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Abstract PGF (Portable Grammar Format) is a low-level language used as a target of com-
piling grammars written in GF (Grammatical Framework). Low-level and simple, PGF is
easy to reason about, so that its language-theoretic properties can be established. It is also
easy to write interpreters that perform parsing and generation with PGF grammars, and
compilers converting PGF to other format. This paper gives a concise description of PGF,
covering syntax, semantics, and parser generation. It also discusses the technique of embed-
ded grammars, where language processing tasks defined by PGF grammars are integrated in
larger systems.

1 Introduction

PGF (Portable Grammar Format) is a grammar formalism designed to capture the com-
putational core of type-theoretical grammars, such as those written in GF (Grammatical
Framework, Ranta 2004). PGF thus relates to GF in the same way as JVM (Java Virtual
Machine) bytecode relates to Java. While GF (like Java) is a rich language, whose features
help the programmer to express her ideas on a high level of abstraction, PGF (like JVM) is
an austere language, which is easy to implement on a computer and easy to reason about.
The bridge between these two level, in both cases, is a compiler. The compiler gives the
grammar writer the best of the two worlds: when writing grammars, she can concentrate on
linguistic ideas and find concise expressions for them; when using grammars, she can enjoy
efficient run-time performance and a light-weight run-time system, as well as integration in
applications.

PGF was originally designed as a back-end language for GF, providing the minimum of
what is needed to perform generation and parsing. Its expressive power is between context-
free and fully context-sensitive (Ljunglöf 2004). Thus it can potentially provide a back end
to numerous other grammar formalisms as well, providing for free a large part of what is
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involved in implementing these formalisms. In addition, PGF can be compiled further into
other formats, such as language models for speech recognition systems (Bringert 2007a).

The most prominent characteristic of PGF (as well as GF) is multilinguality: a PGF
grammar has an abstract syntax, which is a type-theoretical definition of tree structures.
The abstract syntax is equipped with a set of concrete syntaxes, which are reversible map-
pings of tree structures to strings. This grammar architecture is known as the Curry archi-
tecture, with a reference to Curry (1961). It is at the same time familiar from programming
language descriptions, dating back to McCarthy (1962). While the Curry architecture was
used by Montague (1974) for describing English, GF might be the first grammar formalism
that exploits the multilingual potential of the Curry architecture.

Multilingual PGF grammars readily support translation and multilingual generation.
They are also useful when writing monolingual applications, since the non-grammar parts
of an application typically communicate with the abstract syntax alone. This follows the
standard architecture of compilers, which use an abstract syntax as the format in which a
programming language is presented to the other components, such as the type checker and
the code generator (Appel 1997). Thus an application using PGF is easy to port from one
target language to another, by just writing a new concrete syntax. The GF resource gram-
mar library (Ranta 2008) helps application programmers by providing a comprehensive
implementation of syntactic and morphological rules for 15 languages.

JVM is a general-purpose Turing-complete language, but PGF is limited to expressing
grammars. Grammars can be seen as declarative programs performing tasks such as pars-
ing and generation. In a language processing system, these tasks usually have to be com-
bined with other functionalities. For instance, a question answering system reads input and
produces output by using grammars, but the program that computes the answers from the
questions has to be written in another language. Embedded grammars is a technique that
enables programs written in another programming language to call PGF functionalities and
also to manipulate PGF syntax trees as data objects. There are two main ways to implement
this idea: interpreters and compilers. A PGF interpreter is a program written in a general-
purpose language (such as C++, Haskell, or Java, which we have already written interpreters
for). The interpreter reads a PGF grammar from a file and gives access to parsing and gen-
eration with the grammar. A PGF compiler translates PGF losslessly to another language
(such as C, JavaScript, and Prolog, for which compilers have already been written). When
we say that PGF is portable, we mean that one can write PGF interpreters and compilers
for different host languages, so that the same PGF grammars can be used as components in
applications written in these host languages.

The purpose of this paper is to describe the PGF grammar format and briefly show
how it is used in applications. The PGF description is detailed enough to enable the reader
to write her own PGF interpreters and compilers; but it is informal in the sense that we
don’t fully specify the concrete format produced by the current GF-to-PGF compiler and
implemented by the current PGF interpreters. For that level of detail, on-line documentation
is more appropriate and can be found on the GF web page1.

Section 2 gives a concise but complete description of the syntax and semantics of PGF.
Section 3 gives a summary of the expressive power of PGF, together with examples illus-
trating its main properties. It also discusses some extensions of PGF. Section 4 describes the
parser generation and sketches the parsing algorithm of PGF. Section 5 discusses the prin-
cipal ways of using PGF in language processing applications, the compilation from PGF
to other formats, and the compilation of PGF grammars from GF, which is so far the main

1 http://gf.digitalgrammars.com/

http://gf.digitalgrammars.com/
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way to produce PGF grammars. Section 6 gives a survey of actual applications running PGF
and provides some data evaluating its performance. Section 7 discusses related work, and
Section 8 gives a conclusion.

2 The syntax and semantics of PGF

2.1 Multilingual grammar

The top-most program unit of PGF is a multilingual grammar (briefly, grammar). A gram-
mar is a pair of an abstract syntax A and a set of concrete syntaxes C 1, . . . ,C n, as follows:

G = < A ,{C 1, . . . ,C n}>

2.2 Abstract syntax

An abstract syntax has a finite a set of categories and a finite set of functions. Categories
are defined simply as unique identifiers, whereas functions are unique identifiers equipped
with types. A type has the form

(C1, . . . ,Cn)→ C

where n may be 0 and each of C1, . . . ,Cn,C is a category. These types are actually function
types with argument types C1, . . . ,Cn and value type C.

Here is an example of an abstract syntax, where we use the keyword cat to give the
categories and fun to give the functions. It defines the categories S (sentence), NP (noun
phrase), and VP (verb phrase). Sentences are formed by the Pred function. John is given as
an example of a noun phrase and Walk of a verb phrase.

cat S;NP;VP

fun Pred : (NP,VP)→ S

fun John : ()→ NP

fun Walk : ()→ VP

An abstract syntax tree (briefly, tree) is formed by applying the functions obeying their
typings, as in simply typed lambda calculus. Thus, for instance, Pred (John,Walk), is a tree
of type S, usable for representing the string John walks.

