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Abstract

The contemporary global language “extinction crisis’ has been
analyzed by several influential linguists using concepts from
ecology. In this article we study different reaction—diffusion
models to explain the dynamics of language competition. We
are mainly interested in situations where one language has a
status advantage compared with the other. We consider pre-
vious applications of competition models from ecology, with
particular attention to the implications of the “carrying capac-
ity” term in such models. We derive existence as well as sta-
bility conditions for the equilibria of the models considered,
and show that depending on environmental conditions both
situations—coexistence of competing languages or extinction
of the less advantageous language—are possible.
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It is estimated that perhaps half of the world’s 6000-7000 lan-
guages will be lost during the next 100 years (Krauss 1992).
The rapid evolution of today’s “language landscape” is in-
fluenced by a number of different economic, political, and
cultural factors. In the course of globalization and of recent
trends for urbanization and long-distance economic migra-
tion, interactions between groups speaking different languages
have increased and so has the need for a common language of
communication (Baggs and Freedman 1993). Some languages
(e.g., English) have come to fill that role for historical, eco-
nomic, and hegemonic reasons, and as a consequence have
risen in importance in official and nonofficial matters. Their
lexicons have consequently expanded to represent all the para-
phernalia of modernization, further enhancing their competi-
tive advantage. In contrast, minority languages are particularly
subject to pressure and at risk of extinction, mainly because
speakers perceive an economic gain from shifting (Mufwene
2002).

A number of prominent linguists have called for an eco-
logical approach to this global linguistic “extinction crisis.”
However, they differ on what is meant by an ecological ap-
proach. Eco-linguistics (as represented by Muhlhausler 2000)
understands an ecological system to be one in which there is
self-organized structural diversity based on primarily benefi-
cial interactions among entities (e.g., languages) occupying
different niches. Language planning in this context is taken
to mean maintenance by ‘“habitat preservation” of diversity
among languages that retain equal status. This is motivated by
the Whorfian belief that each language encodes a unique (and
locally adapted) way of perceiving the environment. Mufwene
(2002), in contrast, understands an ecological approach to the
language landscape to be primarily characterized by selection
and competition dynamics. Language birth and death are seen
as fundamentally dynamic processes, driven in part by the
adaptive decisions of speakers to maintain or shift languages
to match their own evolving socioeconomic circumstances.

In this article we address the problem of characterizing and
modeling the dynamics of language competition in the light
of such linguistic perspectives. Abrams and Strogatz (2003)
presented a simple two-language competition model to ex-
plain historical data on the decline of endangered languages,
and subsequently a number of very interesting extensions of
their model have been published. The Abrams and Strogatz
model (2003) proposes that the attractiveness of a language
increases with the number of speakers and with its perceived
status, defined as a reflection of the social and economic oppor-
tunities afforded to its speakers. In this model, the extinction
of the language with the lower social status is inevitable. A
generalization of this approach was made by Patriarca and
Leppinen (2004). They introduced spatial dependence, which
results in a reaction—diffusion equation. They found a possi-
bility for preservation of both languages under the assumption
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that they are initially separated in space. In the equilibrium
state of their model, the languages are concentrated in dif-
ferent zones and interact only in a narrow transition region
(Patriarca and Leppinen 2004). In this model, too, language-
shifting rates reflect the perceived status of each language.
In both these models, status-dependent and density-dependent
shifting rates govern the competition dynamic, and the system
is closed with respect to overall population size (i.e., the total
number of speakers is conserved).

Subsequently, to explain cases where both languages sur-
vive in only one zone of competition, Pinasco and Romanelli
(2006) developed an ecological model of Lotka-Volterra type.
This model introduced an additional growth rate term, whereby
new speakers of each language are recruited not just by shift-
ing, but also by reproduction. In order to maintain finite pop-
ulation sizes, reproduction is modeled as a logistic process in
which net growth falls off as the population of speakers of each
language approaches its limit (or “carrying capacity”). Pinasco
and Romanelli (2006) found that a steady state was possible in
which both languages coexist without spatial separation, when
the reproductive rate of speakers of the subordinate language
balances the loss rate due to language-shifting.

