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Abstract

It is often assumed that concepts from the formal sciences, such as mathe-
matics and logic, have to be treated differently from concepts from non-formal
sciences. This is especially relevant in cases of concept defectiveness, as in the
empirical sciences defectiveness is an essential component of lager disruptive
or transformative processes such as concept change or concept fragmentation.
However, it is still unclear what role defectiveness plays for concepts in the
formal sciences. On the one hand, a common view sees formal concepts to be
protected against defects because of their precise and stable nature. On the
other, studies going back as far as Lakatos (1963) showcase the changeability
of such concepts.

In this paper, I will investigate if and how defectiveness based on the oc-
currence of inconsistencies can appear with formal concepts. To make the case
as strong as possible, I employ a strict notion of formal concept that assumes
the concept to have a fixed and definite extension. I will show that there are
indeed certain types of defectiveness that cannot occur with such concepts;
but that there are other types of defectiveness that do occur. This means that
while formal concepts have to be treated differently than non-formal concepts,
questions about defectiveness—as raised in the conceptual engineering debate
and philosophy of science—can still be applied to them. I will highlight this
point by showing how formal sciences have special strategies available to them
that allow them to resolve defectiveness of their concepts in a flexible and
informative manner.
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1 Introduction

Concepts from the formal sciences, such as mathematics and logic, have a special sta-
tus in the philosophical debate. In contrast to concepts from the empirical sciences,
they are seen as being especially stable, abstract and rigorous. When discussing
questions like conceptual change, concept pluralism and concept defectiveness, it is
generally assumed that these questions require special treatment or even that they
are completely exempt from these discussions. One example is the debate about the
possibility of Kuhnian revolutions for formal sciences. Serious doubts exist about
the applicability of this phenomenon to mathematics (for a collection of standpoints
on this see Gillies, 1992). The belief that formal concepts are somehow exempt from
problems that befall other concepts can also be found in recent debates about concep-
tual engineering. As Tanswell (2018, 882) puts it for mathematical concepts: “There
is a temptation to view mathematics in an idealised way as a safe-haven for con-
cepts, where rigor and formality protect against the defects, imprecision, sloppiness
and inconsistencies of everyday concepts.”

Tanswell (2018) argues against this idealization, pointing out that mathematical
concepts can be fluid and changeable (relating back to the seminal Lakatos, 1963).
And indeed there are concepts fundamental to mathematics that are notoriously
problematic, such as the concept of set (see e.g. Incurvati, 2020). So, the assumption
that all concepts from the formal sciences are protected against defects seems to be
inaccurate. But it seems equally inaccurate to state that all concepts of the formal
sciences are imprecise and changeable as this does not conform with the way exact
definitions for concepts are used, for example in mathematical proofs. The question
remains if there is a special status formal concepts can have and if this status makes
them impervious to defects discussed regarding concepts in the empirical sciences.

I will approach these questions pursuing a different strategy. Instead of showing
like Tanswell (2018) that formal concepts can be defective because they are not
precise, I will show that even if they are rigorous and precise, defectiveness can still
occur in certain contexts. This will allow us to get a more detailed picture of the
way formal concepts and defectiveness are related: One the one hand, we will be
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able to make exact the claim that there are certain types of defectiveness that formal
concepts are indeed impervious to. But, on the other hand, we will see that are still
other types of defectiveness that occur with formal concepts nonetheless. So, while
the idea that formal concepts are a safe haven against defects can be explicated to
a certain degree, it has to be rejected in general. In particular, defectiveness is not
necessarily dependent on the imprecision of the concept, but can also occur with
precise concepts.

To argue for this view, I will employ a rather strong notion of formal concept,
according to which the concept is given by a clearly delimited extension1. This ex-
cludes most of the well-known problematic concepts, such as the concept of set or
other concept given by implicit definitions. Instead, we will concentrate on concepts
that are stable and clearly given. For those, problems that rely on an inaccuracy
regarding their extensions do not apply.2 But, I will argue, they can still exhibit a
strong form of defectiveness, namely one relying on the occurrence of an inconsis-
tency. However, they do so in a manner that is markedly different to the way in
which defectiveness via inconsistency of non-formal concepts occurs.

Such a difference can also be found in resolution strategies for defectiveness of
formal concepts. Because such concepts are always embedded in specific formal
frameworks (logics, axiomatizations, models etc.) it is often much easier to accom-
modate changes in these frameworks. This flexibility is a powerful feature of formal
sciences and we will see that it provides resolution strategies that are usually not
available for non-formal sciences.

One conclusion of this paper will therefore be that formal sciences and their con-
cepts are sui generis and have to be handled differently than those in the empirical
sciences. However, this does not mean that they are impervious to problems sim-

1Note that the view I develop here is not dependent on a particular theory about the structure
of general concepts. In particular, I do not claim that all concepts are given by such extensions
or that the so-called classical theory of concepts holds (see Margolis and Laurence, 2023). I also
do not rely on a specific theory about ontology of concept and I will therefore not address such
questions further in this article.

2One example are inaccuracies such as as spelled out in the notion of open-texture. Open-texture,
such as discussed by Waismann (1947), expresses the general idea that there may be objects where
it is unclear if they are part of the concept or not; see also Tanswell (2018).
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ply because they are rigorous and stable in the idealized manner addressed in the
quote of Tanswell (2018) given above. The position developed here is therefore an
intermediate position between the view that formal sciences are unaffected by the
problems that befall other sciences and the view that entirely rejects such a special
status of formal sciences. Such an intermediate position provides a fruitful basis
on which considerations about general concepts can be transferred and applied to
formal concepts while at the same time taking into account the way in which formal
concepts differ from general ones.

