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PURITY AND EXPLANATION: ESSENTIALLY LINKED?

ANDREW ARANA

ABSTRACT. In his 1978 paper “Mathematical Explanation”, Mark Steiner attempts to modernize
the Aristotelian idea that to explain a mathematical statement is to deduce it from the essence
of entities figuring in the statement, by replacing talk of essences with talk of “characterizing
properties”. The language Steiner uses is reminiscent of language used for proofs deemed “pure”,
such as Selberg and Erdős’ elementary proofs of the prime number theorem avoiding the complex
analysis of earlier proofs. Hilbert characterized pure proofs as those that use only “means that are
suggested by the content of the theorem”, a characterization we have elsewhere called “topical
purity”. In this paper we will examine the connection between Steiner’s account of mathematical
explanation and topical purity. Are Steiner-explanatory proofs necessarily topically pure? Are
topically pure proofs necessarily Steiner-explanatory? Answers to these questions will shed light
on the general question of the relation between purity and explanatory power.

Keywords. Philosophy of mathematics, mathematical explanation, purity, metaphysics, episte-
mology

1. INTRODUCTION

The American Mathematics Monthly is a journal published by the Mathematical Association of
America, intended for a general audience from high-school students to researchers. Each issue
contains a list of problems for readers to solve, as well as solutions of problems published in
earlier issues. The following problem was published in 2002:

Problem 10830. Proposed by Floor van Lamoen, Goes, The Netherlands. A
triangle is divided by its three medians into 6 smaller triangles. Show that the
circumcenters of these smaller triangles lie on a circle. (Cf. Edgar et al. [2002],
pp. 396–397).

The editors then gave the following commentary on the solutions they received from readers:

The submitted solutions used analytic geometry (or complex numbers) and
involved lengthy computations (some done with Maple or Mathematica). The
editors felt that a coordinate-free statement deserves a coordinate-free solution;
such a solution may shed more light on why the result is true. (Ibid.)

Date: October 6, 2022.
Thanks to Adrien Champougny, Christopher Pincock,Tabea Rohr, and the editors of this volume, for their
comments on an earlier draft.
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Though the editors believed that the analytic solutions they received were correct, they never-
theless sought other solutions “closer” to the problem, avoiding coordinates. Such solutions,
they wrote, might better show why the result is correct.

This statement, published in a completely ordinary mathematical journal, indeed one aimed
at a wide audience, shows how closely two different properties of mathematical proofs are
linked in common discourse. One of these properties is the one known as purity, in which a
proof of a theorem avoids what is “distant” or “foreign” to what is being proved. Instead, a pure
proof uses what is “close” or “intrinsic” to its object. The other property is the one known as
explanation, in which a proof gives the reason why a theorem is correct. Purity and explanation
represent two ideals of mathematical activity because both are commonly (though by no means
universally) posed as goods: that a pure proof of a theorem is better than an impure proof of it,
cetirus paribus, and similarly an explanatory proof of a theorem is better than an unexplanatory
proof of it.

Concern for purity has been a part of mathematics since its beginnings. Some mathematicians
have judged the application of algebra in geometry to be “rather far” from the problems at
hand. For instance, Newton wrote that the application of algebra to geometry is “contrary to
the first Design of this Science", giving purely geometric proofs of theorems that Descartes
had proved using his algebraic methods (cf. Newton [1967], pp. 119–20). Complex analytic
proofs of number theoretic results are another example. In analytic number theory, one uses
imaginary numbers to solve arithmetic problems. For instance, the prime number theorem,
stating how prime numbers are distributed among the natural numbers, was first proved by
complex analytic methods. Mainstream mathematicians judged these methods “very remote
from the original problem, and it is natural to ask for a proof of the prime number theorem not
depending on the theory of a complex variable” (cf. Ingham [1932], pp. 5–6). Such a proof was
found independently by Erdős and Selberg, contributing to Selberg’s winning a Fields Medal
in 1950. While of course most mathematicians also seek impure proofs, the search for purity
remains an important part of mathematical practice.

Purity and explanation have been linked by many mathematicians and philosophers, since
antiquity. This link was central to Aristotle’s epistemology. Aristotle identified a cognitive
attitude he called ἐπιστήμη [epistêmê], typically translated as “understanding”. This attitude
obtains, he wrote, “when we think that we know the cause on which the fact depends, as the
cause of that fact and of no other, and, further, that the fact could not be other than it is” (Post.
An., 71b8-12). To know the cause of a fact, he held, is to grasp “the ‘why’ of it (which is to
grasp its primary cause)” (Physics II.3 194b18–20). Answers to “why” questions are given by
deductions he called “scientific demonstrations”, which concern essential attributes of what is to
be deduced. We may thus summarize Aristotle’s account as follows. A scientific demonstration,
one that engenders understanding, is a causal demonstration, and in mathematics that means a
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proof from definitions that state the essences of what composes the conclusion. Thus we may
characterize Aristotle as seeking explanations.