The aim of this article is to extend and modify the ecolog-
ical model of language competition with a special focus on the
interpretation and usage of the term “carrying capacity.” Fol-
lowing Abrams and Strogatz (2003) we make the simplifying
assumption that languages are fixed in form, and competing
with each other for speakers. Such simplifying assumptions
help us to understand the fundamental competition dynamics:
as a general rule it is better to start with a simple model with
a few key variables, and only add extra dimensions if they
significantly increase explanatory power. We describe the in-
teraction and growth dynamics of populations of speakers of
two competing languages in different reaction—diffusion com-
petition models and are mainly interested in situations where
one language has higher status (and is more likely to be the
target of language-shifters). We will see that the ecological
competition model has some deficiencies when applied to the
case of language competition and demonstrate how this model
can be modified to obtain better results. We are interested both
in the determination of language equilibria, which express the
stable long-term ratio of the competing languages, and in the
time taken for the equilibria to be reached.

In this article we assume the simplest possible shift mech-
anism. Speakers are able to shift languages immediately with-
out passing through a state where both languages are spoken at
the same time. We are aware of the need of incorporating bilin-
gualism to produce more realistic models but here we want to
focus on the extension and modification of existing mathemat-
ical models of language shift. In a forthcoming publication the
authors will analyze a more complex model which considers
the effects of bilingualism.
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Ecological Models of Language Competition

Standard Ecological Model

Following Pinasco and Romanelli (2006), we initially model
the dynamics of two competing languages by the reaction—
diffusion competition model

ou
B_tl = diAuy +uilar — biuy + cuzl,
(1
3I/L2
W = dyAuy + us[a, — brur — cuq]

with the boundary conditions du;/dn = 0, duy/dn = 0, for
uy, uy € dD. These boundary conditions describe the situation
of a finite environment (a bounded convex two-dimensional
domain D), with no diffusion possible beyond its boundary
o D. The time- and space-dependent variables u; and u, stand
for the frequencies of speakers of languages 1 and 2, respec-
tively. The terms du;/dt and du,/d¢ indicate the temporal
change of the frequencies and are determined respectively by
diAuy +uilay — biuy + cup] and dyAus 4+ uslay — bouy —
cu1]. The diffusion components d; Au; and d» Au, model the
spread of speakers in space based on a random walk with
density-dependent mixing (A is the Laplace operator). The
terms uq[a; — byu; + cus] and us[a, — bour — cuy] describe
the growth in number of the speakers of each language. In
this case the growth of the population of speakers of one lan-
guage is not independent of the other. The influence is modeled
by the conversion term cuu, with a conversion rate c. This
means that at each time step, a proportion cuu, of speak-
ers of language 2 convert to language 1. In terms of Abrams
and Strogatz (2003) the coefficient ¢ can be interpreted as
the status advantage of language 1 and reflects the social and
economic opportunities afforded to its speakers. Since we con-
sider only two languages, an increase in the number of speakers
of language 1 results in an equal decrease in the number of
speakers of language 2. In the absence of competition, i.e.,
when cuju; = 0, the growth dynamics are reduced to logis-
tic growth. The coefficients a; and a, express the intrinsic
growth rate of the number of speakers of each language, and
b; and b, the self-limiting or crowding coefficients. In ecol-
ogy, where such models represent competition for resources
between two species, the self-limiting coefficient is described
as an environmental “carrying capacity” K;, i = 1, 2, or an
upper boundary for population size (Ehrlich 1994), where the
following relations yield

u,-[a; - b[u;]: aiu; [1—%} with Kl' = a,-/b,-, = 1, 2.
i
Figure 1 illustrates the logistic growth pattern of a single pop-
ulation. For this example we have chosen a growth coefficient
a = 1 and a carrying capacity K = 1. The dashed line is the
exponential or Malthusian growth, which is characterized as
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Figure 1.
Logistic growth with initial frequencies up = 0.001, 0.1, 0.5.

unrestricted growth. In that case the self-limiting coefficient
b =a/K is equal to zero. The solid lines show the logistic
growth assuming different initial values. It is obvious that all
lines converge toward the carrying capacity. The self-limiting
coefficient b = a/K is responsible for that behavior.