I develop this intermediate position in the following manner: First, I focus on
concepts that exhibit rigor and formality to a very high degree. For this purpose I
develop a stringency criterion for formal concepts that is based on their use in the
formal sciences as well as the way in which they are defined (Section 2). I will then
make the case that such concepts can still be defective, although in a different way
than is usually discussed in the literature on conceptual engineering: formal concepts
cannot be inconsistent concepts in the sense of Scharp (2020) (Section 3). But they
can be defective via inconsistencies that arise relative to specific settings (Section
4). I will discuss two ways in which such defectiveness can occur: One is related
to the possibility of having two definitions for the same concept that are formally
equivalent in one setting but not in another (Section 4.1). The other is based on
an inconsistency that comes up between the definition of a concept and the formal
framework it is considered in (Section 4.2). I will provide arguments as to why both
cases are not instances of inconsistent concepts while at the same time still giving
rise to an inconsistency and therefore defectiveness of the concept involved. Lastly, I
will discuss resolution strategies for this kind of defectiveness and point out how the
special way in which formal sciences depend on their formal frameworks makes them
very flexible in encountering and defusing defectiveness of formal concepts (Section
5). In Section 6 I will then conclude the article by providing a short outlook of how
the position developed here provides a good way of unifying the competing views on
the special status of formal concepts.
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2 Formal concepts

There are different notions about concepts in the formal sciences. Often they are
seen as rigid and precisely given by definitions that fully characterize them. However,
some philosophers, such as Lakatos (1963), have focused on the way concepts form
and change over time and characterize them as fluid and changeable. As mentioned
in Section 1, these characterizations open up different possibilities to account for
defectiveness of formal concepts. For examples, the way in which Tanswell (2018)
transfers discussions from the conceptual engineering debate to mathematical con-
cepts rests on the a fluid notion of mathematical concepts. Under such a picture,
approaches to defectiveness developed for general concepts can be applied to formal
concepts as well. Note that Tanswell (2018) does not claim that all mathematical
concepts are fluid, he only claims that some of them are and therefore that the realm
of mathematical concepts in general is not immune from such defects. However, this
might not convince staunch supporters of the view that formal concepts cannot be
defective. They can explain away the fluidity of formal concepts and the resulting
defectiveness by maintaining that they only occur in specific contexts where concepts
are not fully formed yet.3 But, they argue, when concepts are fully formed and sta-
ble, for example when used in proofs, these imprecisions have been eradicated and
therefore defectiveness does not play a role any longer.

For a stronger argument, it is necessary to show that defectiveness can also occur
with formal concepts that are stable and rigorous. I will therefore provide a notion
of formal concepts that is especially strong in having stable and well-delimited ex-
tensions. It is important to note that I don’t see such a notion as an idealization of
what formal concepts can be. Instead, concepts with such extensions are frequently
used in the practice of formal sciences. Considering them is, then, also a necessary
part of providing a full picture of which concepts are used in the formal sciences. Let
us therefore start with a characterization of what I mean what talking about formal
concepts.

3This can be embedded in the broader context of distinctions such as the context of discovery
and context of justifications as well as specific versions of it for formal sciences such as mathematics
(see e.g. Maddy, 2019).
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Formal concepts, as treated here, are concepts that satisfy two criteria: first,
they are concepts from the formal sciences; and second, they are fixed and definite.
The first criterion can be used to differentiate formal concepts from general abstract
concepts that include e.g. “justice” or “friendship” by restricting the focus to abstract
concepts that are part of the formal sciences. Standard examples for formal sciences
are mathematics and logic, but one can also count (parts of) theoretical computer
science, theoretical linguistics and theoretical philosophy among them.4 It is, how-
ever, not essential to my investigation to draw sharp boundaries here and definitely
include or exclude specific disciplines. Neither do I claim that all concepts from these
sciences are what I take to be formal, nor do I claim that these are the only areas
where formal concepts exists.5 Instead, I will take examples mostly from disciplines
that uncontroversially may count as formal, such as mathematics and logic, and will
leave it to further case studies to provide examples from other (parts of) sciences.
Furthermore, the criterion of being part of a formal science will mostly be used to
distinguish concepts that are actually used in the formal sciences from made-up con-
cepts that can be formally formulated but are of no importance to the sciences (see
Section 4.

The second criterion, that of being fixed and definite, provides us with a spe-
cific notion of formal concepts that encompasses the idea of being stable and well-
delimited. It is modeled on a distinction made by Schlimm (2012) for mathematical
concepts. Schlimm distinguishes between two notions of mathematical concepts, one
called Lakatosian and the other Fregean. He characterizes the Lakatosian notion as
embracing the “elasticity and inexactness of concepts” (Schlimm, 2012, 133) that is
especially apparent during concept formation and the development of new theories,
theorems, definitions etc. In contrast,

Frege promoted a view of mathematics according to which its subject
matter is regarded as static, representable by fixed and definite concepts.

4As a current acknowledgment of their status, these disciplines are listed as formal sciences in
the introduction to the “Foundations of the Formal Sciences” Series (see Löwe, 2002).

5Take, for example, concepts specific to theoretical physics for which no empirical evidence
exists.
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Frege’s understanding of a concept as being fixed can be interpreted
to mean that its extension does not change over time. If an object a falls
under a concept P at some point in time, then it always falls under it,
eternally. That a concept is definite means that it is determined for every
object, whether it falls under the concept or not. (Schlimm, 2012, 128)

With these stipulations at hand, some often discussed cases of concept defec-
tiveness are excluded: First of all, conceptual change during concept formation, as
detailed in Lakatos (1963), is here not seen as the extension of one concept changing
over time. Instead the concept is fixed, i.e. it is stipulated that for times t and s, a
falls under P at time s if and only if it falls under P for all t as well (Schlimm, 2012,
129). Second, defectiveness resting on the vagueness of the extension is excluded by
the criterion of definitiveness. Schlimm (2012, 129) makes this precise when elabo-
rating that for each object it either falls under P or it does not (for each point in time
t). So we do not only get a clearly delimited extension but also a clearly delimited
complement of the extension (a point that will be significant when discussing defec-
tiveness in Section 4). Note that assuming a Fregean notion does not mean that one
cannot account for historical examples of concept change; one simply interprets such
a change as giving rise to different concepts, such as the natural numbers excluding
1 give rise to a different concept than the natural numbers including 1 (cf. Schlimm,
2012, 139).

The distinction between a Lakatosian and Fregean notion provides a fitting frame-
work for this papers approach: The Fregean notion spells out a common view on
mathematical and formal concepts, which is often seen to be impervious against de-
fectiveness. When defectiveness of such a concept nonetheless occurs, it can either
be argued that the Fregean notion is faulty and that we should accept that mathe-
matical concepts should be considered under a Lakatosian one; or it can be argued
that such defects only occur with concepts that don’t fit the strong requirements
of the Fregean notion and therefore are not really mathematical concepts (yet). I
will take neither of these two options. Instead, I will take the Fregean notion to be
a good explication of the often assumed special status of mathematical and formal
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concepts and show that defectiveness still occurs under this notion.
The characterization of “formal concepts” that I will focus on for the rest of this

paper can therefore be characterized as follows: A concept is a formal concept if

1. it is a concept from the formal sciences; and

2. the extension given by its definition does not change over time (i.e. it is fixed)
and it can always be determined if either some object is contained in the
extension or if it is not (i.e. the concept is definite).

