–123].17 It was left, however, to Geraldine Brady in the

17 ‘Gebeitkalkül’ is translated by Stefan Bauer-Mengelberg [164, p. 234] as “‘abacus of
relatives”’.
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expository From Peirce to Skolem [34] to fill in the historical details and Cal-
ixto Badesa in El teorema de Löwenheim en el marco de la teoŕıa de relativos
[20] and The Birth of Model Theory: Löwenheim’s Theorem in the Frame of
the Theory of Relatives [21] to elaborate the technical developments.18

When he came to develop the apparatus for falsifiability tree proofs, van
Heijenoort used this distinction between satisfiability and validity and showed
how these concepts can be applied both to formulae and to proofs.

Thus, in Desarrollo [189], van Heijenoort studied the members of the
quantification theory family of formal systems as attempts to elucidate the
concepts of validity and satisfiability and to develop the technical apparatus
for carrying out valid proofs of logic. Thus, he not only dealt there with the
historical development of quantification theory, but also made comparisons of
the relative strengths and weaknesses of the various family members.

It was also in Desarrollo that van Heijenoort presented, in the context
of his evaluations of the family members of quantification theory, a defense
of the tree method. Indeed, nearly all of van Heijenoort’s technical, that is to
say non-historical and non-philosophical, writings were devoted to developing
the tree method as a powerful method of logical deduction and validity check-
ing. It is these papers that largely remain unpublished (although they were
distributed to students and colleagues).

In considering the question of provability apropos the study of Herbrand,
van Heijenoort [202] remarked that provable means a finite search, and he
indicated the various ways of searching, listing two, namely, (1) by Gödel num-
bers of proofs; and (2) by “demolition” of formulas. By this, he means that
“the negation enthält ein Widerspruch, is not satisfiable, hence the formula is
valid.” He adds that “all the ways of assigning t to the negation end up with
assigning t and f to no subformula of the formula.” On the verso of the page
in which this conception of provability is enunciated, we find the equivalents
of the rules for Gentzen sequents for introduction and elimination of modus
ponens that may be applied to the construction of falsifiability trees, along
with the definition for the valuation of a formula F , defined for a domain with
property P signed by the function ϕ, and with terms a1, a2, . . ., an, so that
we have F : Pa1a2. . .an and the value of an assignment α to F is true, i.e.
v[α, F ] = t where v[α, F ] = t ⇔ 〈ϕ(a1), ϕ(a2), . . ., ϕ(an)〉, and the formula F
is k-satisfiable if v[α, F ] = t holds for any k-many ϕ(ai), ϕ(aj), . . . , ϕ(ak) of
F : Pa1a2. . .an.

4. Herbrand’s Errors

Several years before Dreben in 1962 detected an error in a lemma employed
by Herbrand’s to set forth his Property A as part of the proof of his Fun-
damental Theorem [40,41] and he and Peter B. Andrews and St̊al Aander-
aa [43,44] found counterexamples demonstrating that Herbrand’s lemma was
false, and Dreben [40] and Dreben, Andrews, and Aanderaa [44] provided a

18 See [18] for a discussion of [34].
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repair, published in 1963, and Dreben and John Denton obtained an improved
repair, published in 1966 [45], taking advantage of tools provided by Dreben
and Aanderaa [42] in 1964. In 1958, if not earlier, Gödel noticed the problem
and offered his solution, as John Dawson discovered (see [38] for an account,
and [74] for details) when he was cataloguing the Gödel Nachlaß.19 Goldfarb
[74] includes a comparison of his treatment and Gödel’s, which are not sig-
nificantly different, although Gödel never published his account, and brought
up the issue with Alonzo Church (1903–1995) when apprised by Church that
Dreben, and Andrews, then Church’s Princeton University doctoral student,
had discovered the error and a correction; Samuel R. Buss [35] offer details;
and Andrews [6] gives an historical account of the background to the error and
of his role in dealing with it.20

Andrews [6] explained that, in 1962, he had difficulty following Herbrand’s
original proof, and told his doctoral dissertation advisor, Church, that he
thought he detected a gap in Herbrand’s proof. Church consequently recom-
mended to Andrews that he contact Dreben, which he did in a letter of 9 April
1962, in which Andrews referred explicitly to Herbrand’s erroneous lemma 3.3,
initiating correspondence and collaboration with Dreben. Dreben replied in a
letter of May 18, 1962 that the cause of the difficulty was an ambiguity in
Herbrand’s argument, in particular regarding lemma 3.3 of Chapter 5 of the
Recherches, focusing on [74, pp. 101–104], and most especially p. 103. On 18
May 1962, Dreben points out that the root of the difficulty is the ambigu-
ity in Herbrand’s argument, proposing in particular that it is necessary to
distinguish Herbrand’s “réduite” orcut, of an expression over a domain, in
which there are, in general, no quantifiers but which contains function letters,
and the evaluation over the réduite in which functional expressions no longer
appear.21 Andrews brought up the question with Gödel, noting that he had
understood that Gödel had also discovered an error and propounded a correc-
tion. Gödel then mentioned to Church that he had known of errors in Herbrand
and had offered a repair. When in 1963 Kreisel visited Princeton, Andrews told