As we have seen, for Aristotle essence and explanation are fundamentally linked. He drew
a further conclusion from this link: “It follows that we cannot, in demonstrating, pass from
one genus to another. We cannot, for instance, prove geometrical truths by arithmetic” (Post.
An., 75a38). Reasoning which crossed generic lines in this way was termed μετάβασις εἰς ἄλλο
γένος [metábasis eis állo génos], kind-crossing, and could not provide for understanding. He
argued for this by observing that the cause of a fact must be of the same kind as that fact; indeed
for Aristotle, this relation is characteristic of a causal relation, as opposed to a merely accidental
relation. Since scientific demonstrations must reflect causal relations, and causal relations do not
cross kinds, it follows that for Aristotle scientific demonstrations must be, in our terms, pure.
(For more on Aristotle’s argument against kind-crossing, cf. Steinkrüger [2018].)

Aristotle’s conception of scientific understanding and demonstration were dominant in
antiquity and the Middle Ages. By the early modern period the conception of causality that
supported Aristotle’s metaphysics and epistemology receded in importance, as conceptions
closer to newer experimental practices arose. Yet in mathematics, where these newer causal
models seemed inapplicable, the Aristotelian conception continued to be taken seriously. For
instance, Bolzano drew upon it in his mathematical writings:

I must point out that I believed I could never be satisfied with a completely
strict proof if it were not derived from the same concepts which the thesis to be
proved contained, but rather made use of some fortuitous, alien, intermediate concept
[zufälligen, fremdartigen Mittelbegriffes], which is always an erroneous μετάβασις
εἰς ἄλλο γένος. In this respect I considered it an error in geometry that all
propositions about angles and ratios of straight lines to one another (in triangles)
are proved by means of considerations of the plane for which there is no cause
[Veranlassung] in the theses to be proved. (Cf. Bolzano [1999b], p. 173)

He later applied this reasoning to justify the value of his pure proof of his version of the
intermediate value theorem (cf. Bolzano [1999a]; for more on the link between these works,
see Centrone [2016]).

This link between purity and explanation continued in the twentieth century. In a textbook
on linear algebra and geometry, Dieudonné (a member of Bourbaki) offered the following
more general remarks on the value of purity:

An aspect of modern mathematics which is in a way complementary to its
unifying tendencies. . . concerns its capacity for sorting out features which have
become unduly entangled. . . It may well be that some will find this insistence on
“purity” of the various lines of reasoning rather superfluous and pedantic; for my
part, I feel that one must always try to understand what one is doing as well as one
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can and that it is good discipline for the mind to seek not only economy of means
in working procedures but also to adapt hypotheses as closely to conclusions as
is possible. (Cf. Dieudonné [1969], p. 11)

Dieudonné thus suggested purity provided better understanding of what was proved. Another
such view is offered by the mathematicians Gelfond and Linnik. Writing of problems in number
theory statable in elementary terms like the prime number theorem, they remark that solving
these problems “has often required extremely complicated devices, at first sight remote from
the theory of numbers.” These transcendental methods “lead in numerous cases to extremely
strong and precise results” and as a result “one cannot talk of rejecting transcendental methods
in modern number theory.” They then add:

However, it is the natural desire of an investigator to search for a possible
more arithmetic route to the solution of problems which have an elementary
formulation. Besides the obvious methodological value of such a way, it is also
important in that it frequently gives a simple and natural view of the theorem
obtained and the reasons underlying its existence. (Cf. Gelfond and Linnik
[1966], pp. ix–x)

On this view, a pure proof can reveal the reasons for a theorem: that is to say, an explanation of
it.

On these accounts surveyed so far, there is a link between explanation and purity. Some
recent work on explanation has tried to drive a stake between explanation and purity. Pincock
introduced a particular kind of explanation he called “abstract mathematical explanation” and
argued that explanatory proofs of this kind are generally impure (cf. Pincock [2015]). Rather
than dwell on Pincock’s well-reasoned argument, we observe that it focuses on one particular
construal of mathematical explanation. In this paper, we will follow its lead in this regard, and
examine the link between another particular construal of mathematical explanation, that of
Mark Steiner. We will also focus on one particular construal of purity, which we have elsewhere
called the “topical” conception (cf. Detlefsen and Arana [2011]). We will thus continue by
briefly presenting these two conceptions, and then turn to the relationship between purity and
explanation so construed.