Note that in the second clause of this characterization we deviate slightly from
the way in which the Fregean notion is spelled out in Schlimm (2012) in that we refer
to definitions.6 This is necessary because definitions act as the ultimate “extension-
providers” for concepts in the formal sciences. We will therefore consider definitions
that give rise to different extensions as being definitions for different concepts. This
works just like in the case of natural numbers, where one extension includes 1 and the
other does not and thus give rise to two different concepts of natural numbers. It is
not relevant for our present purpose to specify which kind of definition is employed,
i.e. if it is stipulative, explicative, etc. We simply require that the definition provides
us with a fixed and definite extension of the concept under consideration.

This characterization explicates the precision and stringency that is often seen
as the defining feature of concepts in the formal sciences. Dropping either fixedness
or definiteness would weaken the characterization too much. It would leave the
extension of a concept not clearly delimited and would therefore essentially collapse
it to the Lakatosian notion. As we aim for a strong notion of formal concepts, it is
unproblematic that this characterization may exclude certain concepts, for example
ones given by implicit definitions. With this I do not claim that all concepts in the
formal sciences satisfy the Fregean notion.7 But I start from the assumption that

6However, Schlimm (2012, 130) still shows that, for Frege, definitions are needed to be able
to formulate the requirements of fixedness and definitiveness, as the definitions allow us to clearly
judge what is (and is not) part of the extension of the concept.

7In fact, I agree with Schlimm (2012) who argues for a pluralistic view of the notion of mathe-
matical concepts by pointing out that both notions are relevant and occur in the practice.
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there are (a substantial amount of) “Fregean concepts” in the formal sciences.8 In this
sense, I take a stance on the question of the special status of formal sciences: Formal
sciences are indeed sui generis in that they are made up to a substantial degree
by what I characterized here as formal concepts. When investigating questions of
defectiveness, they have to be treated differently than concepts from the empirical
sciences. But—and that is the main point of this paper— these questions can be
investigated here, too, as defectiveness still appears with formal concepts. Therefore,
endorsing a Fregean notion does not automatically mean that mathematics, or other
formal sciences, are a “save heaven” against all forms of defectiveness.

3 Formal concepts are not inconsistent concepts

Concepts can be said to be defective in various ways. For philosophical concepts,
Plunkett and Cappelen (2020, 3) list

cognitive defects (that undermine our ability to reason properly),
moral or political defects (that undermine moral or political values of
various sorts), theoretical defects (that undermine progress within some
theoretical field), or semantic defects (where the semantic value is inco-
herent, incomplete, or missing).

This is a huge range, so in this article I will focus on one specific type of defec-
tiveness, namely defectiveness via inconsistency.

Considering defectiveness via inconsistency is a promising approach for formal
concepts. It is a very strong type of defectiveness: if we can show compatibility
of this type with formal concepts, we can derive a strong version of our claim.9

Furthermore, inconsistencies are generally accepted by the scientific communities as
8Indeed, one could argue that this is an essential part of what makes a science a formal one.
9There are areas in the formal sciences, such as paraconsistent logics, where this kind of problem

does not occur, because explosion is rejected. So it may be the case that tying defectiveness to
inconsistency is not appropriate for formal concepts within such areas. Note, however, that it does
not restrict our overall task of defining defectiveness for formal concepts too much, because in the
vast majority of formal sciences classical logic is assumed as the unstated background logic.
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a warning sign that something is amiss. When inconsistencies come up, they often
lead to broader discussions about the objects, methods and foundation of the theory.
Take for example the inconsistency arising from the use of infinitesimals in 17th
century calculus, or the inconsistency arising from Russell’s Paradox and similar
problems in the early development of set theory. Inconsistencies don’t always have
to have such far-reaching consequences, but they usually point to a problem in the
underlying theory that has to be resolved. In the following I will consider cases,
where this problem is seen to indicate a defectiveness in the related concept(s).10.

Considering defectiveness via inconsistency is an important part of the concep-
tual engineering debate. In (Scharp, 2013) inconsistent concepts are introduced as a
PRIME11 example of defective concepts. Here, a concept is inconsistent if an incon-
sistency arises from its constitutive principles. Scharp’s toy example is the concept
RABLE whose definition is given by two constitutive principles: The first principle
stipulates that RABLE applies to x if x is a table, and the second that RABLE
disapplies to x if x is a red thing (where Scharp uses “disapplies” as an antonym of
“applies”, cf. 2013, 36). The inconsistency occurring here comes from the fact that
by way of the first constitutive principle a red table is rable, whereas a red table
is not rable by employing the second principle. Let’s spell this out in more detail:
Scharp (2013, 40) calls the domain of objects to which a concept applies the range of
applicability that is then divided into the application set, consisting of all objects to
which the concept applies, and the disapplication set, consisting of all object to which
the concept does not apply. A concept is called application-inconsistent, if its appli-
cation and disapplication set are not disjoint.12 RABLE is application-inconsistent

10There is another type of defectiveness that is discussed for the formal sciences, namely the
problem of not defining the concept in the “right” manner. What this “right” manner comprises
of is often unclear as it can include several aspects like naturalness, fruitfulness or purity. But
most would agree that a minimum requirement is that the definition is consistent. I will therefore
concentrate on defectiveness that is connected to inconsistencies and not investigate these other
types of defectiveness any further.

11In the following, I will use the convention of referring to concepts by using uppercase letters,
whereas the use as adjectives is marked by lowercase letters.

12He also introduces the range of inapplicability that contains all objects which fall outside of the
application of the concept, and the respective notion of range-inconsistent concepts. This mainly
concerns partial concepts and we can set this aside for the investigation attempted here.
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because a red table is both part of its application and its disapplication set and they
are therefore not disjoint.

