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When mathematicians think of the philosophy of mathematics, they
probably think of endless debates about what numbers are and whether
they exist. Since plenty of mathematical progress continues to be made
without taking a stance on either of these questions, mathematicians
feel confident they can work without much regard for philosophical re-
flections. In his sharp–toned, sprawling book, David Corfield acknowl-
edges the irrelevance of much contemporary philosophy of mathematics
to current mathematical practice, and proposes reforming the subject
accordingly.

Reading the introduction, it is hard not to be swept up by Cor-
field’s revolutionary fervor. Most contemporary philosophical writing
on mathematics focuses on elementary arithmetic or logic, but that is
not a representative sample of mathematical practice today or at any
time since Euclid. Corfield’s push to widen the investigative reach of
philosophers of mathematics will be welcomed by readers whose love of
mathematics extends broadly. But is this widening important merely
because it may be more attractive to lovers of mathematics? Or are
there important philosophical questions about mathematics that can-
not be answered well without the widening?

Corfield suggests that there are such questions. For instance, we can
ask why some concepts (such as groups and Hilbert spaces) have re-
ceived a great deal of attention while others have not. It could be that
our interest in those concepts is just a fad, like our interest in wearing
blue jeans; or tied to matters of current cultural interest (such as the
way we are currently approaching science) that may change dramati-
cally in time. Or it could be that there are some parts of mathematics
that we can’t help but run into when our inquiry gets serious enough.
We can put the question this way: are some mathematical concepts
inevitable?

This question is far from a new one: defending a ‘yes’ answer to it
was one of Plato’s chief goals, not just for mathematics but for ev-
ery knowledge–seeking activity. Furthermore, the view derived from
Plato’s that we now call ‘Platonism’—that mathematical objects exist,
independently of human minds—continues to attract followers. This is
true, but notice how the question ‘Platonism’ is answering is different
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from Corfield’s. Corfield’s question asks us to account for the inevitabil-
ity that mathematical practice suggests groups and Hilbert spaces pos-
sess. By contrast, ‘Platonism’ answers whether or not mathematical
objects exist objectively or are instead human constructs. ‘Platon-
ism’ could be true and yet leave us with no story about why certain of
these allegedly ‘objective’ features of reality, such as groups and Hilbert
spaces, turn out to be so important.

Corfield wants to turn the philosophy of mathematics toward what
is important for mathematics. I want to consider one example of what
he has in mind in some detail, both to show what Corfield does, and
what he does not do. Chapter Four is a study of analogies in mathe-
matics, cases where two evidently distinct domains seem to be related.
His chief example, which I will survey in a moment, is the analogy
between algebraic numbers and algebraic functions emerging out of
Dedekind and Weber’s work in the 1880s. Their work engenders an
algebraic approach to the theory of algebraic curves that would rival
Riemann’s geometric approach and Weierstrass’ function–theoretic ap-
proach, as it is developed in the twentieth century by Chevalley and
then Grothendieck. Corfield motivates this discussion by quoting sev-
eral famous mathematicians on the importance of this analogy; and also
by remarking that analogies might indicate a ‘deeper structural sim-
ilarity’ between the domains that might in some sense be inevitable.
Far from being merely an example of the sort of question a reformed
philosophy of mathematics might answer, the question of inevitability
turns out to be one of Corfield’s fundamental questions.

Though Dedekind and Riemann had a relatively close personal re-
lationship stemming from their time together in Göttingen, their ap-
proaches to mathematics were quite different. This is especially clear
in their attitudes toward the area related to what we today call the
Riemann–Roch theorem. In lectures in 1855–6 that Dedekind attended,
Riemann presented work on meromorphic functions over Riemann sur-
faces that he would publish in his 1857 paper Theorie der Abel’schen
Functionen. Let F be a Riemann surface of genus p. Among other
things, Riemann considered the question of, given m points on F, how
many linearly independent meromorphic functions are there on F that
have at worst simple poles at the m specified points. Riemann an-
swered this question as follows: there are n many such functions, where
n ≥ m − p + 1. (Riemann’s student Roch’s later identified the error
term, incorporating Riemann’s inequality into a more general equality.)
In order to prove this result, Riemann used topological considerations,
in particular what we now call the ‘Dirichlet principle’, which yields the
existence of a function minimizing a particular integral involving that
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function. Dirichlet’s principle was controversial in the years following
Riemann’s work, since it was unproved and was shown by Weierstrass
in 1870 to fail in certain cases (though Hilbert later showed that Rie-
mann’s use of it was defensible). However, the Riemann–Roch theorem
was recognized as fundamentally important. Naturally, people began
to try to eliminate the use of Dirichlet’s principle in its proof.

