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66 A. W. Apter, J. Cummings

1 Introduction and preliminaries

In [1], the first author proved the following theorem.

Theorem 1 Let V � “ZFC + K �= ∅ is the class of supercompact cardinals + κ

is the least supercompact cardinal”. There is then a partial ordering P ⊆ V such
that V P � “ZFC + GCH + K is the class of supercompact cardinals (so κ is the least
supercompact cardinal). In V P, level by level equivalence between strong compactness
and supercompactness holds. In addition, in V P, for every δ ∈ A where A is a certain
stationary subset of κ , �δ holds, and for every regular uncountable cardinal δ, ♦δ

holds”.

In terminology used by Woodin, this theorem can be classified as an “inner model
theorem proven via forcing.” This is since the model constructed satisfies pleas-
ant properties one usually associates with an inner model, namely GCH and many
instances of square and diamond, along with a property one might perhaps expect if
a “nice” inner model containing supercompact cardinals ever were to be constructed,
namely level by level equivalence between strong compactness and supercompactness.

The purpose of this paper is to extend and generalise Theorem 1, in order to construct
a model for level by level equivalence between strong compactness and supercompact-
ness in which a version of square consistent with supercompactness holds on the class
of all infinite cardinals and in which a strong form of diamond holds on a proper class
of regular cardinals. Our model for level by level equivalence between strong com-
pactness and supercompactness consequently becomes, in a sense, even more “inner
model like” than the one for Theorem 1. Specifically, we prove the following theorem.

Theorem 2 Let V � “ZFC + GCH + K �= ∅ is the class of supercompact cardinals”.
There is then a partial ordering P ⊆ V such that V P � “ZFC + GCH + K is the class
of supercompact cardinals + Level by level equivalence between strong compactness
and supercompactness holds”. In V P, �S

γ holds for every infinite cardinal γ , where

S = Safe(γ ). In addition, in V P, ♦µ holds for every µ which is inaccessible or the
successor of a singular cardinal, and ♦+

µ holds for every µ which is the successor of
a regular cardinal.

Pertinent definitions are presented at various junctures throughout the course of the
paper. In particular, we will give the definitions of S = Safe(γ ) (Definition 2.2) and
�S

γ in Sect. 2, and the definitions of our various diamond principles in Sect. 3. We
do, however, take this opportunity to mention that for κ a regular cardinal and α an
ordinal, Add(κ, α) is the standard Cohen poset for adding α many new subsets of κ .

The overall structure of this paper is as follows. In Sect. 1, we provide a brief
introduction. In Sect. 2, we discuss forcing the relevant version of square. In Sect. 3,
we discuss forcing a strong form of diamond. In Sect. 4, we give a proof of Theorem 2.

Before continuing, we do wish now to take the opportunity to state a result which
will be used in the proof of Theorem 2. This is a corollary of Theorems 3 and 31 and
Corollary 14 of Hamkins’ paper [8]. This theorem is a generalisation of Hamkins’ Gap
Forcing Theorem and Corollary 16 of [9] and [10] (and we refer readers to [8–10] for
further details). We therefore state the theorem we will be using now, along with some

123



An L-like model containing very large cardinals 67

associated terminology. Suppose P is a partial ordering which can be written as Q∗ Ṙ,
where |Q| ≤ δ, Q is nontrivial, and �Q “Ṙ is (δ + 1)-strategically closed” (meaning
that there is a winning strategy for player II in the game having length δ + 1). In
Hamkins’ terminology of [8], P admits a closure point at δ. In Hamkins’ terminology
of [9] and [10], P is mild with respect to a cardinal κ iff every set of ordinals x in V P

of size below κ has a “nice” name τ in V of size below κ , i.e., there is a set y in V ,
|y| < κ , such that any ordinal forced by a condition in P to be in τ is an element of y.
Also, as in the terminology of [8–10], and elsewhere, an embedding j : V → M is
amenable to V when j � A ∈ V for any A ∈ V . The specific corollary of Theorems 3
and 31 and Corollary 14 of [8] we will be using is then the following.

Theorem 3 (Hamkins) Suppose that V [G] is a forcing extension obtained by forcing
that admits a closure point at some regular δ < κ . Suppose further that j : V [G] →
M[ j (G)] is an embedding with critical point κ for which M[ j (G)] ⊆ V [G] and
M[ j (G)]δ ⊆ M[ j (G)] in V [G]. Then M ⊆ V ; indeed, M = V ∩ M[ j (G)]. If the
full embedding j is amenable to V [G], then the restricted embedding j � V : V → M
is amenable to V . If j is definable from parameters (such as a measure or extender)
in V [G], then the restricted embedding j � V is definable from the names of those
parameters in V . Finally, if P is mild with respect to κ and κ is λ-strongly compact in
V [G] for any λ ≥ κ , then κ is λ-strongly compact in V .

It immediately follows from Theorem 3 that any cardinal κ which is λ-supercompact
in a generic extension obtained by forcing that admits a closure point below κ (such as
at ω) must also be λ-supercompact in the ground model. In particular, if V is a forcing
extension of V by a poset that admits a closure point at ω in which each supercompact
cardinal is preserved, the class of supercompact cardinals in V remains the same as
in V .