This approach can be applied to concepts from the formal sciences as well. Scharp
and Shapiro (2017) discuss the logical conception of set which is characterized by
an axiomatization containing the Axiom of Unrestricted Comprehension. Here, each
of the axioms can be seen as providing one constitutive principle. One can show
that taking such a collection of constitutive principles results in an application-
inconsistent concept. According to Unrestricted Comprehension, the collection of all
sets is again a set. But by the Power Set Axiom, the collection of all sets cannot
be a set, because then we run into inconsistencies like Cantor’s paradox.13 So the
collection of all sets is both in the application and in the disapplication set of SET
given by such constitutive principles.14

So Scharp (2013)’s analysis provides a good starting point for our investigation
into formal concepts. However, some changes have to be made to account for the
special setting in the formal sciences. The major change consist in taking definitions
instead of constitutive principles as the basis for showing inconsistencies. This is a
non-trivial change, as it is not as straightforward as it might seem to form definitions
from constitutive principles (and vice versa). One example, provided by Scharp,
shows that constitutive principles give rise to very different definitions depending
on how they are joined together. In the case of RABLE, a consistent concept can
be derived by joining the two constitutive principles by using an “and” clause and
obtaining the extension that contains all non-red tables (Scharp, 2013, 39).15

Choosing definitions as starting points for investigating inconsistencies also ac-
cords with the picture of formal concepts developed in Section 2. There we assumed
that definitions provide the extensions of concepts. Concepts are usually only used

13If it were a set, it would have a power set and due to a theorem by Cantor the power set of
a set is strictly larger than the set itself. So the power set is not a subset of the set of all sets,
producing a logical inconsistency.

14Note, however, that SET is not a formal concept according to the characterization given in
Section 2.

15Also, it might well be that there are definitions that are not made up (solely) of constitutive
principles. This can be the case if some clauses in the definition are only there to make it work
(e.g. by excluding some problematic cases).
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in the formal sciences if a definition exists for them, therefore not relying only on
constitutive principles, but also on the way the latter are joined together to form a
definition. This becomes particularly important when studying phenomena that are,
perhaps, more prevalent in the formal sciences than in other disciplines. One of these
is the existence of different, formally equivalent definitions for the same concept. This
is a prominent feature, for instance, in mathematics, where there are concepts that
have several, formally equivalent definitions.16 Such concepts are usually seen to
be particularly informative, especially if these definitions stem from different fields
and therefore unify different areas of research. As we will see in Section 4, concepts
with different equivalent definitions also play an important role when investigating
defectiveness. To analyze these equivalences however, we have to consider the com-
plete definitions, and not only components of them. We therefore have to work with
definitions instead of constitutive principles.

Beside considering definitions, I will make two further adaptations: For one, I
will narrow the focus to logical inconsistencies. For Scharp (2013, 36), this is not
necessarily the case as he allows for other inconsistencies as well. For example,
the inconsistency of RABLE consists in the red table. But in the case of formal
concepts, logical inconsistencies are a strong and reliable notion. Formulating a
logical inconsistency makes sure that there really is an inconsistency. This excludes
cases that might seem inconsistent but turn out not to be when they are appropriately
spelled out. This is for example the case with Skolem’s Paradox, which is not logically
inconsistent when its (meta)-mathematical setting is made exact (cf. Bays, 2007).
Also, narrower focus excludes cases where something is in the (dis)application set
because of the definition of a concept, but it could be argued that it should not be
because it does not match with what is non-formally understood under this concept.
Such situations might certainly arise in the formal sciences and a mismatch between
intended meaning and extension of the concept can give rise to a form of defectiveness.
But it is not one of inconsistency in a logical sense and therefore not the target of

16For example, the mathematical concept of a topological space can be defined via neighborhoods
or via open sets; the real numbers can be defined via Dedekind cuts or via Chauchy sequences; in
set theory the natural numbers can be defined as the finite von Neumann ordinals, or the finite
Zermelo ordinals etc.
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our investigation.
The last adaption will be to consider the formal setting in which the inconsistency

occurs. For Sharp (2013)’s general setting it is of “no practical importance” if an
inconsistency occurs “relative to some set of claims” (36). But this is of significant
import to formal concepts. Defectiveness can occur in the formal sciences when
inconsistencies appear relative to the formal framework the concepts are considered
in. We will make this exact in Section 4.17

Considering all of these adaptations, I formulate the following definition: A formal
concept is (application-)inconsistent if the application set and disapplication set of
the definition are not disjoint and this is witnessed by a logical inconsistency.

When comparing this definition to the characterization of formal concepts given
above, it becomes immediately clear that formal concepts cannot be application-
inconsistent. Formal concepts are concepts from the formal sciences that are fixed
and definite. The latter means that an object is either in the application set of the
concept or in the disapplication set and that this does not change over time.18 So, for
formal concepts it can never happen that the application and disapplication set are
not disjoint and that this is witnessed by a logical inconsistency. Therefore formal
concepts cannot be (application-)inconsistent.

This is not a trivial result: Recall that we did not develop the notions of formal
concept and application inconsistency with direct reference to one another. Instead,
we started with two different goals: the first was to explicate the special status often
ascribed to formal concepts. Second, and independently from the characterization of
formal concept, we transferred a common notion of defectiveness from the conceptual
engineering debate to the formal sciences. The outcome given above, then, means
that the notions resulting from these two approaches are incompatible. It provides an
exact explication of the belief that formal concepts are not subject to defectiveness
because their special form makes them resilient against it.

17One area where we do not have to make any adaptions is how to deal with inconsistent concepts.
Scharp (2013) engages in detail with the question if inconsistent concepts can exist and how they
can be possessed and employed. As we will see at the end of this section, we will not have to deal
with such questions for formal concepts.

18Note again, that we do not consider the inapplication set of concepts here.
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However, it also shows the boundaries of such a belief. First, it does not mean
that all concepts of the formal sciences are generally not application-inconsistent, just
as we never assumed that all concepts from the formal sciences are formal concepts in
the sense of Section 2. For mathematics, Schlimm (2012) describes such non-formal
concepts as concepts under the Lakatosian notion. Alternatively, Tanswell (2018)
discusses such concepts under the viewpoint of open-texture. For formal sciences,
such as parts of theoretical philosophy, this is even more obvious. Indeed, the whole
point of Scharp (2013) is to show that TRUTH is such an application-inconsistent
concept—and, of course, then it is not a formal concept in our sense.

Second, even if all concepts from the formal sciences were formal concepts, our
investigation only states that they cannot be application-inconsistent. I already
mentioned that there are other forms of defectiveness that can arise in the formal
sciences. In the following I will take a second look at defectiveness via inconsistency
and show that there is indeed a way of making this idea workable in the setting of
formal concepts.

4 Formal concepts can be defective via relative in-

consistency

In this section I develop an account of defectiveness of formal concepts that is still
focused on inconsistency, but not on application-inconsistency as defined above. In-
stead, we will adapt it to two situations that arise in the formal sciences. First, we
will study inconsistencies that come up when two formally equivalent definitions for
the same concept are not equivalent any longer due to changes in the formal set-
ting. And, second, we will investigate inconsistencies that occur directly between a
definition and the formal setting it is considered in.