2.3 Concrete syntax

A concrete syntax has judgements assigning a linearization type to each category in the
abstract syntax and a linearization function to each function. Linearization types are tuples
built from strings and bounded integers. Thus we have the following forms of linearization
types T:

T ::=Str | Intn | T1 ∗ . . .∗Tn

Linearization functions are terms t of these types, built in the following ways:

t ::=[ ] | “foo” | t1 ++ t2 | i |<t1, . . . , tn> | t1 ! t2 | $i
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Strings:

[ ] :Str “foo” :Str
s, t :Str

s++ t :Str

Bounded integers:

i : Inti
i : Intm

i : Intn
m<n

Tuples:
t1 : T1 . . . tn : Tn

< t1, . . . , tn > : T1 ∗ · · · ∗Tn

Projections:
t :Tn u : Intn

t ! u :T
t :T1 ∗ . . .∗Tn

t ! i :Ti
i = 1, . . . ,n

Argument variables:

T1, . . . ,Tn ` $i :Ti
i = 1, . . . ,n

Table 1 The type system of PGF concrete syntax.

The first three forms are canonical for strings: the empty string [ ], a token (quoted, like
“foo”), and the concatenation ++. Concatenation is associative, and it preserves the sep-
aration between tokens. The empty string is nilpotent with respect to concatenation. The
canonical PGF representation of the string John loves Mary, if conceived as consisting of
three tokens, is thus “John”++ “loves”++ “Mary”.

The form i, where i is a numeric constant 1,2, . . . ,n, is canonical for integers bounded
by n. The form <t1, . . . , tn> is canonical for tuples, comprising a term ti for each component
type Ti in a tuple type.

The last two forms in the term syntax are non-canonical. The form t1 ! t2 is the projection
of t2 from t1. In order for the projection to be well-formed, t1 must be a tuple and t2 an
integer within the bounds of the size of the tuple. The last form $i is an argument variable.
It is bound to a term given in a context, which, as we shall see, always consists of the
linearizations of the subtrees of a tree.

Table 1 gives the static typing rules of the terms in PGF. It defines the relation Γ ` t : T
(“in context Γ , term t has type T ”). The context is a sequence of types, and it is left implicit
in all rules except the one for argument variables.

The context is in each linearization function created from the linearization types of the
arguments of the function. Thus, if we have

fun f : (C1, . . . ,Cn)→ C

lincat C1 = T1; . . . ;Cn = Tn

lincat C = T

lin f = t

then we must also have
T1, . . . ,Tn ` t : T

The alert reader may notice that the typing rules for projections are partial: they cover only
the special cases where either all types in the tuple are the same (denoted T n) or the index
is an integer constant. If the types are different and the index has an unknown value (which
happens when it e.g. depends on an argument variable), the type of the projection cannot be
known at compile time. As we will see in Section 5.4, PGF grammars compiled from GF
always fall under these special cases.



5

2.4 Examples of a concrete syntax

Let us build a concrete syntax for the abstract syntax of the Section 2.2. We define the
linearization type of sentences to be just strings, whereas noun phrases and verb phrases are
more complex, to account for agreement. Thus a noun phrase is a pair of a string and an
agreement feature, where the feature is represented by an integer. A verb phrase is a tuple of
strings—as many as there are possible agreement features. In this simple example, we just
assume two features, corresponding to the singular and the plural.

lincat S = Str;NP = Str ∗ Int2;VP = Str ∗Str;

The linearization of John is the string “John” with the feature 1, representing the singular.
The linearization of Walk gives the two forms of the verb walk.

lin John = <“John”,1>;Walk = <“walks”,“walk”>

The agreement itself is expressed as follows: in predication, the first field (1) of the noun
phrase ($1)—is concatenated with a field of the verb phrase ($2). The field that is selected is
given by the second field of the first argument ($1 ! 2):

lin Pred = $1 ! 1++$2 ! ($1 ! 2)

The power of a multilingual grammar comes from the fact that both linearization types and
linearization functions are defined independently in each concrete syntax. Thus German, in
which both a two-value number and a three-value person are needed in predication can be
given the following concrete syntax:

lincat NP = Str ∗ Int2 ∗ Int3
VP = (Str ∗Str ∗Str)∗ (Str ∗Str ∗Str)

lin Pred = $1 ! 1++($2 ! ($1 ! 2)) ! ($1 ! 3)
John = <“John”,1,3>
Walk = << “gehe”,“gehst”,“geht”>,<“gehen”,“geht”,“gehen”>>

2.5 Linearization

Linearization—the operation 7→ converting trees into concrete syntax objects—is per-
formed by following the operational semantics given in Table 2. The table defines the rela-
tion γ ` t ⇓ v (“in context γ , term t evaluates to term v”). The context is a sequence of
terms, and it is left implicit in all rules except the one for argument variables.

To linearize a tree, we linearize its immediate subtrees, and the sequence of the resulting
terms constitutes the context of evaluation for the full tree:

a1 7→ t1 . . . an 7→ tn t1, . . . , tn ` t ⇓ v
f a1 . . . an 7→ v

lin f = t

Since linearization operates on the linearizations of immediate subtrees, it is a homomor-
phism, in other words, a compositional mapping. A crucial property of PGF making it pos-
sible to maintain the compositionality of linearization in realistic grammars is that its value
need not be a string, but a richer data structure. If strings are what ultimately are needed,
one can require that the start category has the linearization type Str; alternatively, one can
define a realization operation that finds the first string in a tuple recursively.
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Strings:

[ ] ⇓ [ ] “foo” ⇓ “foo”
s ⇓ v t ⇓ w

s++ t ⇓ v++w

Bounded integers:
i ⇓ i

Tuples:
t1 ⇓ v1 . . . tn ⇓ vn

< t1, . . . , tn > ⇓< v1, . . . ,vn >

Projections:
t ⇓< v1, . . . ,vn > u ⇓ i

t!u ⇓ vi
i = 1, . . . ,n

Argument variable:
v1, . . . ,vn ` $i ⇓ vi (i = 1, . . . ,n)

Table 2 The operational semantics of PGF.

3 Properties of PGF

3.1 Expressive power

Context-free grammars have a straightforward representation in PGF: consider a rule

C −→ t1 . . . tn

where every ti is either a nonterminal C j or a terminal s. This rule can be translated to a pair
of an abstract function and a linearization:

fun f : (C1, . . . ,Cm)→ C

lin f = u1 ++ . . .++un

where f is a unique label, (C1, . . . ,Cm) are the nonterminals in the rule, and each ui is either
$j (if ti = Cj) or s (if ti = s).

