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Abstract The Univalent Foundations project constitutes what is arguably the most
serious challenge to set-theoretic foundations of mathematics since intuitionism. Like
intuitionism, it differs both in its philosophical motivations and its mathematical-
logical apparatus. In this paper we will focus on one such difference: Univalent
Foundations’ reliance on an intensional rather than extensional logic, through its use of
intensional Martin-Löf type theory. To this, UF adds what may be regarded as certain
extensionality principles, although it is not immediately clear how these principles are
to be interpreted philosophically. In fact, this framework gives an interesting exam-
ple of a kind of border case between intensional and extensional mathematics. Our
main purpose will be the philosophical investigation of this system, and the relation
of the concepts of intensionality it satisfies to more traditional philosophical or logical
concepts such as those of Carnap and Quine.

Keywords Univalent Foundations · Homotopy type theory · Intensionality · Identity

1 The Univalent Foundations project

The Univalent Foundations (UF) project is an approach to the foundations of
mathematics currently under rapid development. It entails a major change both in
philosophical motivation and form, ultimately taking its main inspiration from geom-
etry rather than grammar or traditional logic. Michael Harris—himself working in the
rather different field of number theory, and not being a fan of “Foundations” for math-
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ematics, despite his otherwise interest in mathematical–philosophical questions—still
makes bold claims about its philosophical relevance:

It’s impossible to overstate the consequences for philosophy, especially the
philosophy of Mathematics, if Voevodsky’s proposed new Foundations were
adopted. By replacing the principle of identity by a more flexible account mod-
eled on space, the new approach poses a clear challenge, on which I cannot
elaborate here, to the philosophy underlying “identity politics”; it also under-
mines the case for analytic philosophy to seek guidance in the metaphysics of
set theory, as in W.V.O Quine’s slogan “to be is to be the value of a variable.”
(Harris 2015, p. 219)

This paper constitutes a first attempt at a philosophical analysis of some of the
concepts underlying this framework, and of their possible uses in philosophy. As such,
it is to be seen as an orienting preliminary work, outlining a number of problems and
approaches rather than an attempt at coming to any firm conclusions. It is my hope,
however, that the potential importance Univalent Foundations, and the comparably
small amount of work on its philosophy which has so far been done, still warrant its
publication.

An example of the difference in approach between the usual foundations and UF is
that the latter is based on type theory—more precisely Martin-Löf’s intensional intu-
itionistic type theory (Martin-Löf 1998)—rather than predicate logic and set theory.
Martin-Löf (M-L) type theory is a very versatile framework, capable of unifying logic,
computation and mathematics. UF relies on a certain toplogical interpretation of this
type theory, which is known as Homotopy Type Theory (HoTT).

While predicate logic makes a distinction between terms and formulae, with the
former combined by functions and the latter by connectives and quantifiers, M-L type
theory’s main distinction is between terms and types, which on the traditional reading
are a version of sets. The connection to assertion is made through judgments, which
are either of the form

� � a : A

which means that a is of the type A, given a context �, which is a sequence of
assignments of types to terms, or

� � a ≡ b : X

which means that a and b are definitionally equal objects of type X in the context
�.1 As we will see later, however, the meaning of this “definitionally” is not entirely
trivial to spell out, sowewill usually employ the alternative term “judgmentally equal”.

1 This is not strictly true, as HoTT also contains a judgment type expressing that a sequence of judgments
is a valid context, i.e. can appear to the left of the turnstile. M-L type theory in its standard form also makes
a difference between identity judgments about objects and identity judgments about types, but as HoTT
assumes universes containing all lower-level types, the latter are expressible through the kind of identity
judgment described here as well.
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Unlike sentences in FOL, judgments cannot be combined in any way. They appear as
premisses or conclusions in inference rules.

Type theories usually contain many rules for introducing new types given others.
Of particular significance are the function types A → B, whose elements are the
functions from A to B. A function, being an element of a type, is thus also a term.
Another rule, of particular importance to HoTT, is one allowing the introduction of
universe types. This means that we assume the existence of a sequence of primitive
types U0,U1,U2, . . ., such that U0 is the type of all the “usual” types, U1 all those
of U0 as well as those (such as U0 itself) which are too big to be in U0, etc. We will
usually follow custom in not writing out the indices for these, but instead rely on
typical ambiguity to assign them on a case-by-case basis.

These are properties that are common to several contemporary type theories. The
main addition made by M-L type theory is that of dependent types and functions. A
dependent type (or type family) P on the type X is an assignment of a type P(x) to
each element x : X , i.e. a function P : X → U . A dependent function type, written
as

∏

x : X

P(x)

is the type of all functions from the type X to type P(x), for any x : X , or in other
words the functions that assign some element of the dependent type P(x) to each
element of x . The elements of such a type are referred to as dependent functions. To
illustrate, we have drawn one such function f : ∏

x : X P(x) in Fig. 1.

Fig. 1 A dependent function
f : ∏

x : X P(x)
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In terms of set theory, a dependent type on a set X would be a function P from X to
the class V of all sets, i.e. an assignment of a set to each element of C .2 A dependent
function would then be a set-theoretic function f : X → V such that

f (x) ∈ P(x)

for all x ∈ X , i.e. a choice function for the set P[X ]. A dependent function type
f : ∏

x : X P(x) is non-empty iff the type family P it is defined on assigns a non-
empty type to every element of X .

Another example of a dependent type is the dependent pair type

∑

x : X

P(x)

In set theory, a dependent pair corresponds to an ordered pair 〈x, y〉 where x ∈ X
and y ∈ P(x), and the dependent pair type to a disjoint union. In the logical (proof-
theoretical) interpretation we will describe later in this section, dependent pairs are
also used to model the existential quantifier.

In many type theories, it is common to have a specific type � of truth values
(or propositions, as they are sometimes called), with at least two elements � and ⊥
representing truth and falsity. A predicate P on the elements of the type X is then
interpretable as a function fP : X → � such that fP (x) = � iff P(x) holds, for
x ∈ X . M-L type theory, in contrast, does not assume such a type, but instead relies
on the Curry–Howard correspondence, or formulae-as-types interpretation (Howard
1980), according to which any type can be interpreted as a proposition. One way of
doing this is to interpret a proposition X as the type of proofs that X . Like in the
Brouwer–Heyting–Kolmogorov interpretation of intuitionistic logic, we can then say
that a proposition is true iff it has some proof, i.e. is non-empty as a type.3

To illustrate, it is useful to consider another common type-forming operator, namely
theproduct type A×B of A and B, which is definable in termsof the dependent function
type. In the set-theoretic interpretation, such a type is exactly the Cartesian product of
the sets A and B. But just as such a product equals ∅ iff A or B are empty, we also have
that A × B = 0, where 0 is the empty type, iff either A or B are empty. As an empty
type is a false proposition, we can therefore see that A × B, when interpreted this way,

2 There is a case to bemade for introducing and describingHoTTwithout giving translations to set-theoretic
vocabulary, since HoTT can work as a foundation of mathematics independent of, say, ZFC. However, since
the main purpose of these first sections are to introduce HoTT to philosophers of mathematics and logic, and
set theory is what many such philosophers—at least in the analytic school—are best accustomed to thinking
in, allowing ourselves the use of such a crutch may help. We just have to remember that the set theoretical
constructions we present are pedagogical tools rather than parts of any conceptual underpinnings. Since set
theory is not presupposed, we are usually not going to be very careful about e.g. cardinality restrictions that
might be important if one wants to give formal models of HoTT in extensions of ZFC.
3 In HoTT, it is sometimes assumed that only certain types of sufficiently simple structure are proposisions,
in order to make sure that the laws governing them correspond exactly to the ones of intuitionistic logic.
Such propositions are referred to asmere propositions (Univalent Foundations Program 2013, pp. 111–113).
In this paper, we will not make this distinction, and thus simply use ‘proposition’ as a synonym for ‘type’.
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is true in exactly the same circumstances as the conjunction of the propositions A and
B.4

The Curry–Howard correspondence can also be extended in order to deal with cor-
relates of open formulae rather than sentences. A property P , which can be instantiated
by the elements of the type X , can be interpreted as a dependent type P : X → U
which assigns the type P(x) of all proofs that x has property P to each element x : X .
Again, if we take a proposition to be true iff it has a proof, P(x) will be a non-empty
type iff x has the property P . Since a dependent function type

∏
x : X P(x) is non-

empty iff P(x) is non-empty for each x : X , it follows that
∏

x : X P(x) works as
the proposition for all x of type X, P(x).

There is one consequence of this approach which is particularly noteworthy: while,
in classical logic, P(x) is simply true or false of an object x , and in intuitionistic logic,
P(x) is more generally assigned an element in a Heyting algebra, in intensional M-L
type theory we always need a specific element of P(x) to express P(x)’s truth, and
thus more information. Although intuitionistic logic is also sometimes characterised
as requiring specific proofs, e.g. in taking ϕ ∨ψ to be true only if a proof exists either
for ϕ or for ψ , it does not keep track of the identities of such proofs except insofar as
they count as proofs of the same sentences. Intensional M-L type theory, in contrast,
provides the possibility of distinguishing between individual proofs even of the same
sentences. A type theory of this kind is called proof relevant (Univalent Foundations
Program 2013, p. 8).

2 The varieties of identity

It seems to be a common assumption in analytic (but of course not continental) phi-
losophy that identity is a fairly simple concept. A forerunner here is Frege, who in
the afterword to the second volume of the Grundgesetze—the one in which he reacts
to Russell’s paradox—argues against taking classes to be improper objects since this
would require them to have their own notion of identity. Identity, he says, “is a relation
given in so determinate a way that it is inconceivable that different kinds of it could
occur” (2013, p. 254). More recently, we find David Lewis expressing quite similar
feelings:

Identity is utterly simple and unproblematic. Everything is identical to itself;
nothing is ever identical to anything except itself. There is never any problem
about whatmakes something identical to itself; nothing can ever fail to be. (1986,
pp. 192–193)

Making a distinction with the notion of reference, McGinn rather matter-of-factly
writes in his book Logical Properties that “one could not write a good book entitled
The Varieties of Identity” (2000, p. 1).

4 There is a “deeper” structural explanation of this which does not depend on a set-theoretic interpretation.
Both the product of types in a category of types and functions between them, and the conjunction of
sentences in a language L seen as a category with an single arrow p → q whenever q follows from p, are
instances of the same category-theoretical construction, namely that of a (category-theoretical) product of
objects.
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But such a view can only be defended if one has already decided that the concept of
identity of, say, classical predicate logic, is the correct one, inwhich case the simplicity
and lack of problems that Lewis alludes to naturally spring from the fact that a decision
has already been made, even if unconsciously. As soon as we leave classical logic’s
safe confines, the conceptual landscape opes up. In the classical presentation of his
type theory Martin-Löf (1984) distinguishes four forms of identity5:

(i) The definitional equality a ≡d f. b. This is “the equivalence relation generated by
abbreviatory definitions, changes of bound variables and the principle of substitut-
ing equals for equals” (Martin-Löf 1984, p. 31). It is a purely syntactic notion, and
is therefore not strictly the same as the identity judgment � a ≡ b : X , which—
to start with—also makes reference to a specific type. In Martin-Löf (1984), it is
the only form of identity that the author holds to be intensional.

(i i) The equality of elements a ≡ b : X , where X is a type of which a and b are
elements. This is perhaps the version most like classical identity in that it allows
replacing equals for equals arbitrarily, subject only to type restrictions. This is
what we have referred to as the judgmental equality.

(i i i) The equality of types X ≡ Y , which consists in them having judgmentally equal
elements.

(iv) The identity type family IdC (x, y) throughwhich every pair of elements a, b ofC
is assigned a specific type IdC (a, b). Using the Curry–Howard correspondence,
the elements of this type are interpretable as proofs of the proposition a = b, and
this form of identity is therefore also referred to as propositional. Furthermore,
if a : C , there is a postulated element reflC (a) of IdC (a, a) called a’s reflexivity
proof, which corresponds to a canonical proof that a = a; e.g. the one obtained
by a single application of equality introduction.