19 Most of what Gödel wrote on Herbrand is found in pp. 14–79 of the fifth of Gödel’s
“Arbeitshefte” notebooks in the Gödel Nachlaß; see [74, p. 107], with a detailed account of
Gödel’s correction in [74, pp. 107–112] and an analysis of Gödel’s work and comparison with
that of Dreben and his colleagues [74, pp. 112–117].
A too casual reading of [38] could lead to the inference that Gödel’s discovery can be traced
as far back as 1931 when he writes, about Gödel on Herbrand’s error in the midst of a discus-
sion of the Gödel-Herbrand correspondence of 1931, which otherwise dealt entirely with the
the two issues of the extent of the applicability of finitism and the impact of the incomplete-
ness theorems on the Hilbert program, that he located in the Gödel Nachlaß a folder marked
“Errors in Herbrand” that provided evidence that Gödel had detected, and found a repair for,
Herbrand’s flawed lemma “years before” Andrews, Dreben, and Aanderaa. See [71, pp. 3–25]
for the Gödel-Herbrand correspondence and Sieg’s introduction [143] to the Gödel-Herbrand
correspondence, and [75, pp. 389–391] for Goldfarb’s introduction to Gödel’s correspondence
with Dreben. The Gödel-Dreben correspondence is found at [70, pp. 391–396]. Some of the
Gödel-van Heijenoort correspondence is found in [71, pp. 307–325]
20 [208, §3.9, pp. 216–218,] also offers a survey.
21 Facsimiles of these letters, and the subsequent Andrews–Dreben correspondence, are
included in [6, pp. 6–14].
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him of the error, and Kreisel brought it up with Bernays, who informed him
that Gödel had mentioned it to him in 1958. Andrews’ encounter with Krei-
sel is the source of the dating of Gödel’s 1958 treatment of Herbrand’s error
and no-counterexample solution as found in Gödel’s 1958 paper [67]. Andrews
[6, p. 15], however, cites the “early 1940s” as the period for Gödel’s discovery of
Herbrand’s error; Goldfarb [74, p. 103] places Gödel’s discovery of the flaw in
Herbrand’s proof “twenty years earlier” than Dreben’s, thus, in 1943. Dreben
pursued the matter with Gödel in several letters. In March 6, 1963 (see [75,
p. 391]), Dreben wrote to Gödel in this connection, remarking that he under-
stood from Andrews that he [Gödel] had informed Church that he [Gödel] had
known of errors in Herbrand, and, sending enclosing for Gödel the abstract
“Errors in Herbrand” [43] and the preprint of the paper published as “False
Lemmas in Herbrand” [44], asking whether the same error considered in
“Errors in Herbrand” was among those found by Gödel. Gödel answered none
of Dreben’s letters, Goldfarb [75, p. 389] noted, however, that Gödel replied to
none of the Dreben’s letters. Meanwhile van Heijenoort raised the matter with
Gödel as well, mentioning the error in Herbrand in a personal conversation that
took place in late September 1963 (see [75, p. 389]), as evidenced by a letter
from van Heijenoort to Gödel of 14 October 1963 (quoted by Goldfarb [75, p.
389]), in which van Heijenoort told Gödel that he mentioned to Dreben and
Hao Wang (1921–1995) that they had discussed the proof of Herbrand’s lemma
during their conversation, and both had expressed the hope that Gödel would
permit publication of his comments and corrections to Herbrand’s lemma in
From Frege to Gödel, as, if his “earlier corrections were made available, this
would enhance the historical value of the book.” Goldfarb [75, p. 389] notes
that there is no indication of how much Gödel told van Heijenoort about his
earlier corrections, and failed to respond to van Heijenoort’s proposal to pub-
lish them. What is known is that Gödel studied Herbrand’s Recherches. . . [81]
in the early 1940s and found an error in Herbrand’s proof, but did not find a
counterexample to demonstrate that the lemma, in its original guise was false;
that he did, however, propound a correction to Herbrand, which provided a
weaker version of the lemma than Herbrand had given, and that Gödel’s pro-
posed solution was, “in all essentials” the same as that given by Dreben and
Denton in 1966 [45] (see [75, pp. 389–390] and [74, pp. 107–112] is an account of
Gödel’s treatment, and [74, pp. 112–117] an analysis and comparison between
Gödel’s and his own solution).

Considering obfuscations in Herbrand’s treatment that Dreben and Den-
ton [46, p. 419] indicated, van Heijenoort [165, pp. 11–12], in addition to gram-
matical obscurities and ambiguity of meanings, took especial note that: “Les
textes contiennent, outre les erreurs de raisonnement. . . .”

In a manuscript page included in the notes on Herbrand [202] labeled
“Errors in Herbrand”, van Heijenoort lists the following rules of passage:

1. ∼ ∀xW ⇒ ∃x ∼ W
2. ∼ ∃xW ⇒ ∀x ∼ W
3. ∀xW ∨ Z ⇒ ∀x(W ∨ Z)
4. Z ∨ ∀xW ⇒ ∀x(Z ∨ W )
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5. ∃xW ∨ Z ⇒ ∃x(W ∨ Z)
6. Z ∨ ∃xW ⇒ ∃x(Z ∨ W )
and refers to, but does not list, the converse of each. He then notes, refer-
ring to Stephen Cole Kleene’s (1909–1994) Introduction to Metamathematics
[105, pp. 162–163] that A ∨ ∀xB(x) ≡ ∀x(A ∨ B(x)) is not intuitionistically
valid and that A ∨ ∀xB(x) ⊃ ∀x(A ∨ B(x)) is intuitionistically valid.

In a note on Herbrand’s “Sur le problème fondamental des mathéma-
tiques” [84, p. 555, line 23], van Heijenoort [202] took note of Herbrand’s
errata [84, p. 570], replacing

fi(bj1bj2 . . . bjni
= fi, (cj1 , cj2 , . . . cjni

)

with

fi

(
bj1bj2 . . . bjni

)
= cm or f1

(
cj1 , cj2 , . . . cjni

)
= bm.

Elsewhere, van Heijenoort [202] notes another difficulty in connection
with “Sur quelques propriétés des propositions vraies et leurs applications”
(1929) [79], remarking that Herbrand’s use of “effectivement” is “misleading”.
Referring to (2), a generalization of the problem of polynomial equations, van
Heijenoort remarks that, if this generalization were provable, then there are
numbers x, y, z, n, with n > 2, such that xn + yn = zn; but that the search for
these numbers is no more effective than the search for a proof of the generaliza-
tion. (It is noteworthy in this regard that, in his class lectures, van Heijenoort,
as much as had Gödel (in his [61], [65, p. 196] undecidability paper of 1931
and his discussion on the foundations for mathematics of 1931 [66, p. 148]),
regarded Fermat’s Last Theorem as an example of a problem of number theory
that was in principle undecidable).