We conclude Sect. 1 with a short discussion of some important terminology. Sup-
pose V is a model of ZFC in which for all regular cardinals κ < λ, κ is λ-strongly
compact iff κ is λ-supercompact, except possibly if κ is a measurable limit of car-
dinals δ which are λ-supercompact. Such a model will be said to witness level by
level equivalence between strong compactness and supercompactness. We will also
say that κ is a witness to level by level equivalence between strong compactness and
supercompactness iff for every regular cardinal λ > κ , κ is λ-strongly compact iff κ

is λ-supercompact. Note that the exception is provided by a theorem of Menas [13],
who showed that if κ is a measurable limit of cardinals δ which are λ-strongly com-
pact, then κ is λ-strongly compact but need not be λ-supercompact. Models in which
level by level equivalence between strong compactness and supercompactness holds
nontrivially were first constructed in [3].

2 Forcing a weak version of �

2.1 Partial squares and the basic forcing

We state a partial version of � compatible with supercompact cardinals. Square
sequences of this kind were first shown to be consistent with supercompactness by
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68 A. W. Apter, J. Cummings

Foreman and Magidor [7, p. 191], using techniques of Baumgartner. In the notation of

Definition 2.1 they showed that �{κ+n :n<ω}
κ+ω is consistent with κ being supercompact.

Given a set S of regular cardinals, we denote by cof(S) the class of ordinals α such
that cf(α) ∈ S.

Definition 2.1 Let γ be an infinite cardinal and let S be a set of regular cardinals which
are less than or equal to γ . Then a �S

γ -sequence is a sequence 〈Cα : α ∈ γ + ∩cof(S)〉
such that

1. Cα is club in α and ot(Cα) ≤ γ .
2. If β ∈ lim(Cα) ∩ lim(Cα′) then Cα ∩ β = Cα′ ∩ β.

�S
γ holds if and only if there is a �S

γ -sequence.

We note that if T = (γ + ∩ cof(S)) ∪ {η : ∃β ∈ γ + ∩ cof(S) η ∈ lim(Cβ)} then
we can trivially extend the domain of the sequence to T , by defining Cη = Cβ ∩ η for
some (any) β with η ∈ lim(Cβ).

We define a forcing poset Q
�(γ, S) to add such a sequence. Elements of Q

�(γ, S)

are all pairs (q, η) such that η < γ +, and q is a partial function on γ + such that

1. (η + 1) ∩ cof(S) ⊆ dom(q) ⊆ η + 1.
2. For all α ∈ dom(q)

(a) q(α) is club in α, and ot(q(α)) ≤ γ .
(b) For all β ∈ lim q(α), β ∈ dom(q) and q(α) ∩ β = q(β).

(q, θ) extends (p, η) if and only if θ ≥ η, dom(q) ∩ (η + 1) = dom(p) and q �
dom(p) = p.

Routine arguments [4, Lemma 6.1] show that the poset is (γ + 1)-strategically
closed, in particular it adds no γ -sequences. If 2γ = γ + then the forcing contains
only γ + many conditions, so trivially has γ ++-cc. The key property is that when we
form the union of a decreasing chain of conditions of length less than min(S), we
can obtain a condition, because we are only obliged to put points of cof(S) into the
support of a condition.

Definition 2.2 For each infinite cardinal γ , a regular cardinal µ is safe for γ if and
only if

1. µ ≤ γ .
2. For every cardinal λ ≤ γ , if λ is γ +-supercompact then λ ≤ µ.

Safe(γ ) is the set of safe regular cardinals for γ .

We note that the safe set is a final segment of REG∩(γ +1), and that the safe set can
only be empty when γ is a singular limit of cardinals which are γ +-supercompact. In
addition, by the remarks immediately following the statement of Theorem 3, Safe(γ )

is upwards absolute to any cardinal and cofinality preserving forcing extension by a
poset admitting a closure point at ω.

The following easy lemma (essentially due to Solovay) motivates the definition of
the safe set.

Lemma 2.3 If S is a final segment of REG∩ (γ +1) and �S
γ holds then S ⊆ Safe(γ ).
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An L-like model containing very large cardinals 69

Proof Suppose not, then by definition there is µ ∈ S such that µ < λ ≤ γ and λ is
γ +-supercompact. Fix a sequence 〈Cα : α ∈ γ + ∩ cof(S)〉 witnessing the square.

In particular Cα is defined for every α in the stationary set γ + ∩ cof(S), and
ot(Cα) ≤ γ , so by Fodor’s lemma we may find a stationary set T ⊆ γ + ∩ cof(S) and
an ordinal η such that ot(Cα) = η for all α ∈ T . It follows easily from the coherence
of the clubs Cβ that T ∩ lim(Cβ) has size at most 1 for all β ∈ γ + ∩ cof(S). In
particular T cannot reflect at any point of γ + ∩ cof(S).