In extensionalM-L type theory the existence of an element of IdC (a, b) is postulated
to imply that a ≡ b : C ; this is sometimes referred to as the equality reflection rule. If
added as an extra postulate to non-extensional M-L type theory the equality reflection
rule entails that if p : IdC (a, b), then p ≡ reflC (a) : IdC (a, a), so the reflexivity
proof of a (or, equivalently, b) is the only proof of the propositional equality of a and
b that we have (Univalent Foundations Program 2013, p. 104). We therefore say that
extensional type theory has a uniqueness of identities.

In the intensional version [as presented in e.g. Martin-Löf (1998)] the non-
emptiness of IdC (a, b) is strictly weaker than a ≡ b ∈ C , and instead motivates
a type of induction principle. Very informally, this principle allows us to transfer the
structure of one typewhich is a value of a dependent function

∏
x : X P(x) for an argu-

ment a, to the type which is a value of any argument b which is propositionally equal
to a. Formally it is rather complex, but for our present cases it suffices to consider
a consequence of it called the indiscernibility of identicals (Univalent Foundations
Program 2013, pp. 44–45):6

5 Wewill follow standardmathematical practice in treating thewords ‘equal’ and ‘identical’ as interchange-
able. Differences in which of these words we use will therefore merely be due to stylistic factors.
6 Although the name “indiscernibility of identicals” has been used with various meanings in philosophy,
we will from now on reserve it for this type theoretic principle. For a reasonably intuitive defense of the
full equality elimination rule, see Martin-Löf (1975, p. 81).
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�, A : U , x : A, y : A, p : IdA(x, y) � C : A → U
� � ind=(x, y, p) : C(x) → C(y)

Here, ind= is a specific function that assigns each identity between objects x, y of
type A a function from C(x) to C(y). Remembering the interpretation of type families
on A as properties of A’s elements (i.e. C(x) contains proofs that x has property C)
we can see that this rule guarantees that if we have some proof that C(x) holds as well
as a proof p : IdA(x, y), then we can construct a proof that C(y) as well by applying
ind=. Expressed in more traditional terms: if x has a property and x is identical to y,
then y has that property as well.

HoTT assumes only the second and the fourth of Martin-Löf’s forms of identity as
primitive, although arguably the second form also plays parts of the roles of the first
and the third.

Since the existence of universesmeans that types and not only terms can be assigned
types, Martin-Löf’s equality of types X ≡ Y is representable as X ≡ Y : U . As
HoTT also assumes inference rules that entail that a : B follows from a : A and
A ≡ B : U , the fact that A and B have judgmentally equal elements is still a
consequence of their judgmental equality.

The question of propositional equality between types, i.e. their identity type fam-
ilies, is significantly more interesting. Any well-defined type X should specify rules
for constructing an element of IdX (a, b). Under the Curry–Howard correspondence,
this means that the introduction of X as a type also should make it clear what a
proof of the propositional identity of elements of X . This is easy in an extensional
type theory: since identities are unique, identity proofs are always identical to the
reflexivity proof, so any identity proof is really a reflexivity proof, even if it may
not look like one. In intensional type theory this approach is not possible, and the
question arises as to what equality between its types really means. As we shall see in
Sect. 4, it is here that univalent foundations makes one of its most significant contri-
butions.

3 Some basic concepts of homotopy theory

In order to describe HoTT’s approach to equality it is necessary to go through a
few mathematical preliminaries. We will try to keep these to a minimum in order to
simplify as much as possible; for example, the admittedly crucial notion of fibration
will hardly be discussed at all. We assume at the outset that the reader is familiar
with general point-set topology, i.e. concepts such as topological spaces, continuous
functions, homeomorphisms etc.

Several semantics exist for type theory, such as ones based on category theory or
theories of computation. HoTT distinguishes itself by instead supplying a geometric
(or more precisely, topological) semantics. The main notion used is homotopy. This
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Fig. 2 Four continuous functions and a homotopy

is a central concept in algebraic topology, which the study the relationships between
topological and algebraic structures—in particular groups and groupoids.7

While the idea of one space being continuously transformed into another is central
to all topology, homotopy theory adds consideration of how such transformations may
themselves continuously transform into one another. This makes it a kind of “higher-
order” version of topology. The central concept is that of a homotopy between two
continuous functions f, g : X → Y , where X and Y are topological spaces. Formally,
a homotopy α from f to g is represented as a function α : I × X → Y , where I is
the unit interval [0, 1] with its usual (interval) topology, such that the equations

α(0, x) = f (x)

α(1, x) = g(x)

hold for all x ∈ X . For an example, consider the four continuous mappings f, g, h, i
of the space X into the two-component space Y depicted in Fig. 2.

Here α is one of many homotopies from f to g. On the other hand, there are no
homotopies from g to h, because a necessary condition for a homotopy g → h to exist
is that every point g(x) is path-connected to its corresponding point h(x), and no such
paths can exist since g[X ] and h[X ] are in different components. That this condition
is not sufficient can be seen by considering h and i : although we can draw a path from
every point h(x) to its correlate i(x), we cannot do so in a continuousway. Graphically,
the fact that h maps X around a hole in Y means that h[X ] cannot be transformed into
i[X ] without tearing it apart, i.e. introducing discontinuities. This illustrates the fact
that the existence or non-existence of homotopies is a global phenomenon, which is
generally not possible to decide just by looking at individual points of a space one by
one.

7 A groupoid is a category in which all arrows are invertible. It can also be seen as a form of groupwhere not
all elements can be multiplied with one another. See Brown (2006) for an insightful exposition of groupoids
as applied to homotopy theory.
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Fig. 3 A homotopy equivalence

We write f ∼ g and call f and g homotopic if there is some homotopy from f
to g. It is easy to see that whenever there is a homotopy α : f → g, we can get a
homotopy α′ : g → f going the other way by setting

α′(t, x) = α(1 − t, x)

which simply reverses the direction. Likewise, given two homotopies α : f → g and
β : g → h, we can define a composite β ◦ α : f → h as

(β ◦ α)(t, x) =
{

α(2t, x) if t < 1/2

β(2t − 1, x) if t � 1/2

Since the constant function 1 f : f → f defined as f (t, x) = x is also a homotopy,
it follows that ∼ is an equivalence relation. Homotopy theory uses this equivalence to
disregard the difference between homotopic functions and thereby obtain more pow-
erful methods for proving theorems about spaces. While general topology does not
differentiate between spaces that are stable under continuous transformation, homo-
topy theory does not differentiate between functions that are continuously deformable
into one another either.

Formally, let hTop be the category that has all toplogical spaces as objects and all
homotopy classes of continuous functions between them. Thus hTop has the same
objects as the category Top of topological spaces and continuous functions, but the
arrows of hTop are equivalence classes of those of Top. As is well known, the isomor-
phisms of Top are precisely the homeomorphic functions. In hTop, the isomorphisms
(i.e. thosemorphisms that have an inverse) come out as equivalence classes of so-called
homotopy equivalences.

A continuous function f : X → Y is a homotopy equivalence iff it has a homotopy
inverse: a function f ′ such that f ′ ◦ f ∼ 1X and f ◦ f ′ ∼ 1Y , where 1X and 1Y are
the identity functions on X and Y , respectively.8 See Fig. 3 for an example.

8 It is often useful to define the homotopy equivalence more explicitly as a quadruple f, f ′, α, β where
α : f ′ ◦ f → 1X and β : 1Y → f ◦ f ′. Since every function that has a homotopy inverse usually has
more than one, and since the existence of a homotopy between functions usually implies the existence of
many others, this second form gives more information than the first one. Whether this extra information is
relevant or not depends on the context.
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Fig. 4 A path homotopy

a
b
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t1

f
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Any homeomorphism is a homotopy equivalence, but the converse does not hold:
a disc is homotopy equivalent to a point, but since they have different cardinalities,
they cannot be homeomorphic. Furthermore, the n-cube is homotopy equivalent to the
n + 1-cube, but they are not homeomorphic because they have different topological
dimensions. The class of all spaces homotopy equivalent to a space X is called its
homotopy type.9 Spaces that are homotopy equivalent to a point are called contractible.

From the fact that homotopies are themselves continuous functions it follows that
their construction is iterable so that there can be homotopies between homotopies.
For example, a homotopy γ between the homotopies α and β above is a continuous
function γ : I 2 × X → Y such that

γ (0, t, x) = α(t, x)

γ (1, t, x) = β(t, x)

where t ∈ I and x ∈ X . A path in X with endpoints a, b ∈ X is a continuous function
f : I → X for which f (0) = a and f (1) = b, or equivalently, a homotopy between
two functions f, g : 1 → X , where 1 is a one-point topological space.Path homotopies
are homotopies between paths, homotopies between such homotopies, etc. See Fig. 4,
where f, g are functions of t1 and the homotopy a function of t1 and t2.

Since a path is also a homotopy between functions f, g : 1 → X , we can compose
them like we compose all homotopies. While this does not give a composition that is
associative (we generally have that h ◦ (g ◦ f ) �= (h ◦ g) ◦ f ), replacing the paths
from a to b by their homotopy classes restores associativity, and also ensures that all
path-classes have inverses. This means that the homotopy classes of paths between the
points of a topological space constitute a groupoid with the points as objects and the
classes of paths as arrows. If we consider loops, i.e. paths h : a → a whose endpoints
and starting points coincide, their equivalence classes make up a group. For a path
connected space (one in which there is some path between each pair of points), every
choice of point a—or basepoint—leads to an isomorphic group, which is called the
space’s fundamental group.

9 We have followed the usual mathematical practice in defining a homotopy type as a class of spaces.
However, this is not the only way to do it: a different method, which may be more in line with univalent
foundations as e.g. Voevodsky (2010) envisions them is to define homotopy types directly via Kan com-
plexes. For a philosophical discussion on the metaphysical and epistemological status of homotopy types
see Marquis (2013).
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Fig. 5 A non-trivial path
f : a → a

Some spaces, such as the disc and the point, are trivial in the sense that their
fundamental group is simply the one-element group. An example of a space with a
non-trivial group of path classes is the solid torus of Fig. 5. Here, there is a specific
homotopy class of paths for each number of times the path goes around the central
hole. No two of these are identical since the hole in the middle makes it impossible to
contract any of the loops to a point. Furthermore, the direction that we go around in
matters. In algebraic topology this is expressed by saying that the fundamental group
of the solid torus is 〈Z,+〉. In other words, the homotopy class of any path in the solid
torus is determined by a whole number, and composing such paths gives a number
which is the sum of the numbers of the paths composed.

As we noted, the construction of homotopies—and therefore also path homo-
topies—is iterable. This entails that a topological space does not only have groups
of paths, but also groups of higher-dimensional objects. The most important of these
are the spheres of various dimensions, although we will not here go into how such
spheres are composed with one another. Each dimension n of such spheres gives rise
to a group called the nth homotopy group. These groups are used in order to model
iterated identities in HoTT, i.e. propositional identities that hold between identity
proofs.

Apart from homotopies HoTT also relies on another important topological concept,
namely that of fibration. Intuitively, a fibration is a continuous assignment of a topo-
logical space called a fibre to each point of another space called the base space, which
satisfies a so-called lifting property that allows topological structures (such as paths)
on the base space to be mapped to the space consisting of all the fibres. The conditions
on which such assignments count as fibrations ensure that all fibres assigned to the
same path-connected component of the base space are homotopy equivalent in a con-
tinuous way. Usually, a fibration is expressed as a continuous function π : E → B,
where B is the base space, E is the union of all the fibres and is called the entire space,
and π is called the projection of E onto B. The fibres are definable as the inverse
images of points of B under π , i.e. the fibre on point x is the space π−1[x].