4.1 Inconsistency from different definitions

In the formal sciences it is quite common to have equivalent definitions for the same
concept. The existence of such definitions is considered to be highly informative.
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They contribute to unification when occurring in different sub-fields, or to under-
standing when providing different constructions. For example, consider the different
ways the real numbers can be defined in mathematics, either by axiomatic approaches
(such as Tarski and Tarski, 1994) or the construction via Dedekind Cuts. In theo-
retical computer science a prominent example is the various formal definitions of the
concept of computability (for an overview, see Soare, 1999).

In the following, we will develop an account of defectiveness via inconsistencies
that arise from the case of equivalent definitions. Much of the setting stays the same:
We will continue to use the definition of formal concepts given in Section 2 and to
consider concepts to be given by a definition and the corresponding extension. To
have two equivalent definition, then, means that both definition give rise to the same
extension and, therefore, to the same concept. As we pointed out in Section 3, it
would not do working with constitutive principles instead of definitions here. When
considering different constitutive principles for the same concept, the concept will
only be given through all of them (otherwise they would not be constitutive). But for
definitions it is enough to have one of them to fully determine the concept, despite
the additional insight that equivalent definitions might offer.

Having two (or more) equivalent definitions is of course not problematic by itself.
But it can give rise to a form of defectiveness if it happens that the two definitions
are considered in a context where they are no longer equivalent. Let us consider
the case of the concept PRIME, referring to prime numbers in mathematics. This
concept can be defined in two ways:19

Definition1. A natural number greater than 1 is prime if it is evenly divisible only
by 1 and itself.

Definition2. A natural number greater than 1 is prime if whenever it evenly divides
some product bc it divides either b or c.

19Note, again, that each of these are complete definitions and do not have to be combined to
provide the concept PRIME.
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These definitions are equivalent if considered over the natural numbers, meaning
that they give rise to the same set of number {2, 3, 5, 7, . . .}. However they differ in
their extension when considered over quadratic integer rings such as Z[

√
−5]. Here

2 is prime via Definition1 but not prime via Definition2, therefore producing two
different extensions for PRIME.20 So, we have one concept of prime number given
by two equivalent definitions. However, once we extend the domain in which we
consider these definitions, we see that they are not equivalent in general.21

To analyze this situation, first note that it gives rise to a logical inconsistency.
In the set-up described above the sentence “In Z[

√
−5], 2 is a prime number and 2 is

not a prime number.” can be proven. At the same time, this is not an application-
inconsistency. Each of the definitions given above provide us with disjoint application
and disapplication sets. Definition1 has 2 in its application set and not in its disap-
plication set; Definition2 has 2 in its disapplication set, but not in its application set.
The inconsistency arises because the application set of Definition1 and the disappli-
cation set of Definition2 are not disjoint and because both definitions are assumed
to provide an extension for PRIME.

This type of inconsistency does not stand in contrast to the definition of a formal
concept, as it was in the case of application-inconsistency. First, PRIME is a concept
from a formal science, i.e. mathematics. More importantly, as we are working with
definitions and not with constitutive principles, we can consider them independently
from one another. So, when checking if PRIME is a formal concept, we check if the
extension given by a definition, say Definition1, is fixed and definite. Because this
is the case, PRIME is a formal concept. Alternatively, we could have checked if the
extension given by Definition2 is fixed and definite and we would have come to the
same conclusion. This is also why we would not say that PRIME is inconsistent
the way Scharp (2013) posits in the case of application-inconsistent concepts. Each
of its definitions taken by itself does not give rise to an inconsistency. But PRIME
is still defective, as it gives rise to a relative inconsistency22. This inconsistency

20For more details see for example Tappenden (2008, 267–268).
21Historically, considering prime numbers over the natural numbers was standard for a long time,

while the consideration of quadratic integer rings came much later. See also Schlimm (2012, 10–11).
22One might object that this situation is one of two concepts that stand in contract to each
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occurs when considering one definition relative to the other, as well as relative to
the theory of numbers in which both definitions are considered (remember that it
does not occur when considering the definitions over the natural numbers). I will
therefore call such concepts defective via relative inconsistency. Before discussing
this notion of defectiveness more generally, let us consider another version of it that
also occurs in the formal sciences.

4.2 Inconsistency from formal background

There is another type of relative inconsistency that can be the cause of defectiveness
of formal concepts. It occurs between the definition of a concept and the theory in
which it is considered. We will elaborate this idea using the example of Reinhardt
cardinals from set theory.

Reinhardt cardinals are a specific type of large cardinal, i.e. uncountable limit
cardinal numbers that are “too big” to be reachable by ordinary means. An example
of a “small” large cardinal are inaccessible cardinals where κ is inaccessible if one
cannot use operations such as cardinal arithmetic or power set on cardinals strictly
less then κ and get something equal or bigger than κ.23 Large cardinals are of great
importance in set theory, not least because they provide a very nice structure of the
uncountable.24 One notable features of large cardinals is that there is a uniform way
of defining many different large cardinal notions, namely, via elementary embeddings
of a set-theoretic model V in another model M .25 The idea is that the first model
V represents the “real” or “intended” model of the axioms ZFC of set theory and
M is an elementary submodel of V . The embedding will map ordinal numbers to
ordinal numbers and will be strictly increasing, meaning that eventually there will

other rather than one concept being defective. I disagree because I interpret the formation of two
distinct concepts as a reaction towards the defectiveness of PRIME. I provide an arguments to that
end in Section 5.

23A cardinal κ is (strongly) inaccessible if and only if for every λ < κ, it holds that 2λ < κ, and
κ is regular. An infinite cardinal κ is regular if cfκ = κ, where cfκ is the least limit ordinal α such
that there is an increasing α sequence 〈κη : η < α〉 with limη→ακη = κ.