At this point, we may ask whether it is reasonable that
both languages should possess separate carrying capacities for
their speakers, K| and K5, in model (1). In the original ecolog-
ical context, where two competing species cannot interbreed,
the key question is how they partition the available resources.
In such situations, the optimal outcome for any single species
would be to reach its carrying capacity, without interference
from competitors. In the case of language competition, how-
ever, speakers can shift languages, and the system is one in
which alternative learned behavioral traits are subject to se-
lection in a single population of speakers. We will turn back
to this critical point in a later section and present a modified
version of model (1), which is based on the assumption that
there is only one carrying capacity K describing the maximum
population size regardless of the language spoken.

We now analyze the implications of model (1) in more de-
tail. To determine the long-term ratios of languages 1 and 2 we
have to look for equilibria to which the language frequencies
are attracted. It is well known (e.g., Cosner and Lazer 1984;
Pinasco and Romanelli 2006) that for model (1) in a bounded
two-dimensional habitat D the following four equilibria® are
obtained:

(uy, u3) = (0, 0),
(uy, uz) = (0, K),

Wk, ut) = @ Ki(a) + cKz) a1Ky(ax — cKy)
72 arar + 2K Ky ajar + 2K\ Ky )

(7, uz) = (K1, 0),
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The first equilibrium means simply that no speakers of either
language survive, and this is of no interest here. The second
and third states describe situations where one language has
become extinct. If the fourth equilibrium is positive in both
components, then it is referred as a coexistence state. Gener-
ally, coexistence states are very interesting situations since—as
the name suggests—both languages can exist together. But in
the case considered here the coexistence case is not feasible
since it exists only when either u} > K or u; < 0. This equi-
librium requires that if the frequency of language 1 is less than
the carrying capacity K, then the frequency of language 2
is negative, which is not realistic. And in contrast, if the fre-
quency of language 2 is positive then the frequency of language
1 must be greater than the carrying capacity K, which is also
not consistent with the definition of this parameter (since, in
effect, K1 = u}"™). So we obtain no steady state of coexistence
in model (1).

After identifying possible equilibria we have to identify
which (if any) states are stable. In this context the model
parameters a;, a», by, by, ¢ play a crucial role—different
environmental conditions will support different equilibria. The
proof of stability can be done by phase—plane analysis (e.g.,
Murray 2002) and the following results are obtained. The equi-
libria (0, 0) and (0, K;) are never stable. Further (K, 0) is
stable for the parameter constellation a, < c¢K;. But unfortu-
nately if we look at the time course to this state we observe
that it is not feasible either, since the frequency of language
1 will exceed the carrying capacity K; at some time and this
violation of the restriction on maximum numbers is not only
a short-term effect while transient overcrowding is regulated.
This problem is independent of initial conditions or parameter
values. It occurs due to the incorporation into a two-species
competition model of a new switching term. To illustrate this
fact we consider an example with the parameter constellation

dy =0.005, d, =0.001, a; =0.001, a,=0.01,

Ki=K,=1, ¢=0.15,

and for simplicity the habitat D is chosen as a rectangle
D =0, 1] x [0, 1]. The parameters a;, a, describe the rel-
ative population growth per year and the conversion rate
¢ = 0.15 is assumed to be moderate. Figures 2—5 show the
frequencies of both languages as a cut through the rectangu-
lar domain at different times. The initial conditions are as in
Figure 2, the languages are spatially separated, and speakers
of the dominant language 1 are initially less abundant.

