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Abstract

In the late 1940s and early 1950s Lorenzen developed his operative
logic and mathematics, a form of constructive mathematics. Nowa-
days this is mostly seen as the precursor to the more well-known
dialogical logic1 and one could assumed that the same philosophical
motivations were present in both works. However we want to show
that this is not always the case. In particular, we claim, that Loren-
zen’s well-known rejection of the actual infinite as stated in Lorenzen
(1957) was not a major motivation for operative logic and mathe-
matics. In this article, we claim that this is in fact not the case.
Rather, we argue for a shift that happened in Lorenzen’s treatment
of the infinite from the early to the late 1950s. His early motivation
for the development of operativism is concerned with a critique of
the Cantorian notion of set and related questions about the notion of
countability and uncountability; only later, his motivation switches to
focusing on the concept of infinity and the debate about actual and
potential infinity.

1 Introduction
In his work on the philosophy of mathematics, Paul Lorenzen was motivated
by the challenges mathematics was confronted with at the beginning of the
20th century and the so-called foundational crisis of mathematics2. To tackle
the problems raised during this crisis, he developed a new foundational sys-
tem for mathematics in the 1950s, a system he called “operative logic” and
“operative mathematics”3. Nowadays, the work on operative logic is mostly
referred to as a precursor of his later, much better known, work on dialogical

1Notable exceptions are the works of Schroeder-Heister (2008), Coquand and Neuwirth
(2017) and Kahle (in this volume).

2At least this pertains to his broader philosophical motivations. At the beginning,
mathematical reasons were more prevalent, as Lorenzen recognized the impact of his work
in lattice theory on consistency proofs (see Coquand and Neuwirth (2017), Neuwirth (20xx.
To appear.)). I would like to thank one of the referees for pointing this out to me.

3A complete presentation can be found in Lorenzen (1955). For all quotes from this
book and all the other German texts, the translations to English are my own.
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logic. Indeed, this approach was developed as an answer to the shortcoming
of operative (proto-)logic.4 In this article we want to focus on his operative
mathematics, which is an elaborate attempt at building a constructive version
of mathematics that still preserves (most of) modern analysis. Although he
later abandoned the specific way in which operative mathematics was set up,
he continued to pursue the general ideas and motivations operative mathe-
matics rested on.

At the beginning of the 1950’s however Lorenzen still perceived his oper-
ative logic and mathematics to be nothing less than a “new way to overcome
the foundational crisis” (Lorenzen, 1956b).5 This new way is situated be-
tween the two main factions that developed answers to the crisis, the “Hilber-
tians” and the “intuitionists”. In Lorenzen’s view the question of a “good”
foundation for analysis remained unanswered by both accounts and so he
sought out a new way towards a foundation by using methods and ideas
of both approaches while overcoming the problems they were faced with.
Central to this endeavor is a thorough treatment of the real numbers. On
Lorenzen’s view, it was a (mistaken) treatment of the reals that led to the
development of Cantorian set theory and the connected notion of mathemat-
ical infinity, which in turn gave rise to the problems that were at the heart
of the foundational crisis.

Nowadays, Lorenzen is mostly known for his rejection of actual infinity.
Indeed, Lorenzen (1957) claims that the next big challenge for mathematics is
to show that “the infinitely large (more precisely, the actual infinite) is to be
demonstrated to be disposable” 6. Therefore, it could seem that the rejection
of actual infinity was also a central motivating factor for his development of
operative mathematics.

In this article we want to argue that this is in fact not the case. In-
stead, we claim that the rejection of actual infinity was not prevalent in his
development of operative mathematics; in particular, the notion of infinity
was not his main focus, but rather the notion of set was. Our hypothesis is
that a shift occurred in Lorenzen’s treatment of infinity: In the beginning he
focused on the notion of set and connected to this, the notions of countable

4For a detailed account of how and why Lorenzen abandoned operative logic and de-
veloped dialogical logic, see Lorenz (2001).

5“Die operative Logik und Mathematik stellt einen neuen Weg der Überwindung der
Grundlagenkrise dieser Wissenschaften dar.” Lorenzen (1956b), a short but very informa-
tive outline of the main ideas of his operationist system, also sketches a larger project he
seemed to have in mind, by planning on exploring the ramifications operative mathematics
has for wider applications in the sciences.

6(Lorenzen, 1957, 11), translation taken from (Lorenzen, 1987, 202)
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and uncountable sets7; only in the late 1950s his focus shifted towards the
question of potential and actual infinity8

To make this hypothesis plausible, we will first give an overview of how
Lorenzen’s operative approach is embedded in the general discussion on the
foundational crisis in mathematics and, in particular, how it relates to the
major approaches of formalism and intuitionism (section 2). To explain the
first part of the proposed shift in Lorenzen’s work, we will take a closer look at
how Lorenzen eliminates the classical notion of set and how this impacts the
notion of countability and uncountability in operative mathematics (section
3). In section 4 we will compare his treatment of the notion of infinity from
the early and late 1950’s and argue for the shift in Lorenzen’s treatment of
infinity. In the last section we will suggest possibilities for future work on the
explanation of why this shift occurred and the systematic question whether
operative mathematics is a valid framework for potential infinity.

2 Operationalism and the foundational crisis
Before going into the details of how Lorenzen attempted to tackle the ques-
tion of the notions of set and infinity in an “operative” way, we want to show
how Lorenzen situated his approach in the discussion about the foundational
crisis in mathematics. This chapter therefore also serves as a short overview
of Lorenzen’s thought on the foundations of mathematics in the 1950’s, as
most of his work from this time is quite unknown to an international audi-
ence.9

In the late 1940s and early 1950s, Lorenzen was working on an construc-
tive account of mathematics that had at its center the notion of operations
via certain schematic rules. In Fraenkel et al. it is described as follows:

For Lorenzen, the main (though not the only) subject of math-
ematics is the treatment of calculi—this should by no means be
misunderstood as a claim that mathematics is a calculus, which

7Sets are countable if there is an injective function from the set to the set of the natural
numbers; it is uncountable if there is not such function

8To explain what these terms mean, Lorenzen (and others) often point to Aristotele’s
definition in his Metaphysics, book 9, chapter 6. Mathematical definitions of these concepts
vary; they usually contain a description of some “construction process”, but differ in to
what point the construction should proceed and whether this is spelled out via induction,
computation or other approaches. In section 4.2. we discuss a possibilities of interpreting
Lorenzen’s notion of construct as a definition of potential infinity.