That PGF is stronger than context-free grammars, is easily shown by the language
anbncn, whose grammar shows how discontinuous constituents are encoded as tuples of
strings. The grammar is the following:

cat S;A
fun s : (A)→ S;e : ()→ A;a : (A)→ A

lincat S = Str;A = Str ∗Str ∗Str

lin s = $1 ! 1++$1 ! 2++$1 ! 3
e = <[ ], [ ], [ ]>
a = <“a”++$1 ! 1,“b”++$1 ! 2,“c”++$1 ! 3>

The general result about PGF is that it is equivalent to PMCFG (Parallel Multiple Context-
Free Grammar, Seki et al. 1991). Hence any PGF grammar is parsable in polynomial time,
with the exponent dependent on the grammar. This result was obtained for a more complex
subset of GF by Ljunglöf (2004). Section 4 on parser generation will outline the result for
PGF; it will also present a definition of PMCFG.

Being polynomial, PGF is not fully context-sensitive, but it is not mildly context-sensitive
in the sense of (Joshi et al. 1991), because it does not have the constant-growth prop-
erty. A counterexample is the following grammar, which defines the exponential language
{a2n | n = 0,1,2, . . .}:
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cat S

fun a : ()→ S;s : (S)→ S

lincat S = Str

lin a = “a”;s = $1 ++$1

3.2 Extensions of concrete syntax

A useful extension of concrete syntax is free variation, expressed by the operator |. Free
variation is used in concrete syntax to indicate that different expressions make no semantic
difference, that is, that they have the same abstract syntax. A term t | u is well-formed in
any type T , if both t and u have type T . In operational semantics, free variation requires the
lifting of other operations to cover operands of the form t|u. For instance,

(t | u) ! v = (t ! v) | (u ! v)

As shown by Ljunglöf (2004), the semantics can be given in such a way that the complexity
of parsing PGF is not affected.

In practical applications of PGF, it is useful to have non-canonical forms that decrease
the size of grammars by factoring out common parts. In particular, the use of macros factors
out terms occurring in several linearization rules. The method of common subexpression
elimination often results in a grammar whose code size is just one tenth of the original.
This method is standardly applied as a back-end optimization in the GF grammar compiler
(Section 5.4), which may otherwise result in code explosion.

3.3 Extensions of abstract syntax

One of the original motivations of GF was to implement type-theoretical semantics as pre-
sented in Ranta (1994). This kind of semantics requires that the abstract syntax notation
has the strength of a logical framework, in the sense of Martin-Löf (1984) and Harper
et al. (1993). What we have presented above is a special case of this, with three ingredients
missing:

– Dependent types: a category may take trees as arguments.
– Higher-order abstract syntax: a function may take functions as arguments.
– Semantic definitions: trees may be given computation rules.

Ranta (2004) gives the typing rules and operational semantics for these extensions of
GF. The extensions have been transferred to PGF as well, but only the Haskell implementa-
tion currently supports them. The reason for this is mainly that these extensions are rarely
used in GF applications (Burke and Johannisson 2005 and Jonson 2006 being exceptions).
Language-theoretically, their effect is either dramatic or null, depending on how the lan-
guage defined by a grammar is conceived. If parsing is expected to return only well-typed
trees, then dependent types together with semantic definitions makes parsing undecidable,
because type checking is undecidable. If parsing and dependent type checking are separated,
as they are in practical implementations, dependent types make no difference to the parsing
complexity.

Metavariables are an extension useful for several purposes. In particular, they are used
for encoding suppressed arguments when parsing grammars with erasing linearization rules
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(Section 4.5). In dependent type checking, they are used for unifying type dependencies,
and in interactive syntax editors (Khegai et al. 2003), they are used for marking unfinished
parts of syntax trees.

4 Parsing

PGF concrete syntax is simple but still too complex to be used directly for efficient parsing
and for that reason it is converted to PMCFG. It is possible to do the conversion incremen-
tally during the parsing but this slows down the process, so instead we do the conversion in
the compiler. This means that we have duplicated information in the PGF file, because the
two formalisms are equivalent, but this is a trade off between efficiency and grammar size.
At the same time it is not feasible to use only the PMCFG because it might be quite big in
some cases while the client might be interested only in linearization for which he or she can
use only the PGF syntax.

4.1 PMCFG definition

A parallel multiple context-free grammar is a 8-tuple G = (N,T,F,P,S,d,r,a) where:

– N is a finite set of categories and a positive integer d(A) called dimension is given for
each A ∈ N.

– T is a finite set of terminal symbols which is disjoint with N.
– F is a finite set of functions where the arity a( f ) and the dimensions r( f ) and di( f ) (1≤

i≤ a( f )) are given for every f ∈ F . Let’s for every positive integer d, (T ∗)d denote the
set of all d-tuples of strings over T . The function is a total mapping from (T ∗)d1( f )×
(T ∗)d2( f )×·· ·× (T ∗)da( f )( f ) to (T ∗)r( f ) and it is defined as:
f :=< α1,α2, . . . ,αr( f ) >
Each αi is a string of terminals and 〈k; l〉 pairs, where 1 ≤ k ≤ a( f ) is called argument
index and 1≤ l ≤ dk( f ) is called constituent index.

– P is a finite set of productions of the form:
A→ f [A1,A2, . . . ,Aa( f )]
where A ∈ N is called result category, A1,A2, . . . ,Aa( f ) ∈ N are called argument cat-
egories and f ∈ F is the function symbol. For the production to be well formed the
conditions di( f ) = d(Ai) (1≤ i≤ a( f )) and r( f ) = d(A) must hold.

– S is the start category and d(S) = 1.

We use the same definition of PMCFG as is used by Seki and Kato (2008) and Seki et al.
(1993) with the minor difference that they use variable names like xkl while we use 〈k; l〉 to
refer to the function arguments. In the actual implementation we also allow every category
to be used as a start category. When the category has multiple constituents then they all are
tried from the parser.

The anbncn language from section 3.1 is represented in PMCFG as shown in Figure 1.
The dimension of S and A are d(S) = 1 and d(A) = 3. Functions s and e are with 0-arity and
function a is with 1-arity i.e. a(s) = 0, a(a) = 1 and a(e) = 0.
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S→ s[A]

A→ a[A]

A→ e[]

s := < 〈1;1〉 〈1;2〉 〈1;3〉>
a := < a 〈1;1〉,b 〈1;2〉,c 〈1;3〉>
e := < [], [], [] >

Fig. 1 PMCFG for the anbncn language.

4.2 PMCFG generation

Both PGF and PMCFG deal with tuples but PGF is allowed to have bounded integers and
nested tuples while PMCFG is restricted to have only flat tuples containing only strings. To
do the conversion we need to get rid of the integers and to flatten the tuples.