With ongoing time we observe the impacts of diffusion,
growth, and interaction and as a result the dominance of lan-
guage 1. Language 2 becomes extinct after a finite time period
(Figure 5). But Figure 4 shows that language 1 exceeds its
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Figure 2.
Initial distribution of the frequencies.
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Figure 3.
Frequency distributions after 5 years.
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Figure 4.
Frequency distributions after 40 years.
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Figure 5.
Frequency distributions after 130 years.

carrying capacity K. This violation of the restriction persists
until the frequency of language 2 is equal to zero (i.e., lan-
guage 2 has become extinct), when the frequency u; returns
to K. This effect violates the model assumption K| = u™,
and consequently the equilibrium (K, 0) is not feasible.

Such a problem did not arise in the earlier models of
Abrams and Strogatz (2003) and of Patriarca and Leppénen
(2004), which required the total number of individuals (speak-
ing whichever language) to be conserved. The reason for the
aberrant behavior of the system in this two-species ecological
model is the permanent conversion of speakers from language
2 to the dominant language 1, in a system where (in the original
two-species ecological context) the competition term is purely
a loss term for the less competitive species. In the absence
of competition, the populations of speakers of both languages
would experience logistic growth, with the intrinsic growth pa-
rameter a; and the self-limiting coefficient b; = a; /K; main-
taining u; at or below the carrying capacity K;. But language
1 possesses the additional nonnegative “growth” term cuu,
and the coefficient b; is now too weak to “save” the boundary
K. As a consequence the frequency of language 1 exceeds
its upper boundary value. Once language 2 becomes extinct
then the competition term cuu;, equals zero and the growth of
language 1 is determined by the logistic growth function—the
frequency u; tends toward the carrying capacity K;.

Summarizing the results above we obtain that the equilib-
ria (0, 0) and (0, K;) are not stable, and that the coexistence
state

W', ) = (

@ Ki(a1 + cKz) aiKz(ax — cKy)
ajar + 2K 1K, ’ arar + 2K K>

and the extinction state (K, 0) are not feasible. This means
that system (1) possesses no meaningful stable long-term ratios
for the frequencies of both languages. To address this problem
we now develop two modified versions of model (1).
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"Capped” Model

In this section we modify the above model (1) in such a way
that it is no longer possible for the number of speakers of
language 1 to exceed their carrying capacity K. The idea is
to adjust the self-limiting coefficient b; to take account of the
dominant status of language 1.

If we interpret cuju, as an additional growth term
we can rewrite the term wui[a; — byu; + cuz] in the form
uyla; + cus] — byuy. With the following definition of the self-
limiting coefficient by = bi(uz) = (a; + cuy)/ K, the growth
of the dominant language 1 is now restricted to the carrying ca-
pacity K. These considerations lead to the following slightly
modified reaction—diffusion competition model

du c

U A Auy 4 uifay — byuy - cu] — —uius,

ot K, )
d

% = drAuy + uz[ar — boupy — cuy].

The meaningful equilibria of this model in a bounded convex
two-dimensional habitat D have the form

(HT, uz) = (07 0)7 (MT, uz) = (Kl, O),

W} 13) = (0, Ka), (u}, ) = (Kl, M)
a

Again the case of extinction of the total population of speak-

ers of both languages (0, 0) is not of interest. The second

and third equilibria indicate situations where one language

becomes extinct. For the parameter constellation a, > c¢Kj,

which is derived from the assumption

i = @Ky —cKiKy 0, 3)
ay -

the fourth equilibrium describes a coexistence state with pos-
itive components u} and uj. Language 1 is dominant and
therefore its frequency grows until the carrying capacity K
is reached, but language 2 also has a positive frequency. The
stability of these equilibria can be derived by applying phase—
plane analysis. We obtain that—not surprisingly—the states
(0, 0) and (0, K,) are unstable. The extinction state (K1, 0) is
stable for the parameter constellation a, < cK;, which is the
same condition as in model (1). In contrast, the coexistence
state is now stable if a; > cK, is fulfilled. This condition is
equivalent to the “existence” condition (3) for the coexistence
state.’ This means that if this state exists in a meaningful sense
then it is stable.