9One reason is that most of his papers were published in German and no English
translations are available.
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Lorenzen would very definitely reject—where a calculus is un-
derstood to be a system of rules for schematic operations with
figures, which may but need not be marks on paper; they might
as well be pebbles (calculi) or any other physical objects. In ad-
dition to this precisification of the subject-matter of mathematics
- and only slightly connected with it - Lorenzen stipulates that
the methodical frame be as wide as compatible with the conditio
sine qua non that all mathematical statements be definite.10

(Fraenkel et al., 179)
Lorenzen acknowledges several sources for the ideas he uses in this op-

erative approach, the most important among them being Weyl (1918). His
approach is quite comprehensive, giving not only a new way of building up
different areas of mathematics (with analysis as the most important one),
but complementing this with a new logical system, the operative logic, which
in turn is founded on the so-called protologic.

He sees this as a kind of reverse account to Hilbertian mathematics and
meta-mathematics:11

After it became clear that an axiomatisation of the naive theory
is not enough, but is in need of a metamathematics, the task
arises to justify the metamathematical modes of inference. The
object of metamathematics are certain formal systems [Kalküle],
i.e. axiomatized theories. Reversing this line of research, in “op-
erationalism” it is the formal systems (i.e. operating with symbol
strings [Figuren] as such) that are put at the beginning, meta-
mathematics is supplanted by protologic. (Lorenzen, 1956b)12

10For an example of such a system of rules, see the system Z below, for a definition of
definiteness see section 4.2.

11Note that Lorenzen’s view on other ways out of the foundational crisis, as presented
for example by Hilbert or Brouwer, are only described here insofar as they serve as a
demarcation line for his operationalism. In his later work, for example (Lorenzen, 1960,
p.119), he indeed argued that the foundational crisis has been overcome precisely because
we have a fruitful interplay between Hilbert’s and Brouwer’s approach.

12“Nachdem deutlich geworden ist, daß eine Axiomatisierung der naiven Theorien
nicht genügt, sondern noch eine Metamathematik erfordert, stellt sich das Problem, die
metamathematischen Schußweisen zu begründen. Gegenstand der Metamathematik sind
gewisse Kalküle, nämlich die axiomatisierten Theorien. In genauer Umkehrung dieser Un-
tersuchungsrichtung werden im ‘Operativismus” beliebige Kalküle (also das Operieren mit
Figuren als solches) an den Anfang gestellt, an die Stelle der Metamathematik tritt so eine
Protologik.”
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In Lorenzen’s view, Hilbert’s Program and the distinction between math-
ematics and meta-mathematics is not able to adequately address the problem
of a foundation for mathematics for very basic, structural reasons:

According to Hilbert’s Program for the foundation of mathemat-
ics, the task to provide consistency proofs is assigned to meta-
mathematics. [...] As every proof is only as good as the methods
it uses, it can be objected to such proofs that the contentual
inference [inhaltliche Schließen] is neither formalized nor indeed
justified.
While attempting such a formalization it became apparent that
the distinction between mathematics and metamathematics is
not suited for the problem of foundation. The proof methods in
metamathematics are non others than those used in mathematics.
A foundation of metamathematics is therefore nothing but the
foundation of a part of mathematics [...].13 (Lorenzen, 1951a,
162)

So, instead of justifying the use of an axiomatic system in meta-mathematics
(for example by providing a consistency proof) in what could be perceived as
a justification after the fact, Lorenzen puts the justification at the beginning
of his investigation via the protological principles:

One can obtain certain protological principles without assuming
logical or mathematical knowledge, which are sufficient to estab-
lish customary logic and mathematics […]. (Lorenzen, 1956b)

These basic principles are, for example, operations on symbol strings that
have their origin in basic practices like pre-mathematical forms of counting.
They give rise to formalized operations or rules through which the usual
objects in mathematics can be defined. As one example, if one thinks about
numbers in the way of “strokes on paper” of the form I, II, III, . . . this can
be written down as rules on symbol strings such as the following rule system
Z:

1. Begin with I.

2. If you have reached x, add xI.
13Of course this is only Lorenzen’s account of Hilbert’s program and it would be inter-

esting to see, if it is a faithful one. For a non-Lorenzen viewpoint see for example Sieg
(1999).
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So, general rules on how to operate with symbol strings are given via
formal systems which then constitute the objects of operative mathematics.
In this way Lorenzen can utilize the usefulness of an axiomatic methodol-
ogy and at the same time have a sound foundation through the protological
principles.14

Such an approach shows the importance of action and applicability in
mathematics that are characteristic for Lorenzen’s thoughts:

Such rules are not examined as to whether they are “true” or
not—they are only examined as to whether they are “useful” or
not, i.e. if acting on these rules, meaning the construction of
symbols, is suitable to some purpose. This, however, is no longer
a mathematical question, but belongs to applications. (Lorenzen,
1951a, 163)

This applicability is also the biggest difference between Lorenzen’s oper-
ative mathematics and intuitionistic approaches like Brouwer’s and Weyl’s.
For Lorenzen a good foundation of mathematics should preserve the full
power of contemporary analysis. This means, in particular, that one should
be able to use tertium non datur, which is made possible in operative math-
ematics.

In contrast to intuitionistic attempts we are now—after an unob-
jectionable foundation of logic—allowed to always use the tertium
non datur. The uncomfortable restriction to “decidable proper-
ties”, “enumerable real numbers”, etc. is no longer neccessary.
An approach towards this intended direction was made already
by Weyl in 1918—however it had to fail, because a justification of
the tertium non datur was still lacking. (Lorenzen, 1951a, 166)

Lorenzen addresses this issue in operative logic by distinguishing be-
tween the effective predicate calculus (effektive Quantorenkalkül) (which is
in essence the intuitionistic approach) and the fictional predicate calculus
(fiktive Quantorenkalkül) which includes the tertium non datur and is there-
fore the classical predicate calculus. As the word “fictional” suggests, the
justification of such a calculus means to “justify a fiction”(Lorenzen, 1955,
79). This justification can be given “in most of the cases” (Lorenzen, 1955,

14Lorenzen was not in general opposed to using axiomatic methods, as long as they
are not used as a foundation: “Axiomatizations have no other purpose than to simplify
operating on constructible sets, functions, real numbers etc.” (Lorenzen, 1951a, 165).
Lorenzen (1960, 118) calls this the “systematic priority of axiomatic mathematics over
constructive mathematics.”
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84) by a careful analysis of the concepts of effective and fictional derivability
or un-derivability. Using these means Lorenzen achieves a compatibility of
operative analysis with classical analysis—although he notes that “[t]he op-
erative conception also implies that the intuitionistic opinion is right in that
‘in fact’ only effective derivability is of interest” (Lorenzen, 1955, 84).