2. TOPICAL PURITY

As a rough characterization, a proof is pure if it draws only on what is “close” or “intrinsic”
to what is being proved, rather than on what is “extraneous”, “distant”, “remote”, “alien”, or
“foreign” to it. This characterization suffers from imprecision because of the variety of ways in
which these distance measures between proof and theorem may be understood. While there
are many such ways to precisify such measures of distance (cf. Arana [2022] for an overview),
in this paper we will focus on one that we take to be central to mathematical practice, what we



PURITY AND EXPLANATION: ESSENTIALLY LINKED? 5

have called the “topical” conception of purity (cf. Detlefsen and Arana [2011]). This conception
was presented by Hilbert, remarking on the apparent impurity of the spatial proof of the planar
Desargues theorem:

Therefore we are for the first time in a position to put into practice a critique of
means of proof. In modern mathematics such criticism is raised very often, where
the aim is to preserve the purity of method [die Reinheit der Methode], i.e. to prove
theorems if possible using means that are suggested by [nahe gelegt] the content
[Inhalt] of the theorem. (Cf. Hilbert [2004], p. 315–6 )

What is critical for a proof’s being pure or not, according to Hilbert, is whether the means it
draws upon are “suggested by the content of the theorem” being proved.

We construe Hilbert’s criterion in the following way. We call the topic of a theorem the
collection of commitments that determine the understanding of this theorem, relative to an
agent 𝛼 . These are the definitions, axioms and inferences such that if 𝛼 stopped accepting one of
them, then she would no longer understand this theorem. For example, if one stopped accepting
that every natural number has a successor, then one would no longer understand the theorem of
the infinitude of primes—that for every natural number there is a greater prime number—nor
other theorems of elementary arithmetic. That each natural number has a successor is a part of
the ordinary conception of the natural numbers as an indefinitely extended sequence. Thus the
axiom that every natural number has a successor belongs to the topic of the infinitude of primes.

We then say that a proof of a theorem is topically pure if it draws only on what belongs to the
topic of the theorem. For example, the classical Euclidean proof of the infinitude of primes can
be shown to be topically pure (cf. Arana [2014], Section 3.1), though there are some concerns
about its use of induction that we will address later. By contrast, the classical spatial proof of
the planar Desargues theorem mentioned above is topically impure, as one can understand this
theorem without understanding spatial geometry (cf. Arana and Mancosu [2012], Section 4).

How are we to determine what belongs to a topic? Consider for instance the notion of a
straight line. What definitions, axioms and inferences are necessarily implicated in our under-
standing of this notion? Discussing a theorem of incidence geometry, that is, one concerning
only points, lines and their incidence relations, Coxeter wrote that “distance [is] essentially
foreign”; on this view metric notions are excluded from this theorem’s topic (cf. Coxeter [1948],
p. 27; for more on this, cf. Arana [2009], pp. 4-5). Instead, Coxeter defined straight lines in
terms of the notion of betweenness. Other mathematicians have instead taken metric notions
as essential to the definition of straight line; for instance Legendre wrote that “the line is the
shortest path from one point to another” (cf. Legendre [1794], p. 1). We can try to determine
which definition is “correct”, but this presents deep philosophical problems (cf. Tappenden
[2008]). We thus treat topic determination for the time being in the naive way we have done
so here; doing so is consistent with the way mathematicians have treated purity in practice.
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Note that in the classical Euclidean proof of the infinitude of primes that we judged pure,
either addition by one or successor is used, to obtain a product of primes plus one. But neither
addition nor successor appears explicitly in the statement of the infinitude of primes. Here we
distinguish topical purity from more syntactic types of purity (cf. Arana [2009] for more on
the latter). In order to understand the notion of natural number as an indefinitely extended
sequence, we must have some way to generate the sequence, to pass from one natural number
to the next. For this either successor or addition by one may be used (here we suppose also
that the unit one must be understood in order to understand the natural numbers). Thus either
successor or addition by one belongs to the topic of the theorem, and may be used in a topically
pure proof of it. By contrast, if we take a stricter, more syntactic view of purity, the fact that
neither operation is mentioned in the statement of the theorem will bar them from being used
in a pure proof of it. We believe topical purity is closer to the way mathematicians typically
employ purity in practice than is syntactic purity, permitting as it does this Euclidean proof to
count as pure.