24For an introduction and thorough discussion see Kanamori (2003).
25An embedding j : V →M is elementary, if M is an elementary submodel of V , meaning that

the models agree on all formulas with parameters from M .
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be one ordinal that does not get mapped onto itself by j (so as to assure that V
is embedded in M). This ordinal is called the critical point of the embedding and
this is then identified as the large cardinal in question. This type of definition can
give rise to different large cardinal notions depending on how closely the model
M resembles V . The closer this resemblance is, the stronger the resulting large
cardinal notion. For example for measurable cardinals, the simple existence of such
an embedding is enough, whereas for the stronger notion of strong cardinals the
additional requirement has to be satisfied that V is contained inM for every cardinal
bigger than κ.26

Reinhardt cardinals derive out of a natural generalization of these definitions
for large cardinals (cf. Reinhardt, 1967). They express the situation in which M

resembles V as closely as possible: they are the critical point of an elementary
embedding j from V to V (in a non-trivial manner so that that j is not the identity).
As natural as this definition is, it turns out that the existence of Reinhardt cardinals
is inconsistent with the Axiom of Choice and therefore with the standard system of
set theory, ZFC. This result was proven by Kunen (1971) and is often called the
Kunen inconsistency.27 The proof of the Kunen inconsistency28 shows that there
cannot be a nontrivial elementary embedding from V into V , so no embedding exists
that could give rise to an instance of the concept of Reinhardt cardinal. That means
that the extensions of REINHARDT is empty in ZFC.

In the case of REINHARDT we see a logical inconsistency, namely the inconsis-
tency between the existence of the respective elementary embedding and the Axiom
of Choice. However, this concept is not application-inconsistent. The application
and disapplication set of REINHARDT are disjoint for the trivial reason that the
application set is empty. Scharp (2013) calls such concepts unsatisfiable concept.29

and excludes them from his investigation as they are not inconsistent themselves.
26A cardinal is strong if for every λ > κ, there is an elementary embedding j : V →M where κ

is the critical point of j and Vλ ⊆M .
27Actually, Kunen proved this in von Neumann-Bernays-Gödel class theory and later Suzuki

(1999) proved it in ZFC.
28(See, for example Jech, 2003, 290)
29(See Scharp, 2013, 39).
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However, as the focus on our investigation is defectiveness which is witnessed by
an inconsistency, the case of REINHARDT is relevant. First, observe that this is
indeed an example of a formal concept leading to an inconsistency. The extension
of REINHARDT is fixed and definite as it is always empty. One might object that
having an empty extension simply means that there is no such concept and that it
therefore also cannot serve as an example for a defective formal concept. We will
set this aside for now and first focus on Clause 1 of the characterization of formal
concepts, namely that they are concepts from the formal sciences.

In general, there are potentially a great number of unsatisfiable concepts that
can be invented. Scharp (2013, 39) provides one of these to illustrate what an
unsatisfiable concept looks like: x is a squircle if and only if x is a square and
x is a circle. As is the case of REINHARDT, SQUIRCLE is definite and fixed
because its application set is empty. Also, the definition of SQUIRCLE makes use of
two concepts of a formal science, namely SQUARE and CIRCLE. Still, it does not
constitute a formal concept in our sense as it is itself not a concept that is used in
a formal science and therefore fails to fulfill the first clause of the characterization
of formal concepts. So, SQUIRCLE and other artificially constructed concepts are
not examples for defective formal concepts. And they shouldn’t be as the target of
this investigation are concepts that are genuinely used in the formal sciences and
considering made-up concepts will only muddy the waters.

In contrast, REINHARDT is not an artificial concept: it was developed and
used in set theory and, most interestingly, is still used despite knowing that it is
inconsistent with the Axiom of Choice. Reinhardt cardinals were introduced by
Reinhardt (1967) in his doctoral dissertation. He had been working on strengthening
large cardinals defined by elementary embeddings and this was a natural continuation
of this work. After Kunen’s proof of the inconsistency, the concept of Reinhardt
cardinals continued to used, namely as a benchmark for when inconsistency occurs,
as it serves as a natural limit for large cardinal strength: Different proofs of Kunen’s
inconsistency were found connecting the phenomenon back to different areas of set
theory (cf. Kanamori, 2003, 318–324); generalizations of the inconsistency have been
studied (Hamkins et al., 2012) and other large cardinals notions were developed that

19



are weaker than Reinhardt cardinals but close enough to them to make it questionable
whether they were consistent themselves (cf. Kanamori, 2003, Ch. 24). To this day it
remains an open question whether Reinhardt cardinals are merely inconsistent with
the Axiom of Choice or also with ZF itself.

In the last decade, a further application of Reinhardt cardinals has gained impor-
tance. They are studied not only as a limit for inconsistency, but the large cardinal
concepts itself is an object of investigation, despite its inconsistency with ZFC. In-
deed, Reinhardt cardinals are the starting point for a whole class of large cardinals,
called the choiceless large cardinals. In the last years, work has been done on general-
izations of Reinhardt cardinals (Koellner, 2014; Cutolo, 2018; Schlutzenberg, 2020);
Reinhardt cardinals are used to investigate fundamental properties of models of set
theory, such as the HOD conjecture (Bagaria et al., 2019); general set theoretic
tools, like forcing (Schlutzenberg, 2022); the cumulative hierarchy (Goldberg and
Schlutzenberg, 2023); and consistency results between Reinhardt cardinals and their
generalizations are considered (Goldberg, 2021). We can conclude that Reinhardt
cardinals are a genuine concept of set theory and so the first clause of the charac-
terization for formal concepts is satisfied. We can conclude that REINHARDT is a
formal concept.

Let us return to the objection that there cannot be a concept REINHARDT be-
cause its extension is empty. Such an objection would maintain that the definition
given for REINHARDT does not denote anything and that REINHARDT can there-
fore not serve as an example for a defective formal concept. But stating that such
a concept does not exists stands in contrast to the fact that the concept is used in
a formal science. This use is not based on the fact that set theorists are not aware
of the inconsistency arising from REINHARDT.30 Instead, its use is warranted by
two reasons: One is that the case of REINHARDT is highly informative. As we
have seen, proofs and generalizations of the Kunen inconsistency were studied as
well as cardinal notions developed that narrowly avoid the inconsistency. In general,
the concept provides insight into where the barrier to the strength of large cardinal

30For this reason the argument given by Scharp (2013, 37) to counter a similar objection against
inconsistent concepts does not hold here.
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notions lies, i.e. how “high” in the large cardinal hierarchy one can go before the
resulting notions become inconsistent. The interest in this concept is, however, not
only due to the simple fact that it is inconsistent.31 REINHARDT is also used in
set theory because it is such a natural generalization for large cardinal notions. This
leads to the second reason of why its use is warranted and this reason is specific to
the setting of formal theories.

