

Competencies evaluation based on single valued neutrosophic numbers and decision analysis schema

Evelyn Jazmín Henríquez Antepara¹, Oscar Omar Apolinario Arzube², Jorge Arturo Chicala Arroyave³, Eduardo Antonio Alvarado Unamuno⁴, Maikel Leyva Vazquez⁵

¹Universidad de Guayaquil, Facultad de Ciencias Matemáticas y Físicas, Guayaquil Ecuador. Email: evelyn.henriqueza@ug.edu.ec
 ²Universidad de Guayaquil, Facultad de Ciencias Matemáticas y Físicas, Guayaquil Ecuador. Email: apolinariooscar@gmail.com
 ³Universidad de Guayaquil, Facultad de Ciencias Matemáticas y Físicas, Guayaquil Ecuador. Email: jchicala@hotmail.com
 ⁴Universidad de Guayaquil, Facultad de Ciencias Matemáticas y Físicas, Guayaquil Ecuador. Email: eduardo.alvaradou@ug.edu.ec
 ⁵Universidad de Guayaquil, Facultad de Ciencias Matemáticas y Físicas, Guayaquil Ecuador. Email: mleyvaz@ug.edu.ec

Abstract. Recently, neutrosophic sets and its application to decision making have become a topic of significant im-portance for researchers and practitioners. The present work addresses one of the most complex aspects of the formative process based on competencies: evaluation. In this paper, a new method for competencies evaluation is developed in a multicriteria framework. The proposed framework is composed of four activities, framework, gathering information, ideal solution distance calculation

1 Introduction

In this paper, one of the most complex aspects of the formative process based on competencies is addressed: evaluation. A new method for competencies evaluation is developed in a multicriteria framework based on decision analysis.

Decision analysis is a discipline, belonging to decision theory, with the goal of computing an overall assessment that summarizes the information gathered and providing useful information about each evaluated element [1]. Uncertainty is present in real world decision making problems in such cases the use of linguistic information to model and manage such an uncertainty has given good results [2]. Experts feel more comfortable providing their knowledge by using terms close to human cognitive model [3, 4].

The conventional crisp techniques have been not much effective for solving decision problems because of imprecise or fuzziness nature of the linguistic assessments. It is more reasonable to consider the values of alternatives according as single valued neutrosophic sets (SVNS) [5]. SVNS can handle indeterminate and inconsistent information, while fuzzy sets and intuitionistic fuzzy sets cannot describe them [6]. In this paper a new model competencies evaluation is

and ranking alternatives. Student are evaluated using SVN, for the treatment of neutralities, and Euclidean distance. The paper ends with conclusion and future work proposal for the application of neutrosophy to new areas of education.

Keywords: competency, evaluation, neutrosophy, SVN numbers

developed base on single valued neutrosophic number (SVN-number) allowing the use of linguistic variables [7] and giving methodological support based on decision analysis schema.

This paper is structured as follows: Section 2 reviews some important concepts about decision analysis framework and SVN numbers. In Section 3, is presented a decision analysis framework based on SVN numbers for competencies evaluation. Section 4 shows a case study. The paper ends with conclusions and further work recommendations.

2 Decision schemes

Decision analysis is a discipline with main purpose of helping decision maker to reach a consistent decision [8]. A common decision resolution scheme consists of following phases [2, 9].

- Identify decision and objectives.
- Identify alternatives.
- Framework:
- Gathering information.
- Rating alternatives.
- Choosing the alternative/s:
- Sensitive analysis
- Decide

In the framework phase, he structures and elements of the decision problem are defined: experts, criteria, etc. The information provided by experts is collected, according to the defined framework in the gathering information phase. In line with our aims in this paper, a SVN numbers [10] approach is developed due to the fact that provide adequate computational models to deal with linguistic information [11] in decision problems allowing to include handling of indeterminate and inconsistent.

