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NCG 4.0 is the latest update of the Network of Cancer Genes, a web-based repository of systems-level properties of cancer

genes. In its current version, the database collects information on 537 known (i.e. experimentally supported) and 1463

candidate (i.e. inferred using statistical methods) cancer genes. Candidate cancer genes derive from the manual revision of

67 original publications describing the mutational screening of 3460 human exomes and genomes in 23 different cancer

types. For all 2000 cancer genes, duplicability, evolutionary origin, expression, functional annotation, interaction network

with other human proteins and with microRNAs are reported. In addition to providing a substantial update of cancer-

related information, NCG 4.0 also introduces two new features. The first is the annotation of possible false-positive cancer

drivers, defined as candidate cancer genes inferred from large-scale screenings whose association with cancer is likely to be

spurious. The second is the description of the systems-level properties of 64 human microRNAs that are causally involved in

cancer progression (oncomiRs). Owing to the manual revision of all information, NCG 4.0 constitutes a complete and

reliable resource on human coding and non-coding genes whose deregulation drives cancer onset and/or progression.

NCG 4.0 can also be downloaded as a free application for Android smart phones.

Database URL: http://bio.ieo.eu/ncg/
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Introduction

Sequencing of exomes and genomes from thousands of

cancer samples led to the identification of an increasing

number of mutated genes that may contribute to driving

human cancer (1–3). Owing to the massive amount of infor-

mation derived from these studies, it is often difficult to get

an overview of the genes that play a driver role in cancer on

mutation (cancer genes). Since 2010, the Network of Cancer

Genes (NCG) has been collecting information on a manually

curated list of known and candidate cancer genes (4, 5).

Known cancer genes have robust experimental support on

their role in cancer onset and progression. Candidate cancer

genes instead derive from large-scale mutational screenings

of cancer samples and have been identified using statistical

methods with poor or no experimental follow-up. Candidate

cancer genes are thus prone to include false positives as a

consequence of the difficult discrimination between passen-

ger and driver mutations (6, 7). To account for this, NCG 4.0

reports a list of candidate cancer genes whose association

with cancer is likely to be spurious owing to function, length

and literature evidence.

For each known and candidate cancer gene, NCG 4.0

annotates a series of systems-level properties, defined as

features that distinguish a group of genes (in this case,

cancer-related genes) from the rest, and that cannot be
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ascribed to the function of the single gene alone (8).

Systems-level properties currently reported in NCG are of

evolutionary origin and duplicability, primary and second-

ary interaction network of the encoded proteins and

miRNA regulatory networks. In addition, NCG 4.0 provides

information on gene expression in 109 human tissues

and on their functional characterization based on Gene

Ontology (9). Owing to the increasing evidence of the pri-

mary role of microRNA (miRNA) deregulation in the onset

of human cancer (10, 11), NCG 4.0 also annotates the

systems-level properties of 64 cancer-related miRNAs

(oncomiRs) manually derived from the literature.

Compared with other databases collecting all cancer mu-

tations, such as COSMIC (12), ICGC (13) and CGAP (14), NCG

4.0 provides the community with a manually reviewed

and constantly updated repository only of cancer drivers.

In addition, it also annotates the properties of these genes,

thus resulting useful to address different types of ques-

tions regarding cancer determinants (Figure 1) and to

mine the increasing amount of information on cancer

mutations.

Database Description and Updates

Manual collection of cancer genes

NCG 4.0 annotates the properties of 2000 cancer genes,

defined as genes that contribute in promoting the onset

and/or the development of human cancer. This list is

derived from the union of two datasets. The first combined

a literature-based repository of 484 genes from the Cancer

Gene Census (377 dominant, 111 recessive and 4 genes that

can act as both dominant and recessive, as frozen in

January 2013) (15) with 77 genes whose amplification is

causally implicated in cancer (16). This led to 537 experi-

mentally supported cancer genes, which we defined as

‘known cancer genes’. The second dataset consisted of

1463 genes that are likely to be involved in cancer devel-

opment on mutation, which we defined as ‘candidate

Q: Which cancer genes are regulated by oncomiR-200?

OncomiR
Known cancer gene
Candidate cancer gene
Non-cancer gene

A  Properties of cancer genes B  Results of Mutations Screenings

C  OncomiR Annotation

Q: In how many cancer types is BRCA1 mutated?

Q: Does SMARCA4 have duplicates? 

Q: When did ARID2 originate in evolution?

Q: Which cancer genes are the most mutated in colorectal cancer?

Q: Which are the physical interactors of IDH1? 