But the γ +-strong compactness of λ [14, Theorem 4.8] implies that T must reflect
at some point ζ with µ < cf(ζ ) < γ . This is a contradiction since cf(ζ ) ∈ S. ��

2.2 Iteration and preservation

We assume that V satisfies GCH. In the cases of interest V will contain some super-
compact cardinals.

We define an Easton support iteration P
�∞ of length ON (the superscript is intended

to distinguish this iteration of length ∞ from some other ones appearing later in the
paper). As usual P

�
γ is the forcing up to stage γ and Q̇

�
γ is a P

�
γ -name for the forcing

poset to be used at stage γ . Q
�
γ is trivial unless γ is zero or an infinite cardinal,

and Q
�
0 = Add(ω, 1). At each stage γ where γ is an infinite cardinal, we will set

Q
�
γ = Q

�(γ, S)
V P

�
γ

where S = Safe(γ )V and Q
�(γ, S) is the forcing poset defined

in Sect. 2.1. At all other stages, the forcing is trivial. Routine arguments show that this
iteration preserves all cardinals and cofinalities, together with GCH and the fact that

V P
�∞ is a model of ZFC. In addition, it is easily verified that for every infinite cardinal

γ , �S
γ holds in V P

�∞ .
As we mentioned above, the following result is a descendant of results by Foreman

and Magidor [7, p. 191]. The trick in the master condition argument first appeared in
unpublished work of Baumgartner.

Theorem 4 If κ is supercompact in V , then the supercompactness of κ is preserved
in the extension by P

�∞.

Proof Let γ > κ be regular and let U be a supercompactness measure on Pκγ . Let
j : V → M be the ultrapower map. As usual crit( j) = κ , and γ + < j (κ) < j (γ ) <

γ ++.
It will suffice to show that κ is γ -supercompact in the extension by P

�
γ+1, since the

rest of the iteration adds no new subsets of Pκγ . As usual the resemblance between
V and M implies that P

�
γ+1 is an initial segment of j (P�

γ+1).

We will break up the generic object for P
�
γ+1 as G ∗ g ∗ H where G is generic for

P
�
κ , g is generic for the part of the iteration in the interval [κ, γ ), and H is generic

for the forcing at γ . It is easy to see that P
�
γ has cardinality at most γ , so in particular

V [G ∗ g] � γ M[G ∗ g] ⊆ M[G ∗ g].
Let R ∈ M[G∗g∗H ] be the usual forcing for prolonging G∗g∗H to a generic filter

for j (P�
κ ). By the usual arguments, from the point of view of V [G ∗ g ∗ H ] this poset
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has cardinality γ + and is γ +-closed, so we may build a generic filter h ∈ V [G ∗g∗ H ]
for it and extend j to get j : V [G] → M[ j (G)], where j (G) = G ∗ g ∗ H ∗ h.

We note that since R is sufficiently closed, V [G ∗g∗ H ] � γ M[ j (G)] ⊆ M[ j (G)].
Let S ∈ M[ j (G)] be the natural forcing for prolonging j (G) to a j (P�

γ )-generic filter.
Again S has cardinality γ + and is γ +-closed from the point of view of V [G ∗ g ∗ H ],
but to lift the embedding we need a generic filter which contains j“g.

We will build a suitable master condition. Let δ be such that in M , δ is a cardinal with
j (κ) ≤ δ < j (γ ). The key point is that by elementarity j (κ) is j (γ )-supercompact
in M , in particular j (κ) is δ+-supercompact: so the set SafeM (δ) contains only car-
dinals greater than or equal to j (κ), and in particular since γ < j (κ) we have
γ < min(SafeM (δ)).

Now we consider the partial function r defined as follows: the domain of r is⋃
s∈g dom( j (s)), and for each δ ∈ dom(r), r(δ) = ⋃

s∈g j (s)(δ). We claim that this

is a condition in S. The key point is that |g| ≤ γ < min(SafeM (δ)), so that r(δ) names
the union of a rather short chain of conditions and hence is a name for a condition. So
we may lift j once again to obtain j : V [G ∗ g] → M[ j (G ∗ g)].

To finish we just note that Q
�
γ adds no γ -sequences and |Pκγ | = γ . We may

therefore transfer the generic object H along j to obtain j : V [G ∗ g ∗ H ] →
M[ j (G ∗ g ∗ H)]. ��

3 Forcing ♦+
λ+

3.1 Strong diamond and the basic forcing

We recall that

1. ♦′
λ+ is the assertion that there exists a sequence 〈Sα : α < λ+〉 such that

(a) For every α, Sα is a family of subsets of α with |Sα| ≤ λ.
(b) For every X ⊆ λ+, the set {α < λ+ : X ∩ α ∈ Sα} is stationary in α.

2. ♦∗
λ+ is the assertion that there exists a sequence 〈Sα : α < λ+〉 such that

(a) For every α, Sα is a family of subsets of α with |Sα| ≤ λ.
(b) For every X ⊆ λ+, there is C ⊆ λ+ a club set such that ∀α ∈ C X ∩ α ∈ Sα .