Dedekind was one of those who attempted to find a new proof of
the Riemann–Roch theorem, avoiding not only the Dirichlet princi-
ple but also any ‘transcendental’, topological considerations whatso-
ever (in practice, this meant avoiding continuity). In an paper pub-
lished in 1882, Dedekind and his colleague Heinrich Weber showed how
the Riemann–Roch theorem could be expressed in algebraic terms,
involving fields of algebraic functions defined on a Riemann surface
(which themselves could be thought of algebraically). Indeed, Rie-
mann himself seems to have understood this. What is striking about
the Dedekind/Weber paper (and of importance for Corfield’s project)
is the analogy Dedekind and Weber located between fields of algebraic
numbers and fields of algebraic functions. In the 1870s Dedekind had
made great progress in algebraic number theory, developing his the-
ory of ideals in his numerous ‘supplements’ to Dirichlet’s lectures on
number theory that he edited for publication. Dedekind showed that
in rings of algebraic integers, ideals enjoyed unique factorization into
prime ideals. Thus, in Dedekind’s terms, the algebraic integers obeyed
the same “laws of divisibility” as did the ordinary integers: in particu-
lar, unique prime factorization. This seems to have confirmed his view,
presented in his acclaimed 1888 essay on the foundations of arithmetic
“Was sind und was sollen die Zahlen?”, that “every theorem of algebra
and higher analysis, no matter how remote, can be expressed as a the-
orem about natural numbers—a declaration I have heard repeatedly
from the lips of Dirichlet.”

Further confirmation of this view arrived in the 1882 work with We-
ber. What was needed, and what they found, was an analogue of ideals
of algebraic integers in fields of algebraic functions. Consider, for sim-
plicity, just algebraic functions defined on the Riemann sphere—the
complex plane together with a point at infinity—which is a surface of
genus zero. Following Dedekind and Weber, rather than starting with
the Riemann sphere, we’ll start instead only with the field of algebraic
functions C(ζ) = {f

g
: f, g ∈ C[ζ], g 6= 0}. Dedekind and Weber took

the ring of algebraic integral functions C[ζ] to be the analogue of Z
and the algebraic integers in this setting, and took the field C(ζ) to be
the analogue of Q and the algebraic numbers. They took this as their
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analogy because ideals in the ring C[ζ] enjoyed unique prime factor-
ization, like the integers and algebraic integers; and as noted, it was
this “law of divisibility” that Dedekind had identified as critical to the
developing analogy. We can see the prime factorization in this setting
by noting that C[ζ] (and hence each ideal of C[ζ]) consists of elements
cnζ

n+cn−1ζ
n−1+· · ·+c1ζ+c0, with each ci ∈ C, and that, by the funda-

mental theorem of algebra, each such expression factors into products
of linear terms (ζ − zi) for zi ∈ C. Accordingly, the prime ideals of
this ring will be those generated by these linear factors, (ζ − zi), in
addition to the zero ideal, which will turn out to be very important in
the later development of scheme theory in algebraic geometry. All of
the non–zero prime ideals are maximal, and these maximal ideals yield
all points zi ∈ C, and thus all points of the Riemann sphere, except for
the point at infinity which corresponds to the maximal ideal (ξ − 0) in
the polynomial ring C[ξ] under the identification ξ = 1

ζ
. The maximal

ideals (ζ−z) (with z 6= 0) in C[ζ] and the maximal ideal (ξ− 1
z
) in C[ξ]

are identified. As a result, we have that the maximal ideals of C[ζ] and
C[1

ζ
] (through the above identification) are in one–to–one correspon-

dence with all points on the Riemann sphere. This observation allowed
Dedekind and Weber to shift talk of the Riemann surface to talk of
the correlated ideals, ultimately giving a proof of the Riemann–Roch
theorem (and others) using purely algebraic considerations. [Detlef
Laugwitz’ text Bernhard Riemann 1826–1866 (Birkhäuser, 1999), es-
pecially p. 159, is quite helpful in understanding these parts of the
Dedekind/Weber paper.]