Let’s take again the categories from section 2.4 as examples:

lincat NP = Str ∗ Int2 ∗ Int3
VP = (Str ∗Str ∗Str)∗ (Str ∗Str ∗Str)

The type for VP does not contain any integers so it is simply flattened to one tuple with
six constituents. When the linearization type contains integers then the category is split into
multiple PMCFG categories, one for each combination of integer values. The integers are
removed and the remaining type is flattened to one tuple. In this case for NP we will have
six categories and they will all have a single string as a linearization type. Category splitting
is not an uncommon operation. For example, in part-of-speech tagging there are usually
different tags for nouns in plural and nouns in singular. We do this also on a syntactic level
and the NP category is split into:

NP11 NP12 NP13
NP21 NP22 NP23

The conversion from PGF rules to PMCFG productions starts with abstract interpre-
tation (Table 3), which is very similar to the operational semantics in Table 2. The major
difference is that the argument values are known only at run-time and actually the $i terms
should be replaced by 〈i; l〉 pairs in PMCFG for some l. We extend the PGF syntax with a
〈i;π〉 meta-value which is only used internally in the generation. Here, π is a sequence of
indices and not only one index as it is the case in the final PMCFG. Like in the operational
semantics, the rules define the relation γ ` t ⇓ v but this time the context γ is a sequence
of assumption sets. Each assumption set ak contains pairs (π, i) which say that if π is the
sequence of indices l1 . . . ln then we assume that $k!l1 . . .!ln ⇓ i.

In addition, two sets have to be computed for each category C: Ts(C) and Tp(C). Ts
is the set of all sequences of integers i1 . . . in such that if x is an expression of type C then
x!i1!i2! . . .!in is of type Str. Tp is the set of all (π,k) pairs where π is again a sequence i1 . . . in
but this time x!i1!i2! . . .!in is of type Intk.

The abstract interpretation rules for strings, integers and tuples are exactly the same
but the rule for argument variables is completely new. It says that since we do not know
the actual value of the variable we just replace it with the meta-value 〈k; 〉. Furthermore
there is an additional rule for projection which deals with the case when we have argument
variable on the left-hand side of a projection. Basically the rule for argument variables and
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Strings:

[] ⇓ [] ” f oo” ⇓ ” f oo”
s ⇓ v t ⇓ w

s++t ⇓ v++w

Bounded integers:
i ⇓ i (i = 1,2, . . .)

Tuples:
t1 ⇓ v1 . . . tn ⇓ vn

< t1, . . . , tn > ⇓< v1, . . . ,vn >

Projections:
t ⇓< v1, . . . ,vn > u ⇓ i

t!u ⇓ vi
i = 1, . . . ,n

t ⇓ 〈k;π〉 u ⇓ i
t!u ⇓ 〈k;π i〉

i = 1, . . . ,n

Argument variable:
$k ⇓ 〈k; 〉

Parameter Substitution:

a1 . . .an ` t ⇓ 〈k;π〉
a1 . . .ak ∪ (π, i) . . .an, ` t ⇓ i

(π,m) ∈ Tp(Ak), i = 1, . . . ,m, ∀ j.((π, j) ∈ ak ⇒ i = j)

Table 3 Abstract interpretation of PGF.

the extra projection rule converts terms like $k!l1 . . .!ln to meta-values like 〈k;π〉 where π

is the sequence l1 . . . ln. Since the terms are well-typed at some point either π ∈ Ts(Ak) or
(π,n) ∈ Tp(Ak) for some n will be the case. In the first case the meta value will be left
unchanged in the evaluated term. The second case is more important because it triggers
the parameter substitution rule. This rule is nondeterministic because it makes an arbitrary
choice for i and records the choice in the context γ . The last side condition in the rule ensures
that if we already had made some assumption for 〈k;π〉 we cannot choose any other value
except the value that is already in the context. Since the integers are bounded we have only
a finite set of choices which ensures the termination.

Let’s use the linearization rule from section 2.4 as an example again:

lin Pred = $1 ! 1++($2 ! ($1 ! 2)) ! ($1 ! 3)

The first subterm $1 ! 1 is simply reduced to 〈1;1〉 by the derivation:

$1 ⇓ 〈1;〉 1 ⇓ 1
$1!1 ⇓ 〈1;1〉

The derivation of the second subterm is more complex because it contains argument vari-
ables on the right hand side of a projection, so they have to be removed using the parameter
substitution rule:

a1 a2 ` $1 ⇓ 〈1;〉 a1 a2 ` 2 ⇓ 2
a1 a2 ` $1!2 ⇓ 〈1;2〉

(a1∪{(2,x)}) a2 ` $1!2 ⇓ x

Since the parameter substitution is nondeterministic there are two possible derivations but
they differ only in the final value, so we use the variable x to denote either value 1 or 2. In a
similar way we can deduce that (a1∪{(2,x),(3,y)}) a2 ` $1!3 ⇓ y, where y is either 1, 2
or 3. Combining the two results the derivation for the second term gives:

$2 ⇓ 〈2;〉 $1!2 ⇓ x
$2!($1!2) ⇓ 〈2;x〉

$1!3 ⇓ y

($2!($1!2))!($1!3) ⇓ 〈2;x y〉
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By applying the rule for the concatenation the final result we get:

〈1;1〉++ 〈2;x y〉

The output from the abstract interpretation can be converted directly to a PMCFG tuple.
In well-typed terms a tuple can appear only at the top-level, inside another tuple or on the
left-hand side of a record projection. In the abstract interpretation all tuples inside record
projections are removed so that the only choice for the evaluated term is to be a tree of
nested tuples with leaves of type either Str or Intn. The tree strictly follows the structure of
the linearization type of the result category. The term can be flattened just like we did with
the linearization types.

For each possible tree a new unique function is generated with definition containing all
leaves of type Str as tuple constituents. For the example above this will lead to six functions:

Pred1 := 〈1;1〉 〈2;1 1〉
Pred2 := 〈1;1〉 〈2;2 1〉
Pred3 := 〈1;1〉 〈2;1 2〉
Pred4 := 〈1;1〉 〈2;2 2〉
Pred5 := 〈1;1〉 〈2;1 3〉
Pred6 := 〈1;1〉 〈2;2 3〉

The bounded integers in the term are used to determine the right PMCFG result category
and each assumption set ai in the context γ is used to determine the corresponding argument
category in the production. One production is generated for every function:

S → Pred1[NP11,VP]

S → Pred2[NP21,VP]

S → Pred3[NP12,VP]

S → Pred4[NP22,VP]

S → Pred5[NP13,VP]

S → Pred6[NP23,VP]

4.3 Common subexpression elimination in PMCFG

The produced PMCFG could be very big without some form of common subexpression
elimination. There are three elimination techniques that are implemented so far and they
are described in this section. All of them have been discovered in experiments with real
grammars.