3. ♦+
λ+ is the assertion that there exists a sequence 〈Sα : α < λ+〉 such that

(a) For every α, Sα is a family of subsets of α with |Sα| ≤ λ.
(b) For every X ⊆ λ+, there is C ⊆ λ+ a club set such ∀α ∈ C X ∩α, C ∩α ∈ Sα .

Kunen [6, Theorem 2] showed that ♦′
λ+ is equivalent to ♦λ+ . In unpublished work

Jensen showed that in general ♦∗
λ+ is stronger than ♦λ+ and ♦+

λ+ is stronger than ♦∗
λ+ .

Jensen showed [5] that ♦+
λ+ holds in L , and that a ♦∗

ω1
-sequence can be added

by countably closed forcing [6, Lemma 8.3] when λ = ω. It is probably possible
to adapt that argument to show that a ♦+

λ+ -sequence can be added by λ+-directed-
closed forcing; it is not clear to us whether such an adapted poset would work for our
results, since we will be preserving large cardinals by something more elaborate than
a straightforward master condition argument.

We will use a poset constructed by Cummings, Foreman and Magidor (see
[4, Sect. 12]). We give a fairly detailed exposition here to make this paper reasonably
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An L-like model containing very large cardinals 71

self-contained, and to stress that there is some extra flexibility in computing lower
bounds in the poset which will be useful later.

We fix λ a cardinal with 2λ = λ+. We will define a poset Q
♦(λ+) such that Q

♦(λ+)

adds ♦+
λ+ , where Q

♦(λ+) is λ+-directed closed and λ++-cc.
The main idea is that we will add a ♦′

λ+ -sequence, and then iterate in length λ++
by adding club subsets of λ+ so as to make this sequence into a ♦+

λ+ -sequence. We
will then let Q

♦(λ+) be the result Pλ++ of this iteration, which will turn out to have
λ++-cc.

We start by defining a poset Q0 to add the ♦′
λ+ -sequence. Q0 is the set of those q

such that q = 〈Sα : α ≤ β〉 where

1. β < λ+.
2. For every α ≤ β

(a) Sα is a family of subsets of α.
(b) |Sα| ≤ λ.

The ordering is by end-extension. One can check by standard arguments that ♦′
λ+

holds in the extension by Q0, but we will not do this since it follows from our later
analysis.

For α > 0 we will choose (by some bookkeeping scheme) Ẋα a Pα-name for a
subset of λ+, and then define Qα in V Pα to be the set of c such that

1. c is closed and bounded in λ+.
2. ∀β ∈ lim(c) Xα ∩ β, c ∩ β ∈ Sβ .

Here Xα is the realisation of the term Ẋα , and 〈Sα : α < λ+〉 is the ♦′
λ+ -sequence

added by Q0. The ordering is end-extension. The bookkeeping will arrange that after
λ++ steps in the λ++-cc iteration we have handled every subset of λ+.

To complete the definition of our iteration, we specify that we will force with
supports of size at most λ; equivalently we will form inverse limits at limit stages δ

with cf(δ) ≤ λ, and direct limits when cf(δ) > λ. As usual when we are iterating
forcing to shoot club sets, the key point is to prove that there is a dense set of “tame”
conditions.

Definition 3.1 A condition p ∈ Pα is rectangular if and only if there is a limit ordinal
β < λ+ such that

1. p(0) has the form 〈Sγ : γ ≤ β〉.
2. For all η ∈ supp(p) with η > 0

(a) There exist dη, xη ∈ V such that p � η � “p(η) = ďη, Ẋη ∩ β = x̌η”.
(b) max(dη) = β, β ∈ lim(dη).

Since p is a condition, it follows that xη, dη ∩ β ∈ Sβ .
In a harmless abuse of notation we will often assume that for p rectangular, p(γ )

is literally a canonical name for an element of V . We call the ordinal β the height of
p. Let P

rect
α be the set of rectangular conditions in Pα .

Lemma 3.2 Let 1 ≤ α ≤ λ++. Then
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1. P
rect
α is λ+-directed closed. Moreover, if {pγ : γ < µ} is a directed set of rectangu-

lar conditions for some µ < λ+, and the height of pγ is σγ , then there is a greatest
lower bound (in P

rect
α ) p which is given by

(a) supp(p) = ⋃
γ<µ supp(pγ ).

(b) dom(p(0)) = σ + 1, where σ = supγ<µ σγ .
(c) p(0) � σ = ⋃

γ<µ pγ (0).
(d) For β > 0, p(β) = ⋃

γ<µ{pγ (β) : β ∈ dom(pγ )} ∪ {σ }.
(e) p(0)(σ ) = {p(β) ∩ σ : β ∈ dom(p), β > 0} ∪ {xβ : β ∈ dom(p), β > 0},

where xβ is the subset of σ such that p � β � “Ẋβ ∩ σ = x̌β”.
p ∈ P

rect
α and p has height σ .