Figure 1. Examples of queries that can be done in NCG. Information stored in NCG can be used to address different queries
regarding the properties of (A) individual cancer genes, (B) cancer types and (C) oncomiRs. Relevant information to address the
specific queries is highlighted in orange.
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cancer genes’. These genes derived from the manual revi-

sion of 67 publications corresponding to 77 re-sequencing

screenings of the whole exomes (49 screenings), the whole

genomes (19 screenings) and selected gene sets

(9 screenings), conducted on 3640 samples from 23 cancer

types (Supplementary Table S1) (17–83). These papers rep-

resented a comprehensive set of high-throughput cancer

re-sequencing screenings.

Compared with the previous version, NCG 4.0 appreciably

increased the number of cancer genes, particularly candi-

dates, and of sequenced samples (Figure 2A). Such accretion

of knowledge reflects the current massive worldwide efforts

to characterize cancer mutational landscapes in detail.

Although we are expected to reach a plateau in the discov-

ery of new driver genes because genes frequently (and sig-

nificantly) mutated in some cancer types are also mutated at

low frequency in other cancer types (1), our data show that

we are still in the growing phase. In particular, for most

cancer types the number of new candidate cancer genes in-

creases with the number of sequenced samples (Figure 2B).

As already noticed (1, 6), most cancer genes, and in particular

candidates, are specific for a given cancer type, and only few

known cancer genes recurrently mutate in several cancers

(Figure 2C). This observation once again confirms the hetero-

geneity of cancer mutation landscape (3).

Human gene set and orthology information

To identify the list of unique human genes, we aligned 33

427 protein sequences from RefSeq v.51 (84) to the refer-

ence human genome Hg19, using a method previously de-

veloped by our group (5, 8). This led to the identification of

19 045 unique gene loci, including 1961 of the 2000 cancer

genes. Of the remaining 39 cancer genes, 29 did not have

RefSeq protein entries and 10 were discarded because

their protein sequences aligned to the genome for <60%

of their length. For each cancer gene we retrieved
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Figure 2. Overview of the data collected in NCG 4.0. (A) Comparison of data stored in NCG 3.0 and NCG 4.0. (B) Linear regression
curves between the number of known and candidate cancer genes and the number of sequenced samples in each cancer type.
Some cancer types deviate from linearity and this can be due to different reasons. For example, melanoma has a high number of
candidate cancer genes (169) despite the low number of sequenced samples (41). In this case, the most likely explanation is that
most of these candidate genes derive from two screenings (61, 75) that did not apply any methods to identify cancer drivers
(Table 1, Supplementary Table S1). In the case of medulloblastoma, candidate and known cancer genes are only 25 despite 211
samples having been screened. This likely depends on the low mutation frequency of medulloblastoma [<1 mutation/Mb (40, 57,
64, 67)]. (C) Recurrence of known and candidate cancer genes in different cancer types. The only cancer genes that have been
found mutated in more than 10 different cancer types are TP53 (20 cancer types), PIK3CA (13 cancer types) and PTEN (12 cancer
types). (D) Comparison of cancer miRNA targets that have been identified using single gene (i.e. reporter assay, western blot)
and high throughput approaches (i.e. microarray, proteomic experiments and next-generation sequencing).
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duplicability, evolutionary origin, functional annotation,

gene expression profile, protein–protein interaction and

gene-microRNA interaction.

We assessed gene duplicability by the presence of one or

more additional hits on the genome covering at least 60%

of cancer protein length (8). Of the 1961 cancer genes, 325

(17%) had at least one extra copy on the genome. This was

a significantly lower fraction compared with the rest of

human genes (21%, P-value = 7.8� 10�06, chi-square test),

thus confirming the tendency of cancer genes to preserve a

singleton status in the genome (8).

We assessed orthology relationships for 1978 of the 2000

cancer genes annotated in EggNOG v.3.0 (85) and used this

information to infer the evolutionary origin of each cancer

gene, defined as the most ancient node of the tree of life

where the ortholog for that gene could be found (86). As

already reported (86, 87), we confirmed that the fraction of

old cancer genes that originated in prokaryotes and unicel-

lular eukaryotes (1500, 76% of the total) was higher than in

the rest of human genes (68%, P-value = 6.1� 10�13, chi-

square test). Moreover, we also confirmed that recessive

cancer genes are older than dominant cancer genes (4).

The vast majority of recessive cancer genes (87/111, 78%)

originated already with the last universal common ancestor

or with unicellular eukaryotes, compared with only 67% of

dominant cancer genes (P-value = 0.03, chi-square test).