The first observation is that the conversion algorithm in the previous section always gen-
erates a pair of function definition and production rule using the same function. It happens
to be pretty common that one function could be reused in two different productions because
the original definitions are equivalent. In the real implementation first the definition is gen-
erated and after that it is compared with the already existing definitions. Only if it is distinct
a new function is generated.

Another issue is that there are many constituents in the function bodies which are equal
but are used in different places. For that reason we collect a list of distinct constituents and
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Language Productions File Size (Kb)
Plain Optimized Ratio Plain Optimized Ratio

Bulgarian 3629 3516 1.03 20359 5021 4.05
Danish 1696 1615 1.05 1399 593 2.36
English 1198 1165 1.03 1648 710 2.32
Finnish - 141441 - - 6357 -
German 11079 8078 1.37 56559 3027 18.68
Italian - 1089621 - - 106282 -
Norwegian 1773 1696 1.05 1418 596 2.38
Russian 5248 5077 1.03 7735 1261 6.13
Swedish 1535 1496 1.03 1161 577 2.01

Table 4 Grammar sizes in number of PMCFG productions and PGF file size, for the GF Resource Grammar
Library.

then the function definitions are rewritten to contain only the indices of the corresponding
constituents.

The last observation is that there are groups of productions like:

A → f [B,C1,D1] A → f [B,C2,D1] A → f [B,C3,D1] A → f [B,C4,D1]
A → f [B,C1,D2] A → f [B,C2,D2] A → f [B,C3,D2] A → f [B,C4,D2]

where the list could be very large. This happens when in some linearization function some
parameters are used only when another parameter has a specific value. The abstract inter-
pretation could not detect all these cases. It detects only the parameters that are not used at
all and then the conversion rules are introduced. The list of productions can be compressed
by introducing extra conversion rules:

A → f [B,C,D]

C → [C1]

C → [C2]

C → [C3]

C → [C4]

D → [D1]

D → [D2]

These optimizations have been implemented and tried with the resource grammar library
(Ranta 2008), which is the largest collection of grammars written in GF. The produced
grammar sizes are summarized in Table 4. The first column shows the grammar size in
number of PMCFG productions and the second the total PGF file size.

The common subexpression optimization seems to reduce the file size from 2 to 18
times depending on the grammar. For two of the languages Finnish and Italian it is even
impossible to compile the grammar without the optimization. The conversion was tried on a
computer with 2 GB physical memory but it was not enough to fit the unoptimized grammar.
The conversion for Italian is possible but currently it takes 2 days on a 2 GHz CPU. For that
reason three other Romance languages are not listed: Catalan, French and Spanish. Their
compilation should be possible but would probably require the same amount of time as
Italian. The main problem is the compilation of the SlashVP rule. All Romance languages
have clitic structures in the verb phrases which cause exponential growth of the grammar
size. The same applies to Interlingua which is an artificial language whose verb phrases also
have clitics.
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Some statistics were collected from the compiled Italian grammar which suggest direc-
tions for further optimizations. The production and function definitions generated from the
SlashVP linearization function constitute 41% of the total grammar size. In the SlashVP size
the dominant proportion is due to the PMCFG functions. There are 11280 functions where
each has 321 constituents. Fortunately only 5% of these constituents are distinct. This sug-
gests that the data is sparse and there should be a more compact representation for it. This
also explains why the compilation is so slow. Each constituent is currently compiled inde-
pendently and this means a lot of repeated work. If some kind of memoization were used,
the compilation time could be reduced dramatically.

4.4 Parsing with PMCFG

Efficient recognition and parsing algorithms for MCFG have been described in (Nakanishi
et al. 1997), Ljunglöf (2004) and (Burden and Ljunglöf 2005). MCFG is a linear form of
PMCFG where each constituent of an argument is used exactly once. Ljunglöf (2004) gives
an algorithm for approximating a PMCFG with an MCFG. With the approximation it is
possible to use a parsing algorithm for MCFG to parse with a PMCFG, but after that a
postprocessing step is needed to recover the original parse tree and to filter out spurious
parse trees via unification. Instead we are using a parsing algorithm that works directly with
PMCFG and also has the advantage that it is incremental. The incrementality is important
because it can be used for word prediction (see section 5.1). The incremental algorithm itself
will appear in a separate paper.

4.5 Parse trees

The output from the parser is a syntax tree or a set of trees where the nodes are labeled with
PMCFG functions. The trees have to be converted back to PGF abstract expression. In the
absence of high-order terms (section 3.3) the transformation is trivial. The definition of each
PMCFG function is annotated with the corresponding PGF linearization function so they
just have to be replaced. The PMCFG grammar might be erasing i.e. some argument might
not be used at all. In this case the slot for this argument is filled with meta variable.

5 Using PGF

In this section, we will outline how PGF grammars can be used to construct natural language
processing applications. We first list a number of operations that can be performed with a
PGF grammar, along with some possible applications of these operations. We then give
a brief overview of the APIs (Application Programmer’s Interfaces) which are currently
available for using PGF functionality in applications. Finally, we outline how PGF grammars
can be produced from the more grammar-writer friendly format GF.

5.1 PGF operations

PGF grammars can be used for a wide range of tasks, either stand-alone, or as integral parts
of a larger application. Figure 2 shows an overview of how PGF grammars can be used in
natural language processing applications.
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Fig. 2 Overview of PGF applications.

Parsing takes a string in some language and produces zero (in the case of an out-of-
grammar input), one (in the the case of an unambiguous input), or more (for ambiguous
inputs) abstract syntax trees. PGF parsing is for example useful for handling natural lan-
guage user input in applications. This lets the rest of the application work on abstract syntax
trees, which makes it easy to localize the application to new languages.

Text Prediction is related to parsing. The incremental PMCFG parsing algorithm can
parse an incomplete input, and return the set of possible next tokens. If the last token in the
given input is itself incomplete, the list of complete tokens can be given to the parser, and
the result filtered to retain only those tokens that have the last (incomplete) token as a prefix.

Linearization, the production of text given an abstract syntax tree, can be used to pro-
duce natural language system outputs, either as text, or, by using speech synthesis software,
speech output. In the latter case, the concrete syntax may contain annotations such as SSML
tags which help the speech synthesizer.

Translation is the combination of parsing and linearization (Khegai 2006).
Abstract syntax generation, is made easy by the PGF abstract syntax type system. A po-

tentially infinite lazy list of abstract syntax trees can be generated randomly, or exhaustively
through iterative deepening. Random generation can be used to generate a monolingual cor-
pus (generate a list of random abstract syntax trees and linearize them to given language), a
multilingual parallel corpus (generate trees and linearize to several languages), or a treebank
(generate trees, linearize, and output text, tree pairs).