3. STEINER-EXPLANATION

We now give a brief presentation of Steiner’s account of mathematical explanation. Like
Aristotle, Steiner analyzes explanation in essentialist terms: “My view exploits the idea that to
explain the behavior of an entity, one deduces the behavior from the essence or nature of the
entity” (cf. Steiner [1978b], p. 143). Taking essences to involve modalities not available in
mathematics, Steiner replaces them with the notion of a “characterizing property. . . by which I
mean a property unique to a given entity or structure within a family or domain of such entities
of structures” (Ibid., p. 143). As an example he gives the property that a right triangle is the only
triangle decomposable into two triangles similar both to each other and to the whole triangle
(Ibid., p. 144). A Steiner-explanatory proof of a proposition then shows how the proposition
depends on a characterizing property of something figuring in the proposition. He makes this
notion of dependence precise in the following way.

It must be evident, that is, that if we substitute in the proof a different object of
the same domain, the theorem collapses; more, we should be able to see as we
vary the object how the theorem changes in response. In effect, then, explanation
is not simply a relation between a proof and a theorem; rather, a relation between
an array of proofs and an array of theorems, where the proofs are obtained from
one another by [a] “deformation”. . . . (Ibid.. 143)

Thus in varying the entity characterized by the property in question, we should be able to
generate new theorems and proofs in a systematic way.

To illustrate his notion of explanation, Steiner presents as an example the Pythagorean
theorem. Using the characterizing property mentioned above, he presents a proof he attributes
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to Pólya. It starts with the observation that the areas of similar triangles are proportional to the
squares of their corresponding sides (Elements VI.19). For the triangle in Figure 1, if we had
three similar triangles on its sides 𝑎, 𝑏, 𝑐 such that the sum of the areas of the triangles on sides 𝑎
and 𝑏 were equal to the area of the triangle on side 𝑐, then by this observation 𝑘𝑎2 + 𝑘𝑏2 = 𝑘𝑐2

for some constant 𝑘 , and we would thus have proved the Pythagorean theorem. Now we may
observe that the triangles in Figure 1 denoted by I and II share a side and two congruent (right)
angles, and so are similar to each other. Additionally, each of I and II is similar to the whole
triangle since each shares a side and an angle with it. Finally, the whole triangle is itself a
triangle on side 𝑐. The sum of the areas of I and II is evidently the area of the whole triangle, so
we have found the three similar triangles on 𝑎, 𝑏 and 𝑐 that we sought.

138 MARK STEINER 

both a and b must be even, contradicting our (allowable) stipulation that 
a/b be reduced to lowest terms, it can never be true, q.e.d. The key point 
here is the proposition that if a2 is even so is a. This can be verified by 
squaring an arbitrary odd number 2q + 1 and showing that the result must be 
odd. Indeed for each prime p, one can separately verify that if p divides a2 
it must divide a also, though the proofs become more and more complex 
(where p = 5, for example, one must square Sq + 1, Sq + 2, Sq + 3, and 
5q + 4 and show that in no case is the result divisible by 5).6 But by using 
the Fundamental Theorem of Arithmetic - that each number has a unique 
prime power expansion (e.g. 756 is uniquely 22 x 33 x 71) - we can argue for 
the irrationality of the square root of two swiftly and decisively. For in the 
prime power expansion of a2 the prime 2 will necessarily appear with an even 
exponent (double the exponent it has in the expansion of a), while in 2b2 its 
exponent must needs be odd. So a2 never equals 2b2, q.e.d. Generally, the 
same proof shows that a2 can never equal nb2, unless n is a perfect square (so 
that all the exponents in its prime power expansion will be even).7 

A final example of an explanatory proof which seems to highlight the role 
of generality in explanation we glean from Polya's book, Induction and 
Analogy in Mathematics.8 (Though Polya's book is a gold mine of examples 
of mathematical explanation, Polya himself does not discuss the notion.) 
The most explanatory proof of the Pythagorean Theorem - the proof Polya 
explains - is also the most general, i.e. proves the most. 

a /\ 

First, the areas of similar plane figures are to each other as the squares of 
their corresponding sides. In particular, any three similar figures constructed 
on the above right triangle have areas which can be represented as ka2, kb2, 
and kc2. Now if we could find any threesome of similar figures constructed 
on the sides of the triangle in which the sum of the figures on sides a and b 
were equal to the area of the figure on side c, we would be able to write 