A prominent feature of formal sciences is their flexibility as to the context in which
their concepts are considered. This context can be the choice of an appropriate logic,
such as classical logic, modal logic, etc.; it can the choice of an the axiomatization
or the restriction to a certain sub-field or class of objects under consideration. The
fact that formal sciences are generally free in these choices is due to their relative
independence from natural phenomena in the empirical world. This flexibility is
highly relevant for the question of defectiveness of concepts and it will be discussed
in more detail in Section 5. In the case of REINHARDT, it provides a reason
as to why and how it can be used despite the Kunen inconsistency. When studying
choiceless large cardinals, set theorists simply switch context: as they cannot work in
ZFC, they work in ZF , leaving out the Axiom of Choice. As no know inconsistency
arises from ZF alone, REINHARDT is a satisfiable concept in this context. This is
also the axiomatization in which the above mentioned work on generalizations of the
concept takes place and gives rise to the hierarchy of choiceless large cardinals.

So, the use of REINHARDT in set theory is warranted both by the insights the
concept offers and because there is a formally exact way of working with the concept
without involving an inconsistency. This means that REINHARDT only has empty
extension in a specific context, namely, when it is considered in the axiomatization
of ZFC. But it would be much too strong to claim that this implies that the
concept does not exist; rather, it means that the concept is defective with respect
to an inconsistency that arises relative to a certain context in which the concept

31Arbitrary inconsistencies could be constructed at will by introducing artificial concepts. For
example one could introduce the concept NOPOWER that is defined to be all sets that have no
power set. This is an unsatisfiable concept as, according to the Power Set Axiom, all sets have
a power set, giving rise to the corresponding inconsistency. However, neither the concept nor the
corresponding inconsistency are studied in set theory, as they offer no further insight.

21



is considered. This is why I propose that REINHARDT is another example for
defectiveness via relative inconsistency.

In general, we can conclude that formal concepts can be defective via relative
inconsistency, meaning that a concept entails a logical inconsistency within a formal
context of some formal science. As in the case of artificial concepts and arbitrary
inconsistencies, let me add that these contexts should not be made-up or randomly
chosen. Allowing made-up contexts would make every formal concept defective for
trivial reasons, because for every concept one can arguably produce a context in which
it is unsatisfiable. We therefore require that, for a formal concept to be defective in
a formal science, these contexts should come up in and be relevant to the science in
question. As we have seen, this is the case for REINHARDT, as it is inconsistent
with the standard axiomatization of set theory, ZFC, and considered in ZF , which
is an often used, relatively mild weakening of ZFC. This also holds for PRIME,
because it was given by the two equivalent definitions in the context of the natural
numbers and the inconsistency arose in the context of generalizations to quadratic
integer rings that are of genuine mathematical interest as well.

5 Revision strategies in the formal sciences

The notion of defectiveness for formal concepts developed in the last section is a
notion of relative defectiveness. It addresses a situation in which a formal concept
comes up in a relevant context and in which its defectiveness is assessed relative to
this context. The requirement that the context ought to be relevant is important
here, as non-relevant (artificial, made-up) contexts can always be given in which
an inconsistency can arise. In the following, we will consider what the existence of
such a type of defectiveness entails for formal sciences. I will illustrate this point by
regarding an objection to relative defectiveness as developed above. The objection
aims to interpret the situation investigated above in a manner that seems to avoid
the conclusion that formal concepts can be defective via relative inconsistency. The
case of PRIME, the objection goes, is not an example of a defective concept, but an
example of a case of two non-defective concepts, one given by Definition1 and the
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other given by Definition2.
The alternative interpretation of the case of PRIME introduces two concepts.

One, called PRIME1 is given by Definition1 and the other, PRIME2, is given by
Definition2. The extension of these concepts are the same over the natural num-
bers, but they differ over quadratic integer rings. This is not problematic at all:
Concept can coincide over certain restricted contexts. For example the concept of
odd number and prime number has the same extension when considered over the
interval of natural numbers from 3 to 8. Still, nobody would claim that they are the
same concept. This interpretation seems plausible also when taking into account the
way in which the situation arising from two prime number definitions was resolved in
mathematics. The notion of prime number was generalized to prime element and the
definition based on Definition2.32 A generalization of Definition1, instead, resulted
in the concept of irreducible element.33 Over the quadratic integer ring Z[

√
−5],

then, 2 is irreducible but not prime. So, there are two concepts, PRIME2 and IR-
REDUCIBLE, that are both not defective as they do not lead to an inconsistency.
I claim that, despite the way in which these concept are defined today, this is not
the right interpretation of the situation first described in Section 4.1. Rather, it is
a description of the reaction of the mathematical community towards this situation.
Before the problem arising with quadratic integer rings was discovered, the concept
of prime number was that of PRIME and not that of PRIME1 and PRIME2. Math-
ematician did not consider there to be two concepts of prime number that differed
by two definitions. Instead, there was one concept with two equivalent definitions,
exactly what we described by PRIME above. The separation of these two definitions,
which served as basis for generalizations producing two separate concepts, is a way
of resolving this defectiveness. But a reaction to a defect requires the defect to be
present in the first place—and that is what was described in Section 4.1.

32An element p (that is not zero and not a unit) of a commutative ring R is prime if whenever
p divides bc for some b and c in R, it divides either b or c. An element u of a ring R is a unit if
there exists v in R such that vu = uv = 1, where 1 is the identity respective to the multiplication
operation on R.

33An element r (that is not zero and not a unit) of a ring R is irreducible, it it is only divisible
by units or products of units with r (i.e. ua for a unit u).
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Still, the alternative interpretation raises the general question of resolution strate-
gies for defectiveness in the formal sciences. It would go beyond the scope of this
paper to discuss resolution strategies in general. But we will study the cases of
PRIME and REINHARDT with respect to the question of how relative defective-
ness of concepts can be resolved and what type of resolution strategies this involves.
This will allow us to draw some preliminary conclusions for resolutions in the case
of formal concepts. Consider the following account from Scharp and Shapiro (2017):

Let C be an inconsistent term or phrase. Define a replacement for C to
be a term, or a batch of terms, that is, or are, consistent (at least as is
known) and which can play at least some of the roles played by C in our
linguistic and intellectual lives. (Scharp and Shapiro, 2017, 264)

As we determined in Section 3, we are not dealing with inconsistent concepts in
the case of formal concepts. Still, we can define a replacement in the above manner
for a concept C that is defective via relative inconsistency. The replacement should
then still be made up of consistent concepts, but it should play (at least some of) the
roles played by C in the respective formal science. Scharp and Shapiro (2017) gives
guidelines for initiating such a replacement. First, they require that C comes up in
a “valuable project” and is not a just made-up, like the concept RABLE (Scharp and
Shapiro, 2017, 264). We already have such a requirement built into our account for
formal concepts, as we only want to consider concepts that come up in a relevant
manner in a formal science.34 The relevant project is then the possibility to pursue
the formal science without running into inconsistencies. This also matches with
Scharp and Shapiro (2017) e.g. when they state that it “counts as a valuable project
on its own” to be a branch of mathematics (Scharp and Shapiro, 2017, 265).