In analyzing the likelihood of loss of endangered lan-
guages it is also interesting to ask how long it takes until

Biological Theory 3(2) 2008
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Figure 6.

Every line represents the parameter constellations of @, and ¢, which lead to
the same extinction time (in years). In the left figure the growth coefficient of
language 1 is chosen to be @; = 0.01 and in the right @; = 0.25. The diffusion
coefficients are the same in both examples, d; = 0.005 and d; = 0.001.

the extinction states are reached. Figure 6 gives numerical
estimates of extinction times if the growth rates of the higher-
status language 1 are assumed to be a; = 0.01 (Figure 6, left)
and a; = 0.25 (Figure 6, right). The carrying capacities K
and K, of both languages are chosen to be 1. In Figure 6 all
curves are below the bisecting line that illustrates the extinc-
tion condition a, < c. It is obvious that different parameter
constellations a, and ¢ can lead to the same extinction time,
but a higher growth coefficient a, needs to be balanced by
a higher conversion rate ¢ to maintain the same extinction
time. Additionally, if language 1 has a higher growth rate a;
then smaller conversion rates c are required to obtain the same
extinction times.

In summary, this modified “capped” model (2) yields two
stable equilibria in a bounded convex two-dimensional habitat
D. Depending on the parameter constellation describing the
language ecology, i.e., whether a; > cK; or a, < cK;, we
obtain either a coexistence situation or a situation where the
endangered language 2 becomes extinct.

Model With a Common Carrying Capacity

In this section we discuss the use of the term “carrying ca-
pacity” in the previous models (1) and (2). These models are
adopted from the field of population ecology. There the anal-
ysis of interactions between different species is the main con-
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cern. In this context and following Ehrlich (1994) the carrying
capacities represent the maximum population sizes of species
that an area can support without reducing its ability to support
the same species in the future. But in the case of language
competition we consider only one species carrying two dif-
ferent variants of one cultural trait. So unless socioeconomic
factors create entirely separate niches for each language and
its speakers, there should be only one upper boundary for pop-
ulation size—the maximum number of individuals which is
supported by a given area, regardless of the language spoken.

In the following we assume that both languages compete
for a finite pool of speakers, who have a common carrying
capacity. That means that the frequencies of speakers of both
languages have to fulfill the condition

u +u, <K, 4)

where K stands for the common carrying capacity. This con-
dition changes the growth dynamics of both languages even
in absence of competition. Assuming u; is fixed then the fre-
quency of language 1 must be less than or equal to K — u»,
so that condition (4) is met. In other words, the frequencies u,
and u; can grow only until (respectively) K — u; and K — u
are reached. This means that the self-limiting coefficient b;
must be modeled so that it is able to restrict the frequency
of speakers of language i to K — u;. With the definitions
by = bi(uz) = a1 /(K — up) and by = by(u1) = ar/(K — uy)
we obtain the following model:

ou

8_t1 =diAuy + aju[1 —u1 /(K — u2)] + cuu,

duts &)
o = dyAuy + arus[l — up /(K — uy)] — cuqus.

In this model, violation of the boundary condition (4) due to
the competition term is not possible since we have a symmetric
situation. The loss of speakers of one language is the gain of
the other language. The terms £cu u, do not change the total
population frequency u; + u,.