ka2 + kb2 =kC2, 

FIGURE 1. Pólya’s proof of the Pythagorean theorem

This proof is Steiner-explanatory because it uses a characterizing property of right triangles.
To show the dependency of the proof upon this property, Steiner observes that if we start with
a non-right triangle and decompose it as before into two similar triangles that are similar to
the whole triangle, then there will be a part remaining (see Figure 2). He notes in Steiner
[1978a] (p. 137) that by finding the area of this remainder, the same technique shows that
𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos𝐶, where 𝐶 is the angle opposite side 𝑐 (the full proof is given in Edwards
[1994] without any apparent knowledge of Steiner’s work). This is the law of cosines, a
generalization of the Pythagorean theorem that is usually proved using the Pythagorean
theorem (Heath speculates that Pythagoras knew this proof, cf. Euclid [1956], pp. 353-4).
Thus we have precise information about how a deformation of the given triangle yields a new
theorem. The characterizing property of a right triangle given above, that right triangles are
the only triangles decomposable into two triangles similar both to each other and to the whole
triangle, can be refined to identify right triangles as those in which the sides 𝑥 and 𝑦 of the
remainder triangle in Figure 2 coincide. For a given non-right triangle, then, this characteristic
property can be used in a proof of the particular case of the law of cosines applying to that
triangle. We thus obtain the desired deformation of the original proof for the Pythagorean
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triangle, using the original characterizing property, to proofs of the resulting theorems for
various non-right triangles, using the more general characterizing property.

144 MARK STEINER 

Our proof that a2 = 2b2, which uses the prime power expansions of a and b 
(and 2), conforms to our description, since the prime power expansion of a 
number is a characterizing property. It's easy to see what happens, moreover, 
when 2 becomes 4 or any other square; the prime power expansion of 4, 
unlike that of 2, contains 2 raised to an even power, allowing 

a2 = 2b2. 

In the same way we get a general theorem: the square root of n is either an 
integer or irrational. Generalizing further, almost the same reasoning gives us 
the same for the pth root of n. It is not, then, the general proof which explains; 
it is the generalizable proof. 

Or take our 'good' proof of the Pythagorean Theorem. It characterizes the 
right triangle as the only one decomposable in this way, into two triangles 
similar to each other and to the whole. 

If we let the vertex of the right triangle vary (calling the largest side of the 
triangle, c, the hypotenuse), and try to decompose the triangle as before, by 
drawing lines x and y from the vertex to c, such that triangles I and II 
remain similar to each other and to the whole, we find that triangles I and II 
fail to exhaust the whole when the vertex varies between 90? and 1800; 
overlap when the vertex diminishes from 900 to 600; and at 600, coincide. We 
can even calculate the (positive or negative) difference, then, between the 
sum of squares constructed on the sides of the triangle, and the square on the 
hypotenuse for any triangle - calculate the error. The characterizing property 
for the right triangle, then, is simply the coincidence of lines x and y. (It is 
interesting to note that at the 'extremes', where the vertex is 600 or 1800, 
the sum of the squares on the sides is twice and one-half the hypotenuse 
square, respectively.) 

Both explanatory proofs that the sum of the first n integers equals n(n + 1)/2 

FIGURE 2. Deforming Pólya’s proof of the Pythagorean theorem

Let us consider a second example of Steiner-explanation. Firstly, we can prove that the sum
𝑆 (𝑛) of the first 𝑛 positive integers equals 𝑛(𝑛+1)

2 by mathematical induction. Steiner says that “no
mathematician will regard this as an explanatory proof” because “we do not see what about the
sum is “responsible” for this theorem” (cf. Steiner [1978a], p. 134; also Lange [2009]). Instead,
we can use what Steiner calls the “symmetric” property of 𝑆 (𝑛) to prove this, following Gauss:

1 + 2 + 3 + · · · + 𝑛 = 𝑆 (𝑛)

𝑛 + (𝑛 − 1) + (𝑛 − 2) + · · · + 1 = 𝑆 (𝑛)

We can add the two lines, column by column, obtaining

(𝑛 + 1) + (𝑛 + 1) + (𝑛 + 1) + · · · + (𝑛 + 1)︸                                                 ︷︷                                                 ︸
𝑛 times

= 2𝑆 (𝑛)

so that 𝑛(𝑛 + 1) = 2𝑆 (𝑛), and the result follows. This symmetry of 𝑆 (𝑛), Steiner says, is a
characteristic property of it as a summation operation, and thus this proof is Steiner-explanatory.
Furthermore, this proof can be deformed to generate new theorems: for instance, that the sum
of the first 𝑛 odd numbers is 𝑛2 can also be shown using this characteristic property (cf. Steiner
[1978a], p. 136): adding 1 + 3 + 5 + · · · + (2𝑛 − 1) and (2𝑛 − 1) + (2𝑛 − 3) + (2𝑛 − 5) + · · · + 1 by
column again gives 2𝑛 + 2𝑛 + 2𝑛 + · · · + 2𝑛︸                        ︷︷                        ︸

𝑛 times

= 2𝑛2.