Protein–protein and miRNA-target interaction
networks

We rebuilt the human protein–protein interaction network

integrating direct experimental evidence from five sources:

HPRD (frozen on 13 April 2010) (88), BioGRID v.3.2.96 (89),

IntAct v.159 (frozen on 14 December 2012) (90), MINT

(frozen on 26 October 2012) (91) and DIP (frozen on 10

October 2010) (92). This resulted in a global network of

16 241 proteins (nodes) and 164 008 binary interactions

(edges), supported by 33 497 independent publications.

Interaction data were available for 1706 cancer proteins,

and hubs (defined as proteins with at least 15 interactions)

constituted 45% of all cancer genes, compared with 30%

of the rest of human genes (P-value = 3.60 10�38, chi-square

test).

The interaction network between miRNAs and cancer

genes relied on experimental data extracted from three

different sources: TarBase v.5.0 (93), miRecords v.4.0 (94)

and miRTarBase v.4.4 (95). The integration of these data

led to 1160 cancer targets of miRNAs (58% of the total).

This was a significantly higher proportion compared with

the rest of human genes (48%, P-value = 1.02�10�17, chi-

square test) and confirmed the tendency of cancer genes to

be regulated by miRNAs (4). This enrichment may reflect

the fact that cancer genes are overall better characterized

and thus more information is available on them. However,

>70% of miRNA targets have been identified through

high-throughput screenings (such as microarray, mass

spectrometry and sequencing, Figure 2D), thus partially

reducing the bias. Finally, we also updated the list of

cancer genes that host miRNAs within their genomic loci

(87 genes, 4.4% of the total).

Novel Features of NCG 4.0

Identification of possible false cancer genes

With the increasing evidence of an overwhelming number

of mutations acquired during cancer progression (most of

which with no role in the disease), a number of statistical

methods have been developed to identify cancer drivers

within the whole set of mutated genes. These methods

take into account several features including the tendency

of the same gene to be mutated across many samples, the

cancer-specific background mutation rate, the gene length

and expression and the mutation effect on the encoded

protein (Table 1, Supplementary Table S1). Despite all

efforts to refine the identification of driver mutations, cur-

rent approaches are still prone to false positives, i.e.

mutated genes that are erroneously identified as cancer

drivers (6, 7). For example, genes encoding olfactory recep-

tors are often included in the list of candidates, because

they tend to mutate although the biological function and

expression pattern of these genes strongly dismiss a pos-

sible functional role in the disease. Similarly, overly long

genes are also probable false positives because their recur-

rent mutations in several samples are most likely due to

their length more than to their function (6, 7). Because

the main goal of NCG is to annotate the properties of

cancer genes, we decided to collect all putative cancer

genes from primary data without removing possible false

positives. However, we added a warning concerning the

possible spurious cancer associations for 60 genes (39 olfac-

tory receptors, 14 genes with long exons and/or introns and

7 additional false positives derived from literature (7)

(Figure 3A, Table 1). Although gene length by itself does

not imply spurious associations, we derived the length dis-

tributions of all candidate cancer genes and considered

genes with long introns (Figure 3B) or long exons

(Figure 3C) as possible false positives.

Gene expression profiles

To complete the functional annotation of cancer genes, we

derived expression levels for 1528 of them from two high-

throughput gene expression experiments on 109 human

tissues (99, 100). We normalized and processed the

raw CEL files obtained from the corresponding Gene

Expression Omnibus series (GSE2361 and GSE1133) using

the MAS5 algorithm of the R affy package (101, 102).

Because more than one probe can be associated with one

gene, the expression level of each cancer gene in a given

.............................................................................................................................................................................................................................................................................................
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tissue was defined as the mean expression levels of all

probes with detection P< 0.05. If all probes for a gene

had detection P> 0.05, the gene was considered as not

expressed.

To make a comparative assessment of the expression

levels of a cancer gene i in a given tissue t with those of

all other genes in the same tissue, we first calculated the

expression levels of all human genes in that tissue. We then

derived the normalized expression level n of the cancer

gene i in the tissue t, measured as:

ni,t ¼
ðei,t � EtÞ

ðei,t þ EtÞ

where ei,t was the expression level of the cancer gene i in

tissue t and Et was the median expression level of all genes

in tissue t. Normalized expression levels allowed a direct

comparison of the expression of all genes in each given

tissue.