Abstract syntax manipulation is useful in any application that analyzes or produces ab-
stract syntax trees. The PGF type system makes it possible to expose abstract syntax manip-
ulation to the user in a safe way. When statically typed languages such as Haskell or Java
are used, it is possible to generate host language data types from an Figure 3 shows such
data types generated from the example abstract syntax in Section 2.2.

5.2 PGF Interpreter API

A PGF Interpreter API allows an application programmer to make use of PGF grammars for
the tasks listed above in a program written in some general purpose programming language.
There are currently APIs for Haskell, Java, JavaScript, Prolog, C, C++, and web applications,
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data S = Pred NP VP
data NP = John
data VP = Walk

abstract class S{ . . .}
class Pred extends S{NP np;VP vp; . . .}
abstract class NP{ . . .}
class John extends NP{ . . .}
abstract class VP{ . . .}
class Walk extends VP{ . . .}

Fig. 3 Haskell and Java data types for the abstract syntax in Section 2.2.

readPGF ::FilePath→ IO PGF

linearize ::PGF→ Language→ Tree→ String

parse ::PGF→ Language→ Category→ String→ [Tree ]
generateRandom ::PGF→ Category→ IO [Tree ]
generateAll ::PGF→ Category→ [Tree ]
complete ::PGF→ Language→ Category→ String→ [String ]

Fig. 4 A part of the Haskell PGF Interpreter API.

public class PGF {
public static PGF readPGF (String path)
public String linearize (String lang,Tree tree)
public List〈Tree〉 parse (String lang,String text)
}

Fig. 5 A part of the Java PGF Interpreter API.

with varying degrees of functionality. We examine the Haskell API in some detail. The other
APIs, some of which are covered briefly below, have the same functionality, or subsets of it.

Haskell API Figure 4 shows the most important functions in the Haskell PGF Interpreter
API. There are also functions for manipulating Tree value, for getting metadata about gram-
mars, and variants of generation functions which give more control over the generation
process, for example by setting a maximum tree height.

Java PGF Interpreter API The Java API is very similar to the Haskell API, but with a more
object-oriented design, see Figure 5.

JavaScript PGF Interpreter API PGF grammars can also be converted into a JavaScript
format, for which there is an interpreter that implements linearization, parsing and abstract
syntax tree manipulation (Meza Moreno 2008).

PGF Interpreter Web Service PGF parsing, linearization and translation is also available as
a web service, in the form of a FastCGI (Brown 1996) program with a RESTful (Fielding
2000) interface that returns JSON (Crockford 2006) structures. For example, a request to
translate the sentence this fish is fresh from the concrete syntax FoodEng to all available
concrete syntaxes may return the following JSON structure:
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[{"from":"FoodEng","to":"FoodEng","text":"this fish is fresh"},

{"from":"FoodEng","to":"FoodIta","text":"questo pesce è fresco"}]

5.3 Compiling PGF to other formats

The declarative nature of PGF makes it possible to translate PGF grammars to other gram-
mar formalisms. It is theoretically interesting to produce algorithms for translating between
different grammar formalisms. However, it also has practical applications, as it lets us use
PGF grammars with existing software systems based on other grammar formalisms, for ex-
ample speech recognizers (Bringert 2007a). When combined with PGF parsing, this makes
it possible for an application to accept speech input, based solely on the information in
the PGF grammar. Examples of such applications include dialogue systems (Ericsson et al.
2006; Bringert 2007b) and speech translation (Bringert 2008).

Most examples in the rest of this section will be based on the PGF grammar shown in
Figure 7, which extends the earlier example grammar with the And and We functions. This
grammar has been chosen to compactly include both agreement and left-recursion (at the
expense of ambiguous parsing, this could be fixed with a slightly larger grammar).

5.3.1 Context-free approximation

A context-free grammar (CFG) that approximates a PGF grammar can be produced by first
producing a PMCFG as described earlier. The PMCFG is then approximated with a CFG by
converting each PMCFG category-field pair to a CFG category. In the general case, this is
an approximation, since PMCFG is a stronger formalism than CFG. The example language
with agreement is converted to the CFG shown in Figure 8.

The PMCFG grammar given in Section 4.1 for the context-sensitive language anbncn

is approximated by the context-free grammar shown in Figure 14. In this case the context-
free approximation is overgenerating, as it generates the language a∗b∗c∗. The simpler anbn

language is context-free, but may be described by either a context-sensitive grammar in a
similar way to the anbncn language above, or by a context-free grammar. The context-free
approximation will preserve the language described by an already context-free grammar, but
not necessarily the language of a context-sensitive grammar that defines a context-free lan-
guage. It is not possible to devise an algorithm that converts all context-sensitive grammars
that generate context-free languages to context-free grammars, since deciding whether a
context-sensitive language is context-free is undecidable. We conjecture that this also holds
for deciding whether a PMCFG generates a context-free language.

5.3.2 Context-free transformations

Our PGF compiler also implements a number of transformations on context-free grammars,
such as cycle elimination, bottom-up and top-down filtering, left-recursion elimination,
identical category elimination, and EBNF compaction. This makes it possible to produce
grammars in a number of restricted context-free formats as required by speech recognition
software.
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cat S;NP;VP
fun And :S→ S→ S

Pred :NP→ VP→ S
John,We :NP
Walk :VP

param Num = Sg | Pl
param Pers = P1 | P2 | P3
lincat S = Str

NP = {s :Str;n :Num;p :Pers}
VP = Num⇒ Pers⇒ Str

lin And x y = x++ “und”++ y
Pred np vp = np.s++ vp ! np.n ! np.p
John = {s = “John”;n = Sg;p = P3}
We = {s = “wir”;n = Pl;p = P1}
Walk =

table { Sg⇒ table {P1⇒ “gehe”;
P2⇒ “gehst”;
P3⇒ “geht”};

Pl⇒ table {P1⇒ “gehen”;
P2⇒ “geht”;
P3⇒ “gehen”}}

Fig. 6 GF grammar.

cat S;NP;VP
fun And : (S,S)→ S

Pred : (NP,VP)→ S
John : ()→NP
We : ()→NP
Walk : ()→ VP

lincat S = Str
NP = Str ∗ Int2 ∗ Int3
VP = (Str ∗Str ∗Str)

∗ (Str ∗Str ∗Str)
lin And = $1 ++ “und”++$2

Pred = $1 ! 1++($2 ! ($1 ! 2)) ! ($1 ! 3)
John = <“John”,1,3>
We = <“wir”,2,1>
Walk =

< < “gehe”,
“gehst”,
“geht”>,

< “gehen”,
“geht”,
“gehen”>>

Fig. 7 PGF grammar.