Operative logic and mathematics is deemed to be a third way out of
the crisis in that it overcomes both the foundational weakness of formalistic
approaches and the lack of full applicability of the intuitionistic approaches,
while at the same time borrowing some of their strengths. Incidentally, this
also holds for Russell’s solution to the crisis. As we will see in the next
section, Lorenzen uses a version of Russell’s ramified type theory to avoid
impredicativity:

With the laudable exception of the intuitionists, who went their
own way, this approach (Russell’s ramified type theory) has been
abandoned in favour of unramified type theory only because ram-
ified type theory [Stufenlogik] was allegedly too complicated, be-
cause the stock of modern mathematics could not be “saved”
in a satisfactory manner. However, the impredicativity of this
logic has never been justified, at least until now: the error of
infinite regress cannot be avoided this way. Yet ramified type
theory [verzweigte Stufen] can be much simplified by introducing
something like untyped branches [ungestufter Zweige], instead of
appealing to unramified types […]. And, with this, one remains
“predicative”[...]. (Lorenzen, 1956a, 275)

Contrary to the relative unrenownedness of Lorenzen’s operativism in
today’s literature15, the book was well-received by his contemporaries. Nev-
ertheless, it was also met with criticisms that mainly pertained to the foun-
dational aspect of operationalism: As protologic carries much of the foun-
dational load, it is not surprising that in the reception of Lorenzen’s work
a great part of the criticism was directed against the protological principles
and the claim that it gives a sound foundation. William Craig (1957, 319)
singled this out as the main problem of Lorenzen’s approach:

The main weakness of the book is its failure to indicate as clearly
as a work on foundations should the strength of the methods
employed and thus of the underlying assumptions. Claims that
only the principles of the chapter on Protologic are employed and
that no understanding of other logical notions is required are
unconvincing and seem unnecessary.

15A notable exception is Fraenkel et al..
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Gerhard Frey (1957, 633) even claims that Lorenzen “circumvents [...] the
actual philosophical questions on purpose” when asserting that mathematical
and logical knowledge is not needed for operating with symbol strings.

According to Lorenz (2001), Lorenzen himself was convinced to abandon
operative (proto)-logic after a discussion with Tarski when he was visiting
the Institute of Advanced Study in Princeton in the Fall 1957/58. Then, he
began to develop what is now known as dialogical logic. But this rethinking
of the foundations did not diminish the significance of Lorenzen’s mathe-
matical work. Thoralf Skolem points this out by writing in his review that
“although one may doubt whether Lorenzen’s theory is the best conception of
mathematics, the reviewer believes that the book will have a sound influence
on the mathematical world” (Skolem, 1957, 290). This is also the essence of
Wolfgang Stegmüller’s extensive review of Lorenzen’s book:

In particular the part that in the reviewers eyes represents the
most important contribution of Lorenzen towards a foundation
of mathematics, namely the theory of the real numbers, is de-
scribed in detail in this book; in fact the thoughts developed in
it are in the most part independent and can therefore be isolated
from the operative framework of the theory and transferred to
different system constructions. This point is not to be underes-
timated in an overall assessment of Lorenzen’s achievement; as
whatever one’s opinion of Lorenzen’s operative interpretation of
logic and mathematics may be—his foundation of analysis is in
most parts independent of this interpretation and will without
doubt be inspiring and fruitful for all future attempts in this
direction. (Stegmüller, 1958, 161-162)

Despite his above mentioned critique, Craig also concurs with Lorenzen’s
claim that the operative approach signifies a third way out of the crisis in
much the same way as described above: “The reviewer believes that the book
[...] presents a legitimate and probably fruitful third approach to foundations.
Its evident advantage over intuitionism is the preservation of classical logic
and arithmetic and of much larger portions of the rest of mathematics, and
over formalism the interpretation of these.” (Craig, 1957, p.318)

3 Elimination of the classical notion of set
In the second half of the 19th century, set theory was developed in search
for a sound foundation of analysis (see Ferreirós, 2007). As is well-known,
the first approach of so-called “naive” set theory led to paradoxes that were
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then addressed by an appropriate axiomatization. Nowadays the Zermelo-
Fraenkel-Choice (ZFC) axiomatization is considered to be standard in set
theory.

But for Lorenzen this whole development is unsatisfactory: Not only is
axiomatization not a valid form of foundation for him, he believes that the
whole concept of set that underlies Cantorian set theory is flawed. He makes
this point in one way or another in nearly all of his papers concerned with
foundational work. As he writes in the introduction to his (1955, 4): “In
spite of Cantor’s ‘definition’ of set—of which as it is known nothing can be
deduced in as much as nothing can be deduced from Euclid’s ‘definition’ of a
point—a set in mathematics is never built through a ‘collection into a whole’
[...].”

The fact that classical analysis rests on this (in Lorenzen’s view) mistaken
concept of set is one of big challenges which analysis, and in turn modern
mathematics, has to face. So a central requirement for a valid foundation
for mathematics is the elimination of the classical concept of set16 and its
replacement with an alternative account of set, while at the same time making
sure that the fundamental theorems of classical analysis are preserved.

Lorenzen develops this alternative in a string of papers that are concerned
with the concept of finite sets (Lorenzen, 1952c), the concept of set and its use
in topology (Lorenzen, 1952a) and especially the concept of set in analysis
(Lorenzen, 1951b,c). These papers lead up to Lorenzen (1955) where he
explains in detail how the classical concept of set can be eliminated.

The core idea of Lorenzen’s operationist system is the following: instead
of having an informal definition of set that relies on a quasi-intuitive under-
standing of some kind of “collection”, Lorenzen mathematically defines what
a set is via abstractions of formulas17. Formulas and relations themselves are
defined by giving rules that produce them.

As an example for such a procedure, consider the way Lorenzen (1951b,
2) shows how unary relations are built for some atoms x, y, . . .:

1. If σ is a relation, then σ(x) is a formula for a variable x.

2. Let a,B,A(x) be formulas, then the following are formulas:
A ∧B, A ∨B, → B, A ↔ B, ¬A, ∀xA(x), ∃xA(x).

16As an example of an instance where Lorenzen formulates this as a challenge, see
Lorenzen (1954, 67).

17For the purpose of this paper we will not differentiate between “Aussage” and “Aus-
sageform”, which we will both translate as “formula”. Their difference lies in the use of
free variables, see (Lorenzen, 1955, 178).
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3. If A1, . . . , Aκ are formulas and σ a relation, then the following is a
relation:

lσ(A1 → σ(x1), . . . , Aκ → σ(xκ))

Clause three means that σ is the relation inductively defined by the rules

A1 → σ(x1)

. . .

Aκ → σ(xκ)

Over such a language, sets are now given through formulas18:
Let A1(x), A2(x) be formulas, such that for all x

A1(x) ↔ A2(x)

then MxA1(x) = MxA2(x), where MxA(x) is the set of x such that A(x).
Although the final setup in Lorenzen (1955) is more elaborate than this

example,19 the basic idea remains the same: operative rules tell us how to
build up certain symbol strings that then are formulas, relations and so on.
On this basis objects like sets and functions can be built and therefore precise
definitions for them can be given.

