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ABSTRACT 5

Manymathematicians have cited depth as an important value in their research. How-
ever, there is no single, widely accepted account of mathematical depth. This article is
an attempt to bridge this gap. The strategy is to begin with a discussion of Szemerédi’s
theorem, which says that each subset of the natural numbers that is sufficiently dense
contains an arithmetical progression of arbitrary length. This theorem has been judged 10

deep bymanymathematicians, and somakes for a good case on which to focus in analyz-
ing mathematical depth. After introducing the theorem, four accounts of mathematical
depth will be considered.

Mathematicians frequently cite depth as an important value for their research. A
perusal of the archives of just the Annals of Mathematics since the 1920s reveals 15

more than a hundred articles employing the modifier ‘deep’, referring to deep results,
theorems, conjectures, questions, consequences, methods, insights, connections, and
analyses. However, there is no single, widely-shared understanding of what mathemat-
ical depth consists in. This article is a modest attempt to bring some coherence to
mathematicians’ understandings of depth, as a preliminary to determining more pre- 20

cisely what its value is. I make no attempt at completeness here; there are many more
understandings of depth in the mathematical literature than I have categorized here,
indeed so many as to cast doubt on the notion that depth is a single phenomenon at
all. Yet I hope to advance our philosophical understanding of this rich cluster of values
a little bit, perhaps making way for more unified accounts to follow. 25

My strategy in this article is to introduce Szemerédi’s theorem, that every suffi-
ciently ‘dense’ subset ofN contains an arbitrarily long arithmetic progression, as a case
study for focusing an investigation of mathematical depth. After discussing the content
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of this result and gesturing at its proofs, I will discuss four distinct views of depth, show-
ing how each arises in themathematical literature and how each suffers from important30

problems, indicating what tasks remain for filling out each account.

1. SZEMERÉDI’S THEOREM
I shall begin by presenting Szemerédi’s theorem in its historical context, in order to
bring out its content with sufficient clarity for our purposes here. Its story starts with
a result of Isaai Schur from 1916 that is known now as Schur’s theorem.1 Let h be a35

positive integer. Then Schur’s theorem asserts that there is a positive integerN = N(h)
such that any coloring (or less vividly, partitioning) of 1, 2, . . . ,N by h many colors
contains integers a, b, c of the same color such that a+ b = c (cf. [Schur, 1916]). Thus
a, b, c are a ‘monochromatic’ solution to the equation x+ y = z.

Nowadays we view Schur’s theorem as among the first results of additive com-40

binatorics, in which one ‘aims to understand very simple systems: the operations of
addition and multiplication and how they interact’ (cf. [Green, 2009, p. 489] and
[Tao and Vu, 2006]), but a 1927 result of van der Waerden is what really got this
subject going.2 To understand van der Waerden’s theorem, recall the notion of an
arithmetic progression, a sequence of numbers progressing in steps of the same size. For45

example, 2, 7, 12, 17, 22, 27, 32 is an arithmetic progression with step size 5. Van der
Waerden showed that if h and k are positive integers, then there is a positive integer
N = N(h, k) such that for any coloring of 1, 2, . . . ,N by hmany colors, there is at least
onemonochromatic arithmetic progression of length k. His proof used the pigeonhole
principle and a double induction on h and k, and is thus purely combinatorial.50

Khinchin has called van der Waerden’s theorem ‘deep’, noting that van der Waer-
den’s work on it was the talk of Göttingen in 1927 [Khinchin, 1998, p. 9]. But for us it
is just a step toward our goal of Szemerédi’s theorem. A next step is Erdős and Turán’s
conjecture in 1936 that every sufficiently ‘dense’ subset of N contains an arithmetic
progression of length three [Erdős and Turán, 1936].More precisely, they conjectured55

that for any 0 < δ ≤ 1 there is a positive integer N = N(δ) such that every subset of
{1, 2, . . . ,N} of size at least δN contains an arithmetic progression of length three.
In 1952, Klaus Roth proved this conjecture, using Fourier analysis (cf. [Roth, 1952,
1953]); his 1958 Fields Medal citation lists this resolution among his most significant
achievements [Davenport, 1960, pp. lix–lx].60

At the same time Erdős and Turán also conjectured that every sufficiently ‘dense’
subset of N contains an arbitrarily long arithmetic progression, not just an arithmetic
progression of length three. If true, it would entail that the coloring in van der Waer-
den’s theorem was unnecessary, that sets of integers with essentially no structure
contain arbitrarily long arithmetic progressions, as will be shown shortly.65

1It is not relevant to the account here, but Schur was reproving a 1908 theorem of L.E. Dickson,
who sought to prove Fermat’s Last Theorem. Cf. [Soifer, 2009, p. 301].