This long detour into the details of the Dedekind/Weber paper shows
how interesting Dedekind and Weber’s work was, as they defended their
view that fields of algebraic integers and of algebraic functions could,
and should, be treated as obeying some of the same laws. On this
significance of this, Corfield quotes Dieudonné:

[T]his article by Dedekind and Weber drew attention
for the first time to a striking relationship between two
mathematical domains up until then considered very re-
mote from each other, the first manifestation of what
was to become a ‘leitmotif’ of later work: the search
for common structures hidden under at times extremely
disparate appearances. (p. 96)

This detour also illustrates one of the problems with this book: Cor-
field’s account of this material only skims the surface of this deep topic.
Corfield gives his own sketch of the Dedekind/Weber analogy, dis-
cusses its connection with the modern–day notion of ramification, and
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then turns to another approach to Riemann’s work, the “valuation–
theoretic” approach developed first by Kronecker, later by Hensel, and
extended in later work on p–adic numbers. All this in six breathtakingly
concise pages! What Corfield intends to do with this sprawling case
study is to discuss what is important about analogies in mathematics,
but his purpose would have been better served if he had provided more
a in–depth analysis of even just one aspect of this analogy. What we
get instead is a series of Bourbakiste quotes, from Dieudonné, Weil, and
Lang, extolling the virtues of analogies in revealing the ‘structures’ un-
derlying the mathematics we ordinarily experience. The quotes are in-
teresting, but I am left wondering what they (and hence, Corfield, who
mostly lets them speak for themselves) mean by ‘structure’. Corfield’s
indicated aim was to discuss how an analogy between two domains
might indicate a ‘deeper structural similarity’ that could be said to be
inevitable. However, we are not given any guide to what ‘structural
similarity’ might be, aside from being shown an admittedly impres-
sive analogy and a series of quotations from famous mathematicians
commending this work. Indeed, Corfield spends less than three pages
analyzing the case study (with four significantly–sized quotations left
largely unanalyzed), less than half the pages dedicated to the details of
the case study itself. This is one of the main problems with the book.
Mathematicians reading Corfield’s book may get the wrong impression
that the allegedly ‘revolutionary’ philosophy of real mathematics is pri-
marily the narration of existing mathematics, and thus by no means
revolutionary.

I say this is the ‘wrong’ impression because I think Corfield has
helped clear space for a variety of projects going far beyond both nar-
ration of existing mathematics and the types of questions ordinarily
dwelt with in the philosophy of mathematics—though he himself seems
unwilling to occupy that space. I’ll be more specific, by turning back
to the Riemann/Dedekind case already discussed. Corfield’s heavy re-
liance on Bourbakiste quotations is no coincidence. As he makes clear
elsewhere in the book, he is sympathetic to the category–theoretic de-
velopment of mathematics that followed Bourbaki. That gives one an-
swer to the question of what are the structures revealed by analogies:
they are categories. This plays right into the ongoing controversy be-
tween advocates of category theory and of set theory as to the ‘proper
foundation’ for mathematics. This is surely an interesting controversy,
but one with opposing sides as entrenched as the sides of the Cold
War. It is hard to see how taking sides in this debate is going to
help Corfield’s promotion of a new philosophy of mathematics, when
he comes across looking like a mere partisan in an old battle. But
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worse, he brushes this debate under the rug, providing little defense of
the category–theoretic view, and in fact marking such ‘foundational’
debates as having usurped the attention of philosophers for too long.