A very simple (or literally, trivial) example of a fibration is the space I × I , i.e. the
2-dimensional square with side 1, with π taken to be the orthogoal projection onto the
first coordinate. As a fibration it can be seen as an assignment of a copy of I to each
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Fig. 6 A fibration π : E → B and a section s with a lifted path p

point in I . Interesting fibrations, however, tend to have both base spaces and fibres
with more complex topological structure.

Since a fibration π : E → B associates a space with each point of B we can
define functions s : B → E such that s(x) ∈ π−1[x], i.e. assignments of elements
of a point’s fibre to that point. Such a function is known as a section of the fibration.
The lifting property of fibrations ensures that the application of a section s to a path
p : a → b in B results in a path ps : s(a) → s(b), and furthermore that this path is
unique up to homotopy. Figure6 gives an example.

A section in our trivial example π : I × I → I is simply a continuous graph in the
usual sense, defined on and taking values in the interval [0, 1]. Therefore a path in the
x-coordinate I is a function p : I → I , and such a path naturally gives rise to a path
taking values in the section.

Fibrations are used tomodel dependent types inHoTT. This is of special importance
for us, since the propositional identity type family IdA(x, y) of a type A is an example
of such a dependent type, assigning a type to each pair of elements of A. Unfortunately,
time and space restrictions mean that we will not be able to delve any deeper into their
definition. In what follows, we will attempt to go around these limitations by mainly
focusing on identity types of specific pairs of points, rather than the more general type
families.10

4 Univalence and the semantics of homotopy type theory

Homotopies are, as we mentioned, central to the semantics of HoTT.11 While the
domain of a model of classical first-order logic is a set, terms refer to elements of that
set, and relations and functions have subsets of Cartesian powers of the domain as their
extension, the semantics ofHoTT is thoroughly topological. Intuitively and informally,
we may to a first approximation assume the following [cf. Univalent Foundations
Program (2013), p. 11)]:

10 A classic treatment of the concepts of this section from a point-set topological perspective is given in
Hatcher (2006).
11 More or less everything in this section is based on the author’s present understanding of the Univalent
Foundations Project’s book Univalent Foundations Project’s book (2013). Any possible misunderstandings
are purely due to him.
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(i) A type is a topological space, and a term of a type is a point in that space. Thus
a : X is true iff a is a point in X , and a ≡ b : X is true iff a and b are the same
point of X .

(i i) A function f : A → B is a continuous function from A to B; thus all functions
that can be described in HoTT are continuous.

(i i i) A dependent type F : A → U is a fibration. The space corresponding to the type
F(x) is the fibre on x .

(iv) A dependent function f : ∏
x : X F(x) is a section of the fibration F .

(v) The elements of an identity type IdX (a, b) are the paths from a to b in the space
X .

(vi) Identities between identities are homotopies between these paths, and the constant
path on a is the reflexivity proof reflX (a).

(vi i) When the univalence axiom, one of the main innovations of UF, is added, identi-
ties between types become homotopy equivalences between their corresponding
spaces.

Since we will avoid formal, rigorous derivations in what follows, we will mainly
use informal characterisations like this one of the semantics of HoTT as a basis for our
arguments. This gives some advantages in terms of keeping the discussion visual—
which is one of the things that HoTT, much more than set theory, makes possible—but
of course has the disadvantage that what we will not really create proofs proper. Still,
I believe that for our philosophical purposes, an approach like this not only acceptable
but also in some ways preferable.

When we need to go beyond geometric intuition (e.g. to actually prove things, or
when the spaces involved become too hard to visualize) there are several directions
open. To begin with, HoTT is being developed in formal proof assistants such as
Coq and Agda, which means that the highest possible degree of rigour is available
when needed. For more semantically oriented approaches, one can follow Awodey
and Warren (2009) and employ Quillen’s (1967) notion of model category in order to
equip the types with a well-defined topological structure. Furthermore, HoTT also has
a second, category-theoretical semantics, according to which types are modeled by
higher groupoids.12 Because of its greater intuitive content we have chosen to focus on
the topological semantics here, even if the category-theoretical version often is useful
as a complement.

Since a space’s homotopies between paths, its homotopies between homotopies, etc.
can have complex group structures of their own, identities holding between elements
of other identity types can have such structure as well. Temporarily suppressing the
types of Id and refl and relying on context to sort them out, we call the type

Id(refln−1(a), refln−1(a))

12 While the general concept of higher category is still in development, that of a higher groupoid and its
slight generalization, the (∞, 1)-category, is starting to crystallise somewhat. For one of the more well-
known approaches, which is also rather topological in spirit, see Lurie (2009).
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the n-iterated identity type on the point a, where the exponent n − 1 denotes repeated
application.13 Thus, as expected, the usual identity type is the 1-iterated one.

As all types—including the identity types—are spaces, even the types of identities
holding between an element and itself can be complex, so the structure of an n-iterated
identity type can be highly nontrivial. In extensional type theory, the uniqueness of
identities removes all such complexity. In intensional type theory, theunivalence axiom
helps manage it by allowing the treatment of some of the elements of these types as
the same, much as going to homotopy classes of paths in homotopy theory allows the
treatment of a multitude of paths as identical. In both cases, simplicity is increased
without losing the more important features of the structures in question.

With these remarks as motivation, we will now begin to gradually work our way
towards stating the univalence axiom. Let f and g be elements of the dependent func-
tion type

∏
a : A P(a), i.e. assignments of a point of the space P(a) to each element

a : A. To capture type-theoretic homotopy we first need to define the following
intermediate type:

f ∼ g ≡d f.

∏

a : A

IdP(a)( f (a), g(a))

Read out, this says that f ∼ g is the dependent function type consisting of assign-
ments of an identity proof between f (a) and g(a) to each element a : A. An element
of it can thus be seen as a continuous selection of paths between the values taken by
f and g. We may also say that f ∼ g is the type of proofs that f and g, interpreted
as continuous functions, are homotopic, i.e. that there is a homotopy between them.

Using this type, the type of proofs that a function f is a homotopy equivalence can
be defined as

isequiv f ≡d f.

⎛

⎝
∑

g:B→A

f ◦ g ∼ 1B

⎞

⎠ ×
(

∑

h:B→A

h ◦ f ∼ 1A

)

This definition makes isequiv f the type of pairs of proofs that there are functions
g, h : B → A such that g ◦ f is homotopic to the identity function on B, and f ◦ h
to the identity function on A. We let the type A � B : U be the type that contains all
homotopy equivalences f : A → B.

Relying on this sequence of concepts, it is finally possible to state the univalence
axiom. In fact, it turns out to be remarkably simple; it just allows us to postulate the
existence of a homotopy equivalence

(A � B) � IdU (A, B)

for any types A, B. Informally, it says that the type of homotopy equivalences between
A and B is itself homotopy equivalent to the type of identities between A and B.

13 Repeated may perhaps not be the correct word in this case since we strictly speaking have a separate
function reflX for a different type X for each application. The n-iterated identity type is referred to as the
n-fold iterated loop space in Univalent Foundations Program (2013, p. 70).
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In terms of the Curry–Howard correspondence, it implies that given a proof that
f : A → B is a homotopy equivalence, we can always construct a proof that there is
an identity between A and B.

As expected, the main motivation for univalence comes from the homotopy seman-
tics, according towhich it says that we are always allowed to treat homotopy equivalent
spaces as equal. In a way, this accords with the structuralist attempts to identify iso-
morphic structures, i.e. to take isomorphism as the identity condition for structures
(Awodey 2014). And in fact such an identification, at least for algebraic structures,
follows from the univalence axiom (Univalent Foundations Program 2013, pp. 96–
99). It is important to note, however, that the possibility of both the identification of
isomorphic structures and of homotopy equivalent spaces requires the multiplicity of
non-equal identities supplied by intensional type theory; it is impossible to do so using
classical extensional equality, as can be seen by considering e.g. the automorphism
group of any object, which requires the existence of non-trivial isomorphisms to be
meaningful. Or, for that matter, the fact that sets are isomorphic when they have the
same cardinality, but making any two sets with different members identical would
result in contradiction.

The Curry–Howard correspondence can also be used to illustrate the univalence
axiom. We first note that the existence of functions f : P → Q and g : Q → P
is sufficient to guarantee that P is true iff Q is, but this does not say anything about
the nature of the proofs involved in this equivalence, and neither does it say anything
about the identity conditions of the propositions themselves. Since univalence allows
us to construct a proof that P and Q are the same from proof of P � Q, it bears
directly on the question of when propositions are to count as identical. What we need
to do in order to see what it says to is to get a grasp of the type P � Q when P and
Q are interpreted as propositions.

Following traditional usage, we say that a type theory is propositionally extensional
if we can construct a proof of P = Q from proofs of P → Q and Q → P . Univalence
does not give propositional extensionality in this sense, since the mere existence of
functions between two types is insufficient to draw the conclusion that these types are
identical. The exception is when we limit ourselves to types P that have at most one
member, and such types are precisely the ones that are referred to as mere propositions
inHoTT (Univalent FoundationsProgram2013, p. 118).What follows fromunivalence
is a principle we will call weak propositional extensionality, in distinction to the
traditional kind, which we will refer to as strong. To describe it, we first have to say
something more about the propositions-as-types interpretation.

We said that a proposition P is to be interpreted as the type of its proofs. But in the
particular case of conditionals, a proof of P → Q is interpretable both as a conditional
proof of Q from the premiss that P , and as a way to transform any proof of P to a
proof of Q. The first interpretation indicates that conditional proofs are the kind of
things that can be concatenated by placing one after the other, as long as the premisses
of the second are proved as part of the first. The second lets us apply a conditional
proof f : P → Q to a proof p : P to get an unconditional proof f (p) : Q.
These interpretations are not in conflict: if we take f : P → Q to be a proof of
Q given a premiss P , then concatenation of proofs f ◦ p also gives the method of
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application. Thus, when both composition and application are possible, we should
have that f (p) = f ◦ p.

Every proposition P has an associated identity proof 1P : P → P , which qua
conditional proof may be seen the obvious derivation of P from P obtained by merely
reiterating P . Applying this to � means that, intuitively, a proof of P � Q can be
obtained by giving proofs f : P → Q and g : Q → P , such that g ◦ f —the con-
catenation of f and g—is homotopic to the identity proof of P , and f ◦ g to that of Q.

What does it mean to say that one conditional proof is homotopic to another?
Looking at the definition of ∼, we see that a proof of g ◦ f ∼ 1P ought to correspond
to a (non-empty) collection of proofs that g( f (p)) = 1P (p) = p for all proofs
p : P , or perhaps to a uniformmethod of constructing a proof of g( f (p)) = p given
any p : P . Such a collection or method cannot, of course, exist unless it actually is
the case that g( f (p)) = p for all p : P , so this requires that g( f (p)) and p are
indeed the same proof. Since this must hold for f (g(q)) and q as well, we see that
P � Q has the consequence that the type of proofs of P must be isomorphic (in the
category-theoretic sense of being invertibly mappable) to the type of proofs of Q. The
question of when P � Q holds thus ultimately rests on when proofs are to count as
identical, which means that univalence gives a way of producing identity conditions
of propositions from those of proofs. We refer to the validity of the inference from
the isomorphism of P with Q to P = Q, when P and Q are propositions, as weak
propositional extensionality.

Whether weak propositional extensionality holds or not depends on which identity
conditions for proofs and propositions we adopt. For instance, strong propositional
extensionality implies weak, since the existence of an isomorphism between P and
Q requires the existence of functions P → Q and Q → P . But weaker conditions
suffice. For any proposition P , let the lemma family L P be a type family L P : P → U
that maps any proof p : P to the type of all theorems (in the mathematician’s sense,
rather than merely the logician’s) that are proved and used as lemmas in p. We will
consider the assumption that p = q → L(p) = L(q), which means that if two proofs
use and rely on different lemmas, they are not equal; this arguably conforms to at
least one common interpretation of what it means to be the same proof in ordinary
mathematics. It also follows from the type theoretic indiscernibility of identicals if
L P is a well-defined type family.

