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Abstract. In this paper we deal with two applications of the square of
opposition to controversial issues in the philosophy of quantum mechan-
ics. The first one concerns the kind of opposition represented by states in
superposition. A superposition of “spin up” and “spin down” for a given
spatial direction, for instance, is sometimes said to originate particular
kinds of opposition such as contradictoriness. The second application
concerns the problem of identical particles. Identity and indiscernibility
are entangled in discussions of this problem in such a way that a proper
conceptual treatment of those issues through the square seems profitable.
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tion; identity.

1. Introduction
The square of opposition was first introduced to graphically represent the
oppositions that appear in Aristotelian logic: contraries, contradiction and
subcontraries (subalterns are not really opposites, but rather implication,
although they are also graphically codified in the square). By the classical
account of such propositions, their definitions are as follows:

Contraries:. two propositions are contraries if they cannot both be true.
Contradictories:. two propositions are contradictories if they cannot both

be true and cannot both be false.
Subcontraries:. two propositions are subcontraries if they cannot both be

false.
As is well known, the square was first applied to deal with the four cat-

egorical propositions of Aristotelian logic: universal affirmative (A), Univer-
sal negative (E), particular affirmative (I) and particular negative (O). How-
ever, there is no need for the square to be restricted to represent the relations
between those specific propositions. As Béziau ([5, p.5]) has pointed out, the
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square is a powerful tool for conceptual analysis, an abstract structure with
multiple interpretations. In particular, the representation of oppositions be-
tween the Aristotelian categorical propositions is one such interpretation,
but it is by no means the only one.

In this paper we shall advance two such “non-intended” interpreta-
tions for the square and show how they may shed some light in recent
discussions in the philosophy of quantum mechanics. Our first topic, dis-
cussed in section 2, is quantum superposition. According to some authors
(see for instance da Costa and de Ronde [6]), quantum mechanics may be
interpreted as furnishing objects with contradictory properties when those
objects are in a state of superposition. One example would be the famous
Schrödinger’s cat. As devised by Schrödinger, in the original thought ex-
periment the animal is in a superposition of the states “Cat dead” and “Cat
alive”. According to the approach we are discussing, the cat, while in such
a superposition, has both properties, and those are said to be contradictory
properties. We shall employ the conceptual tools furnished by the square in
order to discuss those issues.

Our second topic concerns the problem of identical particles in quan-
tum mechanics. Due to the presence of symmetrization principles in the the-
ory, there are many situations in which two or more quantum particles may
be said to be indiscernible (see French and Krause [9, chap.4]). Most of the
current debate concerns whether such indiscernibility implies (or requires)
individuality or some kind of identity, and also how discernibility is related
to those concepts too. Furthermore, there are some subtleties concerning dis-
tinct senses of discernibility that must be addressed. In section 3 we shall
employ the resources of the square in order to clarify the distinct positions
in the debate.

2. Superpositions and Oppositions

Superpositions are a part of quantum mystery: on the one hand, they are
in the roots of some of the theory’s greatest conceptual challenges, such as
Schrödinger’s cat, the Einstein–Bohr debate and many others. It is practi-
cally unnecessary to remember the strange behavior of quantum superpo-
sition (see, for instance Ghirardi [10, chap.4]). On the other hand, quantum
superposition is what makes quantum mechanics so successful in its many
empirical applications. Any account of superpositions intending to offer a
proper understanding of this phenomenon should enlighten us in those
quantum oddities. Many distinct approaches were already put forward in
order to attempt to tame quantum superpositions, but none is uncontro-
versial, and most do not try to reduce superpositions to classical notions.
Recently, da Costa and de Ronde [6] have suggested that a paraconsistent
logic could be employed in order to provide a better understanding of su-
perpositions. According to their proposal, a paraconsistent approach is well
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motivated once we take superpositions as somehow describing the attribu-
tion of contradictory properties for quantum systems.

Consider the case of Schrödinger’s cat, for instance. According to the
usual descriptions, the state of the cat is a superposition between states “Cat
dead” and “Cat alive” (we are simplifying the situation). To understand
what such a superposition really means, we are advised by the paraconsis-
tent approach to literally take both states as real: the cat has the properties
of being dead and alive. Furthermore, those are contradictory properties. The
same goes for a spin whose state is “up” in the z axis, for instance. When we
consider another spatial direction, such as x, then the state of the system is a
superposition of “spin up in x” and “spin down in x”. Once again, the idea
is that such a superposition should be understood in terms of contradictory
attribution of properties to one system.