Before we look more closely at how this setup enables Lorenzen to give an
operative account of the real numbers, we will consider the case of arithmetic.
Here we can see in more detail how deeply the operative conception of set
differs from the classical notion. For arithmetic Lorenzen develops an account
on how to treat finite sets, that is, not as a specific instance of the general
concept of set, but rather as an object that can be treated independently
from general sets:

Since with the constructive foundation [of mathematics] one can
already operate with symbols of arbitrary (finite) length before

18Form the definition it may seem that there is no difference between Lorenzen’s way of
defining sets via abstractions as given here and (some form of) comprehension in standard
set theory. However, Lorenzen had a more general notion in mind. When introducing
abstractions in (Lorenzen, 1955, 100) to built terms from objects he comments that starting
with Frege and Russell one normally conceives of abstractions as classes:

With this, abstractions should be reduced to the introduction of “classes”.
However we will see below, that classes are nothing more than a special case
of abstract objects.

(Lorenzen, 1955, 101)
19For instance, the defining schemata for relations have to satisfy certain criteria, such

as foundation, to avoid circularity.
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giving the definition of a formula—and therefore also before giv-
ing the definition of the notion of set—one would not want the
notion of finite set to depend on the later choice of a definition
of formula [...]. It is only the colloquial name “finite set” which
misleads us into believing that one would have to define “set” as
a basic concept and then “finite” as a specific difference. (Loren-
zen, 1952c, 331)

Consider a certain kind of symbol strings x, y, . . . that is built by writing
the symbol strings x and y and so on in the given way (these symbol strings
x can for example be formulas of a certain calculus). Such a x, y, . . ., called
a system, can be derived from the following calculus:

I. x (x is a system),

II. r → r, x (if r is a system, then also r, x).
Finite sets can then be defined by abstraction: two systems give the same

finite sets if they consist of the same objects, irrespective of the number and
place of these objects in the system (so x, x, y, z gives rise to the same finite
set as z, y, y, x, z), where the meaning of “consists of the same objects” is
expressed through certain formulas.20 So Lorenzen goes the exact opposite
way to the classical approach when considering finite and general sets: He
first defines finite sets as separate entities and only later adjusts the process
of abstraction for general formulas to arrive at general sets.

Indeed, he is able to set up the whole of arithmetic with the use of sys-
tems and finite sets only. For instance, numbers are defined via the system
Z in section 2 and cardinal numbers are defined as the length of systems. In
§13, where he defines basic numbers, Lorenzen includes two interesting philo-
sophical comments. The first concerns the way in which operative arithmetic
does not face the problem of incompleteness in the same way in which classi-
cal axiomatic approaches to arithmetic do. Because operative mathematics
rests on protological principles, it is able to provide (operative) proofs “by
reasoning in terms of content” (inhaltlich beweisen (Lorenzen, 1955, 135))
for sentences that would be undecidable in an axiomatic system because of
Gödel’s Incompleteness Theorem.

The second comment is one of the few times he explicitly refers to the
underlying concept of infinity for operative mathematics in his (1955). He
points out that the system Z that defines numbers contains the idea of it-
eration and therefore also the, as he calls it, “purest form of potential infin-
ity”(Lorenzen, 1955, 133). This process of iteration or potential infinity that

20Accounts for this way of treating finite sets can be found for example in Lorenzen
(1952c, 1955).
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is implicit in every rule of a calculus he assumes to be understandable to
everybody, as it lies at the heart of the operative concept of applying rules
again and again. Note that this does not necessarily means that he restricts
himself to potential infinity or that he rejects actual infinity in operative
mathematics. Instead the reference to potential infinity has the purpose of
explaining why the process of iteration meets the underlying requirements of
protologic,21 namely to be understandable without assuming any prior logical
knowledge.22

Of course, when considering analysis, finite sets are not enough. Instead,
one has to use the general definition of sets via abstraction as outlined above.
Taking this as a starting point, Lorenzen then develops the so-called “lan-
guage strata” (Sprachschichten) in which the objects of analysis appear step
by step. The idea of language strata counters the underlying problem of
impredicativity: Lorenzen (1955, 165) describes it, with Weyl, as the “math-
ematical process” that goes from considering things like numbers as object,
to also consider formulas about these objects as objects themselves; a process
that in classical set theory allows the existence of the (unrestricted) power
set.23

The language strata are built up in the following way (see Lorenzen, 1955,
chap. 5): The basic language stratum S0 consists of the basic objects that
can be build by operations of symbol strings. As we showed above this also
includes basic numbers. S1 then consists of all of the elements of the basic
language and the first formulas that can be build via iteration of the following
operations:

1. Inductive definitions, which are usually formed through the use of an
operator of induction lσ (Induktionsoperator). 24

2. combinations with logical symbols →,¬,∧,∨,∀,∃.

Sets of the first language stratum S1 are then sets that can be formed in
the way pointed out above through formulas of S1. Now we can iterate this
process and form S2 in the same way we formed S1 from S0. In particular,
we get a formula that represents the enumeration for the objects of S1 and
is itself an object of S2. So, with S2, we now have two types of sets: the sets
that could already be formed from S1 and the “new” sets that were formed

21See section 2 for an example of the basic principles of protologic.
22We will discuss the question of potential and actual infinity in more detail in section

4.
23As we have seen in section 2, Lorenzen places himself in the tradition of Russell’s type

theoretic approach; see also Lorenzen (1956a, 275).
24We introduced this operator in the definition of a relation, see above.
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through formulas from S2 − S1. This process can now be iterated and gives
us the following sequence: S0 ⊆ S1 ⊆ S2 . . .

Interestingly, Lorenzen extends this method of iteration to countably in-
finite ordinals: Sω is defined to be the union of the Sn for all finite n (and
more general for a (countable) limit ordinal θ, Sθ is the union of all Sν for
ν < θ). Sω+1 is then again built over Sω through the usual iteration of in-
ductive definitions and application of logical symbols. The question upon
which countable ordinal to stop this iteration process is open,25 though it is
essential that it does go beyond Sω.26

In all language strata that are higher than the basic S0 we are provided
with iterations of sets: set of sets of basic objects, sets of sets of sets of basic
objects and so on; and if we want every set to appear as an element, we have
to iterate up to a limit ordinal. At the same time, every higher language
strata also produces new sets of basic objects as can be shown via Cantor’s
diagonalization method: there is no enumeration of the elements of Sν in
Sν , but there is one in Sν+1

27. As a consequence the power set becomes a
relative notion, namely relative to a specific language stratum, where every
higher language stratum adds more sets.

In the same way we can also see that countability and uncountability
are relative notions. As the enumeration of a language stratum Sν is not
element of Sν , the set of all basic objects in Sν is not countable in Sν but
it is in Sν+1. Therefore uncountability will always only be relative to some
language stratum and this entails trivial solutions to the questions of the
Axiom of Choice and the Continuum Hypotheses.

