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When deciding how many tiles we need in order to cover 
our kitchen floor, we calculate: compute the total area of 
the kitchen, the area of the tiles, and divide as needed. 
One could use this particular, practical problem to raise 
a more abstract problem, concerning the partition of 
arbitrary finite polygon configurations in the plane. The 
interest of this abstract problem might be to generalize 
the given particular problem so as to optimize our 
problem-solving, and resolve a family of such particular 
problems with one solution. Or it may simply seem to be 
interesting in its own right. This second, abstract 
problem will not be readily resolved by calculations of 
the type familiar from home renovation, though. Instead, 
the problem calls for reasoning: for instance, an 
analysis, to break it into smaller, more manageable 



problems.

Gilles Dowek’s fascinating book begins with this 
cleavage between computation and reasoning, 
illustrated with the transition from the algorithmic 
solutions to accounting problems of ancient 
Mesopotamia’s, to the analyses of abstract geometrical 
problems of ancient Greece. These abstract problems, 
such as finding an isosceles right triangle with three 
sides each a integral multiple of a given unit measure, 
led the Greeks to develop the axiomatic mathematics we 
now associate with Euclid, for no algorithmic approach 
seemed capable of handling the infinitely many cases 
such problems presented. Instead, one could reason 
generally from generally-accepted first principles 
inferentially strong enough to deduce answers to such 
problems. With the canonization of Euclid’s Elements as 
the exemplar of mathematical rigor, computation was 
demoted in mathematical discourse, if not practice. 
Perhaps a geometer used computations to discover her 
results, but they should not be included in the “official” 
presentation. A celebrated example in the modern era is 
the calculus of Newton and Leibniz, evidently employed 
by Newton in his workings on mechanics but left out of 
the Principia in favor of Euclidian reasoning. Thus 
mathematical proof came to be synonymous with 
axiomatic reasoning, relegating algorithmic computation 
to the background. 

Axiomatic reasoning underwent a reinvention in the 
nineteenth century, as is well-known. The development 
of predicate logic by Frege, Boole and Schroeder 



enabled axiomatizations of arithmetic with light shed on 
their logical frameworks. These axiomatizations, by 
Frege, Peano, and Russell and Whitehead mixed logic 
and set theory, thus leading to further axiomatizations 
just of set theory itself. Set-theoretic axioms could then 
be seen as a “foundation” of mathematics, providing a 
base of suppositions from which one could logically 
derive all truths of arithmetic, and given the 
arithmetization of geometry in the Cartesian style, of 
geometry as well. With these developments the 
understanding of axiomatics changed as well: following 
reflections of Poincaré and Hilbert, one could think of 
axioms as implicit definitions of the non-logical concepts 
occurring in the axioms. 

Dowek dwells on these familiar matters in order to make 
clear the central tenets of the conception of 
mathematical proof as axiomatic reasoning, a 
conception he has been showing as dominant going into 
the twentieth century. His aim going forward in the book 
is to present a new conception of mathematical proof, 
the algorithmic conception, that today vies for attention 
as well. As an actor in this latter development, Dowek 
understandably spends most of the rest of the book on 
the development of this new conception. 

A first step in this new development is the new focus on 
algorithms emerging in the early twentieth century. 
Hilbert led the way here, asking for an algorithm to 
determine the provability of any proposition in predicate 
logic. This “decision problem” led to the clarification of 
the notion of computability as the step by step, regulated 



transformation of expressions. Viewing inferences as 
computations, the decision problem asked if any 
algorithm, any series of computations, could determine 
whether a given expression was provable in predicate 
logic. Here it was supposed that an algorithm must 
always halt after a finite number of steps. As Church and 
Turing showed, if there were such an algorithm, then 
one could construct another algorithm that halts if and 
only if it does not. This result, known as “Church’s 
theorem”, computes with expressions formalizing the 
rules of predicate logic itself, a method pioneered by 
Gödel. Its negative answer to Hilbert’s decision problem 
clarifies the difference between algorithmic calculation 
and axiomatic reasoning: the latter is able to carry out 
metamathematics on the former, showing that not every 
mathematical problem can be solved by computation.

A key step in the work of Church and Turing was a 
precisification of the notion of algorithm, in order to 
make definitive their claim that no algorithm could 
resolve the provability of propositions of predicate logic. 
This is of course what we now call Church’s thesis. 
Dowek distinguishes two forms of Church’s thesis, 
psychological and physical, wherein all the algorithms 
executable by a human being / machine, respectively, in 
order to resolve a particular problem are expressible by 
a set of rules of computation. The physical form is 
strictly stronger, Dowek observes, since the 
computational capacities of nature may exceed those of 
all human minds. After discussing a proof of the physical 
Church thesis was offered by Robin Gandy, Dowek 
shows how the physical Church thesis can be used to 



argue that nature is mathematizable, by considering 
natural systems as satisfying functional relationships. 
Consider for example a ball dropped from a tower 
whose height is measured by a height gauge where the 
time of descent of the ball to the ground is measured by 
a clock. For a duration of n seconds, this system yields a 
distance fallen by the ball. Dowek suggests viewing this 
functional relationship between time and distance as an 
algorithm of nature, which by the physical Church thesis 
is expressible by a set of computation rules, and thus 
mathematizable in an algorithmic form. This 
algorithmization of natural science has already begun in 
linguistics, and is rapidly advancing in physics and 
biology under the guises of quantum computing and 
bioinformatics, in which one studies the computing 
processes carried out in particular quantum systems and 
cells, respectively. 