2Indeed Schur had a role in this result also; while van der Waerden called his theorem a resolu-
tion of a conjecture of Baudet, there is reason to think it was independently conjectured by Schur;
cf. [Soifer, 2009, Chap. 34].
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In 1975 Endre Szemerédi resolved this conjecture [1975], yielding the eponymous
theorem that is our focus in this article. The most helpful formulation of it for this
article is the following ‘finitary form’.
Szemerédi’s theorem. Let k ≥ 3 be an integer and let 0 < δ ≤ 1. Then there is a posi-
tive integerN = N(k, δ) such that any subsetA ⊆ {1, 2, . . . ,N}with |A| ≥ δN contains 70

an arithmetic progression of length k.
This result is often formulated in terms of a density condition, using the notion of
‘upper Banach density’ defined as

d(A) = lim sup
n→∞

|A ∩ {1, 2, . . . , n}|
n .

Then Szemerédi’s theorem says that every subset of N with positive upper Banach
density contains arbitrarily long arithmetic progressions. 75

Earlier I noted that Szemerédi’s theorem’s entails that the coloring in van der
Waerden’s theorem was unnecessary. Indeed Szemerédi’s theorem implies van der
Waerden’s theorem. Given h and k, pick δ = 1

h and apply Szemerédi’s theorem. Then
there is an N such that any A ⊆ {1, 2, . . . ,N} with |A| ≥ N

h contains an arithmetic
progression of length k. For any h-coloring of {1, 2, . . . ,N}, at least one blockA of inte- 80

gers of the same color will have |A|
N ≥ 1

h . Then |A| ≥ N
h ; so by Szemerédi’s theorem A

contains an arithmetic progression of length k.
I now want to consider more closely the content of Szemerédi’s theorem. In 2012

Szemerédi won the Abel Prize, an award recently created by the Norwegian govern-
ment to promote mathematical research in lieu of a Nobel Prize for mathematics. In 85

a lecture given as a webcast upon the prize’s announcement, the Fields Medalist Tim-
othy Gowers explained the content of Szemerédi’s theorem in such a clear way that I
will now quote extensively from his text.

One way of understanding Szemerédi’s theorem is to imagine the following one-
player game. You are told a small number, such as 5, and a large number, such 90

as 10,000. Your job is to choose as many integers between 1 and 10,000 as you
can, and the one rule that you must obey is that from the integers you choose it
should not be possible to create a five-term arithmetic progression.

For example, if you were accidentally to choose the numbers 101, 1103, 2105,
3107 and 4109 (amongst others), then you would have lost, because these five 95

numbers form a five-term progression with step size 1002.

Obviously you are destined to lose this game eventually, since. . . if you keep
going for long enough you will eventually have chosen all the numbers between
1 and 10,000, which will include many five-term arithmetic progressions.

But Szemerédi’s theorem tells us something farmore interesting: even if you play 100

with the best possible progression-avoiding strategy, you will lose long before
you get anywhere near choosing all the numbers. [Gowers, 2012, p. 3]

As Gowers explains, if you are trying to avoid an arithmetic progression of length k
while picking numbers from 1, 2, . . . ,N for a large N, the largest number of numbers
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you can pick is a very small percentage of N, as small as you like, as long as N is large105

enough.
Gowers continues:

If, for instance, we are trying to avoid progressions of length 23, Szemerédi’s
theorem tells us that there is some N (which may be huge, but the point is that
it exists) such that if we play the game with N numbers, then we cannot choose110

more than N
1000 of those numbers — that is, a mere 0.1% of them— before we

lose. And the same is true for any other progression length and any other positive
percentage. [ibid., p. 3]

Thus the power of Szemerédi’s result, put succinctly, consists in revealing the existence
of remarkable additive structure within sets of integers chosen under only minimal115

constraint.
To close this section I briefly want to mention proofs of Szemerédi’s theorem.