2. P
rect
α is dense in Pα .

Proof The first claim is easy to verify. We prove the second claim by induction on α.
Suppose P

rect
ᾱ is dense in Pᾱ for all ᾱ < α. We show P

rect
α is dense in Pα .

Case 1 α = 1, P
rect
1 = P1 � Q0 and there is nothing to prove.

Case 2 α = β + 1. Fix a condition p ∈ P
rect
β+1.

By induction, we know that P
rect
β is λ+-closed and dense in Pβ . In particular Pβ

adds no bounded subsets of λ+, and so we may choose p0 ≤ p � β such that p0
decides the value of p(β), say that p0 forces p(β) to equal c where max(c) = γ .
As P

rect
β is dense, we may choose p0 ∈ P

rect
β and by extending if necessary may also

assume that the height of p0 is greater than γ .
Now we argue in a similar vein to build a decreasing ω-sequence of conditions

p0 > p1 > p2 > . . . and an increasing ω-sequence of ordinals ρ0 < ρ1 < . . .,
where pn is a condition in P

rect
β of height ρn , and pn+1 decides Ẋβ ∩ ρn ; say pn+1 �

“Ẋβ ∩ ρn = xn”. By the first claim of the Lemma, we may form a greatest lower
bound for �p which will be a condition q ∈ P

rect
β of height ρ = sup ρn .

Now we define q+ as follows. dom(q+) = β + 1, and q+(γ ) = q(γ ) for 0 <

γ < β. q+(β) = c ∪ {ρ0, ρ1, . . . , ρ}. q+(0) � ρ = q(0) � ρ, and q+(0)(ρ) =
q(0)(ρ)∪{q+(β),

⋃
n xn}. It is now routine to check that q+ ∈ Pβ+1, q+ is rectangular

of height ρ, and q+ refines p.

Case 3 α is limit with cf(α) ≥ λ+. Fix p ∈ Pα , then the support of p is bounded by
some β < α. By induction we may find q ≤ p � β with q ∈ P

rect
β ; if q+ ∈ Pα is

defined by q+ � β = q and q+ � [β, α) = 1 then q+ ∈ P
rect
α and q+ ≤ p, as required.

Case 4 α is limit and cf(α) ≤ λ. Choose a sequence 〈αi : i < cf(α)〉 which is
increasing, continuous and cofinal in α. Fix p ∈ Pα .

We will define a decreasing sequence of conditions 〈pi : i ≤ cf(α)〉 such that
p0 ≤ p, pi � αi ∈ P

rect
αi

for each i , and pcf(α) ∈ P
rect
α . We let σi denote the height of

pi � αi .
i = 0. Let q0 ≤ p � α0, q0 ∈ P

rect
α0

. Let p0 � α0 = q0, p0 � [α0, α) = p � [α0, α).
i = j + 1. Let qi ≤ p j � αi , qi ∈ P

rect
αi

. Now let pi � αi = qi , and pi � [αi , α) = p �
[αi , α).
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An L-like model containing very large cardinals 73

i is limit. For each j < i consider the sequence 〈pk � α j : j ≤ k < i〉. This is
a decreasing sequence from P

rect
α j

so by the first claim of the Lemma we can form a

greatest lower bound r j , where r j ∈ P
rect
α j

and r j has height σ = supk<i σk .
It is easy to see that if m < n then rm � (0, αm) = rn � (0, αm), rm(0) � σ =

rn(0) � σ , and rm(0)(σ ) ⊆ rn(0)(σ ). We define qi such that dom(qi ) = αi , qi �
(0, α j ) = r j � (0, α j ) for all j , qi (0) � σ is the common value of r j (0) � σ , and
qi (0)(σ ) = ⋃

j<i r j (0)(σ ).
It is routine to check that qi ∈ P

rect
αi

and qi has height σ , also that qi ≤ p j � αi for
each j < i . Now let pi � αi = qi , pi � [αi , α) = p � [αi , α).

The construction for the limit step also works for i = cf(α), and produces pcf(α)

which is in P
rect
α and refines p. ��

It will be crucial later that we have a certain latitude when we are forming a lower
bound for a directed set of conditions. In particular in the argument for Case 4 above
we could extend qcf(α)(0)(σ ) by adding in λ many additional subsets of σ , and still
obtain a lower bound.

3.2 Iteration and preservation

Let V be a model of GCH. We describe an iteration P
♦∞ of length ON with Easton

support to add a ♦µ-sequence for every µ which is inaccessible or the successor of a
singular cardinal, and a ♦+

µ -sequence for every µ which is the successor of a regular

cardinal. To do this we begin by forcing with Q
♦
0 = Add(ω, 1) and then let Q

♦
µ be

1. The poset Add(µ, 1)V P
♦
µ

for µ inaccessible or µ the successor of a singular cardinal.

2. The poset Q
♦(µ)V P

♦
µ

as described in Sect. 3.1 when µ = λ+ for λ regular.