We shall now call the square of oppositions in order to address the
problem of how we should understand such claims (these issues have been
addressed in a somewhat different fashion in Arenhart and Krause [2]).
There are two related claims involved:

i) states such as “spin up” and “spin down” in a given direction are con-
tradictory (the same goes for “Cat alive” and “Cat dead”);

ii) a paraconsistent logic should be employed to deal with such states (the
problem of whether a superposition really simultaneously instantiates
all the states that are part of it in are addressed in Arenhart and Krause
op. cit. See also Dieks [7] for a related criticism in the context of modal
interpretations of quantum mechanics).

To begin with the contradiction claim, all we have to check, according
to the square-type Aristotelian definition of contradiction is whether both
“spin up” and “spin down” (we shall omit the qualification “in the same
direction” from now on) cannot both be true and both be false. That is: can
we make sure that it is always the case that one of both states must be the
case? It all depends on what one understands by “having a property” in
quantum mechanics. Usually, it is assumed as uncontroversial that when a
system is in an eigenstate of an observable, then the system has the property asso-
ciated with the eigenvalue. This conditional is then complemented by further
constraints according to the interpretation we choose (specifically, modal in-
terpretations place constraints on how are we to understand the converse of
such a conditional). The approach we are examining claims that in cases of
superposition (i.e. when the system is not in an eigenstate of the observable
we are interested in), we are entitled to attribute the properties corresponding to
the states forming the superposition of the system.

Let us now consider whether there is a contradiction between “spin
up” and “spin down”. To begin with, when the system is indeed in a state
such as spin up, then it obviously is not in spin down. So, when one state
is the case, the other one is straightforwardly not the case. But is it the case
that the system will always be spin up or down? This is a condition for us
to have a contradiction. Our answer to the question is: not really, the system
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does not need to be always up or down. In particular, when the state is a
superposition, it seems, neither is the case: one cannot say that the spin is
up, and the same holds for the spin down. So, it seems, this is not a case
of contradiction, because both are false, violating the requirement that both
cannot be false. However, one may accuse us of begging the question here:
according to the principle stated in italics in the end of the previous para-
graph, in a superposition the system has both properties: spin up and down.
But in this case, both are true of the system, violating the requirement that
both cannot be true. So, whatever is the relation between such states as spin
up and spin down, it seems, it is not contradiction (at least not as under-
stood traditionally). Is there any kind of opposition between these states,
however?

The answer to that question is positive: when one checks the quantum
mechanical behavior of those states (and also of similar cases like the states
of the cat in “Cat dead” and “Cat alive”) one notices that even though both
may be false (as we have mentioned above), both cannot be true. So, this is
a case of contrariety. Orthogonal vectors in a Hilbert space, we suggest, are
better understood in this case as contraries rather than as contradictories.
Their place in the square is on the top, in the places corresponding to A and
E in the traditional interpretation.

Of course, we are taking here a metaphysically “thin” understanding
of superposition: in a state of superposition, it may be the case that the sys-
tem has none of the properties corresponding to the states that form the
superposition. The force of such a may once again depends on the interpre-
tation. Traditional Copenhagen interpretation would have it that the system
does have none of the properties in a superposition; only a measurement act
determines which one is the case. Modal interpretations, on the other hand,
allow that the system could have some property related to the states in a su-
perposition, but puts some constraints on how such a property distribution
is performed.

Now, continuing with our suggestion to treat “spin up” and “spin down”
as contraries, it is even possible to complete the square: as a contradictory
of “spin up”, we put "the system is not spin up", and as a contradictory for
“spin down” we put “the system is not spin down”. This is classical nega-
tion (more on this soon). Notice that in this account a system may fail to be
spin up, for instance, for distinct reasons: either because it is down, or else
because it is in a superposition between up and down. “Not spin up” and
“not spin down” occupy the bottom places of the square, the ones occupied
traditionally by I and O.