Four main types of proofs have been given: Szemerédi’s original 1975 proof, which
is combinatorial and in particular graph-theoretic; Furstenberg’s ergodic-theoretic
proof [1977]; andGowers’s Fourier-analytic proof [1998]. A fourth approach employ-120

ing hypergraph theory has also been given by Nagle, Rödl, Skokan, and Schacht
(cf. [Nagle et al., 2006; Rödl and Skokan, 2004]), and, independently, by Gowers
[2007]. One reason for so many reproofs, especially since [Bourgain, 1986], has been
to find better bounds on N. Another is a growing sense that each proof reveals a new
facet of Szemerédi’s theorem, that ‘the many proofs of Szemerédi’s theorem act as a125

kind of “Rosetta Stone”’ [Green, 2009, p. 490]— a view put forward by Tao to which
I will return in the next section.

2. THE DEPTH OF SZEMERÉDI’S THEOREM
Having explained the content of Szemerédi’s theorem within its historical context, I
want next to turn to its depth. That the result has been judged amajor accomplishment130

is clear: Erdős, who had conjectured Szemerédi’s theorem with Turán, recalled that

I offered $1,000 for [my conjecture] and late in 1972 Szemerédi found a brilliant
but very difficult proof of [my conjecture]. I feel that never was a 1,000 dollars
more deserved. In fact several colleagues remarked that my offer violated the
minimumwage act. [Erdős, 1985, p. 76]135

But it has also been judged deep. A typical instance of such a judgment has been given
by Tao and Vu:

Of course, a ‘typical’ additive set will most likely behave like a random additive
set, which one expects to have very little additive structure. Nevertheless, it is a
deep and surprising fact that as long as an additive set is dense enough in its ambi-140

ent group, it will always have some level of additive structure. The most famous
example of this principle is Szemerédi’s theorem . . . [a] beautiful and important
theorem. [2006, pp. xiii–xiv]
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Other judgments of the depth of Szemerédi’s theorem include the announcement
[Committee, 2008] of Szemerédi’s 2008 Rolf Schock Prize in mathematics; Vitaly 145

Bergelson’s in [2000, p. 45]; Anthony Gardiner’s in [2008, p. 964]; and others that
will be cited over the course of this section.

Thus I will henceforth take for granted the widespread judgment by mathemati-
cians that Szemerédi’s theorem is deep, and turn to the philosophical question of
what its depth consists in. I will consider four types of accounts of its depth, what 150

I will call genetic views, evidentialist views, consequentialist views, and cosmological
views.

In the course of assaying these four types of accounts of depth, one issue, of interest
to many philosophers of mathematics, will recur: whether judgments of mathematical
depth can be objective, and if so, in what sense. In a preliminary investigation of depth 155

like this one, it is not my goal to decide definitively on the larger questions of whether
depth is objective, what objectivity of the relevant sort would consist in, and whether
it is a good/bad thing that depth is/is not objective. But given the interest of the ques-
tion of the objectivity of judgments of depth, I will ask of each of the four accounts of
depth I consider whether they can deliver a notion of depth that is not vague, is tempo- 160

rally stable, and is not essentially dependent on our contingent interests or our merely
human limitations.

2.1. Genetic Views of Depth
Prior to having criteria for deep theorems, mathematicians seek indicators of depth.
One common indicator is the talent of a theorem’s provers. Raff andZeilberger provide 165

a good example of such a view in the following, discussing Szemerédi’s theorem.

The depth and mainstreamness of this deep theorem can be gleaned by the fact
that at least four Fields medalists (Klaus Roth, Jean Bourgain, Tim Gowers,
and Terry Tao) and at least one Wolf prize winner (Hillel Furstenberg) made
significant contributions. [2010, p. 313] 170

Indeed Roth won the Fields Medal in 1958, Bourgain in 1994, Gowers in 1998,
and Tao in 2006; Furstenberg won the Wolf Prize in 2006/7; and two years after
Raff and Zeilberger’s article, Szemerédi won the 2012 Abel Prize. These are among
mathematics’ most prestigious prizes, and thus, it is fair to say, these mathematicians’
accomplishments have been judged to be magnificent by the mathematical commu- 175

nity. Raff and Zeilberger’s suggestion is that a result like Szemerédi’s that attracts such
feted contributions indicates the result’s depth.