The root of the difficulty in Herbrand’s proof of his Fundamental The-
orem concerned Lemma 3.3. Referring to that lemma as it appears in From
Frege to Gödel [164, p. 544], van Heijenoort, on a page of his manuscript notes
[202] remarked that, for the “proposition derived by the rules of passage,”
the “order is the same”. He then refers to B[urton] D[reben]’s demonstration
that this is “false for certain cases of property C.” He next remarks, with
respect to Dreben’s Note E [164, p. 571] that the “[p]assage from ∀xΦ(x) ∨ Z
to ∀x[Φ(x) ∨ Z] is a negative occurrence.” Thus, we have

P1 → P2

p q

Van Heijenoort himself had suspicions regarding Herbrand’s presenta-
tion of his proof of the Fundamental Theorem as it appeared in the full text
of Herbrand’s 1931 “Sur le problème fondamental des mathématiques” [84],22

where it is designated as Theorem 2 [84, p. 48]. Referencing Herbrand’s [84,
p. 53] consideration of the decision problem in connection with classes and
relations and utilizing the Multiplicative Axiom, van Heijenoort [202] writes
that a point that “bothers” him is that “Herbrand does not give any indication

22 [80] is the abstract of [84].
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on how to fill the gap of the law of infinite conjunction.” The problem results
from applying modus ponens to Herbrand expansions of infinite length when
replacing ∀x(Φ(x) ∨ P ) with ∀xΦ(x) ∨ P ; that is, as we have already noted,
∀xΦ(x) ∨ P ≡ ∀xΦ(x) ∨ P , is invalid, whereas ∀xΦ(x) ∨ P ⊃ x(Φ(x) ∨ P ) is
valid. Reformulating the offending lemma in terms of its converse, we have
that, for some G obtained from F by replacing a positively occurring subfor-
mula ∀x(Φ(x) ∨ P ) with ∀xΦ(x) ∨ P , where x does not occur in Z, then for
any p, if Exp[F, p] of order p is truth-functionally satisfiable, so is Exp[G, p],
where Exp[G, p], the satisfiability expansion of F of order p is the conjunction
of all instances of F* obtained by substituting the terms of that expansion for
its free variables, and p ≤ max(k, l). As Goldfarb [74, p. 106] thus explained:
“The difficulty arises from the fact that the functional forms F* and G* dif-
fer; the terms that replace restricted variables whose quantifiers lie in P will
have one more argument place in F* than they have in G*, since they are
governed by the general variable x in F but not in G. Consequently, there will
be instances of G* in which the subformulas corresponding to P are the same;
while in the analogous instances of F* those subformulas are different, due to
a difference in the term that supplants x.”

In the pages immediate following that in which van Heijenoort expressed
his discomfort with Herbrand’s lack of explaining how to fill the gap of the
law of infinite conjunction, he formulates the procedure for construction of a
sequence of formulas the terms of the expansions for accessible universaloidal-
ly and accessible existentialoidally quantified formulas, and propounds several
theorems:

Theorem. There is a number k such that Gk is quantifier-free.

Now, denoting Gk by F ∗
1 ,

Theorem. F ∗
1 is a validity instance of F.

The details of the expansion are then given on the next pages, as follows:

Given a formula G, let D be the set containing the free variables and indi-
vidual constants of G; let y1, . . ., ym be the existentialoidally free universaloid
variables of G. In G delete the quantifiers Qy1, . . ., Qym and replace y1, . . ., ym

by distinct individual variables not in D. (1)Given a formula G and its lex-
icon D, if Qy is an accessible universaloid quantifier of Gi, then Gi+1 is
G(QyH/H(y/b)) where b is not in Di; (2)If Qx is an accessible existentialoid
quantifier of G, the successor is G(QxH/H(x/a)), where a ∈ D.

On the following page, the expansion is obtained:

Let D′ be the set D ∪ {b1, . . ., bn}. Given a formula Gj , let D be the
set of free variables and individual constants of G. Let Qy1, . . ., Qyn be the n
accessible universaloid quantifiers of G and Qx1, . . ., Qxm its m accessible ex-
istentialoid quantifiers. Delete Qy1, . . ., Qyn and replace y1, . . ., yn by distinct
individuals b1, . . ., bn not in D. In the formula thus obtained, for each i replace
QxiAxibyAa1Aa2 . . . Aak , where a1, a2, . . ., ak are all the members of DO1. Call
the formula obtained G′.
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Theorem. In the sequence G,G′, G′′, . . ., there is a G(k) = G(k+1).

For some G*, we have:

Theorem. G* = Exp[F,D].

(In his notes, van Heijenoort placed a question mark above the “D” in
this theorem).

The tree that is drawn for this last theorem is:

y1  y2

 | |
x1  x2

 | 
y3

 | 
x3

 | 
y4

There is, unfortunately, no means for dating these particular pages.
Claus-Peter Wirth, Jörg Siekmann, Christoph Benzmüller, and Serge

Autexier, in the context of their general survey of Herbrand [208], offer a
parallel account of the “Gödel-Dreben correction” and the “Heijenoort correc-
tion” in their discussion of modus ponens elimination [208, §3.11, pp. 221–224],
using primarily van Heijenoort’s informally published “Herbrand” paper of
1975 [187], some passages from the English translation of his published article
on Herbrand [199], and the critical note in Sect. 5 on the Fundamental The-
orem in chapter 5 of Herbrand’s Recherches. . . [81] the as the basis for their
account of van his correction.23

5. Brief History of the Tree Method

The falsifiability tree method, sometimes also called the confutation tableau,
is typically traced to the work of Jaakko Hintikka [91–96] and his model sets,
and to Raymond Merrill Smullyan’s (b. 1919) analytic tableau.24 Both have
their historical roots in the deductive tableaux and semantic tableaux of Evert
Willem Beth (1908–1964) [28–31], as noted in the brief canonical histories of
the method, for example by Robinson [138, p. 290] and Richard Carl Jeffrey
(1926–2002) [101, p. 227]. Slightly earlier than the work of Smullyan, which
began appearing in 1963 [147–156] is the work of Zbigniew Lis (1960) [118],
whose tableau is undifferentiable from that of Smullyan. However, because Lis,
wrote his article presenting the tableau method in Polish, his work exercised
virtually no influence. Lis’s name made no appearance in van Heijenoort’s

23 See [60], [86, p. 171] and [77], [173, p. 555]. It is clear from Goldfarb’s preface [86, p. VI]

that the note at [60], [86, p. 171] is in fact his, neither van Heijenoort’s nor Dreben’s; [77],
[164, p. 555] is identical with [60], [86, p. 171], on which basis we may suppose that the note
as it appeared in From Frege to Gödel [164] was originally Goldfarb’s.
24 For a detailed account, see [14]. See also the account by Bondecka-Krzykowska [33].
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writing on the tableaux methods. Smullyan’s textbook First-order Logic [154]
of 1968 presented the complete and fully-worked out presentation of his ana-
lytic tableaux. Robinson [138, p. 290] described Smullyan’s First-order Logic
as exploring the “nooks and crannies” of the analytic tableau method with
elegance.