S → S “und” S |NP1 VP2 |NP2 VP1
NP1→ “John”
NP2→ “wir”
VP1 → “gehen”
VP2 → “geht”

Fig. 8 CFG.

S → S “und” S{And ($1,$2)}
|NP1 VP2{Pred ($1,$2)}
|NP2 VP1{Pred ($1,$2)}

NP1→ “John”{John ()}
NP2→ “wir”{We ()}
VP1 → “gehen”{Walk ()}
VP2 → “geht”{Walk ()}

Fig. 9 Fig. 8 with interpretation.

S →NP1 S2 |NP2 S3
S2 → VP2 | VP2 S4
S3 → VP1 | VP1 S4
S4 → “und” S | “und” S S4
NP1→ “John”
NP2→ “wir”
VP1 → “gehen”
VP2 → “geht”

Fig. 10 Non-left-recursive CFG.

S → NP1 S2{$2 ($1)}
|NP2 S3{$2 ($1)}

S2 → VP2{λx.Pred (x,$1)}
| VP2 S4{λx.$2 (Pred (x,$1))}

S3 → VP1{λx.Pred (x,$1)}
| VP1 S4{λx.$2 (Pred (x,$1))}

S4 → “und” S{λx.And (x,$1)}
| “und” S S4{λx.$2 (And (x,$1))}

NP1→ “John”{John ()}
NP2→ “wir”{We ()}
VP1 → “gehen”{Walk ()}
VP2 → “geht”{Walk ()}

Fig. 11 Fig. 10 with interpretation.

S →NP1 VP2 S2 |NP2 VP1 S2
S2 → “und” S | ε
NP1→ “John”
NP2→ “wir”
VP1 → “gehen”
VP2 → “geht”

Fig. 12 Regular grammar.

und

geht

gehenwir

John

Fig. 13 Finite-state automaton.
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S → A0 A1 A2
A → A0 | A1 | A2
A0→ ε | “a” A0
A1→ ε | “b” A1
A2→ ε | “c” A2

Fig. 14 Context-free approximation of the PMCFG grammar for the anbncn language.

5.3.3 Embedded tree building code

The rules for producing abstract syntax trees can be preserved through the grammar trans-
lations listed above. This makes it possible to include abstract syntax tree building code in
the generated context-free grammars, for example in SISR (Burke and Van Tichelen 2006)
format. Figure 9 shows such an annotated grammar. As is shown in Figure 11, the abstract
syntax tree building annotations can be carried through the left-recursion removal transfor-
mation, by the use of λ -terms.

5.3.4 Regular / finite-state approximation

The PGF grammar compiler can also approximate the produced context-free grammars with
regular grammars, which can in turn be compiled to finite-state automata. An example of
this is shown in Figures 12 and 13. This lets us support speech recognizers which require
regular or finite-state language models, or for typical finite-state natural language processing
tasks such as marking noun phrases in a corpus.

5.4 Compiling GF to PGF

While PGF is suitable for efficient and simple implementation, PGF grammars are not meant
to be produced by humans. Rather, it is intended as the target language of a compiler from
a high-level grammar language. In this section, we will outline the differences between the
human-friendly GF language, and the machine-friendly PGF language, and how grammars
written in GF can be translated to PGF. The PGF syntax and semantics can be seen as a
subset of the GF syntax and semantics, while the PGF type system is less strict than that
of GF. Where the GF type system is concerned with correctness, the PGF type system only
ensures safety.

5.4.1 Tables and records

In GF, there are two separate constructs that correspond to PGF tuples: tables and records.
In GF, tables are tuples whose values all have the same type, and finite algebraic data types
or records are used to select values from tables. Tables are used to implemented parametric
features such as inflection.

Records, on the other hand, can have values of different type, but the selectors used with
records are labels which must be known statically. Records are used to implement inherent
features and discontinuous constituents.

Both tables and records can be nested, but they always have a statically known size,
which only depends on their type. This makes it possible to translate both records and tables
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to PGF tuples. For example, the GF grammar shown in Figure 6 is translated to the PGF
grammar in Figure 7.

5.4.2 Structured parameter values and labels

As noted above, in GF, table projection is done with structured values known as parameters.
These can be combinations of non-recursive algebraic data types and records of parameters.
Since parameter records contain a known number of values, and the algebraic parameter
values are non-recursive, each parameter type contains a finite number of values. This makes
it possible to translate each parameter type to a bounded integer type, suitable for projection
on PGF tuples.

5.4.3 Stricter type checking

As noted above, the GF concrete syntax type system is stricter than the PGF type system.
In PGF, bounded integers are used to represent all parameter types and record labels, which
means that many distinctions made by the GF type checker are not available in PGF. The
differences between the GF and PGF type system can be compared to the differences be-
tween the Java type system and JVM bytecode verification. The type system for abstract
syntax is identical in GF and PGF.

5.4.4 Pattern matching

Table projection in GF can be done by pattern matching with rather complex patterns. When
compiling to PGF, all tables are expanded to have one branch with for each possible param-
eter value, to allow for translation to PGF tuples.

5.4.5 Modularity

GF grammars are organized into modules which can be compiled to core GF separately,
like Java classes or C object files. PGF on the other hand has no module system and is a
single file, similar to a statically linked executable. This simplifies PGF implementations
and makes it easy to distribute PGF grammars.

5.4.6 Auxiliary operations

In GF, auxiliary operations can be defined in order to implement for example morphological
paradigms or common syntactic operations. These operations, like all GF concrete syntax
can include complex features such as higher-order functions and pattern matching on strings.
During the translation to PGF, all auxiliary operations are inlined, and all expressions are
evaluated to produce valid PGF terms. This means, for example, that all strings which are
used in pattern matching or in-token concatenation must be statically computable.

Because this inlining and computation can produce very large and repetitive PGF terms,
common sub-expression elimination is performed. This can recover some of the auxiliary
operations, but in a simpler form, but it can also discover new opportunities for code sharing,
as PGF macros allow open terms, are type agnostic, and shared between code that comes
from unrelated GF modules.
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6 Results and evaluation

6.1 Systems using PGF

A number of natural language applications have been implemented using PGF or its prede-
cessor GFCM. Above, we have listed a number of individual tasks that can be performed
with PGF grammars. However, realistic applications often make use PGF for more than
one task. This helps avoid the duplicated work involved in manually implementing multiple
components which cover the same language fragment.

