BRAD ARMENDT

CONDITIONAL PREFERENCE AND CAUSAL
EXPECTED UTILITY

I am going to describe how we can make use of the idea of conditional
preference to provide a foundation for Brian Skyrms’ version of causal
decision theory (K-expectation, or causal expected utility, decision
theory). The foundation has the following two virtues: first, it puts the
theory on an equal footing with competitors for which foundations
have already been given; second, this foundation will provide the basis
for a reply to the most serious objections made so far against causal
decision theory, and against Skyrms’ version of it in particular (more
about this below).' I will only say a little about the other versions of
causal decision theory developed by Gibbard and Harper (1976), Lewis
(1981), and Sobel (1978). There are interesting differences between
the theories, but in spirit they are very much alike. The foundation and
the replies are immediate payoffs of using conditional preferences, but
I think the treatment of conditional preference sketched below is also
interesting for its own sake.

The foundation I will describe consists of (1) a set of axiomatic
conditions on rational preference systems, and (2) the derivation of a
representation theorem which shows that for any preference system
satisfying the axioms there exist a probability measure P and utility
functions U which represent the preferences, and which are related by
the theory’s general expected utility rule. The theorem has standard
uniqueness results: for each preference system, P is uniquely deter-
mined and U is unique up to positive linear transformation. I should
make it clear from the beginning that this foundation relies on formal
results of Fishburn’s (1973). My alterations of his formal. theory are
small. I do reinterpret his theory somewhat. The application to causal
decision theory is new.

CAUSAL DECISION THEORY

Causal decision theories were proposed in reaction to the perceived
failure of so-called V-maximization theories to adequately deal with
problems like the Newcomb problem and the Twin Prisoners’
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Dilemma?. In Richard Jeffrey’s V-maximization theory the idea that
actions are to be evaluated by their expected values takes the form

) V(A) = ZP(C/IA) V(A & C),

for any A and any partition {C,, ..., C,}. This theory has the nice
feature that no initial classification of acts, states, and consequences
need be made: all appear as members of a Boolean algebra of proposi-
tions, and there is no requirement that acts and states of the world
must be independent. So, though the notation suggests that the rule
evaluates actions in terms of consequences, rule (J) is quite general,
holding for any proposition A and any partition of C’s. Iteration of (J)
yields (J2) which might be useful to an agent who is better able to
estimate the probabilities and values appearing in this rule than the
ones appearing in (J):

(2)  V(A) = SP(BJ/A)S P(C/A & B)V(A & C; & B)),

for any A and any partitions {By, ..., B,.}, {C\, ..., C,}. V-maxi-
mization is usually a good theory: most of the time an agent using V-
maximization will accurately evaluate his alternatives. And I will show
later that the utility rule given by the foundation 1 will present agrees
with V-maximization in the many cases V-maximization gets right.

But (J2) can lead an agent astray in the problems we might call
causal counterexamples to V-maximization. The best-known of these
are the Newcomb problem and the Twin Prisoners’ Dilemma, but here
I will illustrate the problem for V-maximization with Fisher’s smoking
gene hypothesis.

Fisher’s Smoking Gene Example

I believe that my disposition to smoke cigarettes and my disposition to
contract cancer are genetically influenced by the same factor, which
accounts for the statistical correlation between smoking and cancer. I
believe that I cannot influence my genetic makeup, and that smoking
itself is not harmful. I would enjoy smoking and attach small positive
utility to the pieasure 1 would derive from smoking this cigarette. |
attach large negative utility to contracting cancer. If I believe that the
causal connections and statistical correlations are strong enough, and if
1 disvalue contracting cancer enough, compared to how much 1 value
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the pleasure of smoking, then (J) and V-maximization will lead me to
the decision to refrain from smoking, in order to minimize the chances
I have the gene and contract cancer.?