Comparatively recently, Francine Abeles [1] discovered that falsifiability
trees appeared in the unpublished, and hitherto lost Part II of the Symbolic
Logic dating from 1894 (and posthumously published [39]) of Charles Lut-
widge Dodgson (Lewis Carroll; 1832–1898).25 Applying these trees to polysyl-
logisms, i.e. soritises or chains of syllogisms, Dodgson’s inspiration for devising
the method derived from the antilogisms, or inconsistent triads, developed by
Charles Peirce’s student Christine Ladd-Franklin (1847–1930) and the logic
machines of Peirce’s student Allan Marquand (1853–1924), which he discov-
ered in their respective contributions “On the Algebra of Logic” [114] and “A
Machine for Producing Syllogistic Variations” [121], to Peirce’s 1833 Studies
in Logic [133]. Thus, we have, in Ladd’s work, reductio ad absurdum proofs,
with two premises and the contradictory of the conclusion. In his account of
Dodgson’s work in Part II of Dodgson’s Symbolic Logic, its discoverer, Wil-
liam Warren Bartley, III (1934–1990) [22] described it as a precursor of, and
essentially equivalent to, Beth’s semantic tableaux; but only Abeles’s treat-
ment [1] clarifies and demonstrates its equivalence to the falsifiability tree.
Abeles [5] also demonstrated the soundness and completeness of Dodgson’s
trees. Whereas van Heijenoort undertook to explore the tree method with
other mechanical decision procedures, he did not, and, given its late appear-
ance could not, take account of Dodgson’s work.

It is probable that van Heijenoort first learned about Smullyan trees
around 1964–1965, at precisely the same time that Raymond Smullyan was
beginning his work developing the tree method. The earliest datable unpub-
lished composition which he have in van Heijenoort’s hand concerning the
tree method goes back to 1966 with the unpublished “Interpretations, Satis-
fiability, Validity” [163], in which van Heijenoort articulated the truth-value
semantic interpretation of satisfiability and validity to first-order formulae, and
the latest was composed in 1975. In “Notes on the Tree Method” (1971) [174],
van Heijenoort applied the truth-value semantic to truth trees and falsifiabil-
ity trees in his paper and it appeared in his paper “Falsifiability Trees” (1972)
[176], its penultimate version, of 1974 [183], and its final version, of 1975 [188].

Richard Jeffrey reported [102] that he first encountered van Heijenoort
in 1964–1965, at a time when he and Jeffrey both were in New York City,
Jeffrey teaching at City College of New York and van Heijenoort at New York
University and Columbia University. The two men met several times during
this period as members of an informal group that convened occasionally to
discuss logic and philosophy. It was also during this period, perhaps in 1964,
that Jeffrey met Smullyan in New York and possibly also attended Smullyan’s

25 Russinoff [139] traces Ladd-Franklin’s work in evolving the refinement of antilogism, but
does not connect it with Dodgson’s application of it to his falsifiability tree method.
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lectures at Princeton University. Jeffrey immediately became an enthusiastic
supporter and proselytizer for the tableau method, and in particular of the
so-called “Smullyan tree” as a one-sided Beth tableau.26 It is safe to suppose
then that this was when van Heijenoort, too, first learned about Smullyan
trees, either directly from Smullyan or through Jeffrey.27 In any event, the
first important document we have available in van Heijenoort’s hand on the
tree method dates from 1968.

In the paper “On the Relation Between the Falsifiability Tree Method and
the Herbrand Method in Quantification Theory” of 1968 [167], van Heijenoort
showed how the falsifiability tree method could easily be adapted to Herbrand
expansion to test the validity of quantified formulae whether those formulae
were in prenex form or not. Van Heijenoort [171] is the published abstract of
this result. Thereafter, van Heijenoort was a strong proponent of the falsifiabil-
ity tree method, a method which, like its immediate precursors, united model
theory with proof theory. Van Heijenoort’s technical writings were all aimed
at broadening and deepening the scope and capabilities of the tree method.

The tree method was first developed by Lis and presented by him in its
first form in 1960 [118], based directly upon Beth’s deductive and semantic
tableaux. However, Lis’s paper, published in Polish with brief English and
Russian summaries that gave no hint that a new and simpler method than
that found in Beth’s semantic tableaux was being presented, has largely been
ignored. The method was reinvented by Hintikka and Smullyan from Beth’s
semantic tableaux. This reincarnation differed from Lis’s development by being
based on the method of model sets developed by Hintikka [91–96] as well as
Beth’s semantic tableaux [28–31]. Hintikka’s work on the model set method in
propositional logic [97] already mentions the basic idea of the tree method.

Hintikka’s model set is a set of formulae that can be interpreted as a
partial description of a model in which all formulae are true. A proof of a
formula F in Hintikka’s theory is a failed attempt to build a countermodel
∼ F to F. Beth’s tableau method does much the same thing, except that, for
the tableau method, a proof of a formula F → G is a failed attempt to build
a countermodel of F → G by describing a model in which F is true but G is
not.

