Skip to main content
Log in

Reducing the dauer larva: molecular models of biological phenomena in Caenorhabditis elegans research

  • Original Article
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

One important aspect of biological explanation is detailed causal modeling of particular phenomena in limited experimental background conditions. Recognising this allows one to appreciate that a sufficient condition for a reduction in biology is a molecular model of (1) only the demonstrated causal parameters of a biological model and (2) only within a replicable experimental background. These identities—which are ubiquitous in biology and form the basis of ruthless reductions (Bickle, Philosophy and neuroscience: a ruthlessly reductive account, 2003)—are criticised as merely “local” (Sullivan, Synthese 167:511–539, 2009) or “fragmentary” (Schaffner, Synthese, 151(3):377–402, 2006). However, in an instructive case, a biological model is preserved in molecular terms, demonstrating a complex phenomenon that has been successfully reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ailion, M., & Thomas, J. H. (2000). Dauer formation induced by high temperatures in Caenorhabditis elegans. Genetics, 156, 1047–1067.

    Google Scholar 

  • Bargmann, C. I., & Horvitz, H. R. (1991). Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science, 251(4998), 1243–6.

    Article  Google Scholar 

  • Beatty, J (1995). The evolutionary contingency thesis. In G. Wolters, J.G. Lennox & P. McLaughlin (Eds.), Concepts, theories and rationality in the biological sciences. The second Pittsburgh-Konstanz Colloquium in the philosophy of science (pp. 45–81). Pittsburgh: University of Pittsburgh Press.

  • Bechtel, W. (2006). Discovering cell mechanisms: The creation of modern cell biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bechtel, W. (2012). Identity, reduction, and conserved mechanisms: Perspectives from circadian rhythm research. In S. Gozzano & C. Hill (Eds.), The mental, The physical: New perspectives on type identity. Cambridge: Cambridge University Press.

  • Bechtel, W., & Richardson, R. C. (1993). Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton: Princeton University Press.

    Google Scholar 

  • Bickle, J. (2003). Philosophy and neuroscience: A ruthlessly reductive account. Dordrecht: Kluwer Academic Publishing.

    Book  Google Scholar 

  • Bickle, J. (2006). Reducing mind to molecular pathways: Explicating the reductionism implicit in current cellular and molecular neuroscience. Synthese, 151(3), 411–434.

    Article  Google Scholar 

  • Bickle, J. (2010). Has the last decade of challenges to the multiple realization argument provided aid and comfort to psychoneural reductionists? Synthese, 177, 247–260.

    Article  Google Scholar 

  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94.

    Google Scholar 

  • Brigandt, I. (2010). Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. Erkenntnis, 73, 295–311.

    Article  Google Scholar 

  • Cartwright, N. (1983). How the laws of physics lie. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Cassada, R. C., & Russell, R. L. (1975). The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol., 46, 326–342.

    Article  Google Scholar 

  • Cobb, A. D. (2009). Michael Faraday’s historical sketch of electro-magnetism and the theory-dependence of experimentation. Philosophy of science 76(5), 624–636.

    Google Scholar 

  • Craver, C. F. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Dupré, J. (1993). The disorder of things: Metaphysical foundations of the disunity of science. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Fielenbach, N., & Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes and Development, 22(16), 2149–2165.

    Article  Google Scholar 

  • Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V., & Antebi, A. (2001). A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Developmental Cell, 1, 841–851.

    Google Scholar 

  • Gilbert, S. F., & Epel, D. (2008). Ecological Developmental Biology. Sunderland: Sinauer.

    Google Scholar 

  • Golden, J. W., & Riddle, D. L. (1982). A pheromone influences larval development in the nematode Caenorhabditis elegans. Science, 218, 578–580.

    Article  Google Scholar 

  • Golden, J. W., & Riddle, D. L. (1984a). The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev. Biol., 102, 368–378.

    Article  Google Scholar 

  • Golden, J. W., & Riddle, D. L. (1984b). A pheromone-induced developmental switch in Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc. Natl. Acad. Sci. U.S.A., 81, 819–823.

    Article  Google Scholar 

  • Hacking, I. (1983). Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hall, B. K., & Hallgrímsson, B. (2008). Strickberger’s Evolution. The Integration of Genes, Organisms and Populations (4th ed.). : Jones and Bartlett.

  • Hull, D. L. (1974). Philosophy of biological science. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Hammell, C. M., Karp, X., Ambros, V. (2009). A feedback circuit involving let-7-Family miRNAs and DAF-12 integrates environmental signals and developmental timing in C. elegans. Proc Natl Acad Sci U S A.

  • Hulme, S. E., & Whitesides, G. M. (2011). Chemistry and the Worm: Caenorhabditis elegans as a Platform for Integrating Chemical and Biological Research Angew. Chem. Int., 50, 4774–4807.