Subcontrariety is also obtained: “not spin up” and “not spin down”
may both be true, but not both false. It is easy to verify that claim in quantum
mechanics. Indeed, if it is true that a system is not spin up, then it may be
down (in which case “not spin down” is false) or it may be in a superposition
with “spin down”, in which case (“not spin down” is true too). The same
reasoning holds for the case where “not spin down” is true. Also, notice that
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it cannot be false that the system is not down and not up at the same time: if
the system is in a superposition of both, then both are true, and if the system
is in one of the states, then it is not in the other one.

The traditional implication of subalternation also holds: if the system
is spin down, then it is not spin up. Correspondingly, if the system is spin
up, then it is not spin down.

Let us draw such a square:

What about the second point? That is, should we still deal with propo-
sitions such as “spin up” and “spin down” in a paraconsistent logic? Well,
as we have argued, perhaps another suggestion would be appropriate. As
Béziau ([4]) has pointed out, there are interesting relations between the op-
positions and distinct kinds of negations. A negation N is paracomplete if
there is a proposition p such that p and Np can be both false (violates for-
mal versions of the excluded middle). N is paraconsistent if there is a propo-
sition p such that p and Np can be both true (violates formal versions of the
principle of non-contradiction). Some negations may be both paracomplete
and paraconsistent, in which case they are called non-alethic. Let us follow
Béziau (op. cit. p. 223) and call a negation proper paracomplete if it is paracom-
plete and not paraconsistent, and we call it proper paraconsistent if it is para-
consistent and not paracomplete. That terminology allows us to frame the
opposition in terms of distinct kinds of negations: p is contrary to Np when
N is proper paracomplete; p is contradictory to Np when N is classical nega-
tion; p is subcontrary to Np when N is proper paraconsistent negation. So,
in order to deal with states such as the ones we have used in our examples,
we should look for applications of some kind of paracomplete logic, not to a
paraconsistent one. It seems that it is the principle of excluded middle that
gets violated, not the principle of non-contradiction.

Of course, such a suggestion does nothing to vindicate the claim that
states such as “spin up” and “spin down” are contradictory. Are they? As
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we have argued, not in the classical sense of contradiction, which is se-
mantically defined in terms of traditional truth values. But one may intro-
duce another notion of a paracomplete contradiction: proposition p and Np are
paracompletely contradictory when N is paracomplete negation (the same
may be done for a definition of a paraconsistent contradiction). However, that
contradiction in fact satisfies the semantic requirements for a contrariety-
forming operator, and such a shift would amount only to a terminological
change in the syntactical level. As we have mentioned (and see also the anal-
ysis in Arenhart and Krause op. cit.), it is difficult to take superposition in
quantum mechanics as implying somehow contradictions in the traditional
semantic sense. That view is corroborated by the traditional claim that su-
perposition in quantum mechanics cannot be reduced to classical concepts,
such as predication and contradiction.

To keep with the issue of the last paragraph, what one must notice is
that, if we follow Béziau ([4]), it is reasonable and legitimate to call “nega-
tion” the three oppositions: classical, paracomplete and paraconsistent nega-
tions. One is no more a negation than the other. What really matters is that all
those negations capture distinct senses of opposition. They are, as it were,
distinct “precisifications” of our natural language use of oppositions, and
may be employed profitably according to distinct contexts. In particular, as
we mentioned, paracomplete negation somehow reflects the opposition be-
tween some states in some cases in quantum theory.

Furthermore, one may allow that there is a mismatch between syntax
and semantics, at least according to the traditional account of oppositions.
Even if in the syntax we call p and Np contradictions, in the semantics, when
N is either proper paracomplete or proper paraconsistent negation, the re-
lation of opposition captured is not really contradiction, but rather contrari-
ness and subcontrariness, respectively (again, see Béziau op. cit.). So, the
square of opposition helps us in sharpening our terminology. According to
this view, p and Np are always in opposition, but are not always contradic-
tory: the kind of opposition represented depends on the precise meaning of
the negation sign N.