The meaningful equilibria of model (5) in a
bounded convex two-dimensional habitat D are (u}, u}) =
0,0), (uj, u3) = (K, 0), (uj, uy) = (0, K) where only (K, 0)
is a stable equilibrium. The structure of model (5) implies that
coexistence is no longer possible. Language 2 cannot resist
the permanent conversion of speakers to language 1 since the
situation described in note 3 cannot be reached. The condition
uy + uy < K implies that due to the permanent nonnegative in-
flux of speakers language 1 will stop growing only ifu; = K is
reached. But this leads to the extinction of language 2. Figure 7
shows numerical estimates of the extinction times for differ-
ent parameter constellations (i.e., for different environmental
conditions). The growth rates of the dominant language are
assumed to be a; = 0.01 (Figure 7, left) and a, = 0.25 (Fig-
ure 7, right), and the carrying capacity is set to be K = 1. As
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Figure 7.

Analogous to Figure 6 every line represents the parameter constellations of
ay and ¢, which lead to the same extinction time (in years). In the left figure
the growth coefficient of language 1 is chosen to be a; = 0.01 and in the
right a; = 0.25. The diffusion coefficients are the same in both examples,
dy = 0.005 and d; = 0.001.

in Figure 6 different values for a, and ¢ can lead to the same
extinction times, and a higher growth coefficient a, must be
balanced by a higher conversion rate ¢ to maintain the same ex-
tinction time. Furthermore, if language 1 has a higher growth
rate then smaller conversion rates are again required to obtain
the same extinction times.

Model (5) in a bounded convex two-dimensional habitat
D predicts the extinction of the lower-status language. The
permanent loss of speakers through competition cannot be
compensated by their internal reproductive rate. Even a large
growth rate a, leads only to an extension of the time-course
until the equilibrium (K, 0) is reached.*

Spatial Heterogeneity

We have seen that under the assumption of a homogeneous
environment model (5) leads to extinction of the lower-status
language. In this section we want to explore the effects of
spatial heterogeneity on the interaction dynamic and consider
a situation where both competing languages are dominant in
different core areas. The reasons for dominance in such core
areas can relate to political, social, and/or economic factors.’
We incorporate this fact in model (5) by allowing the com-
petition coefficient ¢ to vary spatially. We have shown in the
previous section that every competitive advantage (modeled
by an additive competition term) of one language leads to the
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extinction of the other over time. So we assume that the consid-
ered two-dimensional area D is divided into subareas D; and
D, where® ¢(x) = ¢; if x € D; and ¢(x) = ¢, if x € D,. The
areas D; and D, are the core areas—the areas of dominance
respectively of languages 1 and 2.

In the following we consider the modified version of
model (5) where c(x) is chosen as defined above. At first we de-
termine the dynamic of the modified model with d, = d, = 0,
which means the speakers of both languages are not allowed to
move in space, with language 1 initially present in the whole
area D; and language 2 in the whole area D,. We already know
that with the chosen competition coefficient c(x), language 1
is dominant in area D; and language 2 in area D,. Since both
groups of speakers are assumed to be nondiffusive we obtain
an equilibrium as shown in Figure 8. The spatial heterogeneity
in the competition behavior of both languages results in an
equilibrium which is no longer spatially constant and where
both languages are spatially separated. Language 1 drives lan-
guage 2 to extinction in the area D; and language 2 does the
same with language 1 in area D;.

We now consider the influences of spatial diffusion. The
diffusion term characterizes the spatial dispersal of speakers of
each language in our model and causes movement of speakers
of language 1 into the area D, and vice versa. Due to the
dominance of each language in its core area (D; and D), each
language is immune to extinction in its own core area. But
the diffusion mechanism is able to produce a stable interaction
or coexistence zone between the two core areas. Figures 9—
11 show the stable long-term ratios of both languages for
different values of the diffusion coefficients—a measure of the
tendency to spread in space—d,; and d,. It is obvious that the
equilibria are not spatially constant. The larger the diffusion
coefficients, i.e., the further the speakers of one language are
able to spread into the core area of the other language, the
wider is the stable coexistence zone. Spatial spread can even
mix both languages in such a way that they are both present
over the whole considered area D.’