We can convert this into a criterion for depth by identifying a deep theorem as one
proved by sufficiently talented mathematics. Call such an identification a genetic view
of depth. 180

One problem with this as a view of depth is its subjectivity. No doubt there is
widespread agreement that thesemathematicians have accomplished something splen-
did; but such agreement is merely a sociological fact. A judgment of a mathematician’s
talent may be rooted in nothing more than reputation, or pedigree, or glamour. Of
course such judgments could be rooted in a clearer andmore objective criterion—but 185



6 • Arana

then that criterion would be a better criterion for depth than merely the judgment of
the theorem provers’ talent.

Another problem with genetic views of depth is that such views count even the
trivial theorems of talented mathematicians as deep. But not every result proved by
the masters is deep. Even the best mathematicians (save perhaps Gauss) prove minor190

results; but a genetic view of depth cannot distinguish these from the ones rightly
judged deep.

2.2. Evidentialist Views of Depth
Thus we turn to a second type of view on depth. What I want to call evidentialist views
of depth are those that link the depth of a theorem with some quality of its proof.195

The announcement of Szemerédi’s 2012 Abel Prize, for instance, focuses more on
Szemerédi’s proof than on the theorem’s content:

Many of his discoveries carry his name.One of themost important is Szemerédi’s
Theorem, which shows that in any set of integers with positive density, there are
arbitrarily long arithmetic progressions. Szemerédi’s proof was a masterpiece of200

combinatorial reasoning, and was immediately recognized to be of exceptional
depth and importance. [Committee, 2012]

An evidentialist view of depth that is uncharacteristically precise by the standards
of mathematical writing has been offered by the number theorist Daniel Shanks. In
discussing the question of whether the law of quadratic reciprocity is deep, Shanks205

writes:

We confess that although this term ‘deep theorem’ is much used in books on
number theory, we have never seen an exact definition. In a qualitative way we
think of a deep theorem as one whose proof requires a great deal of work — it
may be long, or complicated, or difficult, or it may appear to involve branches of210

mathematics the relevance of which is not at all apparent. [1978, p. 64]

Shanks thus locates the depth of a theorem in its laboriousness.
There is no doubt that Szemerédi’s proof of his eponymous theorem is laborious.

The original article inwhich the proof is given includes the ‘flow chart’ given in Figure 1
in order to guide the reader through the proof. That Szemerédi thought such a chart215

necessary testifies to the proof’s laboriousness. Thus according to Shanks’s criterion,
Szemerédi’s theorem is deep.

Nonetheless Shanks’s criterion has problems. Firstly, the criterion measures labo-
riousness in terms of several properties of proofs: length, complexity, difficulty, and
impurity (wherein a proof draws on means that are not ‘close’ or ‘intrinsic’ to what220

it is proving). While the first three of those are related to one another (though not
identical), impurity is a quite different type of property. In [Arana, forthcoming] the
case for this is made in some detail, but in brief, there are many examples of short but
evidently impure proofs; for one, Furstenberg’s topological proof of the infinitude of
primes [1955]; the proof is discussed in [Detlefsen and Arana, 2011, §4]. Moreover,225
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Fig. 1. Original caption: The diagram represents an approximate flow chart for the
accompanying proof of Szemerédi’s theorem. The various symbols have the following
meanings: Fk = Fact k, Lk = Lemma k, T = Theorem, C = Corollary, D = Definitions of B, S, P,
α, β , etc., tm = Definition of tm, vdW = van derWaerden’s theorem, F0 = “If f : R+ → R+ is
subadditive then limn→∞

f (n)
n exists”.

while Szemerédi’s proof is undoubtedly long, complicated, and difficult, it has widely
been judged pure (if not in those words), as a combinatorial proof of a combinatorial
theorem.3 Thus Shanks’s category of ‘laboriousness’ groups together rather different
properties of proof in determining whether a theorem is deep.

While one can plausibly construct at least the beginning of a story for why a theorem 230

with a long or complex proof should be judged deep without too much trouble—the
resources involved in comprehending or discovering complex proofs distinguish such
theorems from less resource-intensive theorems—the same is not true for theorems
with impure proofs. The Furstenberg proof of the infinitude of primes just mentioned
was published in the American Mathematical Monthly, a journal aimed at a wide audi- 235

ence of mathematicians, including undergraduates. One needn’t be a specialist to
follow the proof, and indeed Furstenberg discovered it while still an undergraduate.