No such characteristic property is used by the inductive proof, Steiner adds: “induction, it is
true, characterizes the set of all natural numbers; but this set is not mentioned in the theorem”
(cf. Steiner [1978b], p. 145). Thus the inductive proof is not Steiner-explanatory.
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4. COMPARING TOPICAL PURITY AND STEINER-EXPLANATION

This last remark about induction suggests that topical purity and Steiner-explanation may
be closely related. Since induction only characterizes an entity not mentioned in the theorem,
the proof in which it figures is not Steiner-explanatory; but at first glance its lack of mention
in the theorem gives the impression that it is not “suggested by the content of the theorem”
and thus cannot be part of a topically pure proof. On this impression topical purity and
Steiner-explanation seem to align.

This impression is too quick. The topic of a theorem is composed of the definitions, axioms
and inferences implicated in our understanding of the theorem. Merely being unmentioned in
the theorem does not exclude something from belonging to its topic. In this way topical purity
is different than syntactic purity. On this criterion of purity, the use of induction need not pose
a problem. Poincaré argued credibly that induction was essential to reasoning about the natural
numbers (cf. Poincaré [1902]). It would then be a part of the topic of all elementary arithmetic
propositions.

The point can be sharpened further. We can classify the strength of the induction used in a
proof by the arithmetical complexity of the induction formula. In so-called “full induction”, we
may induct over formulas of any complexity, whereas we can restrict the induction formulas to
some particular complexity such as Δ0 (known as “bounded induction”, since all the quantifiers
of a Δ0 formula are bounded), or even formulas with no quantifiers at all (known as “open
induction”).

We may then pose the question of what induction is part of the topic of the theorem that the
sum 𝑆 (𝑛) of the first 𝑛 positive integers equals 𝑛(𝑛+1)

2 : is it full induction, or rather only some
limited version of it? The answer to this question determines what proofs are topically pure. In
Arana [2014] Section 3.1.2, we surveyed how one might decide this question. For instance, one
might understand the theorem that the sum 𝑆 (𝑛) of the first 𝑛 positive integers equals 𝑛(𝑛+1)

2 as
belonging to “feasible arithmetic”, in which the definable predicates and functions are capable
of being evaluated in a practical way by computers like those available today. This theory was
analyzed by Parikh in Parikh [1971] and was identified with the formal theory 𝐼Δ0, in which
the usual definitions of addition and multiplication hold but induction is limited to Δ0 formulas.
Under this understanding of the theorem, the theorem’s topic would include bounded but not
full induction, and accordingly a proof of it using full induction would be topically impure. In
fact, inspection shows that the proof we gave above uses only bounded induction, so that proof
is indeed topically pure for this understanding of the theorem.

We thus have an example of a proof that is topically pure but not Steiner-explanatory. Lange
provides other such examples by observing that some theorems can be proved by “brute force”,
and that these proofs are often pure but are generally not explanatory (cf. Lange [2019], Section
2). By “brute force” Lange means a proof in which an elaborate calculation leads to the theorem.
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He gives as an example (p. 8n13) a proof of Desargues’ theorem in coordinate geometry, where
all the sides of the triangles and other lines are represented by equations and the intersections
are calculated by solving systems of these equations. For an agent who conceives of geometrical
objects as representable in coordinate geometry, equations of lines and the algebraic methods
used in manipulating them will belong to the topic of Desargues’ theorem and so this proof
will be topically pure; yet its calculations will be opaque to the reader and will explain nothing
in any ordinary sense. Furthermore these equations express no characterizing property of
triangles and thus cannot give rise to a Steiner-explanatory proof of Desargues’ theorem.

A characterizing property of a thing not mentioned in a statement cannot give rise to a
Steiner-explanatory proof of that statement. But that does not prevent that property being
used in a topically pure proof of that statement. This conclusion may be obscured by the fact
that according to Steiner, characterizing properties used in Steiner-explanatory proofs may
mention things not mentioned in the theorem. The things characterized by such properties
must be mentioned in the theorem, but the things mentioned in such properties need not be. As
examples of this Steiner notes the use of complex analysis in proofs about real-valued equations
(cf. Steiner [1978c], pp. 18-19) and about number theory (cf. Steiner [1978b], p. 146), and the
use of topology in proving Euclid’s theorem on the Platonic solids (Ibid., pp. 146–147).

Steiner recently emphasized this aspect of explanation in applying Manya Raman’s notion
of “fit” in mathematics (cf. Raman [2012]). He writes that in this type of explanation, we
are “redescribing mathematical objects and phenomena and then ‘fitting’ them into a different
mathematical scheme from the one in which they were originally presented” (cf. Steiner [2014],
p. 5). In doing so, “ we begin with a proof that does not fit into its ostensible surroundings, but
we then find the appropriate theory for the theorem to fit into” (Ibid., p. 13). This transformation
of context permits us to “explain away” the theorem as originally understood, by fitting it into
a context where the reasons for the theorem can be properly seen.