Let P � Q and take both P and Q to be sufficiently important to count as “theo-
rems”. If one exists, let p : P be a proof of P such that Q : L(p) does not hold, or
alternatively take q : Q such that not P : L(q). Consider two cases:

(i) No such p or q exists, in which case it is impossible to prove either of P or Q
without proving the other. If P �= Q, this means that P and Q are essentially
unprovable, since no one of them can be proved first. Disregarding this possibility,
we must have that P = Q.

(i i) Either such a p or such a q exists. Without loss of generality, assume that the first
of these is the case. Assume that f, g are conditional proofs f : P → Q and
g : Q → P such that g( f (p)) = p. Then Q : L(g( f (p)), since f (p)

is a proof of Q and g( f (p)) is obtained by concatenating f (p) with g. So
L(g( f (p))) �= L(p), and from the assumption that equal proofs have the same

123



Synthese (2021) 198 (Suppl 5):S1177–S1217 S1193

lemmas, that g( f (p)) �= p, which yields a contradiction. Thus no such f, g can
exist, so P � Q cannot hold.

Thus weak propositional extensionality follows from some quite reasonable
assumptions about proof identity. Furthermore, univalence can, informally, be seen
as a proof relevant version of weak propositional extensionality.

5 Varieties of extensionality

Wehave now introduced some of the fundamental ideas of HoTT, and it is time to delve
into matters pertaining more directly to questions of intensionality and extensionality.
An extensional type in HoTT is one in which all of the n-iterated identity types are
trivial, or in the topological interpretation, one whose identity types are all contractible
spaces. Extensional type theory is type theory in which one may infer a judgmental
equality a ≡ b : X from the existence of an identity proof p : IdX (a, b). It is
certainly not obvious what this has to do with traditional notions of extensionality and
intensionality used in logic and philosophy. In this section and the next we will review
some of these, and trace out connections between them and to concepts in HoTT. In
doing so, we are attempting a kind of conceptual analysis, although one that consists
in tracing logical fibres through a Wittgensteinian family resemblence, rather than a
search for essences or sufficient and necessary conditions.

Figure7 provides a road map of the notions we will discuss. Concepts pertaining to
HoTT are in grey boxes, and arrows represent logical consequence, although in some

Fig. 7 Some concepts of extensionality
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cases only given specific interpretations of the terms involved. A ‘∼’ in the diagram
stands for an analogy; a more careful investigation would preferably flesh these out in
terms of definite structural relationships.

The two main concepts of extensionality relevant to HoTT—univalence and exten-
sional = elimination (i.e. the equality reflection rule)—appear on the far right; of these
the first is considered an optional (but often crucial) postulate, and the second would
make HoTT trivial if it held universally, although it can be applied to individual types.
The present section will concern itself with the boxes semantic extensionality, sub-
stitutional extensionality, and set-theoretic extensionality, which are all concepts that
come directly out of traditional logic. The next section is about the boxes immediately
to the right of set-theoretic extensionality: weak propositional extensionality, unique-
ness of identity proofs, uniqueness of identity relations, and function extensionality,
presented set theoretically. These are notions that are of importance for us mainly
because of their structural similarities to corresponding concepts in HoTT, although
we will see that in two of the cases, the logical ties to set-theoretic extensionality turn
out to be weak.

Section7 starts out from the concepts of intensionality inHoTT, and traces their rela-
tionships with semantic extensionality, especially via the indiscernibility of identicals,
as it was introduced in Sect. 2. Here we also discuss the other forms of extensional-
ity in the grey boxes, and their connections to the more traditional forms we have
discussed in Sects. 5 and 6. We will see that the fact that HoTT essentially has two
fundamental and non-equivalent notions of extensionality—uniqueness of identities
and univalence—gives rise to complications when they are to be related to classical
concepts, partly because it simply cannot be the case that both of them correspond to
what philosophers or classical logicians usually mean by “extensionality”.

The result of Sects. 5–7 will be largely negative in the sense that few concrete
connections will be found between extensionality in classical logic and extensionality
in HoTT. Section8 attempts to alleviate this by providing a different link, going via
modal logic and the topological semantics of HoTT.

Semantic extensionality, which we will begin with, may be seen as fundamental,
but also merely schematic. We will call a context (e.g. a sentence, theory or language)
semantically extensional iff the extension of any complex expression in it is a function
of the extensions of its component expressions. This does not rule out that expressions
have non-extensional features, but only that such features do not affect extensions.
Allowing such inessential non-extensional features seems necessary if one is to have
a workable concept, since e.g. terms in first-order logic certainly have non-extensional
properties, such as syntactical ones, even if these do notmatter in determining complex
expressions’ extensions.

Given an appropriate binary coextension relation coex between expressions, we
may write the semantic extensionality of the expression ψ as the axiom schema

ξ coex ξ ′ → ψ coex ψ[ξ ′/ξ ]

where ξ, ξ ′ and ψ[ξ ′/ξ ] all have to be well-formed expressions. It is clear that unless
we say something about what makes expressions coextensional, this tells us very little.
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Various forms of assumptions about expressions’ coextensionality give rise to various
other concepts of extensionality, two of which we will discuss here.

The first, which will be called substitutional extensionality, can be summarised
as the requirement that the truth value of a sentence ϕ does not change when the
replacement of a term s with a term t is made, given that s = t is true. In first-order
logic it can be expressed simply as the axiom schema

(ϕ ∧ s = t) → ϕ[t/s]

Substitutional extensionality is closely related to Quine’s notion of a referentially
transparent context, in which both the substitution of coreferential terms and the rule
of existential instantiation are truth preserving, as in first-order logic (Quine 1961b).
It can be obatained from semantic extensionality by laying down the definitions

ϕ coex ψ ≡d f. ϕ ↔ ψ

s coex t ≡d f. s = t

for formulae ϕ,ψ and terms s, t .
The second form of extensionality we will discuss here is the set theoretical14 one,

embodied in the axiom of extensionality

∀x (x ∈ c ↔ x ∈ d) ↔ c = d

Indeed, not assuming this axiom is often taken to be sufficient for making math-
ematics intensional, as in e.g. the classic Feferman (1985). How is this set theoretic
extensionality related to the substitutional or semantic versions?

It is trivial that substitutional extensionality does not imply set extensionality, since
every instance of substitutional extensionality is a theorem of FOL with identity, but
the set-theoretic axiom of extensionality is not. To investigate whether the converse
holds, it is naturally crucial to not assume FOL to already have identity. Luckily, set
theory can be developed without primitive identity, and the axiom of extensionality
taken as a definition of the identity relation, given that what we will call the weak
axiom of set extensionality

∀x (x ∈ c ↔ x ∈ d) → ∀y (c ∈ y ↔ d ∈ y)

is imposed. This is needed to guarantee that setswith the samemembers are themselves
members of the same sets, and is a theorem of the usual extensionality axiom in first-
order logic with identity.

In a first-order language in which the only predicate is ∈, the weak axiom of
set extensionality does imply substitutional extensionality, as can be proved through
induction on the complexity of formulae. If we have other primitive predicates as well,

14 Since we will focus on extensionality, which is roughly the same in more or less any extensional set
theory in existence, we will usually not need to pick which one we mean when we talk about ‘set theory’.
In the few cases where it matters, substitute ‘ZFC’.
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c = d does not guarantee that c and d are substitutable salva veritate. Thus weak set
extensionality neither implies nor is implied by substitutional extensionality.

However, set extensionality can be made to follow from semantic extensionality by
making a specific definition of the relation coex for terms that refer to sets. Assuming
the same definition of coex for formulae as above, and restricting that definition for
terms to ones not referring to sets, we define

c coex d ≡d f. ∀x (x ∈ c ↔ x ∈ d)

whenever c or d are terms for sets. Given this definition, it can be shown that the weak
axiomof set extensionality follows in FOLwithout identity, and the set theoretic axiom
of extensionality follows in a language which has identity:

Proposition 1 If c coex d ↔ ∀x (x ∈ c ↔ x ∈ d) then semantic extensionality
entails weak set extensionality in a language without identity, and set extensionality
in a language with identity.

Proof From semantic extensionality it follows that c and d having the same mem-
bers is sufficient for full substitutivity salva veritate. Applying this to the theorem
∀y (c ∈ y ↔ c ∈ y) gives weak set extensionality, and applying it to c = c gives set
extensionality. ��

We have thus found that although set extensionality and substitutional extension-
ality are logically independent, they both follow from semantic extensionality given
appropriate definitions of what it means for various forms of expressions to be coex-
tensional. This is why we referred to the latter as schematic: it can be made to fit
several other concepts, depending on how coex is defined.

6 Alternate forms of extensionality in set theory

This section will construct—using set-theoretic components—a number of concepts
of extensionality that do not usually make an appearance in set theory, but which
have a important roles to play in intuitionistic type theory. The concepts in ques-
tion are function extensionality, weak propositional extensionality, and two forms of
uniqueness of identity. Both one of the forms of uniqueness of identity and weak
propositional extensionality will furthermore require using a version of the Curry–
Howard correspondence adapted for set theory, which will be presented later in this
section. However, we begin with function extensionality, i.e. the implication

∀x ( f (x) = g(x)) → f = g

This corresponds to defining

f coex g ≡d f. ∀x ( f (x) = g(x))
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for function terms f, g. To interpret this set theoretically, it is easiest to take the function
application notation f (x) to be contextually defined by a schema such as

s = f (t) ≡d f. 〈t, s〉 ∈ f

for arbitrary terms s, t . Function extensionality is then equivalent to

∀x∀y (〈x, y〉 ∈ f ↔ 〈x, y〉 ∈ g) → f = g

whenever f and g are sets of ordered pairs satisfying the requirements of a total
function. But this condition is guaranteed to hold—for any encoding 〈 · , · 〉 of
ordered pairs as sets—by set extensionality.

For the other direction, i.e. from function extensionality to set extensionality, we
need that every set must also be a function. This does not hold given the above inter-
pretation of functions as sets of ordered pairs. To be sure, just as it is possible to
interpret functions as sets, it is possible to interpret any set f as a function, e.g. by
distinguishing a certain 2-element set � (say � = {0, 1}) and then taking f to be the
set of arguments for which f takes the value 1 rather than 0. More precisely, we would
define the function notation f (x) through the equivalence

s = f (t) ≡d f. (1 = s ∧ t ∈ f ) ∨ (0 = s ∧ t /∈ f )

We can then to derive set extensionality from function extensionality as follows:

∀x ( f (x) = g(x)) → f = g ⇔
∀x ((1 = f (x) ∧ x ∈ g) ∨ (0 = f (x) ∧ x /∈ g)) → f = g ⇔
∀x ((((1 = 1 ∧ x ∈ f ) ∨ (1 = 0 ∧ x /∈ f )) ∧ x ∈ g)

∨ (((0 = 1 ∧ x ∈ f ) ∨ (1 = 1 ∧ x /∈ f )) ∧ x /∈ g)) → f = g ⇔
∀x ((x ∈ f ∧ x ∈ g) ∨ (x /∈ f ∧ x /∈ g)) → f = g ⇔
∀x (x ∈ f ↔ x ∈ g) → f = g

However, such an interpretation is incompatible with the previous one, so at most
we can see function extensionality as following from set extensionality, or set exten-
sionality as following from function extensionality, but we cannot have both. As the
interpretation of functions as sets of ordered pairs is by far the more common one in
set theory, we take the former option.

The second form of extensionality we will consider here is one that is clearly type
theoretical: uniqueness of identities. Indeed, its strongest form, the equality reflection
rule

� �p : IdX (a, b)

� �a ≡ b : X

is what distinguishes extensional Martin-Löf type theory from intensional. In terms
of the homotopy semantics, a type theory that validates this rule is one in which every
identity type is a one-point space.
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In HoTT, it is also useful to discuss weaker versions which correspond to the
condition that identity types have to be contractible, i.e. homotopy equivalent to
one-point spaces, but not necessarily one-point spaces themselves. In type theo-
retical terms, this means that for each p : IdX (a, a), there is a higher identity
p′ : IdIdX (a,a)(p, reflX (a)), or differently put, that all propositional identities are
themselves propositionally, but not necessarily judgmentally, equal.