Before we proceed to our next topic, it is important to remember that
the discussion until this point concerned only opposition between two states:
“Cat dead” and “Cat alive”, “spin up” and “spin down”. The analysis pro-
posed above seems to apply reasonably to such states. Of course, opposi-
tions, as the ones the square is concerned with, are binary relations: it takes
always two relata to be opposed somehow. That simple observation marks
the limits of the analysis of quantum states with the square. As it is known,
superpositions may have more than two terms forming it. A proper under-
standing of superpositions would require that we explain also such cases.
A general study of the kind of opposition between such states shall not be
developed here.
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3. Identity in Quantum Mechanics

Put very roughly, the problem of identical particles in quantum mechan-
ics concerns the fact that they obey permutation symmetry: in certain states
allowed for quantum particles, no measurement of any observable may dis-
cern between two quantum objects. That fact had a deep impact on discus-
sions concerning identity and individuality in the context of quantum me-
chanics: being indiscernible by all quantum mechanical means, one could
just follow the theory and conclude that those things are not individuals
(thus, they were baptized as non-individuals). However, as noticed after fur-
ther philosophical analysis, that conclusion is justified only if we accept
that individuality is couched in terms of discernibility. Other forms of in-
dividuality (bare particulars, primitive individuality) are allowed that do
not require qualitative discernibility in order to attribute individuality: even
though qualitatively indiscernible, items may be individuals and count as
two (see French and Krause [9] for further discussion).

We shall not enter into the debate of which option should be adopted
in quantum mechanics (see Arenhart [1] and Arenhart and Krause [3] for
a particular approach on such a discussion). Our main goal in this section
is to analyze the relationship between such concepts as discernibility, iden-
tity and individuality in the light of the square of opposition and quantum
indiscernibility. Distinct views on the relation between such concepts may
seem more or less plausible in the quantum context, and such an analysis
may be profitable to put the conceptual distinctions assumed by each kind
of approach on a clearer basis.

Let us begin with the relation between identity and difference. As usu-
ally conceived, those are contradictory relations, either two things are iden-
tical or else they are different. There is no third possibility. In order to com-
plete the oppositions, we could relate identity and difference with indis-
cernibility and discernibility: identical things are indiscernible, for sure, and
discernible things are distinct. Given those implications representing subal-
ternation, it is clear that identity and discernibility are contraries, while in-
discernibility and difference are subcontraries. Notice that identity and dis-
cernibility may be both false, i.e. when items are distinct and indiscernible
(a view adopted in the metaphysics of quantum mechanics too), giving the
conditions for contrariety. Also, it is possible for things to be indiscernible
and different (indeed, most things are like that), but not possible for things
to be neither different nor indiscernible. That gives us the conditions for
subcontrariety.

We have then the following tentative square:
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Even though it looks very plausible at first, and even though these op-
positions hold according to traditional account of identity in classical logic,
there are some points which render it controversial in the quantum context.
If we take it seriously that any two things must either be identical or differ-
ent (as the relation of contradiction between Identity and Difference seem
to suggest), then, some positions in the metaphysics of quantum mechanics
are non-starters, in particular the view that some of the entities it deals with
are non-individuals. However, it is part of the actual controversy to deter-
mine whether identity or difference apply universally: one must defend the
scheme as presented before, or else show that it does not apply (or, perhaps
better, it would be interesting to argue that it applies only when restricted to
a given specific category of objects, the individuals).

How do we relate the concepts of individuality, identity and discerni-
bility? Obviously, the answer to that question depends on how we character-
ize individuality. If we follow Muller and Saunders ([13]) and characterize
by definition an individual as something discernible from everything else
by a qualitative property, then, we can approach the question as follows. We
can say that Abs(a,b) represents that a and b differ by at least one qualitative
property, which is also called absolute discernibility. We say that a and b are
identical by Id(a,b). Of course, Abs(a,b) and Id(a,b) cannot be both true: if a
and b are absolutely discernible, then they are not identical. Furthermore, if
they are identical, then they cannot be absolutely discernible. This suggests
that these notions are at least contrary. Aren’t they contradictory indeed?
Not really. Muller and Saunders op. cit. reserve the concept of discernibility
for a broader notion than absolute discernibility: items may be discernible in
more ways than by mere absolute discernibility. We say a and b are relation-
ally discernible when there is a relation R such that either Rab or Rba hold, but
not both. Furthermore, a and b are weakly discernible when there is a relation
R that is irreflexive (not Rxx for any x) symmetrical (Rxy implies Ryx, for
any x and y) holding between a and b. Let us call items discernible when they
are absolutely discernible, relationally discernible or weakly discernible. We
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represent that by Dis(a,b). Then, clearly Abs(a,b) implies Dis(a,b), but not the
other way around (absolute discernibility is the strongest notion of discerni-
bility; weak discernibility is the weakest). Furthermore, Dis(a,b) and Id(a,b)
are contradictory: both cannot be true, and both cannot be false. This is clear
in the classical logic approach to identity (the substitution law of identity
provides for the required results).