At all other stages, the forcing is trivial.
We need to show that this iteration P

♦∞ preserves all regular instances of super-
compactness. Routine arguments show that the iteration preserves all cardinals and

cofinalities, together with GCH and the fact that V P
♦∞ is a model of ZFC. In addition,

using the arguments of [1, Lemma 1.1] and [4, Theorem 12.2], it is easily verified that

in V P
♦∞ , ♦µ holds for every µ which is inaccessible or the successor of a singular

cardinal, and ♦+
µ holds for every µ which is the successor of a regular cardinal.

Theorem 5 If γ is regular and κ is γ -supercompact in V , then κ is γ -supercompact

in V P
♦∞ .

Proof It is enough to show that κ is γ -supercompact in V P
♦
γ+1 , since the rest of the

iteration does not change Pκγ . We will distinguish various cases.

γ is inaccessible or the successor of a singular cardinal. Here, we give an argument
similar to the one presented in [1, Lemma 1.2]. We fix as usual U a supercompactness
measure on Pκγ , and j : V → M the associated ultrapower map. By GCH we get
that γ + < j (κ) ≤ j (γ ) < γ ++.
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We can factorise P
♦
γ+1 as P

♦
κ ∗ Q̇, where Q is the part of the iteration in the interval

[κ, γ ]. Q is a κ-directed closed forcing of size γ . Let G ∗ g be the corresponding
factorisation of a P

♦
γ+1-generic filter.

We note that V [G ∗ g] � γ M[G ∗ g] ⊆ M[G ∗ g]. Since | j (γ )| = γ +, by the usual
arguments, working in V [G ∗ g] we may prolong G ∗ g to j (G) = G ∗ g ∗ H which
is j (P♦

κ )-generic, and lift to get j : V [G] → M[G ∗ g ∗ H ].
Since V [G ∗ g] � γ M[G ∗ g ∗ H ] ⊆ M[G ∗ g ∗ H ], and j (Q) is j (κ)-directed

closed, we may find a lower bound for j“g in j (Q) and use this as a master condition.
Since | j (γ )| = γ + we may build in V [G ∗ g] a generic h with j“g ⊆ h, and finish
by lifting to j : V [G ∗ g] → M[G ∗ g ∗ H ∗ h].
γ = δ+ for δ regular. We fix a supercompactness measure U on Pκδ+, and let
j : V → M be the ultrapower map. As usual δ++ < j (κ) < j (δ+) < δ+++. Also j
is continuous at γ + = δ++.

The last step in P
♦
γ+1 is Q

♦
γ , the forcing for adding a ♦+

δ+-sequence. We will break

up P
♦
γ+1 as P

♦
κ ∗ Q̇ ∗ Q̇

♦
γ , where Q is the iteration in the interval [κ, γ ). We know

that Q is κ-directed closed and has size at most γ . Q
♦
γ is γ -directed closed and γ +-cc

forcing of size γ +.
Let G ∗ g ∗ H be the corresponding factorisation of a P

♦
γ+1-generic filter. Since

G ∗ g is generic for forcing of size γ , V [G ∗ g] � γ M[G ∗ g] ⊆ M[G ∗ g]. Since H
is generic for γ +-cc forcing, V [G ∗ g ∗ H ] � γ M[G ∗ g ∗ H ] ⊆ M[G ∗ g ∗ H ].

Using this closure, we may as usual prolong G ∗ g ∗ H to j (G) = G ∗ g ∗ H ∗ h
which is j (P♦

κ )-generic over M , and lift to get j : V [G] → M[ j (G)]. We have that
V [G ∗ g ∗ H ] � γ M[ j (G)] ⊆ M[ j (G)]. Since |Q| = γ and Q is κ-directed closed,
we may argue just as before to produce K ⊇ j“g which is j (Q)-generic and extend
once more to j : V [G ∗g] → M[ j (G)∗ K ], where V [G ∗g ∗ H ] � γ M[ j (G)∗ K ] ⊆
M[ j (G) ∗ K ].

Thus far the argument was fairly routine, but now we need a new idea because Q
♦
γ

has size γ + and is a complicated forcing. We use a version of an idea of Magidor
[11,12] with an added twist. We digress briefly to explain how Magidor’s technique
works in a simpler setting. A more complete explanation of Magidor’s method may
be found in [2, Corollary 10, pp. 832–833] (see also [3, Lemma 9, pp. 119–120]).

Suppose for a moment that Qγ were the poset Add(γ, γ +). Conditions are partial
functions from γ × γ + to 2 of cardinality less than γ , ordered by p ≤ q if and only
if q ⊇ p. This is quite similar in the sense that it is γ +-cc, adds γ + subsets of γ and
can be seen as an iteration with <γ -support.

As usual if H is a generic filter and η < γ + we may form a restricted filter H � η

which is generic for Qγ � η = Add(γ, η). For each η < γ + we can form a “partial
master condition” qη =def

⋃
j“H � η, and the qη form a decreasing sequence.

By a standard chain condition argument, if A is a maximal antichain in Qγ then
there is σ < γ + such that A ⊆ Qγ � η for every η ≥ σ . We may now proceed to build
a generic filter for j (Qγ ) which is compatible with H . We enumerate the maximal
antichains in j (Qγ ) in order type γ +, say as 〈Ai : i < γ +〉.