To translate this to set theory we will consider two interpretations of the identity
type IdX (a, b): as a type of relations or relation instances holding between a and b,
and as a type of proofs of a proposition a = b. We refer to these interpretations as
uniqueness of identity relations and uniqueness of identity proofs, and will discuss the
first of these directly, and the second, since it relies crucially on interpreting types as
propositions, after we have introduced a version of the Curry–Howard correspondence
for set theory. Although they come out equivalent in HoTT, the same does not hold in
set theory.

From a philosophical viewpoint, there is in itself nothing strange with more than
one instance of a relation holding between different entities. It is possible for someone
to be related tome through different lineages, such as when pairs of siblings marry one
another so that, say, my sister’s wife is also my wife’s sister. Objects may be similar
in more than one respect. And mathematical structures are often embeddable in one
another in more than one way. So the idea that the identity relation—so long as we
take it to be a relation at all in any substantial sense of the word—could be treated as
non-unique should not be seen as obviously incoherent. Different interpretations of
relations’ identity conditions may give us different answers.

Set theory has its own interpretation of what a relation is: a set of ordered pairs.
The identity relation on a set A is the diagonal �A = {〈x, x〉 | x ∈ A}. An instance
of such a relation, for an element a ∈ A, can then fairly reasonably be interpreted as
a pair 〈a, a〉. Thus the question of whether identities are unique in set theory comes
down to whether such pairs are unique. Insofar as we take them to be set-theoretic
constructions (e.g. as defined by Wiener, Hausdorff or Kuratowski) this uniqueness
follows from the set-theoretic axiom of extensionality, although the converse does not
hold unless we somehowmanage to encode ordered pairs in such a way that all sets are
also ordered pairs. We thus take uniqueness of identity relations to be a consequence
of set extensionality, but set extensionality to not be a consequence of uniqueness of
identity relations.

The next two extensionality concepts—uniqueness of identity proofs and weak
propositional extensionality—both depend on the Curry–Howard interpretation of
propositions as types. But since types are the type-theoretic analogue of sets, what we
need is a version of the Curry–Howard correspondence for set theory. In fact, such a
correspondence can be set up, since it does not depend critically on anything specific
to type theories rather than set theory. The guiding idea is to go back to the corre-
spondence’s origins in the Brouwer–Heyting–Kolmogorov semantics of intuitionistic
logic, which are easily adapted to classical logic.15

15 We should come clear at once about the fact that neither the usefulness nor the beauty that the Curry–
Howard correspondence has in type theory will be features of the set theoretical version; it will rather
resemble something like a translation of The Waste Land into first-order logic. This naturally invites the
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To simplify, we will only consider a very simple language L without variables or
quantifiers, but with individual constants c1, c2, . . ., possibly a set of primitive predi-
cates P1, P2, . . ., an identity predicate=, and the classical connectives⊥,¬,∧,∨,→.
This gives us a kind of middle ground between sentential and predicate logic, which is
easy to work with but still allows us to discuss identity.16 A treatment of full first-order
logic in the style we will do here would require use of dependent sets, and although
this can be done, it requires far more elaborate set-theoretic constructions than we will
need to use for our limited language. In particular, dependent functions can be treated
with an elegance in type theory that seems to be unavailable in set theory.

As metalanguage, we use ZFC. Just as the Curry–Howard correspondence allows
us to interpret a type as a proposition in type theory, we want to be able to interpret sets
as propositions, and in particular non-empty sets as true propositions. In the following,
we will use s, t, u, t ′, t1, t2, etc. as metavariables ranging over terms (in the present
case, individual constants) of L. Let a CH model M of L be

(i) an assignment of a set M(P(t1, . . . , tn)) to each atomic sentence P(t1, . . . , tn),
together with

(i i) a bijective function reflM from the terms of L to a set CReflM, which we call
the set of canonical reflexivity proofs, and

(i i i) functions

symmM : M(s = t) → M(t = s)

transM : M(s = t) × M(t = u) → M(s = u)

idelimM : M(tk = u) × M(P(t1, . . . , tk, . . . , tn)) → M(P(t1, . . . , u, . . . , tn))

for all the terms of L. These functions will be needed to guarantee that identity
performs as expected.

A valuation based on M is a function � · �M that assigns sets to sentences of L
such that

reflM(t) ∈ �t = t�M

and the following recursive clauses hold:

�⊥�M = ∅
�P(t1, . . . , tn)�M = M(P(t1, . . . , tn))

�ϕ ∧ ψ�M = �ϕ�M × �ψ�M

�ϕ ∨ ψ�M = �ϕ�M � �ψ�M

Footnote 15 continued
question of why we want to do it at all, and if such translations can tell us anything about extensionality
in type theory or set theory. The answer to this is that some translation will always be necessary, since the
concepts we are studying seem to differ so radically from each other. One should however make sure that
we do not forget that everything we say is relative to the translations we have made.
16 This is, essentially, the kind of language described in Barker-Plummer et al. (2011, chs. 1–8) as propo-
sitional logic.
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�ϕ → ψ�M = (�ψ�M)�ϕ�M

�¬ϕ�M = �ϕ → ⊥�M

The ‘�’ in the clause for disjunction stands for disjoint union; a regular union could
also have been used, but we have gonewith the disjoint version in order to stay closer to
the type theoretic treatment. As in the Curry–Howard correspondence or the Brouwer–
Heyting–Kolmogorov semantics, we refer to the set �ϕ�M as the set of proofs of the
sentence ϕ. Since the proof sets of implications have functions as members, we can
apply a proof q ∈ �ϕ → ψ�M to a proof p ∈ �ϕ�M to obtain a proof r ∈ �ψ�M, and
we can compose a proof p ∈ �P → Q�M with a proof q ∈ �Q → R�M to obtain a
proof r ∈ �P → R�M; we write both these operations as r = q ◦ p. We say that ϕ

is true in the model M iff �ϕ�M �= ∅. A sentence is logically true iff it is true in all
models.

Let L+ be the first-order language that extends L by adding first-order variables
and quantifiers, and define logical truth inL+ in the usual Tarskian way. Then we have
the following:

Theorem 1 ϕ is a logical truth of L iff ϕ is a logical truth of L+, for all sentences
ϕ ∈ L.

Proof It is sufficient to show that any first-order modelM+ of a sentence ϕ ∈ Lmay
be assigned a CH model M of the same sentence ϕ, and vice versa. The left-to-right
direction can be done by assigning atomic sentences true inM+ arbitrary non-empty
sets, and the right-to-left direction by making a first-order model from equivalence
classes of L’s individual constants, much as in the Henkin construction commonly
used to prove first-order completeness. The proof then proceeds by checking that the
recursive clauses given above for the connectives give the same truth conditions as the
usual ones for classical logic, e.g. that �ϕ�M × �ψ�M is non-empty iff both �ϕ�M and
�ψ�M are, etc. This follows from the standard set-theoretic definitions of the operators
in question. ��

We have thus set up something similar to the Curry–Howard correspondence for a
fragment of first-order logic: sets can be taken as the semantic values of sentences in
such a way that true sentences have non-empty sets as values, just as true propositions
under the Curry–Howard correspondence correspond to non-empty types. We will
use this semantics to transfer the concepts of weak propositional extensionality and
uniqueness of identity proofs from HoTT to set theory, in order to see how they relate
to the set-theoretic axiom of extensionality.

The question of whether identity proofs are unique translates directly to whether
the sets �s = t�M can have more than one element. But neither this nor its negation
follows from purely set-theoretical assumptions like the axiom of extensionality: if
we want it to hold, we have to add it as an extra condition in our definition of CH
model. As such, the decision is part of the semantics rather than the metalanguage that
semantics is implemented in.

This is actually not very different from how the situation is in type theory. The
Curry–Howard correspondence in HoTT is also best seen as a semantics for many-
sorted first-order logic, which allows discussion of truth or falsity to be carried out
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in terms of discussion about types.17 What obscures this fact somewhat is that the
logic (the discourse about truth and falsity) and the type theory (the discourse about
types/sets/properties) share the same syntax. Nevertheless, it is clear that uniqueness
of identity proofs is just as independent as an assumption in type theory as it is in the
semantics in terms of CH models we have sketched here. For example, in Univalent
Foundations Program (2013, p. 118), what is called “traditional logical notation”,
which is an alternative propositions-as-types interpretation for HoTT, is defined using
a truncation operator ‖ · ‖ that discards all higher identity structure of types. As
presented, this notation does not mention how to interpret first-order identity, but it
would be easy to extend it to do so by making the definition

x = y =d f. ‖ IdA(x, y)‖
where A is the type of x and y. Under this modified semantics it is reasonable to
hold that identity proofs would be unique in HoTT, while identity relations could still
be non-unique, since these deal with the types directly, and not merely through the
propositions-as-types interpretation.

Let us move on to weak propositional extensionality in set theory. The traditional
(strong) version, according to which propositions are equal when interderivable, is
actually incompatible with the semantics outlined here: although all logical truths are
interderivable, they will generally, by the recursive clauses we have given here, have
wildly different sets of proofs. More generally, the strong version of propositional
extensionality is incompatible with proof-relevant mathematics (or logic), which both
our current semantics, and that of HoTT, adhere to.

The casewith the homotopy-theoretic version ismore subtle. In Sect. 4we described
weak propositional extensionality as allowing us to construct an element of IdU (P, Q)

from elements of

IdP→P (q ◦ p, reflU (P → P))

and

IdQ→Q(p ◦ q, reflU (Q → Q))

where p : P → Q and q : Q → P . To translate this directly to our set-theoretic
Curry–Howard semantics, we would need to introduce reflexive or canonical proofs
of sentences of the form P → P , much as we did for those of the form t = t when
defining CH models. While this can be done, it does however turn out that much of
what we want to say can be shown in another way, which does not require us to expand
the semantics.

For any model M of L, let L|M be the fragment of L that does not contain ⊥ and
only contains those atomic sentences P(t1, . . . , tn) or identities s = t not assigned

17 A similar point is made in Howard’s own exposition (1980) as he criticises his earlier use of the phrase
‘formulae-as-types notion of construction’ as indicating that formulae are types, when what he meant is that
formulae are names of types, i.e. refer to types. But this is the same as saying that the ‘formulae-as-types
notion of construction’ is actually a semantics.
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empty sets byM. Let a logical modelM be one in which no two atomic sentences or
identities are assigned the same set of proofs. It is clear that, at least on the intended
interpretation, logicalmodels are the only ones that are reasonable, sincemodelswhich
are not logical are ones in which two logically independent sentences have exactly the
same proofs.

Proposition 2 LetM be a logical model ofL. Then � · �M is injective on the fragment
L|M.

Proof By induction on the truth clauses. ��

The upshot of this is that, insofar as there are some atomic sentences that are
true, there will always be a significant part of L wherein two different sentences
never express the same proposition, so no non-trivial form of weak propositional
extensionality can hold at all. In particular, the existence of functions

p : �ϕ�M → �ψ�M

q : �ψ�M → �ϕ�M

cannot imply that �ϕ�M = �ψ�M, unless we have that ϕ = ψ or that �ϕ�M =
�ψ�M = ∅.

What makes weak propositional extensionality possible in HoTT is the presence
of a weaker form of identity in the metalanguage: HoTT’s weak propositional exten-
sionality does not say that P and Q are judgmentally equal, but only propositionally
so. A strict form of equality, like the one of classical logic, or judgmental equality,
will always make it impossible for propositions to be equal as long as we use some-
thing like the proof-relevant Curry–Howard semantics given here. The very point
of having the clause for ϕ ∧ ψ be �ϕ�M × �ψ�M rather than, say, �ϕ�M ∩ �ψ�M
(which would give the same truth conditions) is that the former does not discard any
information about the proofs we have used for ϕ and ψ , while the latter typically
does. It is only the presence of an equality relation like the propositional one in inten-
sional type theory, whose elimination rule does not discard information either, but
only shows how to translate it to other types, that makes it possible to equate propo-
sitions with one another even if they do not have strictly (judgmentally) the same
proofs.