The relations of opposition so far are as follows: Id(a,b) is contradic-
tory with Dis(a,b). Abs(a,b) and Id(a,b) are contrary. Dis(a,b) is subaltern to
Abs(a,b). So far, we have the following square, with a temporarily missing
concept:

What should we put in the right bottom of the square? The reasonable
candidate is absolute indiscernibility, the idea that items a and b have all
their properties in common. Let us call that Abi(a,b). Notice that identity
implies Abi(a,b): were a and b identical, they would have the same proper-
ties. However, the opposite direction does not hold: items indiscernible by
their properties may be discernible (and consequently, different) by other
means. Of course, we also have that Abi(a,b) and Abs(a,b) are contradictory.
The final doubt concerns only whether Dis(a,b) and Abi(a,b) are subcon-
traries. Can both be true? Yes, items may be absolutely indiscernible while
still being discernible. Can both be false? Not according to the approach we
are presenting here: if Dis(a,b) is false, then, by definition, Abi(a,b) is true.
On the other hand, if Abi(a,b) is false, then Dis(a,b) get true.

Notice that this approach introduces more nuanced distinctions than
the former one. It fits nicely in what we may call a reductive account of identity.
That is, it is possible to reduce identity to indiscernibility by a set of qualities
(properties and relations). This is the well-known approach to identity by
Quine. We select a finite number of predicates to represent the qualities of
the intended domain of investigation and define identity as indiscernibility
by such predicates. For instance, if our language has only a unary predicate
P and a binary relation R, then identity may be defined thus:

x = y ⇐⇒ (Px ↔ Py) ∧ ∀z((Rxz ↔ Ryz) ∧ (Rzx ↔ Rzy))
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Then, with this definition, by the contrapositive form of the substitu-
tion law (which is proved to follow from this definition), discernibility al-
ways implies difference. However, as we saw, discernibility does not always
imply individuality: individuals are a specific kind of discernible things.
This leave room for entities that are not individuals: objects not discernible
by a property are non-individuals. However, the approach, at least as we
have presented it, has some polemical points that our analysis may help to
present.

First of all, it is not uncontroversial that weakly discerning relations do
really discern. That is, one may question whether the fact that an irreflex-
ive and symmetric relation holds does really amount to a discernibility of
any kind or mere brute numerical difference. The doubt comes from the role
such relations play in qualitatively discerning things (see Ladyman and Bi-
gaj [11]). This issue is particularly pressing in quantum mechanics since it
is conceded that weak discernibility is the only way to discern quantum ob-
jects: if it is indeed discernibility, then the claim that those entities are indis-
cernible is false. On the other hand, if weak discernibility is no discernibility
at all, but rather only another way to present numerical difference, then,
quantum objects may still be called indiscernible.

The second controversial point concerns the relation of identity and
discernibility. There is no place for distinct indiscernible items. Dis(a,b) im-
plies difference, but also non-identity implies some way of discerning items.
As we pointed out earlier, this account leaves no room for the idea that
sometimes identity does not apply at all. According to some interpretations,
we may sometimes have two entities without any way of discerning them.
In order to achieve such a distinctive metaphysical scheme, we must present
the appropriate relations.

We begin by making it clear that non-individuals are items that have
no identity conditions. Two of them may be completely indiscernible when
they are of the same kind. Non-individuals of distinct kinds are discernible
(protons and electrons, for instance). Anyway, numerical distinction by it-
self does not imply qualitative difference. Discernibility implies numerical
difference, of course. Instead of identity and difference, which are usually
related with some form of discernibility as in the previous account, the ap-
proach to non-individuals employs as a more primitive notion the idea of
a well-defined cardinal: in every context (in non-relativistic quantum me-
chanics, anyway), we may know how many entities we are dealing with.
So, whenever we consider two ways to refer to entities, a and b, we may
be speaking of one entity or of two entities (the theory determines which is
the case). Let us call One(a,b) the predicate representing the fact that a and
b are one. Similarly, let us call Two(a,b) the fact that a and b are two. In our
restricted context, when dealing only with a and b, one of both must ob-
tain. So, they may be deemed contradictory. The same holds for qualitative
discernibility.
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A version of the square for such a conceptual framework may be pre-
sented as follows:

Obviously, when One(a,b) holds, then a and b are not discernible, and
vice versa. However, a and b cannot be one and still be discernible (nothing
is discernible from itself), so both may be false, giving us contrariety.