For Beth’s method, it is necessary to keep track of both true formulae
and non-true formulae. Formulae are listed in tabular form; all true formulae
and their derivations are collected in the left-hand column of the table, all
non-true formulae and their derivations in the right-hand column. A tree is
a one-sided (left-sided) tableau in which all formulae are true. There are a
small number of tree decomposition rules, one for each of the truth-functional

26 So-called because Zbigniew Lis developed a full-fledged analytic tableau or tree method
by 1962 independently of Smullyan, and published his method in 1960 [118] at a time when
Smullyan was just beginning his work. Bondecka-Krzykowska [33, p. 17] argues that it is dif-
ficult to tell whether Lis or Smullyan should receive credit for priority in developing analytic
tableau (note that Bondecka-Krzykowska [33, pp. 17, 25] misspells my name as “Annelis”.
27 Smullyan [157] states that he had met van Heijenoort several times, but does not state
whether they ever discussed the tree method.
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connectives which we choose for our base, and one each for the universal and
existential quantifiers.28 Thus, for example, if we follow Jeffrey and provide
decomposition rules for (disjunction, conjunction, material implication, mate-
rial equivalence), along with the corresponding rules for the negation of these
connectives, and double negation, we obtain the following rules:

1.  A  B 2.  A ∧ B 3.  A ⊃ B 4.  A ≡ B 5.  ~ ~A

   A    B                                     A                     ~A     B                 A   ~A                     A      

     B                          B    ~B  

1′.  ~( A B) 2′.  ~(A ∧ B) 3′.  ~(A ⊃ B) 4′.  ~(A ≡ B)

~A                                 ~A     ~B                    A                  ~A        A 

                ~B                ~B                    B      ~B            

∧

∧

For the universal and existential quantifiers, we introduce the rules:
∀xGx

G(x/μ0)
...

G(x/μk), where μ0 . . . , μk are mutants (permissible substitution instances)
of the bound variable,

and
∃xGx

G(x/ν)
, where ν is a mutant of the bound variable provided ν

is new to the path in which it occurs.

Tree decomposition rules may be applied to any formula which is non-
basic. A formula is called basic if it is atomic or the negation of an atomic
formula, that is, if it contains no subformulae, and hence no connectives to
which decomposition rules can be applied.

Let Φ be a set of formulae at the initial node of a tree. By application of
tree decomposition rules to the nonbasic formulae of Φ, we obtain successor
nodes, each containing some subformulae of (one of) the nonbasic formulae
of Φ. A path of a tree, or sequence of such nodes, is terminated or finished if
tree decomposition rules have been applied to every nonbasic formula in the
path. A path is closed if there appears a formula F at some node n in the path
and its negation ∼F occurs at some successor node n′ of n in the same path;
otherwise the path is open (nonclosed). A tree is closed if each of its paths

28 A base is the smallest set of connectives chosen for a deductive system and in terms of
which the remaining connectives are defined. For example, the base in the first edition of
the Principia mathematica [205] is {∼, ∨}, the Sheffer stroke in the second edition [206];
and the base for Frege’s Begriffsschrift [59] is {∼, ⊃}.
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is closed. The tree for Φ is a proof of each formula at a terminal node of an
open path in the tree for Φ. The set of all formulae in the open paths of the
tree for Φ is a satisfiability model for Φ. By downward induction on the tree,
if each of the formulae of Φ at the initial node of the tree is true, then so are
all of the subformulae at each of the successor nodes of the tree, and so are
each of the formulae at the terminal nodes. Moreover, by upward induction
on the tree, if each formula at the terminal nodes of the tree are true, then so
are all formulae at their predecessor nodes, and so too are the formulae at the
initial node of the tree. Thus, if we obtain a tree in which some path contains
both a formula F and its negation ∼ F , so that the path closes, then we have
derived a contradiction. We will make use of this fact to consider falsif̀ıability
trees that allow us to determine whether a formula or set of formulae is valid.

A falsifiability tree is a tree or sequence of trees in which we attempt
to find a falsifying assignment for (a set of formulae) F. Let F0, F1, . . . , Fn, Q
be the formulae of Φ, and let the sequence F0, F1, . . . , Fn be a proof of Q.
Construct a new tree for either F0, F1, . . . , Fn,∼ Q or the negation of the
entire sequence F0, F1, . . . , Fn, Q such that we have either the formula Φ′ =
F0 ∧ F1,∧ . . . ∧ Fn,∧ ∼ Q or the formula Φ = F0 ∧ F1 ∧ . . . ∧ Fn ∧ Q at the
initial node of the tree (thus, a proof can be understood as an “extended”
formula obtained by the conjunction of each of the formulae, including the
“Endformula” or conclusion, of the sequence; and a formula can be said to be
valid or not, in this system, in precisely the same way that a proof is said to
be valid or not). If, after application of tree decomposition rules to each of
these formulae (and any other of their decomposable subformulae), each path
of this new tree closes, then Φ′ or Φ is inconsistent and Φ is valid.

An assignment for a set S of formulae is a a function which, when we
are given a nonempty set U called the universe of the assignment, associates
either (a) an element of U to some atomic term of S; (b) a k-ary function
(k > 0) of S to some k-ary functional symbol of U ; (c) an element of the set of
truth-values {t, f} to some propositional symbol of S; or (d) a k-ary function
(k > 0) of U in {t, f} to some k-ary predicate symbol. We say that [the value
of] an assignment α of truth-values to Φ is true (written v[α,Φ] = t) is valid if
v[α′, Φ] = f for each related assignment α′ and v[α′′, Fi] = t for each formula
Fi of Φ.

The falsifiability tree, then, is a mechanization of proof by contradiction.
It is likewise, as van Heijenoort [167] called it, “the dual of that [method] pre-
sented in Jeffrey’s Formal Logic [101].” Moreover, it is a test for validity of
proofs.

The falsifiability tree method is sound if each provable formula in the
system is valid and can be proven to be valid by the falsifiability tree method,
i.e. if a formula is provable, then it is valid. The falsifiability tree method is
complete if each valid formula or set of formulae of the system is provable by
the method, i.e. if a formula is valid, then it is provable. In his unpublished
papers distributed to his students, van Heijenoort proved the completeness and
soundness of the falsifiability tree method for classical quantification theory
and for intuitionistic logic.
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6. Van Heijenoort’s Work on the Falsifiability Tree Method