Steiner takes this transformative aspect of explanation quite seriously. He writes that “Euclid’s
theorem is ‘really’ topological in character, and. . . any geometrical proof is ‘irrelevant’ ” (cf.
Steiner [1978b], p. 146). What a theorem is “really” about is a different matter; we have
discussed the difficulties regarding the subject of tacit or “hidden” content in mathematics at
length in Arana and Mancosu [2012], Section 4. What directly concerns us here is the fact that
on this account, a topological proof of this theorem of Euclid can be Steiner-explanatory but
not topically pure. For one can understand what a Platonic solid is without any topological
knowledge, and so topology does not belong to the theorem’s content (Pincock makes a similar
point in Pincock [2015], p. 17, though to a different end). Similar remarks apply to the
complex-analytic proofs mentioned above.

Another example of a proof that is Steiner-explanatory but not topically pure is Pólya’s proof
of the Pythagorean theorem discussed in the previous section. This proof employs similarity,
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but one can understand the Pythagorean theorem without knowing anything of similarity.
Indeed, Euclid seems to have worked hard to develop a proof avoiding similarity in Book I of
the Elements, as Proclus remarks (cf. Proclus [1992], p. 338; cf. also Heath’s commentary in
Euclid [1956], pp. 353–354), and leaves similarity until Book VI. While Euclid’s proof of the
Pythagorean theorem in I.47 may be topically pure, the proof of Pólya (and perhaps, if Heath
is correct, Pythagoras himself ) is not, though it is Steiner-explanatory.

We thus have presented examples of proofs that are topically pure but not Steiner-explanatory,
and of proofs that are Steiner-explanatory but not topically pure. We may thus conclude that
topical purity and Steiner-explanatory are indeed different properties of proofs.

5. DIAGNOSING THE DIFFERENCE BETWEEN TOPICAL PURITY AND STEINER-EXPLANATION

The topic of a theorem, relative to an agent 𝛼 , is the collection of the definitions, axioms and
inferences such that if 𝛼 stopped accepting one of them, then she would no longer understand
this theorem. A characterizing property of an entity figuring in a theorem is a property unique
to that entity within a family of such entities. We can ask if a characterizing property of an
entity figuring in a theorem must belong to the topic of that theorem. For instance, does
the property of right triangles used in Pólya’s proof of the Pythagorean theorem, that right
triangles are the only triangles decomposable into two triangles similar both to each other and
to the whole triangle, belong to the topic of the Pythagorean theorem? In particular, is it a
definition of right triangle?

We have observed above that Euclid avoids developing similarity until Book VI of the Elements,
while of course triangles are defined in Book I as three-sided figures. It is hard to see why the
more developed notion of similarity would play a defining role for triangles over the much
simpler definition in Book I. Here we emphasize the role of definition as informing someone
who does not know what a thing is.

One might object that this role of definition is inappropriate for explanatory proofs, “for
there is a difference between what is prior and better known in the order of being and what is
prior and better known to man” (cf. Post. An., 71b34-72a1, translation from Aristotle [1941]).
On this Aristotelian account, a proposition may be ordered before another if the former is a
cause of the latter; or if human beings come to know the former more readily than the latter.
These are different orderings, and Aristotle’s scientific demonstrations track the first, “objective”
ordering rather than the second, “subjective” ordering. Steiner’s account of explanation is a
modern update of Aristotle’s account of scientific demonstrations, replacing Aristotle’s notion of
cause with his notion of dependence (as indicated by deformability of proof ). As with Aristotle,
Steiner’s characteristic properties may be definitions, but definitions that function by saying
what something is with respect to the order of being rather than the order of knowing. A
characteristic property need not define a thing in such a way that a human being would find that
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definition best adapted to her learning. Instead, it should define the thing in a way that makes
clear the explanatory dependence of statements on this definition. This is why for Aristotle,
definition and explanation necessarily go together (cf. Charles [2014]).

Thus our question of whether a characterizing property of an entity figuring in a theorem
must belong to the topic of that theorem comes down to what is meant by a definition. If
definitions reflect the order of human knowing, then the answer is no; if they reflect the
explanatory order of being, then the answer is yes. Depending on how we construe the role of
definitions, then, Steiner-explanation and topical purity will be more or less closely related.