    Article  Google Scholar 

  • Kemeny, John G., & Oppenheim, Paul. (1956). On Reduction. Philosophical Studies, 7(1–2), 6–19.

    Article  Google Scholar 

  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.

    Article  Google Scholar 

  • Malenka, R., & Bear, M. (2004). LTP and LTD: Review. An Embarrassment of Riches Neuron, 44, 5–21.

    Article  Google Scholar 

  • Magner, D. B., & Antebi, A. (2008). Caenorhabditis elegans nuclear receptors: insights into life traits. Trends Endocrinol. Metab., 19, 153–160.

    Article  Google Scholar 

  • Maull, N. (1977). Unifying science without reduction. Studies in the History and Philosophy of Science, 8, 143–171.

    Article  Google Scholar 

  • Mayo, D. (1996). Error and the Growth of Experimental Knowledge. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Motola, D. L., et al. (2006). Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell, 124, 1209–1223.

    Article  Google Scholar 

  • Sandra, Mitchell. (2003). Biological Complexity and Integrative Pluralism. Cambridge: Cambridge University Press.

    Google Scholar 

  • Morgan, M., & Morrison, M. (1999). Models as Mediators. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Nagel, E. (1949). The Meaning of Reduction in the Natural Sciences. In R. C. Stauffer (Ed.), Science and Civilization. Madison: University of Wisconsin Press.

    Google Scholar 

  • Nagel, E. (1961). The structure of science. Harcourt, New York: Problems in the logic of scientific explanation.

    Google Scholar 

  • Ohkura, K., Suzuki, N., Ishihara, T., & Katsura, I. (2003). SDF-9, a protein tyrosine phosphatase-like molecule, regulates the L3/dauer developmental decision through hormonal signaling in C. elegans. Development, 130, 3237–3248.

    Article  Google Scholar 

  • Ogawa, A., & Sommer, R. (2009). Strategies to Get Arrested Science, 26(5955), 944–945.

    Google Scholar 

  • Oyama, S. (1985). The ontogeny of information: Developmental systems and evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Riddle, D. L. (1977). A genetic pathway for dauer larva formation in Caaorhabditis elegans. Stadkr Genet. Svmp., 9, 101–120.

    Google Scholar 

  • Sanderson, C. M. (2009). The Cartographers Toolbox: building bigger and better human protein interaction networks. Briefings in Functional Genomics and Proteomics., 8, 1.

    Article  Google Scholar 

  • Schaffner, K. (1967). Approaches To Reduction. Philosophy of Science, 34, 137.

    Article  Google Scholar 

  • Schaffner, K. (1993). Discovery and Explanation in Biology and Medicine. Chicago: University of Chicago Press.

    Google Scholar 

  • Schaffner, K. (2006). Reduction: The Cheshire cat problem and a return to roots. 151(3), 377–402.

  • Simonis, N., et al. (2009). Empirically-controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat. Methods., 6(1), 47–54.

    Article  Google Scholar 

  • Smart, J. J. C. (1963). Philosophy and Scientific Realism. London: Routledge and Kegan Paul.

    Google Scholar 

  • Sullivan, J. A. (2009). The Multiplicity of experimental protocols: A challenge to reductionist and non-reductionist models of the unity of science. Synthese, 167, 511–539.

    Article  Google Scholar 

  • Vidal, M. (2001). A biological atlas of functional maps. Cell, 104, 333–339.

    Article  Google Scholar 

  • Vidal, M. (2009). A unifying view of 21st century systems biology. FEBS Lett., 583, 3891–3894.

    Article  Google Scholar 

  • Viney, M. E. (2009). How did parasitic worms evolve? BioEssays, 31, 496–499.

    Article  Google Scholar 

  • Weber, M. (2005). Philosophy of experimental biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental Plasticity andn Evolution Oxford Univ. Oxford: Oxford Univ. Press.

    Google Scholar 

  • Wimsatt, W. C. (1976). Reductive explanations: A functional account. In R. S. Cohen & A. Michalos (Eds.), Proceedings of the 1974 biennial meeting of the Philosophy of Science Association (pp. 671–710). Dordrecht: Reidel.

    Google Scholar 

  • Wimsatt, W. (2006). Reductionism and its heuristics: Making methodological reductionism honest. Synthese, 151(3), 445–475.

    Google Scholar 

  • Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

I would like to thank Andrew Wayne, John Bickle, Ingo Brigandt, two anonymous referees for this journal and audiences at Guelph University and CSHPS 2010 Montreal for helpful comments on earlier drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Arciszewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arciszewski, M. Reducing the dauer larva: molecular models of biological phenomena in Caenorhabditis elegans research. Synthese 190, 4155–4179 (2013). https://doi.org/10.1007/s11229-013-0254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-013-0254-8

Keywords

Navigation