In 1973, van Heijenoort gave a proof of the soundness and completeness of the
falsifiability tree method for sentential logic, that is, for classical propositional
calculus [182]. This was followed by the paper “Falsifiability Trees” of 1974
[183], which gives a proof of the soundness and completeness of the falsifiability
tree method for quantification theory, that is, specifically for classical first-
order calculus (without identity). One consequence of van Heijenoort’s com-
pleteness and soundness proof is the Löwenheim–Skolem theorem, for which
van Heijenoort therefore was able to give a one-line proof. Van Heijenoort’s
proof makes use of König’s lemma, also called König’s infinity lemma, and
the paper [183] also contains a proof of this lemma. For König’s lemma, due
to Dénes König (1884–1944) [106], a tree with a finite number of branches at
each fork and with a finite number of leaves (or nodes) at the end of each
branch is called a finitely branching tree. König’s lemma then states that a
finitely branching tree is infinite iff it has an infinite path. This lemma is
used in completeness proofs. In connection with his proof of the soundness
and completeness of the falsifiability tree method for quantification theory,
van Heijenoort [184] also gave a proof of Willard Quine’s (1908–2000) Law
of Lesser Universes (see [135, pp. 146–147], Theorem 3.05 of van Heijenoort’s
typescript), according to which, if α and β are two cardinal numbers such that
0 < α ≤ β, then if a formula is α-satisfiable, then it is β-satisfiable; and if a
formula is β-valid, then it is α-valid (note that this Law holds only for those
theories in which all formulae are in disjunctive normal form and in which
there are neither universal quantifiers nor identity; hence, it fails to apply for
full first-order functional calculus with identity). Several years earlier, in 1972,
van Heijenoort had already given a proof of the soundness and completeness of
the falsifiability tree method for the simple theory of types with extensionality
[180].

In 1975, van Heijenoort gave his first proof of the soundness and com-
pleteness of the tree method for intuitionistic logic. In the case of intuition-
istic propositional logic, we are shown in his paper on “The Tree Method for
Intuitionistic Sentential Logic” [185] that a tree for an intuitionistic formula
A is consistent if and only if A is classically provable; and that every noncon-
sistent ramified branch of a finished tree for an intuitionistic formula A yields
a Kripke model which fails to satisfy A. The same reasoning is applied in the
paper “The Tree Method for Intuitionistic Quantification Theory” [186], in
which a proof of the soundness and completeness of the tree method for first-
order intuitionistic logic is carried out by adding to the proof for intuitionistic
propositional logic the three cases of T∀ (true universal quantification), T∃
(true existential quantification), and F∃ (false existential quantification).29 In
his 1979 book Introduction à la sémantique des logiques non-classiques [195]

29 In his lectures on foundations of mathematics, van Heijenoort declared that intuitionistic
logic does not permit universal denial; therefore he did not have to consider the case of F∀
(false universal quantification).
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van Heijenoort gave more elegant proofs of the soundness and completeness of
the tree method for intuitionistic logic.

Also in 1975, van Heijenoort once again turned his attention to the work
of Herbrand (in [187]). We noted that in Desarrollo [189] van Heijenoort con-
sidered Herbrand quantification primarily from an historical context, although
he there also made comparisons of the relative strengths and weaknesses of
the various members of the family of formal systems called quantification the-
ory. Among the weaknesses of Herbrand quantification were that it was not
easily generalized to second-order logic, and that there are no simple results
which allow us to obtain an analogue of the Herbrand Fundamental Theorem
for arbitrary formulae of intuitionistic quantification theory. One of the main
strengths of Herbrand quantification was that it permitted reduction, through
Herbrand expansion, of quantified formulae, whether in prenex form or not,
to propositional formulae. We recall that a major result of van Heijenoort’s
1968 paper “On the Relation Between the Falsifiability Tree Method and the
Herbrand Method in Quantification Theory” [167] was that Herbrand quanti-
fication could readily be adapted to validity tests by the tree method precisely
because quantified Herbrand formulae could be rendered quantifier-free. Now
in 1975, van Heijenoort, in his paper on “Herbrand” [187] examined in detail
the technical apparatus of Herbrand expansion and gave a proof of Herbrand’s
Fundamental Theorem. A proof is also given in van Heijenoort’s nachgelassene
paper “Proof of the ‘Semantic’ Herbrand Theorem” [192] of 1976.

The Fundamental Theorem states that:

Given a formula F of classical quantification theory, we can effectively gener-
ate an infinite sequence of quantifier-free formulae F1, F2, . . . , such that F is
provable in (any standard system of) quantification theory if and only if there
is a k such that Fk is (sententially) valid; and moreover, Fk can be recovered
from F through certain special rules.

Now if we analyze Herbrand’s theorem, we notice that its main connective
is the biconditional, so that it can therefore be reduced to two independent
statements: that F is provable in standard quantification theory; and that the
Herbrand expansion of a formula F to an infinite sequence of quantifier-free
formulae is valid for each formula Fk of that sequence. Van Heijenoort uses this
analysis to obtain his proof of the soundness and completeness of Herbrand
quantification. Given the statements:

(1) F is valid

and

(2) there is a k such that the kthHerbrand expansion of F is (sententially)
valid

van Heijenoort shows that the implication from statement (2) to statement (1)
is the soundness of Herbrand’s proof procedure, and that the implication from
statement (1) to statement (2) is its completeness. The conjunction of (1) and
(2) is called the “semantic” Herbrand theorem. Elsewhere in the manuscript
notes on Herbrand [202], on a page labeled H-12, van Heijenoort remarked
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that “implications is [sic] sometimes spoken of as the ‘semantic’ Herbrand
Theorem”.

Herbrand expansion, according to which we obtain a quantifier-free for-
mula by obtaining a k-length conjunction from a universally quantified formula
and a k-length disjunction from an existentially quantified formula, where we
have a k-ary universe, is in fact just an enlargement of the Löwenheim–Skolem
infinite conjunction presented by Skolem in his normalform translations of Hil-
bert’s quantified formulae. What led Herbrand to develop his method was pre-
cisely his dissatisfaction with the Löwenheim–Skolem theorem, which asserts
(if I may express it in its simplest terms) that if a formula of classical quantifi-
cation theory is k-satisfiable for every finite k, then that formula is ℵ0-satisfi-
able. What disturbed Herbrand, as we hinted earlier, was that this theorem was
restricted to satisfiability. Herbrand’s Fundamental Theorem was, in the words
of Herbrand in “Sur la non-contradiction de l’arithmétique” ([83], p. 4, quoted
in English translation by van Heijenoort [164, p. 526] in his “Introduction” to
Herbrand’s Recherches [81]), a “more precise statement of the. . . Löwenheim–
Skolem theorem,” and thus can be viewed, as van Heijenoort [164, p. 526]
noted, “as a reinterpretation, from the point of view of the Hilbert program,
of the results of Löwenheim and Skolem.” In fact, what Herbrand did was to
permit us to state that if a formula is ℵ0-valid, then it is k-valid for every
finite k, provided there exists no countermodel to that formula. Consequently,
it is thanks to van Heijenoort’s work on Herbrand that we are able to argue
that the technical developments in Hilbert-type systems, including the devel-
opment of proof theory by Hilbert and Bernays, as well as of the development
of alternative theories of quantification, are due primarily to questions raised
by Herbrand about the Löwenheim–Skolem theorem from the point of view of
the Hilbert program.