Summarizing, the inclusion of spatial heterogeneity to
model (5) in the form of spatial varying competition behavior
leads to more complex situations, where—due to the assumed
dominance of both languages in their core areas—coexistence
is possible. The width of the interaction zone depends on the
tendency of speakers of both languages to be spatially mobile
outside their own core areas.

Conclusion

In this article we have considered different models of lan-
guage competition in the case where one language is domi-
nant. These situations are of particular interest since they can
be found in many modern language-contact situations. We
have seen that the ecological competition model shows some

Biological Theory 3(2) 2008
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deficiencies when applied to language competition. We have
modified this model to preserve the boundary condition for
maximum numbers of speakers of the dominant language.
This modified model predicts that different environmental con-
ditions can support states of coexistence as well as states of
extinction of the endangered language. However, this modified
model still assumes that competing languages have separate
carrying capacities for their speakers. This seems an unrealistic
assumption since languages can be considered as different vari-
ants of the cultural trait, “language.” We therefore developed
a third model in which both languages compete for a common
population of potential speakers. In this model, as in the origi-
nal model of Abrams and Strogatz (2003), the extinction of an
endangered language is predicted where there is preferential
shifting into the dominant language by its speakers. But adding
spatial heterogeneity in the competition term leads to more
complex situations where coexistence of languages is possible.

Notes

1. A number of other mathematical approaches to language competition
exist, including agent-based models (Castell6 et al. 2007) and Monte Carlo
simulations based on game theory (Kosmidis et al. 2005), some of which
also consider bilingualism (Baggs and Freedman 1993; Castell6 et al. 2007).
Schulze and Stauffer (2006)is a recent review of such work by physicists.

2. We note that the reaction—diffusion system (1) in a bounded convex
domain leads to the same equilibria as the ODE system, without considering
the diffusion component (which yields only transient effects). However, in
the real-world context, language competition is usually an outcome of new
or intensified contact between populations that retain some initial spatial
separation. Our method of solution permits us to observe the effects of
different levels of diffusivity on the time course to these equilibria, and would
also allow us to modify the spatial structure of the domain in order to study
the effects of further confining the zone of interaction.

3. The “existence” and stability condition a; > ¢ K for the coexistence state
can be interpreted as follows: The term cu;u, describes the conversion rate of
speakers from language 2 to language 1. So the conversion rate is proportional
to the product of the actual frequencies of the languages. Further K is the
upper boundary for the frequency of speakers of language 1. In the case
u1 = K language 1 exerts the highest pressure on language 2. But if speakers
of language 2 can compensate for these peak loss rates by a sufficiently high
reproductive rate, then language 2 can still survive. And this is exactly what
ay > cK implies.

4. This result could be inverted by assuming density-dependent conversion
parameters, which would—contrary to the considerations so far—imply that
the advantage of a language is determined by its frequency. If, for example, a
rapid dispersal of its speakers caused the initially high-status language to fall
below a certain population density threshold in a specific area, then the sign
of the conversion term would change in that area and the former low-status
language becomes the high-status language (and vice versa).
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5. An example is the situation in the Basque Country, which enjoys sub-
stantial cultural and political autonomy, and where the Basque language is
protected by laws—and by the regulatory activity of an academy set up to
maintain it. The Basque language is an isolate, unrelated to the Indo-European
languages also spoken in this and adjacent regions. It is plausible that this
makes it more difficult for speakers in one group to learn the other group’s
language, and that this has also impeded rates of shifting (although we do not
explicitly consider such factors here).

6. For analytical reasons c¢(x) is not implemented as a jump function, we
model ¢(x) as a linear function in a narrow transition zone. It is not over-
simplifying to treat the function c(x) as constant within the different core
areas because which language is locally dominant depends only on the sign
of ¢ and not on the numerical value.

7. Situations with different values for the diffusion coefficients d; and d;
result in asymmetric coexistence zones.
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