Church’s views on computation were supported by his 
work on the lambda calculus, a model of computation as 
strong as Turing machines. The lambda calculus, today 
the foundation of functional language programming, was 
envisioned originally as a notation for functions. In time 
Church came to realize that the lambda calculus could 
engender an foundational alternative to set theory, in 
taking functions rather than sets as the basic object of 
mathematics. Dowek notes that this would have given 
computation a fundamental role in the foundations of 
mathematics, since the functions in lambda calculus are 
all expressibly by algorithms. It was not to be, as Kleene 
and Rosser proved this foundational version of lambda 
calculus to be inconsistent. As with Russell’s paradox, 



the problem was self-reference, here of a function to 
itself. In response Church gave a new formulation of this 
foundational theory barring functional self-reference, 
nowadays called Church’s type theory in keeping with 
the Russellian insight that stratifying objects into 
different types and barring some cross-type applications 
can forestall paradox.

While computation failed to take its part at the heart of 
foundations of mathematics in Church’s work, 
simultaneously work on constructive mathematics was 
taking hold. In brief, the value, and sometimes validity, of 
proofs that did not provide explicit constructions of their 
objects, were called into doubt. One thinks of the 
classical intermediate value theorem, which asserts that 
a continuous function over the reals will take on a 
particular value at some point, without necessarily 
constructing that point. Following Brouwer and Markov, 
“intuitionist’’ schools developed in which such proofs 
were avoided in favor of proofs that give the relevant 
explicit constructions, avoiding in particular use of the 
law of excluded middle. These constructive proofs can 
be seen as defining algorithms; for instance, a 
constructive proof of a proposition P of conditional form 
A->B can be interpreted as an algorithm that transforms 
a proof of the antecedent A into a proof of the 
consequent B. In this way logicians developed an 
algorithmic interpretation of proofs that promised to give 
a central place to computation in the foundations of 
mathematics.

This algorithmic interpretation of proofs is the focus of 



the rest of Dowek’s book. Martin-Löf’s development of 
intuitionistic type theory was a key stage in this 
development. Starting from Church’s type theory, Martin-
Löf added the capacity to assert two propositions to be 
“equal by definition”, though as Dowek notes, this might 
better be called “equality by computation”. For example, 
in intuitionistic type theory the propositions “2+2=4” and 
“4=4” are equal by definition, because using the 
definitions of integers and integer addition these two 
propositions can easily be transformed into one another. 
Proofs in intuitionistic type theory differ from proofs in 
other frameworks in that they add computational rules to 
the usual components of proofs, axioms and inference 
rules. We can thus think of intuitionistic type theory as 
permitting proofs that leave calculations “for the reader”. 
This leads then to shorter proofs, since the 
computational steps may be left out, but it does not 
make proofs any shorter to check as valid, since those 
steps must be carried out at that step. Chapters 10 and 
11 discuss how this addition of computational rules to 
proof invigorated the search for automated theorem 
provers and, more modestly, automated theorem 
checkers.

Proofs employing computations have become a 
controversial part of ordinary practice since the 1970s, 
when Appel and Haken’s proof of the four-color theorem 
employed computer methods to check thousands of 
potential counterexamples. Hales’ proof of the Kepler 
conjecture in 1995 was another such instance, with the 
Annals of Mathematics, a top mathematics journal, 
footnoting Hales’ article with the admission that its 



editors could not fully vouch for the correctness of its 
algorithm having handled all cases. Dowek notes that 
while such proofs may not be explanatory, in the sense 
of answering why their theorems are true, they can still 
be checked by automated methods, and thus can be 
incorporated into rigorous mathematical practice. Indeed 
these proof checking methods thus become another 
instrument of mathematical practice, like the ruler and 
compass for the classical geometer. 

Dowek’s book is a superb overview of the transformation 
of mathematics toward becoming a computational 
science. It is historically rich, philosophically inquisitive, 
and mathematically rigorous. One point of contention 
might be the stress Dowek places on the role of 
computation in all branches of mathematics. The 
cleavage between computation and reasoning that 
frames the book’s dialectic was rooted, in ancient times, 
in a classical conception of mathematical knowledge, 
held for instance by Aristotle. With the notable exception 
of Archimedes, ancient Greek mathematicians 
attempted to avoid calculation in geometry because they 
thought the knowledge gained by purely geometrical 
proofs of geometrical theorems was better than the 
knowledge gained by proofs of geometrical theorems 
involving arithmetic. More moderately, purely 
geometrical proofs of geometrical theorems provide 
different information than proofs mixing geometry and 
arithmetic, valuable in its own right, and provide 
knowledge that is more “stable” than knowledge 
provided by mixed proofs. And indeed this is so not just 
for geometry, but for any single branch of mathematics. 



That’s not to say that mixing, say, geometry and 
calculation is bad, obviously; it’s just to say that in 
emphasizing the role of calculation in proof generally, it 
is worth remember that something valuable is lost in 
geometry, for instance, when calculations play a 
significant role. (For details, see M. Detlefsen and A. 
Arana, “Purity of Methods”, Philosophers’ Imprint, 11:2 
(2011), and A. Arana, “On the alleged simplicity of 
impure proof”, in R. Kossak and P. Ording, editors, 
Simplicity: Ideals of Practice in Mathematics and the 
Arts, Springer, 2016.)

One can see Dowek’s work as clarifying this logical 
analysis of proof, to distinguish between the purely 
logical and computational parts of proofs. Is this 
distinction artificial or intrinsic to different modes of 
mathematical thought? Its persistence through the 
development of mathematics suggests the latter, but the 
new tradition being developed by Dowek and others 
demands consideration.