The epistemic significance of Steiner-explanatory proofs is accordingly different than that of
topically pure proofs. A Steiner-explanatory proof expresses a special kind of dependence, of
what Steiner says is “responsible” for the theorem (cf. Steiner [1978a], p. 134). This dependence
is related to logical implication but is not reducible to it; as we have seen, this kind of dependence
is characterized by the “deformability” of proofs using a characteristic property to new proofs
with varied characteristic properties. Knowledge of a Steiner-explanatory proof of a proposition
is knowledge of this kind of dependence, between theorem and characteristic property.

Jaakko Kuorikoski has recently analyzed this type of knowledge, which he calls “formal
understanding”. In grasping the relevant dependence, he writes, we obtain an “increased
inferential ability to answer what-if questions concerning the properties of related mathemati-
cal structures”, and more precisely, concerning “analogical inferential connections between
slightly different but related systems of mathematical inference” (cf. Kuorikoski [2021], p.
206). Kuorikoski observes that this“ability to make inferential connections beyond the im-
mediate property, structure, or theorem” concerns “primarily our systems of reasoning and
representation, not directly what we are representing and reasoning about” (Ibid., p. 207).

This latter point underscores the differences between Steiner-explanatory proof and topically
pure proof. A topically pure proof directly concerns what we are reasoning about, in contrast
with Steiner-explanatory proofs. This entails a difference between the knowledge engendered
by a Steiner-explanatory proof and a topically pure proof. Rather than what Kuorikoski called
the formal understanding engendered by a Steiner-explanatory proof, topically pure proofs
give knowledge that a proposition has been proved that is more “stable” than that engendered
by a topically impure proof, in the sense that it perdures through changes in our epistemic
situation. This stability is a consequence of a different kind of dependence between proof and
theorem than that illuminated by Steiner’s account of explanation. We explained this notion of
stability in Detlefsen and Arana [2011], Section 3, and will summarize it here.

We seek to prove a proposition as we currently understand it, because we are ignorant
concerning it. We seek to prove it in order to relieve this particular, specific ignorance. How
enduring that relief of ignorance is depends, though, on whether our proof is topically pure or
not. Suppose we change our belief in some element of a proof: for instance, we no longer accept
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one of its premises or inference rules. We thus no longer take to be a proof what we had taken
to be a proof. If that proof is topically pure, that change is also a change in our understanding
of the proposition we are proving, since every element of a topically pure proof belongs to the
topic of the proposition being proved. Such a change thus redirects us away from that original
proposition, and in so doing, represents a relief of ignorance concerning that proposition. Thus
a change in belief concerning an element of a topically pure proof ensures that that proof
continues to relieve our ignorance of the original proposition (even if it opens a new, different
ignorance). This enduring relief is not necessarily engendered by a topically impure proof,
since our change of belief might concern a non-topical element and thus might not change the
original proposition. In this case, the original proposition would remain unchanged and thus
would again be an ignorance demanding our attention. This dependence between a topically
pure proof and its “directing” proposition thus ensures that the ignorance relief brought about
by this proof is stable with respect to changes in our epistemic situation.

The dependence identified by Steiner and the dependence operative in topical purity are thus
distinct. The topic of a theorem is agent-relative: it is the family of commitments that determine
a particular agent’s understanding of that theorem. By contrast, characteristic properties are not
agent-relative: they are properties unique to an entity within a family of such entities. Topics
concern an agent’s semantic grasp of a theorem; characteristic properties concern the relation
of an entity to other entities of a certain type. Topics play a semantic role, while characteristic
properties play a metaphysical role. In some cases these may be identical, but they are not so
necessarily.

6. CONCLUSIONS

The difference between topical purity and Steiner-explanation may then, in broad, be
seen as the difference between an “epistemology first” approach versus a “metaphysics first”
approach to our understanding of proof. An epistemology-first approach to proof, which can
be identified as that of Lakatos [1976] and Manders [1989] for instance, aims to understand how
proof contributes to mathematical knowledge, and how that knowledge can be maintained
or extended over time. Topical purity’s aim of stable mathematical knowledge fits within this
approach. A metaphysics-first approach, by contrast, aims to identify the right “order of being”
and holds that a better kind of knowing resulting from ordering our beliefs in a way that mirrors
this rational order. This latter approach was that of Aristotle, but also of later rationalists such as
Leibniz, Bolzano and Frege (cf. Detlefsen [1988]). Steiner-explanation fits within this approach.
That topical purity and Steiner-explanation do not coincide is occasion to rethink these two
approaches. A lesson of the persistence of interest in purity among mathematicians even after
the decline of Aristotelian metaphysics is that we need not believe in an “order of being” in
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order to pursue purity rationally. As a consequence, one might today instead seek other notions
of mathematical explanation that fit better within the epistemology-first approach.
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