What is needed here are new ideas. I would like to suggest two, one
even hinted at by a quotation of Weil’s in Corfield’s text. Firstly, in-
stead of talking of analogies as revealing ‘structures’, Dedekind talked
instead of “laws” being obeyed in different mathematical settings. It’s
not a far leap from this view to Hilbert’s axiomatic view of mathe-
matics. Corfield describes Hilbertian axiomatics as merely one step in
an “increasingly sophisticated” series, in which Noether’s algebra and
Eilenberg and Mac Lane’s category theory are further developments
(p. 83). I think Corfield is underappreciating the view that Dedekind
and Hilbert can be read as suggesting. By focusing on “laws” rather
than on ‘objects’ such as categories, Dedekind and Hilbert were able to
focus their attention on the statements—on the “laws” themselves—
thus opening up metamathematical avenues of progress. In addition, it
allows one (though neither Dedekind nor Hilbert did this consistently)
to avoid talk of mathematical objects altogether, talking instead only
of the statements we want to assert. In practical terms, this makes
little difference, since we ordinarily write mathematics in statements
(though this could change with the development of new notation or
media, as Corfield discusses in Chapter Ten). In philosophical terms,
though, it means we no longer have to discuss whether certain math-
ematical objects ‘exist’, since we are no longer talking about objects.
Since this is an outcome Corfield gives glimmers of favoring at times,
I think it deserves our consideration.

The other idea for thinking about analogies that I would like to
suggest follows up on Weil’s idea that in working out analogies, we
are trying to decipher statements in the language of one domain into
the language of other domains. In a 1940 letter to his sister Simone
(published in Notices of the AMS 52:3 (March 2005), pp. 334–341),
he describes himself as having worked in the “Riemannian” tongue for
some time, but wishing for the “translation” of all the ideas of that
work into the language of function theory (as developed by Weier-
strass and his followers) and the language of number fields (in either
the Dedekind/Weber ideal–theoretic dialect or the Kronecker–Hensel
valuation–theoretic dialect). He saw work with analogies as attempts
to fill in a “translation table” between the three languages, construct-
ing a ‘Rosetta Stone’ for mathematics. In explaining analogies this
way, Weil made no appeal to ‘structures’. Instead, he emphasized
learning to move fluidly back and forth between these different ways of
presenting mathematical things. True, each language offers distinctive
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benefits; for instance, working in the ‘Riemannian’ language may free
us to think more visually or physically. At least as important, though,
is the benefit in being able to switch languages freely, which in addition
to granting us the advantages of each language whenever we choose,
lets us work simultaneously in several languages at once. Doing so lets
us anticipate results in one domain that we have not yet discovered but
that we should expect, given the otherwise successful translation (Weil
mentions cases of this in his letter). Weil’s case of the Riemannian
language is by no means the only example of this translation project
in mathematics; a great deal of work since Descartes has been spent in
geometry translating between analytic and synthetic languages, and in
improving the translation. I admit that my defense of the advantages
of this approach is still quite tentative. My purpose in offering these
two ideas for how to think of analogies is just to show how interesting
a problem Corfield has framed for us—and how much more remains to
be said.

For all the revolutionary talk given in the introduction, Corfield’s
views end up quite continuous with the usual topics of the philoso-
phy of mathematics. I have already highlighted his interest in the
quite–traditional topic of conceptual inevitability in mathematics, and
of his advocacy of the category–theoretic side in the ongoing struggle
over the ‘foundations’ of mathematics. When he continues discussion
of the Riemann/Dedekind analogy in Chapter Eight (otherwise ded-
icated to Lakatos’ work), he turns our attention to Kronecker’s role
in its development, and highlights how later mathematicians such as
Weyl took sides in the choice of an Dedekindian ideal–theoretic or a
Kroneckerian valuation–theoretic approach. Corfield emphasizes how
they based their decisions in part on how ‘constructive’ they perceived
each approach to be. The value of constructive reasoning is yet an-
other traditional topic in the philosophy of mathematics. Here again,
Corfield’s project is not nearly as radical as he would have us think.

Still, for all my frustration with the book’s limitations, I think Cor-
field does a nice job of showing how the philosophy of mathematics can
begin to engage areas of mathematics besides arithmetic and logic—
a shift I strongly favor. There are interesting chapters on automated
reasoning, Bayesian reasoning, and Lakatos’ work, for those who are
interested in these topics. I have tried to focus on the parts of the text
that I think are the most daring, and probably of the widest interest
among readers of this magazine. Corfield deserves to be supported
for his daring, and for his hope that the philosophy of mathematics
will be revolutionized, even if his book is not the revolution we might
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have hoped it to be. [Thanks to my colleagues Zongzhu Lin and Scott
Tanona for their helpful comments on earlier drafts.]