But this answer is wrong. If I believe (1) that nothing I do now can
contribute to my having or not having the genetic factor, and (2) that
the genetic factor is the main cause of my contracting cancer while
smoking itself is not a cause of cancer, then the correlation between
smoking and having the gene is not a good reason for avoiding the
pleasure I would get from smoking. To act otherwise is, as Gibbard
and Harper (1976) remark, to knowingly act so as to produce evidence
for a strongly desired state of affairs (absence of the gene), without in
any way producing the desired state, even when such action has signi-
ficant cost.

An agent who follows V-maximization and the reasoning sketched
above wrongly evaluates his alternatives because he fails to use his
most specific and relevant information (or beliefs) in the given situa-
tion, namely his full information about the causal structure of his
decision problem. This is so because (the agent believes that) his
action in no way causes any of the states B; to obtain, although the
action is correlated with the states. In these situations, doing A
(smoking the cigarette) is not a cause but is a symptom of B,’s obtain-
ing (having the gene), so the conditional degree of belief P(B,/A;) is
greater than the belief P(B,). V-maximization leads the agent to act so
as to raise (at significant cost) the epistemic probability of the desirable
state (not having the gene) even though the agent believes such action
cannot cause the state to occur. V-maximization recommends this
because it ignores the information about the causal independence of
the action and the state (no dependence from action to state), while
attending to the information about the epistemic dependence of one on
the other.

The various causal decision theories are designed to correct V-
maximization by incorporating the agent’s beliefs about the absence of
a causal connection from his action'to the states in his evaluation of his
action. The basic idea shared by all the causal decision theories is that
if the agent believes that the world may be in one of several states (or
have one of several structures) whose occurrence are not causally
influenced by his action, and which each affect the chances the con-
sequences have of being caused by the action (or which each affect the
values of the consequences), then he should evaluate his action this
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way: For each of the possible states or structures, find the value the
action has if that state holds; then find the overall value of the action
by taking a weighted average of these values, using as weights the
degrees of belief in each state’s being the actual one. The theories
differ in their description of the states and structures to be considered
and in their analysis of the action’s value for each state. The theories
of Gibbard and Harper (1976) and Lewis (1981) both recommend that
the agent consider counterfactual conditionals describing possible
causal patterns the world might have that are relevant to the actions
and consequences in question.* Which of these causal patterns obtains
is taken to be outside the agent’s control, and in both theories the
agent is told to weight the values he gives to the possible consequences
by his degrees of belief in the competing causal counterfactual condi-
tionals. The appropriate conditionals are causal in the sense that in the
smaoking gene problem, for example, the agent would be expected to
assign a substantial degree of belief to “I smoke [~ I enjoy my
cigarette,” but a very low degree of belief to “I smoke [}— I get
cancer,” given that he believes that his smoking does not cause him to
have the gene, and that the only causal connection between the smoking
and getting cancer is through this genetic factor. The appropriate
causal counterfactuals are -not ‘‘backtracking counterfactuals.”

That is all I will say here about the other versions of causal decision
theory. Skyrms’ version is not formulated in terms of counterfactual
conditionals, and it is to his theory that I will now turn.

Consider the smoking gene example and recall that the V-maximiza-
tion formula (J2) does not incorporate a correct summary of my beliefs
about the situation. The P(B;/A)’s which appear in (J2) will reflect my
belief that smoking is correlated with having the gene, but not my
belief that smoking does not cause me to have it. We might delete the
misleading influence that the correlation contributes to the evaluation
of act A by replacing these conditional probabilities with the simple
unconditional degrees of belief P(B;)’s. If we take note of this altera-
tion of our expected utility rule by writing the utility function U, and
we note the special requirement on the states B; by writing them as K;,
(J2) then becomes

(S)  UA) = SPK)SP(CIA & K)U(A & C; & K)).

