Skip to main content
Log in

Derivatives of normal functions and \(\omega \)-models

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

In this note the well-ordering principle for the derivative \(\mathsf{g}^{\prime }\) of normal functions \(\mathsf{g}\) on ordinals is shown to be equivalent to the existence of arbitrarily large countable coded \(\omega \)-models of the well-ordering principle for the function \(\mathsf{g}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Afshari, B., Rathjen, M.: Reverse mathematics and well-ordering principles: a pilot study. Ann. Pure Appl. Log. 160, 231–237 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arai, T.: Some results on cut-elimination, provable well-orderings, induction and reflection. Ann. Pure Appl. Log. 95, 93–184 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Feferman, S.: Systems of predicative analysis II: representations of ordinals. J. Symb. Log. 33, 193–220 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Girard, J.-Y.: Proof Theory and Logical Complexity, vol. 1. Bibliopolis, Napoli (1987)

    MATH  Google Scholar 

  5. Hirst, J.L.: Reverse mathematics and ordinal exponentiation. Ann. Pure Appl. Logic 66, 1–18 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Marcone, A., Montalbán, A.: The Veblen functions for computability theorists. J. Symb. Log. 76, 575–602 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rathjen, M.: \(\omega \)-models and well-ordering principles. In: Tennant, N. (ed.) In Foundational Adventures: Essays in Honor of Harvey M. Friedman, pp. 179–212. College Publications, London (2014)

    Google Scholar 

  8. Rathjen, M., Weiermann, A.: Reverse mathematics and well-ordering principles. In: Cooper, S., Sorbi, A. (eds.) Computability in Context: Computation and Logic in the Real World, pp. 351–370. Imperial College Press, London (2011)

    Chapter  Google Scholar 

  9. Schütte, K.: Proof Theory. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  10. Simpson, S.G.: Subsystems of second order arithmetic. In: Feferman, S., Hodges, W. A., Lerman, M., Macintyre, A. J., Magidor, M., Moschovakis, Y. N. (eds.) Perspectives in Logic, 2nd edn. Cambridge UP, Cambridge (2009)

  11. Takeuti, G.: A remark on Gentzen’s paper “Beweibarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie”. Proc. Japan Acad. 39, 263–269 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  12. Takeuti, G.: Proof Theory. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyasu Arai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, T. Derivatives of normal functions and \(\omega \)-models. Arch. Math. Logic 57, 649–664 (2018). https://doi.org/10.1007/s00153-017-0600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-017-0600-5

Keywords

Mathematics Subject Classification

Navigation