In summary, we have found that set extensionality implies function extensionality
as well as the set-theoretic uniqueness of identity relations, but that neither of these
entail set extensionality. Using the set theoretic Curry–Howard semantics, we then
showed that not only is set extensionality independent of uniqueness of identity proofs,
but set theory, at least with extensionality, is incompatible with weak propositional
extensionality. This is a consequence of proof relevance together with the absence of
weaker forms of identity in classical logic.
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7 Intensionality in HoTT

Martin-Löf (2015) has explained that the use of the word “intensional” for a non-
propositional form of identity was influenced by a footnote in Gödel’s Dialectica
paper:

Identität zwischen Funktionen ist als intensionale oder Definitionsgleichheit zu
verstehen.18

A related use of “intensional” as a synonym for “definitional” appears in e.g. Tait
(1967), who Martin-Löf also refers to in his work. In conversation, Martin-Löf has
said that he currently does not approve of such a use, since he believes that inten-
sional equality should be equality of meaning, while definitional equality is a purely
syntactic concept (Martin-Löf 2015).We have so far followed the earlier—Gödelian—
tradition here in not specifically requiring a connection between intensionality and
meaning, but simply focused on non-extensionality. The members of the Univa-
lent Foundations program seem to interpret HoTT’s intensionality in a rather similar
way:

Intensional type theory is so named because its judgmental equality, x ≡ y,
is a very intensional equality: it says essentially that x and y “have the same
definition”, after we expand the defining equations of functions. By contrast, the
propositional equality type x = y is more extensional, even in the axiom-free
intensional type theory […] we can prove by induction that n + m = m + n
for all m, n : N, but we cannot say that n + m ≡ m + n for all m, n : N,
since the definition of addition treats its arguments asymmetrically. (Univalent
Foundations Program 2013, p. 102)

The notation ‘x = y’ used here is an abbreviation for the type IdA(x, y), where
x, y : A. It is understood that a type theory (or perhaps a logic) is intensional if
it makes a difference between extensional and intensional identity, and that having
the same definition is a relation that is strictly stronger than mere coextensionality.19

The appearance of quotation marks around ‘have the same definition’ in the quote,
however, indicates that this is an informal characterisation using an analogy.

From a λ-calculus point of view, there is a formal version of it which says that
a ≡ b : X iff a, b : X and a and b reduce to the same term by applying β-reduction,
i.e. application of a function to its arguments (Univalent Foundations Program 2013,
p. 422). The existence of a propositional equality p : Id(a, b) does not ensure that a
and b can be rewritten as the same term in this way. This is an explanation in terms of
syntax,which does notmentionHoTT’s semantics. Aswe have already said, a ≡ b : X

18 “Identity between functions is to be understood as intensional or definitional equality” (Godel 1958, p.
283).
19 It is curious that in their book on Martin-Löf type theory, Nordström, Petersson & Smith refer to an
identity type that is equivalent to judgmental equality as extensional, and to the one that appears as the
propositional identity in HoTT as intensional (Nordstrom et al. 1990, pp. 57–62). This seems to be the
exact opposite of the position taken by the members of the Univalent Foundations program, as well as being
in conflict with their earlier occasional use of ‘intensional’ as a synonym for ‘definitional’.
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holds iff a and b refer to precisely the same point of the space X , and p : IdX (a, b)

holds if p is a path from a to b. This would indicate that a term’s intension in HoTT
can be seen as a point of a space X , and its extension as a path-connected component
of X . Similarly, a type’s intension would be a space and its extension a homotopy type.
Both of these choices conform to the Fregean principle that intension (or meaning) is
to serve as a way to present extension, so that the same extension may be presented in
many different ways. For terms, these ways are represented by points, and for types,
by specific topological spaces.

Collecting these suggestions in a table gives us the following:

Intension Extension

Term Point Path-connected component
Type Topological space Homotopy type

Of course, not any space can be assigned to any type. For example, identity types
will have to be assigned path spaces, dependent types fibrations, etc. In any case, our
interpretation would seem to validate the Fregean priciple that intension determines
extension.20 Somewhat surprisingly,what it doesnot show is thatHoTT is semantically
non-extensional in our sense. Since all functions are continuous, it follows that if s is
path-connected to t , then f (s) will be path-connected to f (t), so function application
preserves coextensionality. Likewise, the type forming operations we have, such as
making product spaces or fibrations, also satisfy the requirement that applying them
to homotopy equivalent spaces yield homotopy equivalent results. Thus intensions do
not matter when the extensions of terms and types are to be determined, which is
exactly what semantic extensionality says should make these things extensional.

To find intensionality we have to go further and consider not only terms and types,
but also judgments. There are two kinds of these that we have discussed: the typing
judgment a : A and the equality judgment a ≡ b : X . Following the practice of
Sect. 5, we will take judgments to be coextensional when they are both true or both
false, with truth determined by the semantics we outlined in the beginning of Sect. 4.
That is, a : A is true iff a is a point in the space A, and a ≡ b : X is true iff a and
b are the same point, and this point is in the space X .

Beginning with the typing judgment, we can quickly see that replacement of coex-
tensional terms will not change a judgment’s truth value: if a : A, then we must also
have a′ : A for any point a′ which is path-connected to a, since a prerequisite for
there to be a path between two points is that they are in the same space. On the other
hand, a space A being homotopy equivalent to a space B is not sufficient for them to

20 This may depend on how we interpret ‘point’ in the table: if the same point can be a member of two
or more topological spaces, then a single point may be in two different path-connected components in
these spaces. What we should say then is that given a term’s type (i.e. its topological space), its intension
determines its extension. But there are similar caveats applicable to Frege’s original principle that Sinn
determines Bedeutung: we cannot find out what a term’s reference is in our world merely from knowing its
meaning; we need to know which world is ours too.

123



Synthese (2021) 198 (Suppl 5):S1177–S1217 S1205

have the same points, so we may very well have a : A and p : IdU (A, B), but not
a : B.

Equality judgments also violate replacement salva veritate of coextensional types.
But they do not permit replacement of coextensional terms either, since the truth of
a ≡ b : X under the semantics we used depends on the exact identity of the points
a and b refer to, rather than merely whether there is a path between them. So, if our
proposed interpretation of coextensionality of judgments is correct, we have found a
sense in which HoTT is indeed semantically intensional.

There is a possible source of confusion here, however. What we have done in taking
a judgment’s extension to be a truth value is essentially to pass over to the substitutional
version of extensionality, and shown that HoTT does not satisfy this. But, as we said
in Sect. 2, HoTT satisfies something rather close to substitutional extensionality: the
indiscernibility of identicals. As we described it, this consequence of the rules of
propositional identity in intensional type theory lets us construct an element of a
dependent type C(y) given an element of C(x) and an identity p : IdA(x, y). Since
the existence of an element of C(y) is interpreted as y having the property C , this
would mean that p : IdA(x, y) is sufficient for x and y to have the same properties.
But how can things have the exact same properties while still giving rise to failures of
substitutivity?

The answer is that a property, interpreted according to the Curry–Howard corre-
spondence, is not the same thing as a type of HoTT. Indeed, they are not even part of
the same language, strictly speaking. Recall our insistence in the last section that the
Curry–Howard correspondence should really be seen as a semantics. Then property
and proposition are concepts of the object language, while type is of the metalan-
guage. To be more precise, the object language, although it uses symbols from the
metalanguage, is just a many-sorted first order logic, and does not use the judgmental
form of equality or equalities between properties (Univalent Foundations Program
2013, pp. 4144, 118). This is why it satisfies substitution extensionality, while the full
type theory of the metalanguage does not, and it is also why the ∼ denoting analogy
between substitutional extensionality and the indiscernibility of identicals in Fig. 7 is
greyed out: although they may be glossed similarly, they are very different concepts
that apply to different systems. A similar phenomenon happens in Tarskian first-order
semantics when we do not take identity to be logical, so that it can denote any con-
gruence relation on the model. In such a case, we will still have full substitutivity of
identicals in the object language, but can have failure of substitutivity in the metalan-
guage, i.e. we can have that M � s = t with s and t denoting different elements of
M’s domain.

Having examined the relationship between HoTT and semantic and substitutional
extensionality, we will now briefly consider the other analogies in Fig. 7. Weak propo-
sitional extensionality, as we noted in the last section, is incompatible with the
Curry–Howard semantics as implemented in set theory. This fact, which depends
on classical logic’s lack of weaker forms of identity, also affects possible interpre-
tations of the univalence axiom itself in set theory. To show this, we make a simple
translation of this axiom: we say that a set theory is univalent iff, for any two sets a
and b such that there are functions f : a → b and g : b → a such that g ◦ f = �a
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and f ◦ g = �b, where �a and �b are the identity functions on a and b, we have
that a = b.

Proposition 3 Any univalent extension of ZF is inconsistent.21

Proof For the necessary functions f and g to exist, it is clearly sufficient that g should
be the inverse of f . But the existence of such functions is guaranteed merely by a and
b having the same cardinality, so a univalent set theory must identify all sets of the
same cardinality. Any extension of ZF, however, validates e.g. {∅} �= {{∅}}. ��

Function extensionality offers a very different circumstance: it is compatible with
both set theory and HoTT. In set theory, it follows from set extensionality, and in
HoTT it follows from univalence (Univalent Foundations Program 2013, pp. 144–
146), and in both cases, the converse does not hold. It thus supplies an example of
where Univalence in HoTT actually plays the same role as extensionality does in set
theory, and highlights how complex the relationships we are investigating really are.

Uniqueness of identities also points to this: we have split this concept into two, but
in HoTT it is not obvious that this is a meaningful distinction to make. Uniqueness
of identity proofs and uniqueness of identity relations in HoTT are just different
interpretations of the same condition, at least insofar as we do not modify the Curry–
Howard correspondence to interpret identities in terms of truncated types, as was
indicated in the previous section. On the other hand, in set theory, one of them follows
from set extensionality, while the other does not.

In fact, set extensionality itself provides a curious case. In any type theory, the com-
mon membership of even a single entity is sufficient to make types identical, while set
extensionality requires common membership of all elements. In fact, even the propo-
sitional identity of a and b is enough to make any type they are in judgmentally equal.
Thus intensional type theory, even without any additional axioms such as univalence,
is in one way far more extensional than set theory—at least when ‘extensional’ is
interpreted in the sense of the set theoretic axiom of extensionality.

Summing up, we have seen that the relationships between traditional forms of
extensionality and those of HoTT are far from straightforward. The most promising
connection we have found may be between semantic extensionality and the intension-
extension characterisation of theHoTT semanticswe sketched in this section, although
this connection shows up only when we extend the semantics to also cover judgments.
The intensionality of HoTT as a system comes from not having the extensional rule
of = elimination, which would make propositional and judgmental identities logically
equivalent. However, semantic extensionality is a rather thin concept, and it would be
useful to see if we can work out this connection in more detail. This will be purpose
of the next section.

21 Interestingly, as an anonymous referee pointed out, categorical set theory is compatible with univalence
in the sense we use it here. In fact, a topos with an added axiom making it skeletal is univalent in our sense.
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8 Extensionality in modal logic

One characterisation of the divide between intensional and extensional sentences was
made byCarnap (1956), primarily as an explication of ideas of Frege. The fundamental
principle is,much as forQuine,who aswenoted championed a version of substitutional
extensionality, that ϕ is an extensional context if no replacement of coreferential terms
can change the truth value of a sentence they appear in. An intensional context is
one where this does not need to hold, but where substitutivity salva veritate among
intensionally equivalent terms still holds. For Carnap, such an intensional equivalence
is given by the identity of the individual concepts that are associatedwith the equivalent
terms.