(S) will agree with (J2) and V-maximization whenever the states K
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which influence the chances or utilities of the consequences are statis-
tically independent of the agent’s choice of action. But when the states
and the choice are not statistically independent, (J2) and (S) will very
likely give different values to A, and these differences may lead to
different recommendations when the agent chooses the alternative
with the highest utility. It is important to note that our justification for
suggesting (S) is that the states K; are believed causally relevant to the
action A’s production of its possible consequences C; and they are be-
lieved causally independent of the action (no dependence from action
to state). If the K;’s satisfy those conditions, but not otherwise, then
we correctly summarize the agent’s beliefs by using (S). Skyrms calls
partitions which in a given decision situation describe the causally
relevant (possible) states of the world which are outside the agent’s
influence K-partitions. Skyrms’ version of causal decision theory re-
commends that the agent choose the act which has maximum causal
expected utility, or K-expected utility, given by (S).>

OBJECTIONS TO CAUSAL EXPECTED UTILITY THEORY

There has been considerable debate about whether or not we need to
adopt causal decision theory in order to make the best choices in
problems like these. Sophisticated V-maximization theories have been
developed, and their defenders have argued that causal decision theory
is superfluous. This view is mistaken, but I will not discuss it here.®
Other criticisms have been made of Skyrms’ causal expected utility
theory that I shall consider.

It is easy to see that the key to applying the theory in the situations
where it is most needed is the identification of an appropriate K-
partition. An agent needs to find a set of propositions {K;} which are
such that (a) their use in (S) is correct for the problem confronting
him; that is, when they are used in (S) his evaluation of the action
incorporates all his information/beliefs relevant to the problem; and
(b) they are practical — the agent needs to have some idea what the
values of the degrees of belief and utilities appearing in (S) actually
are. As I said above, Skyrms (1979) has described the K-partition
appropriate to a given problem as a partition of maximally specific
descriptions of the factors outside the agent’s influence which are
causally relevant to the outcomes (that he cares about) of the alter-
natives available to him.
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Now the theory has been criticized on the grounds that the appro-
priate K-partitions for decision problems must be carefully selected
(which is true), that general use of the theory seems to depend upon a
general way of finding an appropriate K-partition, and that this task
requires an understanding on the agent’s part of the relations “state S
is outside my influence” and ‘“state § is causally relevant to act A’s
having outcome C> that is more subtle than is reasonable to require
for a useful decision theory, even a normative one. Further, it has
been said that if Skyrms’ theory lacks a representation theorem, it
lacks a theoretical guarantee that it is broadly applicable — a guarantee
possessed by other decision theories, including V-maximization.” The
axiomatic system and representation theorem I shall describe provide a
direct response to the latter complaint about the theory. We shall also
find an answer to the former objections concerning the problem of the
selection of K-partitions.

It is worth pointing out that for an agent with a given decision
problem the task of selecting an appropriate K-partition is an empirical
one. And a K-partition is correct for a given decision problem by being
correct for the agent’s beliefs and preferences about the problem. The
causal decision theories are more successful than V-maximization by
better incorporating the agent’s beliefs, particularly his causal beliefs,
about his problem into his act evaluations — the Newcomb game and
the smoking gene example would be no problems at all for V-maxi-
mization if the agent did not have the beliefs ascribed to him in those
situations. This is not a point on which the critics of causal expected
utility theory go wrong, but it is worth mentioning because it leads to
the idea that we should look to the agent’s preference system, which
underlies his beliefs and desires, if we want to describe the selection of
appropriate K-partitions for his decision problem. In what follows, I
will be able to state sufficient conditions for the propriety of K-parti-
tions in terms of their behavior in the agent’s preference system. And
it will turn out that these conditions correspond quite well with Skyrms’
description given above.