GOTTIS (Bringert et al. 2005) is an experimental multimodal and multilingual dialogue
system for public transportation queries. It uses the a generated Nuance GSL speech recog-
nition grammar for speech input, embedded parsing and linearization for system input and
output, and generated Java data types for analysing input abstract syntax trees and produc-
ing output abstract syntax trees. Both input and output in GOTTIS make use of multimodal
grammars. The input grammar allows integrated multimodality, e.g. “I want to go here”,
accompanied by a click on a map. This is implemented by using a two-field record (PGF
tuple) to represent spatial expressions, where one field contains the spoken component, and
another contains the click component. System output makes use of parallel multimodality;
one concrete syntax produces spoken route descriptions, and another produces drawing in-
structions which are used to display routes on a map. Other examples of using GF grammars
for formal languages include the WebALT mathematics problem editor (Cohen et al. 2006)
and the KeY software specification editor (Burke and Johannisson 2005),

PGF abstract syntax can be used as a specification of a dialogue manager (Ranta and
Cooper 2004). Together with the existing speech recognition grammar generation with em-
bedded semantic interpretation tags, and the PGF to JavaScript compiler, this can be used
to generate complete multimodal and multilingual VoiceXML dialogue systems (Bringert
2007b).

DUDE (Lemon and Liu 2006) and its extension REALL-DUDE (Lemon et al. 2006) are
environments where non-experts can develop dialogue systems based on Business Process
Models describing the applications. From keywords, prompts and answer sets defined by the
developer, the system generates a GF grammar. This grammar is used for parsing input, and
for generating a language model in SLF or GSL format.

Several syntax-directed editors for controlled languages (Khegai et al. 2003; Johannis-
son et al. 2003; Meza Moreno and Bringert 2008), have been implemented using PGF and
its predecessors. They make use of abstract syntax manipulation, parsing linearization.

PGF can be used to implement complete limited domain speech translation systems that
use PGF to produce speech recognition grammars and to perform parsing and linearization
(Bringert 2008).

Text prediction can be used to implement text-based user interfaces which can show the
user what inputs are allowed by the grammar. Examples of applications where this might
be useful are editors for controlled languages, language learning software or limited do-
main translation software such as tourist phrase books. A web-based controlled language
translator using text prediction is currently being developed.

Jonson (2006, 2007) used random corpus generation to produce statistical language
models (SLM) for speech recognition from a domain-specific grammar. When combined
with a general SLM trained on existing general domain text, the precision on in-grammar in-
puts was largely unchanged, while out-of-grammar inputs where handled with much higher
precision, compared to a pure grammar-based language model. When producing corpora for
training SLMs, dependently typed abstract syntax can be used to reduce over-generation (Jon-



21

son 2006). Other, as yet unexplored, applications of PGF abstract syntax generation are the
use of generated multilingual parallel corpora for training statistical machine translation
systems, and the use of generated treebanks for training statistical parsers.

The grammars from the GF resource grammar library (Ranta 2008) can be used not
only to implement application-specific grammars, but also as general wide-coverage gram-
mars. For example, the English resource grammar, with a large lexicon and some minor
syntax extensions, covers a significant portion of the sentences in the FraCaS semantic test
suite (Cooper et al. 1996).

7 Related work

Compilation of grammars to low-level formats is an old idea. The most well-known exam-
ples are parser generators in the YACC family (Johnson 1975). The output of YACC-like
parser generation is a piece of host language source code, which can be seamlessly inte-
grated in a program written in the host language. YACC-like systems for full context-free
grammars suitable for natural language include the work by Tomita and Carbonell (1987),
the NLYACC system (Ishii et al. 1994), and the GLR extension of the Happy parser tool for
Haskell (Callaghan and Medlock 2004). The main differences between PGF and the YACC
family are that PGF is stronger than context-free grammars, that PGF contains no host lan-
guage code and is therefore portable to many host languages, that PGF supports linearization
in addition to parsing, and that PGF grammars can be multilingual.

HPSG (Pollard and Sag 1994) and LFG (Bresnan 1982) are grammar formalisms used
for large-scale grammar writing and processing. In their implementation, the use of opti-
mizing compilers is essential, to support at the same time high-level grammar writing and
efficient run-time execution. HPSG compilers, for instance, have used advanced compiler
techniques such as data flow analysis (Minnen et al. 1995). The main focus in both gram-
mars is parsing, but also generation is supported. Both in HPSG and LFG, systems of parallel
grammars for different languages have been developed, but neither formalism is multilin-
gual in the way GF/PGF is. The currently most popular implementations are LKB (Copes-
take 2002) for HPSG and XLE (Kaplan and Maxwell 2007) for LFG. To our knowledge,
neither formalism supports generation of portable low-level code.

An emerging species of embedded grammar applications is language models for speech
recognition. Regulus (Rayner et al. 2006) is a system that compiles high-level feature-based
grammars into low-level context-free grammars in the Nuance format (Nua 2003). PGF can
likewise be compiled into Nuance and a host of other speech grammar formats (Bringert
2007a).

Type-theoretical grammar formats based on Curry’s distinction between tectogrammar
and phenogrammar have gained popularity in the recent years: ACG (Abstract Categorial
Grammars) (de Groote 2001), HOG (Higher-Order Grammars) (Pollard 2004), and Lambda
Grammars (Muskens 2001) are the most well-known examples besides GF. The work in
implementing these formalisms has not come so far as in GF. One obvious idea for imple-
menting them is to use compilation to PGF. But it remains to be seen if PGF is general
enough to support this. For instance, ACG is more general than PGF in the sense that lin-
earization types can be function types, but less general in the sense that functions have to
be linear (that is, use every argument exactly once). This means that the style of defining
functions is very different, for instance, that a rule written with multiple occurrences of a
variable in PGF is in ACG encoded as a higher-order function.
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PMCFG, while known for almost two decades and having nice computational properties,
has not been used for practical grammar writing. Even the use of PMCFG as a target format
for grammar compilation seems to be new to the GF project.

8 Conclusion

PGF was first created as a low-level target format for compiling high-level grammars writ-
ten in GF. The division between high-level source formats and low-level target formats has
known advantages in programming language design, which have been confirmed in the case
of GF and PGF. One distinguishing property is redundancy: the absence of redundancy from
PGF makes is maximally easy to write PGF interpreters, to compile PGF to other formats,
and to reason about PGF. In GF, on the other hand, computationally redundant features,
such as intensional type distinctions, inlinable functions, and separately compilable mod-
ules, support the programmer’s work by permitting useful error messages and an abstract
programming style. GF as compiled to PGF has made it possible to build grammar-based
systems that combine linguistic coverage (the GF resource grammar library) with efficient
run-time behaviour (mostly linear-time generation, incremental PMCFG parsing) and inte-
gration with other system components (web pages via JavaScript, spoken language models
via context-free approximations). For other grammar formalisms than GF, compilation to
PGF could be used as an economical implementation technique, which would moreover
make it possible to link together grammars written in different high-level formalisms.
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