Van Heijenoort’s historical interests and his technical work in expanding
and developing the tree method coincide, and focus on the need to define and
explore the concepts of satisfiability, validity, and being a proof.

In 1978, van Heijenoort further extended his results of 1975 ([185] and
[186]) in which he applied the falsifiability tree method to intuitionistic logic
and proved the soundness and completeness of the tree method for intuition-
istic logic. To this he added an application of the tree method to propositional
and first-order modal logic, together with a proof of the soundness and com-
pleteness of the tree method for modal logic. At the same time, he suggested,
but did not carry out, the possibility of applying the tree method to two
variants of three-valued logic. These new results on intuitionistic logic, modal
logic, and three-valued logic were published in 1979 in van Heijenoort’s book-
let Introduction à la sémantique des logiques non-classiques [195]. It represents
the only formal publication of a proof by van Heijenoort of the soundness and
completeness of the tree method. The first chapter of this work, which con-
siders classical logic, contains, in much more sinewy form, parts of the same
materials found in van Heijenoort’s earlier, unpublished, technical papers, in
particular from the paper on “Falsifiability Trees” of 1974 [183], although the
material and their presentation are far from identical.
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7. Sketch of Van Heijenoort’s Proofs of the Soundness
and Completeness of the Falsifiability Tree Method

Van Heijenoort’s proofs of the soundness and completeness of the tree method
are far more rigorous than the intuitive, informal proofs given in Jeffrey’s
textbook Formal Logic [101]. Van Heijenoort’s proofs employ the same con-
cepts and follow the same patterns as do the proofs presented by John Lane
Bell and Moshé Machover in their textbook, A Course in Mathematical Logic
(1977) [23], although van Heijenoort’s proofs are somewhat longer and require
more bookkeeping, in part because van Heijenoort proofs, unlike those of
Bell and Machover, do not make explicit use of Hintikka sets. Of course, van
Heijenoort’s proofs, although for the most part unpublished, may predate by
several years the published proofs found in Bell and Machover’s [23] book or
van Heijenoort’s own published proofs in his Introduction à la sémantique des
logiques non-classiques [195].30

By way of example, we can give a simplified sketch of van Heijenoort’s
1973 proof of the soundness and completeness of the falsifiability tree method
for propositional logic [182].

Assume that we have both downward and upward induction on the tree.
Suppose the following theorem has already been proven.

Theorem 1. If T is a falsifiability tree for a formula F and there is an assign-
ment α of truth-values to the sentential variables of F such that v [α,∼ F ] =
t, then there is a formula G occurring at a node of a branch β of T such that
v[α, G] = t.

We now prove soundness.

Theorem 2. If there is a closed falsifiability tree for a formula, then that for-
mula is valid.

Proof. Let T be a closed falsifiability tree for a formula F . Assume that there
is an assignment α such that v[α, F ] = f or v[α,∼ F ] = t. By the previous
theorem, there is then a branch β of T such that, if formula G is at a node
of β, then v[α,G] = t. Since T is closed, so is β, and there is a formula H
such that both H and ∼ H are at nodes of β, so that we have obtained the
contradiction v[α,H] = t and v[α,∼ H] = t. �

Now we prove completeness.
Consider the following theorem.

30 Paul Ernest, who was a student of Moshé Machover, pointed out [48, p. 124] that in fact
Machover provided his own students with typescripts of what would become his and John
Lane Bell’s [23] textbook before the end of 1973 and through March 1974, and that these
included the completeness and soundness proofs for the confutation tableaux. Hence they
are at least contemporaneous with van Heijenoort’s proof of 1973 [182], dated 23 September
1973; but Ernest goes on to speculate that Machover’s and Bell’s work was “presumably
written over the preceding years, reaching their final form before or at about the time I
received them,” thereby suggesting that their proofs predated van Heijenoort’s.
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Theorem 3. If there is a nonclosed finished falsifiability tree for a formula F,
then there is an assignment α such that v [α, F ] = f.

Proof. The nonclosed finished tree for F has a nonclosed branch β. Let α be
an assignment of truth-values to the sentential variables of F such that if p
is a basic formula occurring at a node of β, then v[α, p] = t, and if ∼ q is a
basic formula occurring at a node of β, then v[α, q] = f. By upward induction
on the tree, we then have either v[α,∼ F ] = t or v[α, F ] = f.

If there is a node n of β at which the formula is not basic but T is finished,
then we apply the appropriate tree decomposition rule to the formula at n. By
doing so, we obtain one or two successor nodes of n containing subformulae
of the formula at n. By induction on the tree, these subformulae are true for
assignment α. �

Now by contraposition on Theorem 3, we obtain

Theorem 4. If a formula F is valid, then there is a closed tree for F,

which is the completeness theorem for trees. �

8. Conclusion

The most obvious instance of van Heijenoort’s interest in Herbrand is his edi-
tion of 1968 Jacques Herbrand, Écrits logiques [85]. An English translation of
van Heijenoort’s 1968 edition of Herbrand’s writings was edited by Warren D.
Goldfarb [86], one of van Heijenoort’s closest collaborators. Goldfarb’s book
received a good review at the hands of Jean-Pierre Bénéjam [25], who, in 1975,
in particular also noted van Heijenoort’s sound critical comments. The interest
in Herbrand carried through to the end of van Heijenoort’s life, and when he
died he was working with Claude Imbert (b. 1933), Professor of Philosophy at
the École Normale Supérieur, and with Burton Dreben on a complete edition of
Herbrand’s logical and mathematical works.31

It had been hoped that a collection of van Heijenoort’s technical papers
on quantification theory and the tree method, whether unpublished or merely
distributed to students and a few colleagues, would have been published by
this time, so that his work will become better known and receive the atten-
tion which it deserves and which has already been accorded to his historical
writings. Brief evaluations of his work, especially of his work on quantification
theory and the falsifiability tree method, have already been given in [9,10] and
more detailed treatments are found in [13,14,16], and [51,52] provide a general
overview; [50, pp. 371–390] is a survey of van Heijenoort’s academic work and
career.