3For instance, Tao writes that ‘Szemerédi’s theorem appears to be solely concerned with arith-
metic combinatorics’ [2006, p. 2], and the 2012 Abel Prize committee, in a passage quoted earlier,
called Szemerédi’s proof ‘a masterpiece of combinatorial reasoning [emphasis added]’.
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Yet the proof is impure. Thus the reasons for judging a theorem with a complex proof
to be deepmust in general differ from the reasons for judging a theoremwith an impure
proof to be deep. Hence Shanks’s criterion of depth is less informative than would be240

optimal, in the following sense. If I am told that a theorem is Shanks-deep, then I must
still press further to determine the reasons for its depth; whereas a criterion in terms of
just impurity or just complexity would not require this further interrogation.

A potentially easy fix for Shanks’s criterion would be to remove either the clus-
ter of length/complexity/difficulty, or impurity, from the criterion. But it is not at all245

clear which ought to be removed, because it is unclear which is, or ought to be, more
fundamental for depth. Thus this easy fix will not work.

The applicability of Shanks’s criteria in the case of Szemerédi’s theorem is fur-
ther clouded by the latter’s having multiple, apparently distinct, proofs. For while
Szemerédi’s proof is combinatorial and thus pure, Gowers’s proof uses Fourier anal-250

ysis and is evidently impure. Which proof should determine the depth of Szemerédi’s
theorem on Shanks’s criterion?

A fix would be to count a theorem as deep if some of its proofs are impure. How-
ever, it would be easy to insert an irrelevant impurity into an otherwise pure proof
(for instance, add a computation involving complex numbers to Szemerédi’s proof but255

make no use of that computation in the rest of the proof). One might reply that the
irrelevancy of such insertions do not make impure what would otherwise be a pure
proof, because only impurities ‘essential’ to the identity of a given proof matter to its
purity and hence depth— but how is it determined which impurities are essential to a
proof being the proof that it is? To require answering that in order to solidify Shanks’s260

criterion would simply be to replace one difficulty with another.
Another fix would be to count a theorem as deep if all of its proofs are laborious.

Indeed all currently known proofs of Szemerédi’s theorem are laborious. But that is
quite contingent: tomorrow an easy proof of Szemerédi’s theorem could be found. It
would be preferable for judgments of depth to be more temporally stable than that.265

Indeed the problem of multiple proofs is a problem with evidentialist criteria of
depth generally, since, if depth is to be determined by a theorem’s proof, which proof
does the determining? This suggests a different type of evidentialist strategy: among
themultiplicity of proofs of a given theorem, determine the theorem’s depth by consid-
ering features of just one of its proofs. Such evidentialist strategies measure a theorem270

is deep if its

shortest proof
simplest proof
shallowest proof
canonical proof
every proof of it
most every proof of it

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

is deep.4

4On the notion of ‘canonical’ proof, attributed to Frege, see [Detlefsen, 1996, pp. 59–60].
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These strategies are parasitic on a prior criterion of depth of proof, though, a criterion
that seems as difficult and in need of analysis as depth of theorem.

Let us consider another evidentialist strategy: a theorem is deep if it hasmany differ- 275

ent proofs. But this strategy requires an account of the individuation of proofs to work.
For if two apparently different proofs are in fact the same, then what might have other-
wise been judged a deep theoremperhaps should not be. The problemof individuation
of proof is however a deep one (pun intended). When are two apparently different
proofs genuinely different, and when are they actually the same (despite perhaps look- 280

ing superficially different)? Mathematicians talk of ‘rephrasing’ proofs, or ‘recasting’
them (cf. [Cass andWildenberg, 2003] for an example): but such talk indicates that
the proof is still the same, only being expressed differently. One might hold that the
mode of expression of a proof is part of the individuation of a proof — but it is clear
that here we are in murky, largely unexplored waters, and that an account of depth that 285

relies on resolving such issues is not yet adequately clear.5
Bracketing the issue of individuation of proofs, we can at least gesture toward one

further evidentialist strategy. As noted in the last section, Tao has put forth the view
that ‘the many proofs of Szemerédi’s theorem act as a kind of “Rosetta Stone” ’ con-
necting the fields on which these proofs draw [Green, 2009, p. 490; Tao, 2006, p. 584]. 290