We now construct a decreasing sequence of conditions 〈ri : i < γ +〉, maintaining
the hypotheses that ri+1 ∈ Ai and ri is compatible with all the qη. We set r0 to be
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the trivial condition, and take unions at limits. Given ri we first find ηi such that
Ai ⊆ ( j (Qγ ) � j (ηi )) and dom(ri ) ⊆ j (γ ) × j (ηi ), which is possible as j is
continuous at γ +. We form ri ∪ qηi , which is a condition because ri is compatible
with qηi , and then use the fact that Ai ⊆ ( j (Qγ ) � j (ηi )) to find ri+1 ≤ ri ∪ qηi such
that ri+1 meets Ai and dom(ri+1) ⊆ j (γ ) × j (ηi ). The key point is that since ri+1
extends qηi , and dom(ri+1) ⊆ j (γ ) × j (ηi ), ri+1 is compatible with qη for all η.

Returning to the case at hand, we would like to apply the same idea. But there is a
subtle problem, which is that when we form the “partial master conditions” qη in the
natural way they do not form a decreasing sequence. We now give a detailed analysis
of this issue.

We recall that Q
♦
γ is an iteration of length γ + with supports of size δ. On coordinate

zero we add a ♦′
γ sequence, and then we shoot clubs to make it into a ♦+

γ -sequence. For

η < γ +, let Q
♦
γ � η be the iteration up to stage η and let H � η be the corresponding

generic object.
Since Q

♦
γ � η has size γ , we may compute in M[ j (G) ∗ K ] the set j“(H � η)

and form its “canonical” lower bound qη as in Lemma 3.2. We need to analyse the
condition qη more closely. Let ζ = sup j“γ , so that as usual ζ < j (γ ).

qη(0) is a sequence of length ζ + 1, and qη(0) � ζ is just the union of j (q) as q
runs through H � 1. qη � [1, j (η)) is a partial function with support

Zη =
⋃

{ j (x) : x ∈ V [G ∗ g], x ⊆ [1, η), |x | ≤ δ}.

For each α ∈ Zη, qη(α) is a closed set with maximum point ζ , and

qη(α) ∩ ζ =
⋃

{ j (q)(α) : q ∈ H � η, α ∈ j (supp(q))}.

Recall that Q
♦
γ is an iteration in which at stage α > 0 we are given a set Xα ⊆ γ ,

and we shoot a club set through the set of places where it is correctly guessed by the
generic sequence added at stage 0. Let j (〈Ẋα : α < γ +〉) = 〈Ẏβ : β < j (γ +)〉. For
each q ∈ H � η, if q(0) has domain µ+ 1 then for every α ∈ supp(q), µ = max q(α)

and q � α determines Ẋα ∩ µ.
It follows that for every α ∈ Zη, qη � α determines Ẏα ∩ ζ , say it forces it to be y̌α .

Then qη(0)(ζ ) consists of the sets yα and qη(α) ∩ ζ for α ∈ Zη. It is easy to see that
if η < η′ then

1. qη′ � [1, j (η)) = qη � [1, j (η)).
2. qη′(0) � ζ = qη(0) � ζ .

So qη′ is almost an extension of qη, but not quite because qη′(0) contains more sets at
level ζ .

We need a slightly more detailed analysis of the sets which can appear as yα and
qη(α) ∩ ζ . Fix some η ∈ [γ, γ +), and a bijection π ∈ V between γ and η. We may
view H � [1, η) as giving us a sequence 〈Cα : 0 < α < η〉 of club subsets of γ ,
which we may then code up as W ⊆ η × γ , where (α, i) ∈ W ↔ i ∈ Cα . Define
W̄ ⊆ γ × γ by (α, i) ∈ W̄ ↔ (π(α), i) ∈ W . It is now routine to check that if we
define W ∗ = ⋃

i<γ j (W̄ ∩ (i × i)), then W ∗ ⊆ ζ × ζ and the sets which appear in
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the form {ν < ζ : (α, ν) ∈ W ∗} as α runs through ζ are precisely the sets qη(α) ∩ ζ

for α ∈ Zη. A similar analysis works for the yα , with the sequence 〈Xα : 0 < α < η〉
in place of 〈Cα : 0 < α < η〉.

Now let T ⊆ γ ×γ with T ∈ V [G∗g] being arbitrary. Clearly, since V [G∗g∗H ] �
γ M[ j (G) ∗ K ] ⊆ M[ j (G) ∗ K ], T ∈ M[ j (G) ∗ K ]. We claim that the map which
takes such T to T † = ⋃

i<γ j (T ∩ (i × i)) is in M[ j (G) ∗ K ]. To prove this claim
we split into several cases depending on the nature of δ.

Case 1 δ is inaccessible. In this case Q
♦
δ is Add(δ, 1), so P

♦
γ is a forcing poset of size

δ. So for each i < γ the P
♦
γ names for subsets of i × i are essentially subsets of δ,

and we know that j � ℘(δ) ∈ M .