A way to compute a rating of alternatives is to use an ideal alternative. A comparison between an ideal alternative and available options in order to find the optimal choice could be used [12]. Normally, the closer alternative to the ideal, corresponds to the best alternative.

3 SVN-numbers

Neutrosophy [13] is mathematical theory developed for dealing with indeterminacy. The truth value in neutrosophic set is as follows [14]:

Let N be a set defined as: $N = \{(T, I, F) : T, I, F \subseteq [0, 1]\}$, a neutrosophic valuation n is a mapping from the set of propositional formulas to N, that is for each sentence p we have v(p) = (T, I, F).

To facilitate the real world applications of neutrosophic set and set-theoretic operators single valued neutrosophic set (SVNS)[5] was developed

A single valued neutrosophic set (SVNS) has been defined as follows [5]:

Let X be a universe of discourse. A single valued neutrosophic set A over X is an object having the form:

$$A = \{ \langle x, uA(x), rA(x), vA(x) \rangle \colon x \in X \}$$
(1)

where $u_A(x): X \to [0,1], r_A(x), X \to [0,1]$ and $v_A(x): X \to [0,1]$ with $0 \le u_A(x) + r_A(x) + v_A(x) \le 3$ for all $x \in X$. The intervals $u_A(x), r_A(x) \ge v_A(x)$ denote the truth-membership degree, the indeterminacy-membership degree and the falsity membership degree of x to A, respectively.

Single valued neutrosophic numbers (SVN number) is denoted by A=(a,b,c), where $a,b,c\in[0,1]$ and $a+b+c\leq 3$.

Alternatives could be rated according Euclidean distance in SVN [15, 16].

Let $A^* = (A_1^*, A_2^*, ..., A_n^*)$ be a vector of n SVN numbers such that $A_j^* = (a_j^*, b_j^*, c_j^*)$ j=(1,2, ..., n) and $B_i = (B_{i1}, B_{i2}, ..., B_{im})$ (i = 1, 2, ..., m) be m vectors of n SVN numbers such that $B_{ij} = (a_{ij}, b_{ij}, c_{ij})$ (i = 1, 2, ..., m), (j = 1, 2, ..., m). Then the separation measure between B_i 's y A^* is defined as follows:

$$\begin{split} \mathbf{s}_{i} &= \left(\frac{1}{3} \sum_{j=1}^{n} \left\{ \left(\left| \mathbf{a}_{ij} - \mathbf{a}_{j}^{*} \right| \right)^{2} + \left(\left| \mathbf{b}_{ij} - \mathbf{b}_{j}^{*} \right| \right)^{2} + \left(\left| \mathbf{c}_{ij} - \mathbf{c}_{j}^{*} \right| \right)^{2} \right\} \right)^{\frac{1}{2}} & (i \\ &= 1, 2, \dots, m) \end{split}$$

In this paper linguistic variables[11] are represented using single valued neutrosophic numbers [16] for developing a framework to decision support.

2.2 Proposed framework

Our aim is to develop a framework for competencies evaluation based on for decision analysis based and SVN numbers. The model consists of the following phases (graphically, Fig. 3).

The proposed framework is composed of three activities, framework, gathering information and rating alternatives.

Framework

In this phase, the evaluation framework, the decision problem structure is defined. The framework is established as follows:

 $\begin{array}{l} \mathrm{C}=\{c_1,c_2,\ldots,c_l \ \text{ with } l\geq 2 \ , \ \mathrm{a \ set \ competencies}. \\ \mathrm{E}=\{e_1,e_2,\ldots,e_k \ \} \ \mathrm{with } k\geq 2 \ \mathrm{A \ set \ of \ students}. \end{array}$

Gathering information

In this phase, the assessments is provided by means of assessment vectors:

 $U = (v_{ij}, i = 1, ..., l, j = 1, ..., k)$ (3) The assessment v_{ij} , for each criterion c_i of each student e_j , is expressed by means of SVN numbers.