What sets this notion apart from Quine’s is its very close relation to modality:
in Carnap’s logic, intensional equivalence is the same as necessary equivalence, so
that we have that �(ϕ ↔ ψ) is true iff ϕ and ψ are intensionally equivalent, i.e.
have the same intension. In the specific case of identity, this entails that s and t are
intensionally equal iff �s = t holds. We will call a modal logic weakly extensional
iff it validates the inference rule s = t �� �s = t , i.e. if it makes no difference
between necessary and contingent equality. That this is not the same as extensionality
tout court can be seen from the existence of the Kripkean theory of equality as always
being necessary without having all other modal distinctions (e.g. between sentences)
collapse. However, since weak extensionality will be the concept that corresponds
best to the one in HoTT, we will from here on use the word ‘extensional’ simply
as an abbreviation for ‘weakly extensional’. This usage also fits far better with our
connection to Carnap, for whom a modal logic in which identity between terms was
always necessary would lose much of its point.

The connection through modal logic is promising not least because modal logic
and topology have been known, since at least McKinsey and Tarski (1944), to go very
well together. We want to use this fact to build up a sequence of logical relationships

Classical logic ∼ Modal logic ∼ Topological Semantics ∼ HoTT

that allow us to compare notions—such as extensionality—in classical or modal logic
directly to those in HoTT. Our goal in this section is to show that the same condition on
the topological semantics makes both the classical-style modal logic we will describe
here and HoTT extensional.

For our purposes it is easiest to limit ourselves to a monadic first-order modal logic
L, which we also take to have an existence predicate E.22 Let a model M of L be a
triple 〈O, ref,�〉 where
(i) O is a nonempty T0 topological space23 which we will call the ontology,

22 Extensions to full first-order logic can be obtained by complicating our theory to map non-unary predi-
cates to product spaces. Extensions to second-order modal logics would also be fairly easy to achieve. We
will not go into details of how to carry out these here.
23 Recall that a space is T0 (alt. Kolmogorov) iff any two points in it are topologically distinguishable, i.e.
if for any points a, b there is some open set X such that either a ∈ X and b /∈ X or a /∈ X and b ∈ X .
Given that we will interpret open sets as properties and points as referents of terms, this condition therefore
comes out as a version of the identity of indiscernibles.
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(i i) ref is a function from the individual constants of L to points in O,
(i i i) � is the set of all functionsω : Pred → ℘O, where Pred is the set of predicates

in L, such that for each P ∈ Pred we have that
(a) ω(P) is open in O and
(b) ω(P) ⊆ ω(E).

We call the elements of � worlds since they correspond to distributions of
properties–including existence—among possible entities. The open subsets of � can
be interpreted as possible properties, e.g. ones whose potential extensions are well-
defined enough. The conditions on topological spaces then say that if P can have
any number of extensions, then the union of these is also a possible extension, and
if P can have two extensions X and Y , then X ∩ Y is also a possible extension. The
function ref is known as the reference function. Note that it is not world relative, so
individual constants are rigid.Wewill see that there are still models that are not weakly
extensional.

Let a variable assignment s onM be a function from variables of L to points inO,
and let a valuation v be the union of a variable assignment and the function ref. As
usual, we write v[c/x] for the valuation which is like v except for a replacement of
the value at x with c.

The truth conditions are mostly straightforward:

M, ω �v P(t) ⇔ v(t) ∈ ω(P)

M, ω �v ¬ϕ ⇔ M, ω �v ϕ

M, ω �v ϕ ∧ ψ ⇔ M, ω �v ϕ and M, ω �v ψ

M, ω �v ϕ ∨ ψ ⇔ M, ω �v ϕ or M, ω �v ψ

M, ω �v ϕ → ψ ⇔ M, ω �v ϕ or M, ω �v ψ

M, ω �v ∀xϕ ⇔ M, ω �v[c/x] ϕ for all c ∈ ω(E)

M, ω �v ∃xϕ ⇔ M, ω �v[c/x] ϕ for some c ∈ ω(E)

M, ω �v �ϕ ⇔ M, ω′ �v ϕ for all ω′ ∈ �

M, ω �v ♦ϕ ⇔ M, ω′ �v ϕ for some ω′ ∈ �

From these is follows that atomic formulae with non-denoting terms are always
false. We have followed Carnap in taking� to express the global modality, i.e. truth in
every world. Free variables range over all possibilities, but the quantifiers only range
over that which exists.

To model identity we will need to introduce a new concept. Let the entity space
EO(ω) of a world ω in the ontology O be the coarsest topological space that results
from adding all sets ω(P) to O’s closed sets. In this space, every extension of a
predicate is not only open, but clopen (i.e. both closed and open). This, in turn, entails
that EO(ω) will be partitioned into maximally connected subspaces, each of which
has elements that have the same distribution of properties, as illustrated in Fig. 8.

Intuitively, one can think of the ontology O of a model as a vaguely defined “slum
of possibilities” in Quine’s sense (Quine 1961a), without firm identity conditions on
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Fig. 8 Going to entity space

its constituents. A world ω is a specification of which chunks of possibility instantiate
which properties, including existence, and ω’s entity space is the existing part of
possibility cut up intowell-individuated entities, where the individuation is done based
on the properties assigned by ω.

Write a ∼ω b when there is a path from a to b in the space EO(ω), and let the truth
condition for identity formulae be

M, ω �v s = t iff v(s) ∼ω v(t)

From the fact that the clopen sets in a topological space are the unions of its (path-
)connected components, together with our definition of EO(ω), we get that if a ∼ω b,
then a ∈ ω(P) iff b ∈ ω(P) for all a, b ∈ O and P ∈ Pred. By the truth condition
we have imposed it follows that the substitutivity of identicals is valid:

M, ω �v (s = t ∧ ϕ(s)) → ϕ(t)

As is easily checked,wedonot haveweak extensionality.Butwhile identity between
terms thus does not guarantee strict identity between the terms’ referents, we can show
that necessary identity does:

Proposition 4 M, ω �v �s = t iff v(s) = v(t).

Proof The right-to-left direction follows from the existence of the constant path r :
v(s) → v(t) together with the fact that we have taken singular terms to be rigid. For
the converse, assume that v(s) �= v(t). Because of the T0 condition there must then
be some open set S such that v(s) ∈ S and v(t) /∈ S, or vice versa. Since all open
sets are possible properties, there is therefore some world ω′ where S = ω′(E), and
because EO(ω) therefore must have S not only open but also closed, there can be no
path between v(s) and v(t) in EO(ω), so they cannot be equal. ��
Corollary 1 M, ω �v �∀x (P(x) ↔ Q(x)) iff ω(P) = ω(Q).

Corollary 2 M, ω �v �s = t iff M, ω �v �(ϕ(s) ↔ ϕ(t)).
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Call a model M extensional iff M �v s = t → �s = t , and disconnected iff its
ontology is a totally path disconnected space, i.e. one in which the only path connected
components are singletons.With these preliminary remarks in place, and the following
lemma, we can state the main result of this section:

Lemma 1 A model M is extensional iff it is disconnected.

Proof Assume that O is totally disconnected. Then, whenever we have that v(s) is
path connected to v(t), we also have that v(s) = v(t), which by Proposition 4 entails
that M, ω �v s = t → �s = t . Conversely, assume that there are elements a, b ∈ O
such that a �= b but a ∼ω b for some world ω. Let v be a valuation such that v(s) = a
and v(t) = b. Then it follows, again by Proposition 4, that although we by assumption
have M, ω �v s = t , we cannot have M, ω �v �s = t . ��
Theorem 2 Let A be a type in HoTT modeled by the ontology O of the model M.
Then the following are equivalent:

• A has judgmentally unique identities.
• M is extensional.

Proof From the semantics of the propositional identity types we have that p :
IdA(a, b) iff p is a path a → b. But if A is totally path disconnected there can
be only one such path, namely the constant path. Conversely, assume that p is a path
from a to b, and q is a path from b to a. If a = b and p is not the constant path,
there must be some t ∈ [0, 1] such that p(t) �= a, and thus paths p1 : a → p(t) and
p2 : p(t) → a, so it suffices to consider the case a �= b. But if a �= b there will
always be at least a countable infinity of other paths from a to b, e.g. p1 = p ◦ q ◦ p,
p2 = p ◦ q ◦ p ◦ q ◦ p, etc. Thus IdA(a, b) must have more than one element. The
result follows by applying Proposition 1. ��

We have thus finally managed to set up a connection between a version of HoTT’s
concept of extensionality and a more traditional interpretation thereof. That our con-
ception is a version of Carnap’s intension-extension distinction can be seen by, like
Carnap, defining having the same intension as the truth of �(ϕ ↔ ψ) for sentences,
�s = t for terms, and�∀x (P(x) ↔ Q(x)) for predicates. It follows that the intension
of a term correlates uniquely to a point, like in the HoTT interpretation of the previous
section. The ontology itself, being a topological space X , naturally corresponds to
a type in HoTT, and the extension of a predicate P , as a subset of X , can easily be
interpreted as a specification of which fibres of a dependent type P ′ : X → U are
non-empty, i.e. those objects to which the property P ′ applies.24

To be sure, we have only described a very simple toymodel—in fact a version of the
setoid interpretation of types (Hofmann 1995, pp. 159–185) dressed up in topological
clothing—and it is quite possible that there is a limit to how far it can be taken.

24 It should perhaps be noted that the topological semantics given here is quite different from the one of
Awodey and Kishida (2008), which is a more direct generalisation of McKinsey and Tarski (1944), and
which, in distinction to our semantics, validates the Kripkean inference s = t � �s = t . We also note
that HoTT furthermore contains its own notion of modality (Univalent Foundations Program 2013, pp.
245–249), but this concept is again rather different from the one presented here.
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Consequently, what we can say so far is merely that our modal logic and HoTT
are similar by having similar semantics (i.e. ones in terms of topological spaces and
paths), rather than that we can see them to be equivalent in some deeper sense. And in
fact, there are important differences between HoTT and the logic we have discussed
here which makes such deeper equivalence unlikely. In particular, HoTT is far more
expressive: the logic we outlined, like all other classical logics, is not proof relevant.
The concept of homotopy, which is arguably one of the most central ones in HoTT (as
can be seen from e.g. the name!) does not appear in our semantics at all, so we have not
been able to see what univalence would mean for us. While it would be possible, and
perhaps also worthwhile, to extend the semantics sketched here in order to strengthen
the similarities between classical modal logic and HoTT, we will stop here for now.

9 Discussion

If nothing else, the last sections should illustrate that the question of HoTT’s inten-
sionality is highly complex. While we have supplied a collection of logical models for
making comparisons between different conceptions of intensionality and extensional-
ity, there seems to be fairly little in common between these. As was announced at the
beginning, these are at most some preliminary investigations. With that in mind, we
will still attempt to say something about philosophical questions that may have arisen.

As one of the primary inventions of HoTT is its interpretation of identity, one of
these philosophical questions would be if that concept is still identity in a sufficiently
similar sense to an informal notion to be useful for philosophy. Quine famously argued
that all differences in logical systems were down to different meanings assigned to
the systems’ sentences and logical constants (Quine 1986). Thus, for example intu-
itionistic logic is about informal provability rather than truth or falsity, i.e. ‘p’ in
intuitionistic logic means ‘p is provable’ while ‘p’ in classical logic means ‘p is true’.
The intuitionistic conjunction p ∨ q means ‘p or q are provable’, while the classical
means ‘p or q is true’. If the classical-logical meaning were the one we commonly use
and mean by ‘identity’, this would entail that the concept of identity used in HoTT is
simply not real identity, but something else.

A related question arises from the indiscernibility of identicals as expressed in
HoTT. Under the interpretation of properties as dependent types, this does indeed say
that identical objects have the same properties. Insofar as properties are dependent
types, such a characterisation is definitely closer to Leibniz’s original version of the
principle than the contemporary one about predicates, formulae and satisfaction. But
are propositions really types, and are properties really type families?