However the difference between countability and uncountability is a cen-
tral notion for classical mathematics and therefore Lorenzen expands on
the issue in Lorenzen (1956a). Here he defines a replacement notion for
uncountability and shows how it can be used to transfer the countability-
uncountabulity differentiation into operative mathematics. Consider the fol-
lowing definition (Lorenzen, 1956a, 276): Fix a limit θ1 and a second limit
θ2 > θ1. All language strata should be considered as constructed up to Sθ2 .
Then we call all strata up to index θ1 “primary” and all higher strata up to
θ2 “secondary”. Similarly, a set is called “primary” if it is definable through
a formula in a primary language stratum, and “secondary” otherwise.

Lorenzen immediately notes that the primary–secondary distinction does
not seem to fit the usual countable–uncountable distinction. It can be shown
that every infinite primary set contains secondary subsets whereas subsets of

25Lorenzen (1955, 189) names ω + 1, 2ω, ω2 or ϵ0; Lorenzen (1956a, 275) names ωω.
26Lorenzen (1955, 189) argues that “[f]or analysis, in the way we will develop it in

chapter 6, it is only necessary that we transcend ω.”
27For a detailed construction of this argument see (Lorenzen, 1955, 191-192)
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countable sets are always countable. But, he argues, the notion of secondary
set can be used in operative mathematics as a replacement for uncountabil-
ity. For this he considers several examples from integration theory, measure
theory and topology in which instances he shows that the replacement works
as intended. One example is the following: Real numbers are primary as they
can be introduced through primary convergent sequences of rational numbers
(that are primary themselves). But intervals of real numbers are secondary
because every interval of reals consists of reals of arbitrarily high primary
strata (Lorenzen, 1956a, 276-277). He therefore argues that the notions of
secondary set and uncountable set are “essentially” equivalent:

Summing up, I would like to claim that the use of secondary
strata (obviously not without boundaries, only up to the un-
problematic ordinal numbers, like ωω) in connection with the
linguistic means [sprachliche Mitteln] available in every stratum
gives us enough mobility to mostly follow the lines of reasoning
[Gedankengängen] of modern mathematics.

(Lorenzen, 1956a, 279)
At this point Lorenzen developed an operative analysis which is “in

essence” (“im wesentlichen”) similar to classical analysis. By classical anal-
ysis Lorenzen means “in virtue of content”, so not an axiomatic system of
analysis but concrete, non-abstract analysis or—as he puts it—everything
that can be found in “current textbooks” (Lorenzen, 1955, 196). In partic-
ular, this includes everything that is needed for the natural sciences, like
theoretical physics. He therefore achieved his main goals: To present a
foundation for mathematics that on the one hand is meaningful by using
a mathematically definable concept of set; while on the other hand is still
preserving the essence of classical analysis. For our purposes, the former is
the more informative conclusion. We can now state that the elimination of
the classical concept of set was a main motivation for Lorenzen’s work on
operative mathematics and, in his view, he achieved his goal of replacing it
with a more acceptable one. In the next chapter we will examine how this
endeavour relates to Lorenzen’s views on the concept of infinity.

4 The question of infinity
4.1 A shift in focus
Let us now return to our initial claim about a shift in Lorenzen’s treatment
of infinity. As we mentioned in the introduction, Lorenzen is know for his
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rejection of actual infinity in his (1957). Here he uses operative mathematics
as an example for a foundation of analysis that only uses potential infinity in-
stead of requiring actual-infinite sets. He concludes with the statement that
actual infinity should be eliminated from modern mathematics (Lorenzen,
1957, 11). This could suggest that operative mathematics was motivated by
the search for a framework that allows for such an elimination. Indeed this
claim is made in the literature: In Stegmüller’s review of Lorenzen’s book on
operative mathematics, he remarks that “from the beginning the author is
concerned in allowing nothing more that the ‘potential infinite’ in the founda-
tion of mathematics, [...] while abandoning the idea of ‘completed infinities’
”(Stegmüller, 1958, 177). Heyting (1957) reviews both papers (1957; 1954)
at once. He judges the first one as the philosophical and the second one as
the more mathematical paper that together explain Lorenzen’s operationist
system. He points out that “the author agrees with intuitionists in so far
as he does not accept the notion of actual infinity in mathematics.” (Heyt-
ing, 1957, 368) In both cases however the respective reviews appeared after
Lorenzen (1957); in the cases of Heyting that is, of course, necessarily the
case. Prima facie that does not seem to be problematic, as all of these works
were tightly connected by the common topic of the operationist approach
and its foundational role, as well as by publication date. But, surprisingly,
when regarding these works in a chronological order and not in retrospect, as
a single body of work, an explicit rejection of actual infinity is not endorsed
by Lorenzen until his (1957). Rather, the question of infinity is not at all
prevalent in developing his operationist system. As we have shown in the last
chapter, what is heavily discussed is the question of the notion of set and the
deficiencies the Cantorian notion of set has, which makes it unsuitable for a
“good” foundation for mathematics.

This leads us to propose that a shift occurred in Lorenzen’s focus on
foundational questions which manifests itself by first concentrating on the
notion of set and later on the notion of infinity. Let us give the following
classification:

First phase: In the early 1950s Lorenzen focuses on the notion of set.
He sees it as his central task to eliminate the classical notion of set and to
replace it with a rigorous, operative definition. This provides a solution of
the problem of uncountable sets, as uncountability only remains as a relative
notion, whereas all sets are countable in an absolute sense.

Second phase: In the late 1950s Lorenzen’s focus is on the notion of
infinity. This is now primarily framed as the distinction between potential
and actual infinity and it culminates in the goal of eliminating the actual
infinite from mathematics.
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To make the timeframe of the above classification a little more precise, we
will count the articles that lead up to Lorenzen (1955) and papers that expand
on this, like Lorenzen (1956a), towards the first phase, whereas Lorenzen
(1957) marks the shift towards considering the notion of infinity as the more
fundamental question and, therefore, is already a representative of the second
phase.

Let us point out more clearly what this shift does and does not imply:
It does not imply that Lorenzen’s topic of research changed between the
two phases outlined above. Instead, it is a change of focus regarding the
issue which notion (set or infinity) is the more fundamental and, therefore,
whether eliminating one or the other gives us good reasons to argue that
the mathematical outcome is free of the inherent flaws of other foundational
approaches. The technical way of explicating such a good foundation can––
and indeed is—the same, namely the framework of operative mathematics,
but the reason for why one should consider this to be a good foundation
differs. Naturally, the notion of set and notion of infinity are interconnected:
In the first phase, the argument that the newly developed notion of set only
relies on potential infinity is used as an added argument for its soundness;
in the second phase, the intended potentialist notion of infinity is explicated
by using the operative notion of set.28 Nevertheless, it still matters heavily
which of the notions is primarily regarded for foundational purposes, not
least because changing one does not have to entail changing the other.29

So our main goal here is to show that such a shift in focus exists in
Lorenzen’s work. However with proposing the occurrence of such a shift,
we make no claim on if operative mathematics constitutes a potentialist
framework regarding infinity or not. Indeed we will treat this as a separate
question that due to place and time constraints will have to be considered
in a different article. The same holds for the question of why such a shift
occurs. An analysis of this requires a much wider consideration of Lorenzen’s
philosophical development than we are able to present in this context. We
will therefore limit ourselves to pointing out some considerations towards
both questions at the end of this article.