On this view, Szemerédi’s theorem is deep because its different proofs share features
that make manifest connections between different areas of mathematics, in such a way
that one is able to, in the words of AndréWeil, ‘pass from one to the other, and to profit
in the study of the first from knowledge acquired about the second’ [2005, p. 340].
Theorems like Szemerédi’s are thus deep, on this view, in virtue of possessing sev- 295

eral different proofs with enough intertranslatability that a mathematician who knows
one proof can translate some of her knowledge about the domain that this proof con-
cerns into knowledge of a different domain that another proof concerns. This promises
to afford her further efficiency in discovering and proving further theorems.6 This is
merely a sketch of how such an evidentialist view of depth could be developed, but I 300

hope it is clear enough how to begin pursuing this type of view.

2.3. Consequentialist Views of Depth
Let us next turn to a third type of view on depth. A consequentialist view of depth
measures the depth of a theorem by some quality of its consequences, or of the con-
sequences of its proofs. Typically, the quality in question is fruitfulness, the degree 305

to which a theorem (or a proof of a theorem) leads to yet further theorems and
proofs, particularly to important theorems and proofs (for more on fruitfulness in
mathematics, cf. [Tappenden, 2012]).

That Szemerédi’s theorem is fruitful is well-documented. Of particular note is
Green’s and Tao’s use of Szemerédi’s theorem to prove that there are arbitrarily long 310

arithmetic progressions consisting only of prime numbers [Green and Tao, 2008]—a

5On this problem, see also [Dawson, 2006, §2].
6I have benefited greatly from discussions of intertranslatability with SeanWalsh.
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result that is the first item cited in Tao’s FieldsMedal announcement (cf. [Committee,
2006, p. 1]). Tao has stressed the fruitfulness of Szemerédi’s theorem:

Remarkably, while Szemerédi’s theorem appears to be solely concerned with
arithmetic combinatorics, it has spurred much further research in other areas315

such as graph theory, ergodic theory, Fourier analysis, and number theory; for
instance it was a key ingredient in the recent result that the primes contain
arbitrarily long arithmetic progressions. [Tao, 2006, p. 2]

The announcement of Szemerédi’s 2012 Abel Prize notes the applicability of Sze-
merédi’s proof:320

A key step in [Szemerédi’s] proof, now known as the Szemerédi Regularity
Lemma, is a structural classification of large graphs . . . Over time, this lemma
has become a central tool in both graph theory and theoretical computer science.
[Committee, 2012]

Gowers too stresses the applicability of Szemerédi’s theorem as a key reason for why325

it is ‘fascinating’ to mathematicians in his lecture accompanying the announcement of
Szemerédi’s Abel Prize [Gowers, 2012, p. 5].

A chief problem with consequentialist views of depth is that the value of a given
consequence — such as its fruitfulness — is interest-dependent. Every theorem is
fruitful with trivial logical consequences, but what a consequentialist view of depth330

seeks are important consequences. But ‘importance’ is not a very rigorous quality in
mathematics; plenty of results formerly judged important have receded in importance
as mathematicians have developed new machinery (think for instance of the former
importance of results on conic sections filling up countless nineteenth-century text-
books that have now been subsumed by results in algebraic geometry). Thus if depth335

is interest-dependent, a theorem is deep only so long as those consequences are of
interest to us, and this threatens to render depth subjective.

This leads to the following observation. Consequentialist accounts of depth can be
objective only if some other values that mathematicians hold, such as ‘interestingness’,
are objective. Those who believe in the objectivity of such values will, for that reason,340

be comfortable with the objectivity of consequentialist accounts of depth. But for the
many who are not so confident that the other values that mathematicians adhere to are
objective, this account of depth will seem unsatisfying.

Finally, a consequentialist might mark a theorem as deep if it has deep conse-
quences. But then we would be in a circle, unless there is a fundamental level of345

depth at which all such recursions end. No such fundamental level is at hand now
though.