The present Quinean argument against interpreting propositional equality as iden-
tity, explicitly spelled out, would be that unless a relation guarantees substitutivity
salva veritate, it is not identity. Such arguments have previously been used e.g. to say
that identity over time is not true identity (in support of 4-dimensionalism), and that
identity across worlds is not true identity (in support of counterpart semantics).

We should note that for judgmental equality, full substitutivity holds by the inference
rules assumed for this judgment type (Univalent Foundations Program 2013, p. 427).
It is propositional identity that poses problems, and the Quinean argument would be
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in support of the thesis that p : IdX (a, b) does not say, nor even entail, that a and b
are identical.

Now, the existence of a propositional identity p : IdX (a, b) does not show that
the structures defined in terms of a are strictly the same as those defined in terms of
b, but rather that we can transport, or perhaps translate, structures defined in terms of
a to ones defined in terms of b in an appropriate way.25 An inference such as

P : X → U , a : X � c : P(a)

P : X → U , a : X, b : X � p : IdX (a, b)

P : X → U , b : X � c : P(b)

cannot be valid since P(a)maybe adifferent type than P(b),whichmeans that they can
have no elements in common. This does not mean that they cannot be propositionally
equal, and indeed the univalence axiom guarantees that they are. We may refer to the
kind of substitutivity that allows the replacement of any term with another equal to
it as syntactic since it does not rely on any specific interpretation of types but rather
means that the terms on both sides can be rewritten, using syntactic rules, so that they
come out as literally the same.

Since judgmental equality allows full syntactic substitutivity, it may at first seem
like this is the concept that has the most in common with equality in classical logic.
But judgmental equality also lacks many features that the ‘=’ predicate has. Foremost
among these is its inability to be embedded in terms or types, which makes it far less
versatile, and rather indicates that although it may look like classical identity, it does
not do the job that this concept does. Propositional identity, in contrast, can do more of
the things we use classical identity for and also, according to the interpretation given in
Sect. 7, signifies sameness of extension. Insofar as we take the classical identity a = b
to also mean that a and b have the same extension, we therefore have an argument for
the primacy of propositional identity when comparing HoTT to classical logic.

Furthermore, although propositional identity does not give full syntactic sub-
stitutability on the syntactic level, the Curry–Howard interpretation implies that it
embodies another version of Leibniz’s law, as shown in the fact that it satisfies the
indiscernibility of identicals. Unlike syntactic substitutability, this semantic substitu-
tivity does not guarantee that symbols can be replaced, but only that the truth values
of propositions under the Curry–Howard correspondence are the same. It thus relies
on this specific interpretation of a type’s reference or extension.

I think complications such as these should be taken as an indication that the question
of which is the “real” identity in HoTT may be pointless. Informal language is vague
and mutable, and to draw conclusions about logical concepts from it is hazardous,
to say the least. Especially when it comes to a locution such as is the same as, the
possible meanings seem almost inexhaustible, and there are good reasons to hold that

25 The same distinction can be framed as one of invariance vs. covariance. A feature is invariant under
a transformation if it is the same before and after the transformation is applied. It is covariant if, roughly,
applying the transformation gives a corresponding feature in the transformation’s image. If I take a perfect
photograph of another photograph, the image on the first photograph will not be strictly the same as the
second, but it will picture the same thing, and it will look the same in every way, so the pictures covary
under the transformation taking a perfect photograph, but they are not invariant. See also Rodin (2013, pp.
253–255).
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the ones embodied in classical predicate logic are some of the lesser used ones. This
holds even in mathematics, for whose purpose that logic was created: a mathematical
uniqueness proof, for example, only very rarely shows that something is unique in the
sense of the ‘=’ of predicate logic.

Luckily, finding the “true” concept of identity is not what we were after here. What
is important is to what degree the concept can be used for the job it has been introduced
to do. Sometimes parts of this job will involve replacing informal concepts in certain
contexts, but sometimes it consists in purely technical applications: one may compare
with the concept of ‘energy’ in physics, which has many uses in the subject’s theories,
but very few connections to pretheoretical notions with the same name.26

The primary subjects towhichHoTT is to be applied aremathematics and logic, and
here there can be few doubts that its conceptions of identity, property and proposition
can do the work we want them to since they all reduce to traditional notions when
we add axioms such uniqueness of identities or the excluded third. Arguing that they
are more useful than traditional notions requires showing how they can be used to
solve problems or explain relationships that the traditional notions cannot. So far, it
seems quite likely that this is indeed the case. But even if this should not hold, nothing
forces us to have one notion of identity: formal systems are not themselves weapons
of imperialism, although some of their advocates may occasionally try to use them as
such.

So much for mathematics and logic. For philosophers, it would be particularly
interesting to see how the homotopy-theoretical concepts of identity, property and
proposition can be useful for our subject aswell; according to the pragmatic conception
of formal systems advocated here this will indeed be the primary motivation for their
acceptance. Although I will not try to take up Harris’s suggestion, in the quote we
startedwith, that the philosophy behind “identity politics”will be challenged byHoTT,
I still want to end this paper by sketching a few ideas regarding possible applications
HoTT to important philosophical problems.

Because of intensionality’s strong connection to identity, we have placed a special
focus on this concept. Classical-logical identity, under the standardTarskian semantics,
is a rather trivial affair; in first-order logic it is arguably useful for little more than
counting. In contrast, the propositional identities of HoTT allow one to model a lot
of structural relationships. For example, it is possible that one could use them to
give a theory of family resemblances in Wittgenstein’s sense. This would be done by
letting a path a → b represent exact similarity in a respect between a and b, and the
composition of paths f : a → b and g : b → c a family resemblance. For example,
f might model sameness of eye colour, and g sameness of hair colour.
This could, in itself, easily lead to trivialities since such chains usually can be set

up between any two entities. But identity in HoTT is not a yes or no question, but a
higher-order structure. That some family resemblance holds between any two entities

26 The connection to Carnap’s notion of explication should be obvious (Carnap 1950, ch. 1). In our case,
we have a pretheoretical concept (identity) or type of phrase (‘a is the same as b’) which is given different
explications: one in terms of classical logic, and one in terms of the propositional identity of HoTT. We
should not expect one of these to be more “correct” than the other, and neither should we expect one of
them to be more useful than the other in every circumstance.
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does not imply that identity is trivial, since specific identities are what count. In terms
of homotopy theory, the fact that two spaces are both path-connected does not imply
that they are even homotopically the same: path-connectedness takes into account only
the one-dimensional structure of a space. Similarly, higher-order identities between
identities may be used in order to represent exact similarities between similarities,
which could result in a way to describe properties in a purely structural manner.

This connection to structuralism points rather naturally to another possible appli-
cation. What if one were to use HoTT to build a version of Carnap’s Aufbau (2003)?
One of Carnap’s main goals was a structuralist one, namely to show how scientific
knowledge can be represented purely in terms of logical structure, without having to
assume prior interpretations of autopsychological predicates. As he knew, what has
become known as the Newman objection makes this impossible in classical logic,
since versions of this language without interpreted predicates—even in higher-order
logic—can only distinguish between cardinalities. HoTT, on the other hand, can be
used to represent topological spaces in all their (homotopy-invariant) complexity. At
least the homotopy invariant topological structure of the world should therefore be
possible to capture using only the logical machinery of HoTT.27

HoTT also has an additional advantage as a language for projects such as the
Aufbau: its amenability to computer implementation. Indeed, one of the motivating
factors in the design of UF has been to make possible a fully formalised, completely
rigorous approach to mathematics. To this purpose most of the mathematics developed
in HoTT has been written in proof assistants such as Coq and Agda. This allows
philosophers to build on these results and thereby gain access to an ever growing
supply of mathematical structures. Developing an Aufbau-style project using HoTT,
using libraries of such and further results, would not only ensure a greater level of
exactness than was available to Carnap, but also aid in making the project possible
to carry out as a collaborative effort. Computer-implemented proofs and definitions
can be efficiently managed via version control systems, much like large programming
projects. Such systems can be used to keep every participant’s assumptions explicit,
and to make it far clearer which parts of different philosophers’ works are compatible,
which build upon one another, and which are contradictory.

Moving on to HoTT’s representation of properties as type families, we may note
that such a representation could be useful for philosophical notions of properties as
well. Since a type family P : A → U , under the topological interpretation, is a
fibration which assigns a (possibly empty) topological space to each point of a type
A, these spaces can be seen as determinables, e.g. mass, temperature, velocity etc. A
dependent function f : ∏

x : A P(x) can then be interpreted as a specification of
the precise values (e.g. 2kg, 280K, 3ex + 2ey + 1ez m/s) these determinables take.

27 As an example of where concepts from HoTTmay help, consider Carnap’s characterisation of the visual
sense as the unique five-dimensional sense (Carnap 2003, p. 183). This is not really an optimal description,
since merely assuming a five-dimensional space does not impose any limitation on which points have to
be defined. For example, Carnap’s conception is compatible with a visual field where some points have no
colour and others have several. A more fitting representation of the visual sense would be as a fibration,
where the base space represents the visual field, while the fibres contain the possible colours each point in
this field can have. In type-theoretical terms, the contents of the visual sense would be a dependent function.
Topologically, they would be a section.
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This connects nicely to how properties of space-time points are handled in general
relativity and in gauge theories such as the standard model, which may be useful if
one wishes to develop metaphysical frameworks that are applicable to contemporary
physics as well.

As a final example, also from metaphysics, the Curry–Howard interpretation of
propositions can be connected to truthmaker theory by taking each element of a propo-
sition to be a truthmaker for it. This is quite natural in view of the strong similarities
between truthmaker theory and the Brouwer–Heyting–Kolmogorov interpretation of
intuitionistic logic, of which the Curry–Howard correspondence can be seen as a suc-
cessor. But the topological structure of HoTT gives us more than that: it allows us
to discuss relationships among truthmakers as well, thus potentially enhancing truth-
maker theory’s use as a tool for inferring ontological structure from our theories.28

For applications such as these it may also be appropriate to consider alternatives to
univalence. Univalence corresponds to a structuralist principle of the form

homotopy equivalence ⇒ identity

but many other versions of the antecedent side of this conditional imaginable. Iso-
morphism, for example, is not the same as homotopy equivalence except in certain
special categories such as T . A more direct isomorphism ⇒ identity principle would
supposedly correspond to allowing the construction of a canonical identity proof
i : IdU (X, Y ) from judgmental identities g◦ f ≡d f. 1X : U and f ◦g ≡d f. 1Y : U .
Because it has a stronger antecedent, such a principle would be weaker than univa-
lence.

Another possibility would be to insert more structure into the topological seman-
tics in order to increase its expressiveness. Adding differential information to make
types correspond to differential manifolds rather than bare topological spaces would
make a physically correct treatment of time and space possible. In such a framework,
the appropriate antecedent of the structuralist principle would be diffeomorphism.
Since any differentiable manifold is a topological space, and any differential map is
continuous, such spaces ought to still validate the inference rules of HoTT, with the
exception of univalence. The interesting question concerns which further logical oper-
ations or principles might be possible to introduce based on the additional structure
available.

All of these applications are admittedly very speculative. We do not know if any of
themworks until someone has attempted to work out their details, although I hope that
they illustrate some of the possible uses homotopy type theory and univalent founda-
tions, and their approach to identity, may have for philosophy. But the existence of
this system also helps remind us of something even more important: the set-theoretic
and classical-logical foundations that held such sway over twentieth century philos-
ophy, and which continue to shape so much of our thinking, are only one possibility
among many. Extensionality, intensionality, identity, proposition, and property are all

28 For a discussion on the use of truthmaker theory for the purpose of inferring ontology from logical
structure, see Angere (2015).
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concepts for which other, no less rigorous or coherent, frameworks are available for
our use.29
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