In the rest of this article we will argue for Lorenzen’s proposed change
in focus in the following way: Having already described that the elimination
of the Cantorian notion of set was a main motivation for the development of
operative mathematics in the first phase (see section 3), we will show how this

28Examples where Lorenzen argues along these lines will be given below.
29The same holds for a connection that seems even more fundamental, namely, the

connection between intuitionistic logic and potential infinity. Although it is generally
assumed that they are dependent on each other, Linnebo and Shapiro (2019) show that
there is an explication of potential infinity that still allows for classical logic.
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changes towards regarding the question of infinity as more foundational in
the second phase. As this is spelled out quite clearly in Lorenzen (1957), the
main burden of proof for the proposed shift lies in arguing that the question
of infinity was not prevalent as the main foundational motivation in the first
phase.

Let us therefore start by addressing this point first. What we intend to
show is that in the first phase Lorenzen places no special emphasis on the
question of potential and actual infinity and indeed does not commit himself
explicitly to a standpoint in this debate. We will present two arguments:
First, we point out that Lorenzen simply does not reject actual infinity ex-
plicitly, even in cases where it would be obvious to do so; and, second, we
document his argument that the problems usually associated with infinity
are in fact problems that arise because of the Cantorian notion of set and,
by doing so, he reduces the question of infinity to the question of the notion
of set.

4.2 Constructs and infinity
Both lines of argument can be seen quite clearly in his article “On the con-
sistency of the concept of infinity” (1952b). In the first sentence he states:
“The problematic nature of the concept of infinity is independent from that
of set.” This may seem surprising at first, as one major motivation of op-
erative mathematics is to address the problems in modern mathematics by
eliminating the classical notion of set. But in the following it becomes clear,
that with “concept of infinity” he means something very specific, namely the
notion of the infinity as it appears in arithmetic: “If one poses the question of
the consistency of the notion of infinity, one wants to know, if no contradic-
tory statements can be proven over N, i.e. if arithmetic (the theory of N) is
consistent” (Lorenzen, 1952b, 591). He then explains this further by arguing
why the natural numbers are the right choice for such an investigation into
the concept of infinity:

Of course one could take any infinite set instead of N - however,
with such a formulation one would unnecessarily enter into the
difficulty of the concept of set. What makes N so unproblematic
as a set is that each one of its elements is constructible. Starting
from 1, one obtains all natural numbers when constructing an
additional a+ 1 to a. We will call every set a “construct” whose
elements can be constructed in such a (eventually much more
complicated) way. (Lorenzen, 1952b, 591)

He elucidates this point in the conclusion of the article:
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In cases where the dangers of contradiction still exist in connec-
tion with an infinite set, e.g. the set of all real numbers, all real
functions, as they are used in classical analysis—in all these cases
one will need to find “the error” not in the concept of infinity,
but in the concept of set. (Lorenzen, 1952b, 594)

How is this presentation of a concept of infinity to be understood? Being
aware of Lorenzen’s decisive rejection of actual infinity in later articles, one
could in retrospect read this as the difference between potential and actual
infinity. Indeed, several points seem to support this thesis, at least when
looking at the first term of the distinction, namely, potential infinity. The
way in which “constructs” are introduced accords with the usual way in which
potential infinity is explained, i.e. there is some kind of procedure that can
be used again and again with the possibility to go on without an end. So,
it could be that for Lorenzen constructs are an acceptable way of describing
infinity because they are compatible with the framework of potential infinity
by being the outcome of a well-defined process.

If we claim that the underlying motivation in restricting the concept
of infinity to that of constructs is founded on the potential-actual infinity
distinction, this immediately raises the question: Why doesn’t Lorenzen say
so? Instead, Lorenzen never uses the term “potential infinity” in the whole
article. A similar point could be made for his treatment of potential-actual
infinity in his book on operative mathematics (Lorenzen, 1955). Here, he
does mention both concepts already in the introduction when he describes
Brouwer’s intuitionistic program (Lorenzen, 1955, 2). But even if he uses the
introduction many times to point out which philosophical and mathematics
thoughts influenced him in his work, he never commits to a standpoint in
the actual-potential infinity debate. And, as we have seen in section 3, even
when he mentions potential infinity later on in the book, he never goes so
far as to explicitly reject actual infinity. One example for such a remark is:
“We already presupposed the capacity to conceive of every rule of a calculus
as something potentially infinite on the part of the reader when dealing with
protologic” (Lorenzen, 1955, 133). The maximal commitment we find here is
that he does not have to stay in a finitist framework because of his assumption
that agents carrying out the schematic operations have the capacity to work
with the potential infinite.

Still, this kind of argument does not seem sufficient. There can be a
number of reasons why he never explicitly stated the connection to the actual-
potential infinity debate. He could have considered it to be unimportant to
make this philosophical point in a more mathematical paper; he could have
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regarded it as so obvious that there is no need to bring it up; he could have
been unaware of his underlying motivations (though this is quite unlikely).

To settle the question more satisfactorily, let us look more closely at the
notion of “constructs” he introduces in the paper. This term seems to capture
the concept of infinity he wants to consider (and therefore the acceptable
concept of infinity), whereas problems arise with sets that are not constructs.
So our question from above reduces to the problem whether the introduction
of constructs is motivated by questions about infinity or by questions about
the concept of set. As we have seen above, the argument can be made
that the definition of constructs is motivated by the concept of potential
infinity. What, then, about actual infinity? Could it be that Lorenzen simply
understands everything which is not a construct, for example the set of the
real numbers, as an actual infinite set and therefore rejects it as an instance
of acceptable infinity? He seems to hint at something like this when talking
about what he (later in the article) calls the “schism in mathematics”:

Whether it is justified to demand a ban of all those sets, which
cannot be reduced to constructs, this is still a debated question. If
one lets this question stand open, the interesting situation arises
which is on display in current mathematics: there are actually
two mathematics, a constructive one (in particular in the intu-
itionistic form) and a classical one (the axiomatic variety also
belongs here).(Lorenzen, 1952b, 594)

In the same year “On the consistency of the concept of infinity” is pub-
lished, Lorenzen gives a talk at the second “Colloque International Logique
Mathematique” in Paris. This talk is later published in Lorenzen (1954),
where he provides a more detailed account of the notion of construct. It is
especially interesting to see how he frames the introduction of constructs: It
is to provide an answer to the challenge of eliminating the naive concept of
set from analysis (Lorenzen, 1954, 67). The notion of construct is explained,
similarly to (Lorenzen, 1952b, 591), as a foundation for the basic notion of
“set” (Lorenzen, 1954, 70). He then discusses how and why it could be le-
gitimate to restrict the naive notion of set in such a way and presents his
construction of language strata, where each language stratum Sn and indeed
also Sω and Sω+1 are constructs (Lorenzen, 1954, p71).