Case 2 δ is the successor of a regular cardinal. Then Q
♦
δ is an iteration of length δ+

with δ+-cc, so that all bounded subsets of γ appear in the extension by some initial
segment, a forcing poset of size δ. So again all the relevant names are essentially
subsets of δ and we are done as in Case 1.

Case 3 δ is the successor of a singular cardinal ρ. The cardinality of P
♦
ρ is δ, we are

doing Cohen forcing at δ, so P
♦
γ has size δ, and we are done as in Case 1.

So now we can compute in M[ j (G) ∗ K ] the set P of all T † as above. This set has
size bounded by j (δ) so we can augment each of the qη’s defined above by adding all
elements of P to coordinate zero at level ζ . This gives us a new sequence of partial
master conditions p∗

η with the crucial extra property that the p∗
η are literally decreasing.

We may now proceed with Magidor’s argument exactly as above. ��

4 The proof of the main theorem

Having completed the discussion found in Sects. 1–3, we are now ready to turn our
attention to the proof of Theorem 2.

Proof Let V � “ZFC + GCH + K �= ∅ is the class of supercompact cardinals”. We

begin by forcing with the poset P
�∞ of Sect. 2, to obtain the extension V1 = V P

�∞ .
By Theorem 4, we know that all V -supercompact cardinals are preserved to V1. In
addition, as in Sect. 2, we may write P

�∞ = Q∗ Ṙ, where |Q| = ω, Q is nontrivial, and
�Q “Ṙ is (ω + 1)-strategically closed”. By Theorem 3, this means that any cardinal
supercompact in V1 had to have been supercompact in V . Thus, K remains the class
of supercompact cardinals in V1. Also, by the work of Sect. 2, we know that �S

γ holds
in V1, for every infinite cardinal γ and S = Safe(γ ), and that GCH is preserved to V1
as well.

We force now over V1 with the poset of [3], which for convenience we denote
here by P

L BL∞ . This preserves all V1-instances of supercompactness, GCH, and all
cardinals and cofinalities, and in addition forces level by level equivalence between
strong compactness and supercompactness. Call the resulting extension V2. Since
P

L BL∞ may be defined so as to admit a closure point at ω (see [3] for further details),
Theorem 3 and the remarks immediately following imply that K remains the class
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of supercompact cardinals in V2. Further, by the upwards absoluteness of any form
of square in a cardinal preserving forcing extension (see the discussion given in the
proof of Theorem 1 of [1]) and the remarks in the paragraph following the statement
of Definition 2.2, �S

γ for S = Safe(γ ) remains true in V2 for all infinite cardinals γ .

Finally, we force over V2 with the poset P
♦∞ of Sect. 3, to obtain the extension V3.

By the work of Sect. 3, we know that in V3, ♦µ holds for every µ which is inaccessible
or the successor of a singular cardinal, and ♦+

µ holds for every µ which is the successor
of a regular cardinal. GCH is preserved to V3 as well. By Theorem 5, we also know
that all V2-supercompact cardinals are preserved to V3. In addition, we may write
P

♦∞ = Q
′ ∗ Ṙ

′, where |Q′| = ω, Q
′ is nontrivial, and �Q′ “Ṙ

′ is (ω + 1)-strategically
closed”. By Theorem 3, this means that any cardinal supercompact in V3 had to have
been supercompact in V2. Thus, K remains the class of supercompact cardinals in V3.
Also, as in the last sentence of the preceding paragraph, �S

γ for S = Safe(γ ) remains
true in V3 for all infinite cardinals γ .

The proof of Theorem 2 is now completed by the following lemma.

Lemma 4.1 V3 � “Level by level equivalence between strong compactness and super-
compactness holds”.

Proof We mimic the proof of Lemma 1.3 of [1]. Suppose V3 � “κ < λ are reg-
ular cardinals such that κ is λ-strongly compact and κ isn’t a measurable limit of
cardinals δ which are λ-supercompact”. By Theorem 5, any cardinal δ such that δ

is λ-supercompact in V2 remains λ-supercompact in V3. We may therefore infer that
V2 � “κ < λ are regular cardinals such that κ isn’t a measurable limit of cardinals δ

which are λ-supercompact”.
By the definition of P

♦∞, it is easily seen that P
♦∞ is mild with respect to κ . Hence, by

the factorisation of P
♦∞ given above and Theorem 3, V2 � “κ is λ-strongly compact”.

Consequently, by level by level equivalence between strong compactness and super-
compactness in V2, V2 � “κ is λ-supercompact”, so another application of Theorem 5
yields that V3 � “κ is λ-supercompact”. This completes the proof of Lemma 4.1. ��

By defining P = P
�∞ ∗ Ṗ

L BL∞ ∗ Ṗ
♦∞, the proof of Theorem 2 is now complete. ��

We conclude by asking if the results of Theorem 2 can be generalised further. In
particular, is it possible to extend the above techniques so that ♦+

µ holds for every
successor cardinal µ, and not just successors of regular cardinals?
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