Rating alternatives

For rating alternatives an ideal option is constructed [16, 17] .the evaluation criteria can be categorized into two categories, benefit and cost. Let C^+ be a collection of benefit criteria and C^- be a collection of cost criteria. The ideal alternative is defined as:

$$I = \left\{ \left(\max_{i=1}^{k} T_{U_{j}} | j \in C^{+}, \min_{i=1}^{k} T_{U_{j}} | j \in C^{-} \right), \left(\min_{i=1}^{k} I_{U_{j}} | j \in C^{-} \right), \left(\min_{i=1}^{k} F_{U_{j}} | j \in C^{$$

Alternatives are rating according Euclidean distance to I (2). Ranking is based in the global distance to the ideal. If alternative x_i is closer to I the distance measure (s_i closer) better is the alternative [18].

3 Case study

A demonstrative example is given below. In the stage of establishing the evaluation framework, the domain in which the information will be verbalized is selected. The following linguistic terms are used (Table 1).

Linguistic terms	SVNSs
Extremely good (EG)	(1,0,0)
Very very good (VVG)	(0.9, 0.1, 0.1)
Very good (VG)	(0.8,0,15,0.20)
Good (G)	(0.70,0.25,0.30)
Medium good (MG)	(0.60,0.35,0.40)
Medium (M)	(0.50,0.50,0.50)
Medium bad (MB)	(0.40,0.65,0.60)
Bad (B)	(0.30,0.75,0.70)
Very bad (VB)	(0.20,0.85,0.80)
Very very bad (VVB)	(0.10,0.90,0.90)
Extremely bad (EB)	(0,1,1)

 Table 1. Linguistic terms used to provide the assessments [16].

 Three core competencies are evaluated in three students.

 c_1 : Analyze, identify and define the requirements that must be met by a computer system to solve problems or achieve objectives of organizations and individuals.

 c_2 : Manage Databases through a Database Management System (DBMS).

 c_3 : Plan and manage software development projects.

Once the prioritization framework is established, the information is obtained.

	e_1	<i>e</i> ₂	<i>e</i> ₃
<i>c</i> ₁	MDB	М	MMB
<i>C</i> ₂	В	MMB	В
<i>C</i> ₃	В	MDM	MB

 Table 2: Preferences given by experts

From this information, the ideal alternative is calculated. The ideal alternative results:

 $E^+ = (MMB, MMB, MB)$

The results of the calculation of the distances allow us to order the students according to the achievement of the competences. In this case the priority order is the following: $e_3 > e_1 > e_2$

Student	Distance	
e ₁	0.35355339	

	e ₂	0.59160798		
	e ₃	0.18484228		
Тя	Table 3: Distance calculation			

Among the advantages found by the specialists are the relative ease of the technique. The results also show the applicability of SVN-based decision support models to competency assessment.

Conclusions

In this paper, a competency assessment model was presented. The students were evaluated by means of the SVN numbers and the Euclidean distance for the treatment of neutrality.

Further works will concentrate extending the model for dealing with heterogeneous information [19] and a multiexpert setting. Another area of future work is the developing of new aggregation operators based on SVN numbers specially compensatory operators [20].

References

- Espinilla, M., et al., A comparative study of heterogeneous decision analysis approaches applied to sustainable energy evaluation. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2012. 20(supp01): p. 159-174.
 - Estrella, F.J., et al., *FLINTSTONES: A fuzzy linguistic* decision tools enhancement suite based on the 2-tuple linguistic model and extensions. Information Sciences, 2014. **280**: p. 152-170.
 - Rodríguez, R.M. and L. Martínez, An analysis of symbolic linguistic computing models in decision making. International Journal of General Systems, 2013.
 42(1): p. 121-136.
 - Leyva-Vázquez, M., et al., *The Extended Hierarchical Linguistic Model in Fuzzy Cognitive Maps*, in *Technologies and Innovation: Second International Conference, CITI 2016, Guayaquil, Ecuador, November 23-25, 2016, Proceedings*, R. Valencia-García, et al., Editors. 2016, Springer International Publishing: Cham. p. 39-50.