At this point it becomes quite clear that Lorenzen regards the concept of
set as much more foundational as the concept of infinity. When restricting
the concept of set to the acceptable version of constructs, then the concept of
infinity indeed becomes consistent with the arguments presented in Lorenzen
(1952b). But this is a consequence of settling the question about what a
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“good” concept of set is. So the question of the right concept of infinity is
secondary to the question of the correct concept of set, indeed the former is
resolved by resolving the latter.

It only remains to be shown whether he still holds this position in the
final version of operative mathematics in Lorenzen (1955). Here he does not
use the notion of construct; instead, he replaces it with a more elaborate
setup in which definiteness is the key notion.

The notion of definiteness (Definitheit) is very basic for operative logic
and mathematics. In short, a symbol string is definite if it is derivable in a
calculus (“definite via proof”) or if it is not derivable in a calculus (“definite
via refutation”). He gives an inductive definition of being “definite” already
in the introduction of his book (1955, 5):

1. Every formula that is decidable via schematic operations is called def-
inite.

2. If a notion of being definite via proof or being definite via refutation is
determined for a formula, then the formula itself is called definite.

He then builds up the operative notion of set in the way we described
in section 3, always making sure that hi logical and mathematical setup
remains definite. This becomes particularly important when deciding where
to terminate the construction of language strata. As we have seen above,
Lorenzen is not set on the exact point where the construction of language
strata has to end, it is only important that one makes the step to Sω resp.
Sω+1. At the same time it is equally important that the construction does
end at some point!30 The reasons for the restriction of this iterative process
is given in (1955, 189):

However, there would be no definite meaning in saying that the
iteration should be continued “arbitrarily” long—in the same way
clauses from modern set theory, like the following, are not defi-
nite: “the index of the language strata should run through Can-
tor’s II. number class (II. Zahlenklasse)”.

So the notion of definiteness takes the place of the notion of construct in
providing a boundary line for which sets should be permitted or excluded, as
all operative sets have to appear in some language stratum. In a second step,
this restriction of the concept of set gives then rise to the operative concept of
infinity where uncountable infinities only appear relative to language strata.

30 “... obviously not without boundaries, only up to the unproblematic ordinal num-
bers...” (Lorenzen, 1956a, 279)
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We can therefore conclude that in the first of the proposed phases, Loren-
zen indeed considered the concept of set the most fundamental philosophical
notion in developing operative mathematics31. Resolving the problems in-
troduced by the classical notion of set was his main motivation. Again, this
does not mean that he did not care about the question of actual-potential
infinity. But it was not prevalent in his foundational motivations; rather the
question of how to deal with the infinite gets resolved by using the “right”
conception of set. We will see how this changed in the next subsection.

4.3 Rejection of actual infinity
To show Lorenzen’s shift in focus on the concept of infinity in the second of
the proposed phases, we will concentrate on the article “The Actual-Infinite
in Mathematics” (Lorenzen, 1957). The reasons for considering this article
only are two-fold: First, the article gives a very strong formulation of the
motivation behind his work in what we called the second phase. Especially
the programmatic part at the end of the article constitutes what we claim
to be the content of the second phase. Second, soon after the publication
of this article, Lorenzen began to abandon operative logic and mathematics.
According to Lorenz (2001, 35), the reason was a flaw in the concept of defi-
niteness that ultimately made it inappropriate for Lorenzen’s purposes.32 In
his (1957) however, Lorenzen still considers operative mathematics, but this
time motivated by eliminating the notion of actual infinity from mathematics.

This explains why the mathematical content of this paper is not new in
comparison to his prior work. The philosophically motivated interpretation of
this mathematical content, however, is novel, as Lorenzen looks at operative
mathematics through the lens of the question of potential and actual infinity.
Here we can find all of the direct references to these conceptions of infinity
we were unsuccessfully looking for in the earlier works.

When introducing the construction of the natural numbers via the usual
rules, Lorenzen states:

31Again, this does not mean that he didn’t have major mathematical motivations for
the development of the operationist system, see also footnote 2.

32“It was Alfred Tarski who [...] convinced him of the impossibility to characterize
arbitrary (logically compound) propositions by some decidable generalization of having
a decidable proof-predicate or a decidable refutation-predicate. [...] Hence, Lorenzen’s
attempt of an inductive definition of ‘definite‘ in order to find a characterization of propo-
sitions which relinquishes the synonymy of ‘definite’ and ‘decidably definite’ had to be
accepted as inappropriate” (Lorenz, 2001, 35).
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[To] assert that infinitely many such numbers are really exist,
that they can really be constructed by following this rule would
of course be false.[...]
In philosophical terminology we say that the infinity of the num-
ber sequence is only potential; that is, it exists only as a possi-
bility but does not actually (i.e., not in reality) exist. (Lorenzen,
1987, 196), translated from (Lorenzen, 1957, 4-5).

He concludes that “in arithmetic there is [...] no motivation to intro-
duce the actual infinite” 33. He then discusses how actual infinity comes up
in geometry and the construction of the real numbers and finally discusses
modern set theory:

It is this actual infinity of real numbers (latent in modern math-
ematics since the seventeenth century) that Cantor first brought
explicitly to light, and it is the basis for the present acceptance
of the Cantorian conception of infinity.
With the admission of the set of all real numbers as a legiti-
mate object for mathematics there is simultaneously admitted
the “power set,” that is, the set of all subsets. (Lorenzen, 1987,
200), translated from (Lorenzen, 1957, 8).

All of this is neither historically nor mathematically new. But Lorenzen
frames this development completely under the motivational point of view of
the actual-potential infinity debate. What consequences does he then draw
for the future development of mathematics? He states:

The key to the indicated solution lies in replacing Cantor’s power
set of the set C of all cardinal numbers with an appropriate po-
tentially infinite set. [...] Thus, instead of the power set, we have
to construct an appropriate potentially infinite set of proposi-
tional forms. (Lorenzen, 1987, 201), translated from (Lorenzen,
1957, 10).