The fact that One(a,b) implies clearly Ind(a,b), and also Dis(a,b) implies
Two(a,b) (recall that discernible items are always of distinct kinds) gives us
the subalterns. Notice that Ind(a,b) and Two(a,b) may both be true (indis-
cernible non-individuals), while both cannot be false: again, we cannot have
one thing discernible from itself. This gives us subcontrariety.

One could ask: why not simply stick to the first square presented, keep-
ing identity in the place of oneness and twoness? The fact is that according to
the non-individuals’ interpretation of quantum mechanics, cardinality facts
are more basic than identity facts. That is supposed to keep us closer to the
demands of the theory (at least according to this interpretation, recall), while
still allowing us to avoid identity. We cannot claim that twoness implies dif-
ference, because “difference” or “non-identity” are not part of the concep-
tual scheme of this view. So, such differences between schemes, even though
minimal at first, make a lot of difference when it comes to metaphysics.

Indeed, if one claims that the best that the theory may furnish us is a
given cardinality and certain facts about discernibility and indiscernibility,
then there is no reason for us not to try to develop a metaphysical view an-
chored in science from those concepts. Of course, alternative metaphysical
approaches are possible, all of them compatible with quantum mechanics,
but this one in particular furnishes us a minimal conceptual scheme com-
patible with the theory. In the business of deciding which approach better
fits the demands of the theory, then, perhaps the closer we keep to the the-
ory the better. Even though some theoretical virtues may have to be called
forth in the debate between metaphysical candidates, such as simplicity and
continuation with common sense, none of them should be valued above
closeness to the theory. That seems to be a virtue of the last scheme, which
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does not bent over pressure of common notions. In fact, systems of logic
developed to cope with such a minimal conceptual scheme were developed
(French and Krause [9, chap.7-8]), and their force may be measured by the
fact that they allow for a reconstruction of the formalism of quantum me-
chanics (Domenech, Holik and Krause [8]).

Also, as another virtue of beginning with cardinality as more funda-
mental than identity is that this conceptual scheme allows for some forms
of Ontic Structural Realism (OSR). According to some approaches related
to OSR, in quantum mechanics we must have a definite number of objects
without any intrinsic identity (see Lam [12] for such an approach). In this
sense, even if some authors adhering to those versions of OSR admit that
identity may be introduced contextually, as due to the context rather than
the entity itself, cardinality is primary. So, it seems, this kind of approach
also requires something like the conceptual framework suggested here, rather
than the first one, presented in the first square. The metaphysical differences
are substantial.

4. Final remarks
We have employed the resources of the square of oppositions to clarify some
relations between concepts in quantum mechanics. Our analysis restricted
itself to the concept of superposition and the problem of identical particles.
Both are well-known in the literature, and we have not expected to solve
any of the living controversies around them in the preceding lines: our goals
were first of all goals of clarification.

In the case of superposition, we have suggested that states for quantum
systems such as the comprised in Schrödinger’s cat and 1

2 spin systems may
have their oppositions adequately characterized by the square. Instead of
being contradictory, such as some authors suggest, the states “Cat dead” and
“Cat alive”, those appearing in Schrödinger’s example, are better thought as
contrary. Of course, to be related by a square type interpretation is by itself
a requirement for clarity, but helps us when the issue is precisely whether,
for instance, such kinds of states are contradictory or not.

In the case of identity, by analyzing diverse kinds of schemes to deal
with indiscernible objects, we hope we could get clear the distinct implica-
tions holding for distinct conceptual schemes. Most importantly, the idea
that discernibility and identity always come together may be resisted, and
we have suggested that for some interpretations some cardinality condition
is more fundamental than identity. Of course, that by itself does not solve the
controversy, but at least it helps us getting straight what goes as an assump-
tion in some views, and what gets implied by others. In particular, identity
and discernibility go hand in hand in the Muller and Saunders ([13]) ac-
count, while the same is not true for the non-individuals’ account. Which
approach fits better the theory and which is more reasonable is an open is-
sue.
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