The second condition for replacement requires the defective concept C to “in-
hibit the pursuit of the project” (Scharp and Shapiro, 2017, 267). This is the case
for PRIME, when the project is to have a concept of prime number that works

34Compare also the discussion in Section 4 about the relevance of the inconsistency and the
contexts the formal concept appears in.
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both over the natural numbers as well as in the case of certain rings. Here the in-
consistency comes up and in order to remove this inconsistency, PRIME has to be
replaced. Notice that it does not necessarily inhibit the project of defining a concept
of prime number over the natural numbers alone. Even nowadays, where the distinc-
tion between prime and irreducible elements is well known, when talking about prime
numbers over the natural numbers Definition1 is sometimes still used in textbooks.
While being possibly misleading, it is not completely wrong, as the two definitions
are extensionally equivalent. As long as the project does not require the switch to the
more general context (e.g. when working with prime numbers in cryptography), the
relative inconsistency of PRIME will not inhibit the respective project and therefore
a replacement is not necessarily required. For the REINHARDT case, consider two
projects that are valuable in set theory. The first is to understand the large cardinal
hierarchy in the axiomatization that is considered to be standard for mathematics,
ZFC. Here the inconsistency appears, but it does not inhibit the project. It simply
adds a precise boundary for large cardinal notions in showing that an elementary
embedding from V to V cannot exist. The second project is to investigate (natural)
generalizations of large cardinals via elementary embeddings. Here, the inconsistency
inhibits the project because it does not allow a consideration of the natural general-
ization of Reinhardt cardinals. Both cases therefore show that relative defectiveness
inhibits projects in the formal sciences to different degrees so that it might call for
a resolution in some cases and not in others. In general, this is not a problem, as in
the formal sciences we have precise tools to delimit these cases and make sure that
it is always clear when a resolution is called for and employed and when it is not (for
example, making sure that PRIME is only used when operating within the natural
number system).

Scharp and Shapiro (2017) call for two other considerations when deciding if
a concept should be replaced. These are connected to the questions whether the
inconsistency connected to the concept C can be avoided (Scharp and Shapiro, 2017,
670) and if there even is a replacement available that is suitable for taking over the
role of C (Scharp and Shapiro, 2017, 671). For PRIME, the answer to the latter
is “yes” and the answer to the former is “not really”. Yes, there is a replacement

25



provided by the concepts of prime element and irreducible element. Other than using
this replacement the inconsistency can not really be avoided, except in the local case
where one only considered natural numbers. And even then it would be considered
to be more desirable to use Definition2 for PRIME as it corresponds better with the
general setting. So, PRIME seems to be a straightforward candidate for a resolution
via replacement. The case or REINHARDT is much different. Here, there is no
(batch of) replacement concept that can take over the role that Reinhardt cardinals
play in the axiomatization of ZFC, as there is no sensible way of changing Reinhardt
cardinals to make them consistent with ZFC.35 However, REINHARDT offers a
clear and precise manner in which the inconsistency can be avoided, namely, by
changing the axiomatization in which it is considered. This is a way out very specific
to formal sciences. They can accommodate concepts that would be inconsistent
with certain frameworks and therefore provide a place where these concepts can be
fruitfully studied and employed. So, in set theory we are actually able to pursue
both projects mentioned above, namely, to understand the large cardinal hierarchy
in ZFC and to investigate natural generalizations of large cardinal notions, despite
the relative inconsistency of REINHARDT. Each project simply has to be pursued
in a different formal framework: ZFC for the first and ZF for the second.

6 Conclusion

In this article I have investigated the idea that formal concepts are impervious against
defects commonly discussed with respect to concepts from philosophy and the em-
pirical sciences. To spell out the core of this idea, I have developed a very strict
definition of formal concept. It focuses on the extension of a concept and fixes this
extension completely. This excludes often discussed cases of concept defectiveness
based on unclear extensions and therefore makes it as hard as possible to apply usual

35One possible change would be to weaken the models in the embedding; however, the result by
Kunen also holds for embeddings from Vλ+2 to Vλ+2 for a limit ordinal λ. Another change could
consist in weakening only the second model in the embedding; however, then we would not talk
about Reinhardt cardinals any longer as we would give up the essential feature that V =M .
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types of defectiveness to concept from the formal sciences. Additionally, I restricted
the type of defectiveness under consideration to ones that can be spelled out clearly
within the formal science by requiring a logical inconsistency to occur.

In this setting, the idea that formal concepts so understood are impervious to
defects can be made exact and, in general, rejected. It turns out that formal concepts
cannot be inconsistent concepts. This exempts them from discussions about defec-
tiveness of inconsistent concepts arising in the conceptual engineering debate (e.g.
by Scharp, 2013). However, it can also be shown that a variation of defectiveness
via inconsistency still applies to them. Formal concepts can lead to inconsistencies
that occur relative to specific settings, which can be made formally exact. So, even
when formal concepts are spelled out under very strong assumptions regarding their
exactness, they can still be defective. When a defective concept is discovered, dif-
ferent ways of responding to this situation are possible. For the examples discussed
in this paper, we presented cases in which the defective concept is replaced, at least
in the formal contexts the inconsistency occurs in. But we also presented a strategy
of avoiding the defectiveness by switching to an unproblematic formal framework—a
strategy that seems to be specifically available in formal sciences.

This leads to an intermediate position about the special status of formal concepts:
On the one hand, there is a way to show that formal concepts are not defective as
they cannot be inconsistent. On the other hand, a variation of defectiveness via
inconsistency still applies to them—a very strong result, considering the strictness of
our definition of formal concepts. The conclusion is that current discussions about
defectiveness of concepts and related topics such as resolution strategies can be ap-
plied to formal concepts, too. But the special character of formal sciences and the
concepts employed therein still set them apart, for instance with respect to which
resolution strategies are available and what they entail. This means it is neither the
case that problems such as defectiveness cannot occur for formal concepts, nor is it
the case that formal concepts can be treated in exactly the same way as concepts
from empirical sciences with regards to these problems.
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