31 See Feferman [46, p. 235; 44, p. 383]. This project, sponsored by the French Ministry
of Culture, and behind which van Heijenoort was the driving force, has apparently been
completely discontinued since van Heijenoort’s death.
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Appendix: Proof-Theoretic and Related Writings of van
Heijenoort’s in the Nachlaß [160, Box 3.8/86-33/1] (Exclusive
of Research Notes and Unfinished Work)

Interpretations, satisfiability, validity, 1966
The set-theoretic approach to logic, 1966
The subformula approach to logic, 1966
Note on Herbrand, January 28, 1967
Un procédé de démonstration en calcul des predicats, January 15, 1968
Finitisme et infinitisme en logique, January 18, 1968
On the relation between the falsifiability tree method and the Herbrand

method in quantification theory, November 20, 1968
Notes on the tree method, October 15, 1971
Notes on logic, October 15, 1971
Notes on logic, November 1, 1971
Herbrand, 1972
Proof of the completeness of the method of Beth tableaux for intuitionistic

quantification theory, 1972
Proof of the completeness of the method of Beth tableaux, March 1, 1972
Falsifiability trees, March 15, 1972
The tree method for intuitionistic quantification theory, March 18, 1972
The tableaux method for Grzegorczyk quantification theory, March 18,

1972
The tree method for intuitionistic quantification theory, March 19, 1972
The falsifiability-tree method for the simple theory of types with extensionality,

July 23, 1972
Comparison between the falsifiability-tree method and the Gentzen system,

May 3, 1973
A nonnormalizable system, June 8, 1973
Soundness and completeness of the falsifiability-tree method for sentential

logic, September 23, 1973
Falsifiability trees, 30 September, 1974
Monadic translation of sentential modal logic, October 31, 1974
The tree method for sentential modal logics, November 3, 1974
Translation of modal quantification theory into nonmodal quantification

theory, November 15, 1974
The tree method for intuitionistic quantification theory, May 9, 1975
Notes on logic, 1975
The falsifiability-tree method for sentential intuitionistic logic, May 15,

1975
Herbrand, May 18, 1975
Falsifiability trees, September 30, 1975
Translation of modal quantification theory into classical second-order logic,

November 20, 1975
The Herbrand approach to predicate logic, 1976
Proof of the ‘semantic’ Herbrand theorem, 1976
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Herbrand expansions and Herbrand disjunctions, 1976
Axiomatization and formalization, 1976
Méthode des arbres de falsifiabilité pour les logiques modales propositionnelles,

November 20, 1976
Gödel, 1977
Hilbert, 1977
Monadic translation of sentential modal logic, February 12, 1977
Modèles pour les logiques modales quantifiées, March 13, 1977
Introduction à la sémantique des logiques non-classiques, 1979
Introduction à la sémantique des logiques non-classiques, March, 1979
On Herbrand’s systems, November 29, 1980

References

[1] Abeles, F.F.: Lewis Carroll’s method of trees: its origins in studies in logic.
Modern Logic 1, 25–34 (1991)

[2] Abeles, F.F.: Herbrand’s fundamental theorem and the beginning of logic pro-
gramming. Modern Logic 4, 63–73 (1994)

[3] Abeles, F.F.: The first unification algorithm for automated deductive systems.
In: Cameron, D.E., Wine, J.D. (eds.) Proceedings of the Midwest Mathematics
History Conferences, vol. 1, Proceedings of the Fourth Midwest Conference on
the History of Mathematics. Miami University, Oxford, pp. 125–127. Modern
Logic Publishing, MLP Books, Ames (1997)

[4] Abeles, F.F.: From the tree method in modern logic to the beginning of
automated theorem proving. In: Shell-Gellasch, A., Jardine, D. (eds.) From
Calculus to Computers: Using 200 Years of Mathematics History in the Teach-
ing of Mathematics. Mathematical Association of America, Washington, D.C.
pp. 149–160 (2006)

[5] Abeles, F.F.: Lewis Carroll’s visual logic. Hist. Philos. Logic 28, 1–17 (2007)

[6] Andrews, P.B.: Herbrand award acceptance speech. Research Report No,
03-003. Department of Mathematical Sciences, Carnegie-Mellon University. J.
Autom. Reason. 31, 169–187 (2003)

[7] Anellis, I.H.: Review of [189]. Privately printed in: Anellis, I.H.: Introduction to
Proof Theory: Papers in Metamathematics. Mississippi Valley State University,
Itta Bena, MS. pp. 38–42 (1980); reprinted: Modern Logic 2, 338–341 (1992)
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Universitat de Barcelona. Barcelona (1991)

[21] Badesa, C.: (Maudsley, M. trans.) The Birth of Model Theory: Löwenheim’s
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soixantième anniversaire. Éditions du Griffon, Neuchâtel, pp. 11–25 (1950)
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Universitaires de France, Paris (1955). Translation of [61]

[63] Girard, J.-Y.: La mouche dans la bouteille (en mémoire de Jean van Hei-
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[68] Gödel, K.: (Feferman, S., Dawson, J.W., Kleene, S.C., Moore, G.H., Solovay,
R.M., van Heijenoort, J., eds.) Collected Works, vol. I: Publications 1929–1936.
Oxford University Press, New York (1986)
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hebdomaires des séances de l’Académie des sciences (Paris), vol. 188, pp. 303–
304 (1929); reprinted in: [85], pp. 25–26 (1968); English translation in: [86],
pp. 35–37 (1971)

[79] Herbrand, J.: Sur quelques propriétés des propositions vraies et leurs appli-
cations, Comptes rendus hebdomaires des séances de l’Académie des sciences
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