Wang, H., Smarandache, F. et al., *Single valued neutrosophic sets*. Review of the Air Force Academy, 2010(1): p. 10.

Akram, M. and A. Luqman, *Intuitionistic single-valued* neutrosophic hypergraphs. OPSEARCH: p. 1-17.

Biswas, P., S. Pramanik, and B.C. Giri, *TOPSIS method* for multi-attribute group decision-making under singlevalued neutrosophic environment. Neural computing and Applications, 2016. **27**(3): p. 727-737.

Espinilla, M., et al. A heterogeneous evaluation model for assessing sustainable energy: A Belgian case study.

E. J. H. Antepara, O. O. A. Arzube, J. A. C. Arroyave, E. A. A. Unamuno, M. L. Vazquez. Competencies evaluation based on single valued neutrosophic numbers and decision analysis schema

2.

3.

4.

5.

6.

7.

8.

in Fuzzy Systems (FUZZ), 2010 IEEE International Conference on. 2010. IEEE.

- 9. Clemen, R.T., *Making Hard Decisions: An Introduction* to Decision Analysis. 1996: Duxbury Press.
- Deli, I. and Y. Şubaş, A ranking method of single valued neutrosophic numbers and its applications to multiattribute decision making problems. International Journal of Machine Learning and Cybernetics, 2016: p. 1-14.
- Leyva-Vázquez, M., et al. The Extended Hierarchical Linguistic Model in Fuzzy Cognitive Maps. in Technologies and Innovation: Second International Conference, CITI 2016, Guayaquil, Ecuador, November 23-25, 2016, Proceedings 2. 2016. Springer.
- 12. Zeng, S., T. Baležentis, and C. Zhang, A method based on OWA operator and distance measures for multiple attribute decision making with 2-tuple linguistic information. Informatica, 2012. **23**(4): p. 665-681.
- 13. Smarandache, F., A Unifying Field in Logics: Neutrosophic Logic. Philosophy, 1999: p. 1-141.
- Rivieccio, U., Neutrosophic logics: Prospects and problems. Fuzzy sets and systems, 2008. 159(14): p. 1860-1868.
- 15. Ye, J., Single-valued neutrosophic minimum spanning tree and its clustering method. Journal of intelligent Systems, 2014. **23**(3): p. 311-324.

- Şahin, R. and M. Yiğider, A Multi-criteria neutrosophic group decision making metod based TOPSIS for supplier selection. arXiv preprint arXiv:1412.5077, 2014.
- 17. Leyva-Vázquez, M., K. Pérez-Teruel, and R.I. John. A model for enterprise architecture scenario analysis based on fuzzy cognitive maps and OWA operators. in Electronics, Communications and Computers (CONIELECOMP), 2014 International Conference on. 2014. IEEE.
- Leyva-Vázquez, M., et al., Técnicas para la representación del conocimiento causal: un estudio de caso en Informática Médica. Revista Cubana de información en ciencias de la salud, 2013. 24(1): p. 73-83.
- 19. Pérez-Teruel, K., M. Leyva-Vázquez, and M. Espinilla-Estevez. A linguistic software requirement prioritization model with heterogeneous information. in 4th International Workshop on Knowledge Discovery, Knowledge Management and Decision Support 2013), (EUREKA Mazatlán (Mexico). 2013.
- Espin-Andrade, R.A., et al., Archimedean-Compensatory Fuzzy Logic Systems. International Journal of Computational Intelligence Systems, 2015. 8(sup2): p. 54-62.
- F. Smarandache, Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras. And Applications. Pons Editions, Bruxelles, 325 p., 2017.

Received: July 7, 2017. Accepted: July 25, 2017.

19