2.4. Cosmological Views of Depth
The last type of view of depth I want to discuss is what I will call a cosmological view.
I have chosen this word because of the Greek word kosmos, meaning ‘order’. The350

functional analyst Gilles Godefroy invokes a cosmological view of depth applied to
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Szemerédi’s theorem in the following passage:

Szemerédi’s theorem . . . is a deep combinatorial result that establishes (like
Ramsey’s theorems) the inescapable presence of certain structures, lumps of
order in a formless dough [grumeaux d’ordre dans une pâte informe], even though
we have a great deal of freedom of construction since the only constraint 355

imposed on A is positive density. [Godefroy, 2011, p. 221]

Szemerédi has identified such a feature of his theorem as well, in an interview he
gave after being awarded the 2012 Abel prize:

In finite objects we look for patterns, different shapes, and try to understandwhat
conditions make different patterns emerge, this is one of the most fundamental 360

questions. A slightly pompous and philosophical way to put it is that we want to
prove that there is order in any chaos. In other words, if you give me a hostile
structure, I will still be able to find orderly parts in it. [Szemerédi, 2012, pp. 1–2]

Recall that Szemerédi’s theorem tells us that for any arithmetic progression of
length k and any desired positive density, there is an N such that we are guaranteed 365

to find such an arithmetic progression choosing only from a subset of {1, 2, . . . ,N}
of our desired density (so its size can be very small relative to N). What Godefroy
calls a ‘formless dough’ and what Szemerédi calls ‘chaos’ is the chosen dense subset of
{1, 2, . . . ,N}. We choose these subsets without any other constraints besides positive
upper Banach density. Szemerédi’s theorem shows that these ‘randomly’ chosen sets 370

must contain arithmetic progressions of the desired length. This ‘unexpected’ struc-
ture is whatmakes Szemerédi’s theorem deep onwhat I am calling a cosmological view
of depth. The idea is that there is ‘serious’ structure latent in the premises, despite their
evident structural weakness.

To call the revealed structure ‘unexpected’ makes it sound like on this view, the 375

depth of a theorem depends on our ability to see/expect structure. But if the depth of
a theorem amounted to our inability to recognize order, depth would be rather subjec-
tive. Thus a fuller working out of cosmological depth would have to identify a sharper
and more objective notion of orderliness.

To clarify the schematic of what I take to be going on with cosmological depth, 380

let us consider a precisification whose distortions will hopefully not detract much
from its helpfulness. Let us suppose there is a function S from statements to R mea-
suring the order expressed by a statement, and a relation A << B that holds when
A is much less than B. Then we can say that a theorem is S,<<-cosmologically
deep if S(premises) << S(conclusion). We could construe S as measuring the order- 385

liness of the entities specified by a statement, or of the state of affairs specified by
a statement. I do not know how to build S or << in a way true to practice; so
I cannot say if Szemerédi’s theorem is S,<<-cosmologically deep on this view for
reasonable S and <<. Nor do I know how plausible it is that every agent of our
rational type would judge the extensions of S and << in the same way. Nevertheless 390

this seems to me a potentially promising approach to specifying cosmological depth
better.
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The cosmological view of depth, like the others I have surveyed here, does not fully
capture depth as used in practice. For instance, Wiles’s result that all elliptic curves
arise from modular forms is surely deep, but the premise (that E is an elliptic curve)395

is at least as orderly as the conclusion (that E arises from a modular form). The result
would thus not qualify as cosmologically deep as construed here so far. Note also that
the theorem that every modular form has an elliptic curve attached to it— the Eichler-
Shimura theorem — is surely also deep. We then have two deep theorems with the
logical forms, respectively, of ‘everyA is aB’ and ‘everyB is anA’. But then if the≪ rela-400

tion is antisymmetric, as seems reasonable, it would follow that both theorems cannot
be cosmologically deep.7

3. CONCLUSIONS
I have put forward Szemerédi’s theorem as a case for studying mathematical depth.
Arithmetic combinatorics is a rich source of cases for thinking about depth, because its405

theorems tend to be simply stated and readily understandable, yet strong. Furthermore
this area has been a hotbed of activity in the last couple of decades, withmany articulate
mathematicians at its center.

My modest goal here has been to articulate four different accounts of depth, and
to indicate ways in which each is apt and inapt for characterizing depth as it occurs410

in mathematical practice. These accounts each shed a little light on depth as a notion
withmany faces; a fuller accountwill have to come to gripswith the plurality of analyses
raised here, to see if perhaps some further (anddare I say it) deeper unities can be found.
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