This is really the locus where the proposed shift comes into play. He
still concludes that the concept of (a certain kind of) set has to be replaced
by a conceptually different notion, but the motivation, explicitly stated, is
to eliminate actual infinity. The replacement of the concept of set now only
becomes the way in which such a reduction to potential infinity is carried out.
The new concept of set has to fulfill the requirement of being only potentially

33(Lorenzen, 1987, 197), translated from (Lorenzen, 1957, 5)
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infinite; so the concept of infinity here is the primary concern, the concept
of set is secondary. Lorenzen states this quite clearly in his programmatic
appeal with which he concludes the article:

If the conception developed here is correct, it represents for mod-
ern mathematics a reform […].
Just as at that time the infinitely small was to be eliminated
from mathematics, now also the infinitely large (more precisely,
the actually in- finite) is to be demonstrated to be dispensable.
(Lorenzen, 1987, 201/202), translated from (Lorenzen, 1957, 10-
11).

5 Conclusion and outlook
We have shown above that Lorenzen shifts his focus from considering the
concept of set as the more fundamental notion in his foundational work in
operative mathematics, until the mid-50s, to focusing on the concept of the
infinite and, in particular, the actual-potential infinity distinction in the later
1950s. This seems to indicate that Lorenzen’s operative work was not simply
a precursor for his later work, but a body of work with its own philosophical
and mathematical motivations.

As mentioned before, two questions still remain open: First, why does
this shift occur? And secondly, regardless of Lorenzen’s motivations, does
operative mathematics represent a framework for potential infinity? The
answer to both questions requires more work than can be done within the
context of this article, so let us just point out some consideration towards
possible answers.

Regarding the question of why such a shift occurred, a simple answer
presents itself. The 1950’s marked a significant change for Lorenzen from an
institutional point of view. Having been appointed a professor of mathemat-
ics at the University of Bonn since 1952, he changed to a professorship in
philosophy at the University of Kiel in 1956. From a thematic point of view,
this may not seem surprising since he had been working in the foundations of
mathematics for some years. Nevertheless, Lorenzen perceived it as a change
himself, as he remarked upon it several times in correspondence with the
philosopher Oskar Becker (who was Lorenzen’s colleague in Bonn), as can be
seen in this slightly sarcastic passage:

Besides, as I am a “philosopher” now, this is all right with me,
because it is common with “philosophical” book that they are be-
ing completely misunderstood. (Letter from Lorenzen to Becker,
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August 22nd, 1957, OB 5-1-1, Philosophical Archive, University
of Konstanz.)34

So one explanation for this shift is that the context of debate changed.
One could argue that within the first phase Lorenzen primarily wanted to
inform the mathematical debate on foundational issues as it developed in the
aftermath of the so-called foundational crisis. In the second phase, however,
Lorenzen re-framed his operationist approach to inform the philosophical de-
bate about mathematical infinity. To fully argue for such a thesis, more work
has to be done. But, reading Lorenzen’s papers, one can always find hints
that he was very aware of which discussions would be considered interesting
for the mathematical community and its discourse on foundational issues;
and which would be better suited for the philosophical community.35 So,
this is a viable candidate for an explanation of this shift.

The systematic question whether the operationist approach is indeed a
framework for potential infinity (and does not assume any kind of actual in-
finity) has no clear answer from the outset. Obviously, Lorenzen considered
this to be the case, as he names operative mathematics as one solutions to
replace the usual power set with a potentially infinite set of formulas (Loren-
zen, 1957, 10). But this view did not remain uncontested. Niebergall (2004)
analyses the underlying assumption of infinity Lorenzen draws from in setting
up basic numbers (via the usual rules presented in operative mathematics)
and thoroughly examines Lorenzen’s notions of “always-counting-on” and,
more generally, rule-based infinite processes (see Niebergall, 2004, 171). In
the end he concludes that such approaches to infinity can never stay com-
pletely potential, one always has to assume some kind of actual infinity “be
it of infinite objects or be it of infinitely many objects” (Niebergall, 2004,
171).36

Looking at operative mathematics, this analysis seems to hold in an even
stronger way. Let us consider the fundamental framework in which opera-
tive analysis is developed, namely the framework of language strata. The

34“Da ich jetzt ja außerdem ‘Philosoph’ bin, ist mir das auch insofern recht, weil es bei
‘philosophischen’ Büchern ja gang und gäbe ist, dass sie völlig missverstanden werden.”

35One such occurrence is the following quote (more can easily be found in his papers):
“Taking the cavalier attitude that most mathematicians display toward philosophical ques-
tions, we could try simply to ignore these “sophistical”’ problems.” (Lorenzen, 1987,
197/198), translated from (Lorenzen, 1957, 6).

36Although this conclusion can be contested: One of the referees pointed out that Nieber-
gall critique only seems to hold when reconstructing it in standard set theory and this is
not the way Lorenzen intended it to be read. It would be interesting to contrast these
different viewpoints in more detail and to investigate to which amount modern analysis
(like the one of Linnebo and Shapiro (2019)) can have an impact on Lorenzen’s notion of
potential infinity.
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fact that the first language stratum contains infinitely many object can be
explained by the rule-based procedures of schematic operations (although
this is exactly what Niebergall criticizes). However, the most relevant step
in the construction of the language strata occurs when defining Sω and Sω+1.
As we have seen, Sω is the union of all the language strata from before. Note
that this does not yet mean that we are actually building a new language
over atoms in this step. This only happens when defining Sω+1. So we now
consider the infinite union of all of the infinite objects in the Sn and in Sω+1

we begin to add new objects to this infinite union of infinite objects. There-
fore, we not only allow sets whose elements can be defined by a construction
process, but we have to consider infinitely many versions of different con-
struction processes at once (to know if an x is in Sω we have to search over
infinitely many Sn and check if x appears in one of them). Lorenzen states
that the reason for allowing such procedures is motivated by mathematical
expediency:

If we want to attain that every set also appears as an element,
we have have to go up to a limit ordinal with the index of the
language strata. For example, one can go beyond the language
strata with finite index by building a set whose elements are
u, {u}, {{u}} . . . . This set is only representable in Sω+1. (Loren-
zen, 1955, 190)

As Lorenzen (1955, p.189) himself remarks, this step is crucial for being
able to mirror classical analysis in operative mathematics. Even if Nieber-
gall’s arguments from above could be sidestepped, the setup with language
strata seems to make it challenging to argue that operative mathematics
provides a framework for potential infinity.

Perhaps an answer to this challenge could be found in recent work on ac-
tual and potential infinity by Linnebo and Shapiro (2019). Here the authors
address Niebergall’s general claim that there is no clear way of expressing
potential infinity without either staying finite or falling back on actualist
assumptions about infinity (see Linnebo and Shapiro, 2019, 166). They pro-
pose a way out of Niebergall’s dilemma by using modal logic to explicate
different potentialist positions. Indeed, they are able to show that there is
a way of being potentialist about infinity while still using classical logic (in-
stead of having to use intuitionistic logic). It could be an interesting future
project to see how Lorenzen’s operational system, or indeed similar con-
structive approaches, fare when analyzed with Linnebo and Shapiro (2019)’s
modal explication.
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