Manual collection of miRNAs involved in human
cancer (oncomiRs)

We manually gathered the list of oncomiRs from the litera-

ture and included only miRNA families (i.e. miRNAs with

high sequence similarity) and miRNA clusters (i.e. miRNAs

that are neighbors in the genome and co-transcribed)

whose role in cancer was well described and experimentally

supported (103–108). This led to 64 oncomiRs involved in 27

cancer types. Similarly to protein-coding genes we retrieved

details on duplicability, evolutionary origin and interaction

network for all these oncomiRs.

To infer oncomiR duplicability, we downloaded 1424

human miRNAs from miRBase v.17 (109) and considered

all mature miRNAs with the same seed (i.e. the 6–8 nt-

long region at the 50-end of the sequence) as duplicated

miRNAs. The rationale for this choice was that, because

seeds determine the specificity in target recognition, their

sequences are the most conserved among homologous

miRNAs (110). Among 64 oncomiRs, 51 (79%) were dupli-

cated compared with 33% other duplicated human miRNAs

(P = 4.5�10�16, chi-square test). Therefore, unlike protein-

coding cancer genes that maintain a singleton status in the

genome, oncomiRs tend to have additional copies that

share the site of recognition of the RNA targets.

To pinpoint when oncomiRs appeared in evolution, we

developed a procedure similar to that used for protein-

coding genes and traced the most ancient miRNA ortholog.

We first retrieved the orthologs of 835 human miRNAs for

which miRNA families were available in miRBase (including

all 64 oncomiRs). We then assigned the origin of each

miRNA as the most ancient ortholog within the correspond-

ing family. Sixty oncomiRs (94% of the total) had orthologs

in vertebrates, compared with only 19% of the rest of

human miRNAs, thus suggesting that oncomiRs originated

earlier than the rest of human miRNAs. It is worth noticing

that the marked differences in duplicability and origin be-

tween oncomiRs and other human miRNAs are at least

partly inflated by the high interest in oncomiRs that

boosted the search of their paralogs and orthologs in

other species.

Web Interface, Implementation
and Data Availability

NCG 4.0 runs on an Apache web server and data are stored

in a MySQL database. The web interface was developed in

A

Long introns or exons (14) 

Olfactory
receptors (39) 

Literature
(12) 

5

9

739 

CB

To
ta

l g
en

e 
le

n
g

th
(M

bp
)

0
0.

5
1

1.
5

2

0
10

20

●●

●

●

●
●

●

●●●●

●●●

K
no

w
n

C
an

di
da

te
s

K
no

w
n

C
an

di
da

te
s

C
o

d
in

g
 le

n
g

th
(K

bp
)

30

CSMD1
LRP1B
DMD
EYS
CTNNA3
CNTNAP2

MUC16
TTN
SYNE1
NEB
OBSCN
CCDC168
FSIP2
SYNE2

Sources of false positives

Figure 3. Possible false positives among candidate cancer dri-
vers. (A) Venn diagram of the three groups of possible false
positives. In total, we identified 60 genes, 65% of which were
olfactory receptors, 23% were long genes and the remaining
20% were derived from literature (7). (B) Distribution of the
total length for known and candidate cancer genes. Total
gene length was measured as total number of nucleotides
spanning the entire gene locus, including exons and introns.
Red dots indicate possible false positives (gene longer than
1.5 Mb). (C) Length distribution of the coding regions for
known and candidate cancer genes computed as the
number of nucleotides covering the coding exons. Genes
longer than 20 Kb (red dots) were considered as possible
false positives.
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PHP and network visualization was implemented in

Cytoscape Web (http://cytoscapeweb.cytoscape.org/) (111).

We modified NCG 4.0 web interface to enhance func-

tionalities and facilitate the retrieval of the properties of

cancer genes and oncomiRs. In addition to searching for

single genes or list of genes of interest, the user can now

visualize and browse all 2000 cancer genes, as well as re-

trieve cancer genes based on specific filters. NCG 4.0 also

provides a detailed report on the cancer types and the cor-

responding publications where it was found mutated.

Similar types of searches can be done on the 64 oncomiRs.

All data stored in NCG 4.0 are summarized in the statis-

tics section that provides an overview on the properties of

cancer genes and oncomiRs. For example, it is possible to

compare mutation frequency, number of cancer genes and

oncomiRs as well as their recurrence across the different

cancer types and screenings. The bulk content of the data-

base as well as the list of cancer genes, false positives and

oncomiRs can be downloaded as text files. We developed a

mobile phone application for NCG 4.0 that is freely avail-

able from the Web site.

Supplementary Data

Supplementary data are available at Database online.
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