PREFERENCE AND CONDITIONAL PREFERENCE

The descriptions of the entities for which our agent is supposed to have
preferences® are given, first, by propositions which may describe acts,
states, or consequences, and second, by mixtures of propositions. So
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the agent may have in his system preferences for going swimming, for
its raining, for catching a cold, and so on. These preferences are
represented in our system by corresponding propositions “I go swim-
ming,” “It will rain tomorrow,” “I catch a cold,” and so on. In
addition, mixtures or gambles on propositions will be taken to be
descriptions of objects of preference. So also appearing in our system
will be mixtures like 0.6(R) + 0.4(—R), where R is “It will rain
tomorrow;” and 0.2(S & C) + 0.5(S & —C) + 0.3(—S), where S is “I
go swimming,” and C is “I catch a cold.” Such mixtures can be
thought of as lotteries, where the mixing coefficients give the odds on
each of the possible outcomes. This system will assume that the agent
has a rich set of these preferences for mixtures (including mixtures of
mixtures, and so on). They form a mixture set, almost in the sense of
Herstein and Milnor (1953): the exception is that here mixing is re-
stricted to sets of propositions which form partitions, rather than being
closed for all sets of propositions whatsoever. (This differs from
Herstein & Milnor, who take the basic elements of mixture sets to be
incompatible payoffs; there is no need in their system to further specify
that mixtures be on incompatible outcomes). This modification of
Herstein—Milnor’s (and Fishburn’s) theory will be discussed further
below. Two points that I want to bring out here are that (1) Fishburn’s
theory and my adaptation of it follow, as do many other decision
theories, the von Neumann and Morgenstern approach to utility in that
the preference systems are taken to include mixtures or lotteries;® (2)
this theory deviates from Fishburn’s and most other theories, however,
in its use of propositions and mixtures of propositions, rather than the
more common practice of interpreting preferences as preferences for
nonpropositional acts, either primitive or regarded, for example, as
functions from states to consequences; in this respect it follows the
Jeffrey—Bolker “monoset theory”.

The set of preferences so far described, and indeed the full set of
preferences described below, are assumed to be ordered by a relation
=, interpreted as ‘“‘is at least as preferable as.” The entire system of
ordered (rational) preferences will be assumed to satisfy a set of
axiomatic conditions that I will present below; notice that the ordering
assumption includes requirements that preference is transitive, and
that any pair of elements of the ordering are comparable.

Now the system described so far is further enriched by the addition
of conditional preferences. The agent may entertain an hypothesis
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about the world, and under that hypothesis he may find that his
preference-attitudes toward various states, acts, etc. differ from the
preference-attitudes he directs toward those states, acts, etc. under
other hypotheses, or under the trivial hypothesis T (which, for con-
venience, is how I will regard unconditional preferences). That is,
under one hypothesis H the agent may rank his preferences (condi-
tional on H) quite differently from the ranking of his unconditional
preferences, or the ranking of his preferences conditional on hypo-
theses J, K, .... Of course, conditional hypotheses need not always
alter the ranking of preferences. For example, under my hypothesis
that it rains here this afternoon, my preference for swimming this
afternoon at the local beach is ranked below my unconditional pre-
ference for swimming this afternoon at that beach. But under the
hypothesis that it snows today in Tibet, my preference for swimming
this afternoon is not perturbed.

I shall write P,Q and m,Q for the conditional preferences for P and
for m, under the hypothesis that Q. As I noted just above, I shall
regard unconditional preferences as preferences conditional on the
tautology T, and sometimes will write them P,T. A conditional prefer-
ence, I emphasize, is not a preference for a conditional proposition.
And P,Q is to be understood as the agent’s present preference for P,
under his hypothesis that O — not (necessarily) as the preference he
would have for P if Q were true, or if he were to believe Q true.

Sometimes a conditional preference may have the same ranking as
an unconditional preference for a corresponding conjunction. The
swimming examples above may well be illustrations of this; my prefer-
ence for swimming, under my hypothesis that it rains, may be ranked
the same as my unconditional preference for the conjunction of swim-
ming and its raining. And similarly for my preference under my hypo-
thesis about the snow in Tibet. But this is not always the case. Consider
the preferences M,H and H,M where M is I have medical insurance,”
and H is “I am hospitalized for a serious illness.” My preference for
having medical insurance, under the hypothesis that I am hospitalized,
is considerably greater than my preference for being hospitalized,
under the hypothesis that I have insurance. Of course, if both prefer-
ences were ranked with the corresponding conjunction, then I would
be indifferent between them. So we will not assume that conditional
preferences are always ranked with corresponding conjunctions, though
in many cases it may turn out that they are.
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What about preferences of the forms P,P and —P,P? I regard such
conditional preferences as well-formed and non-trivial; they play a
significant role in the description of the proper use of the causal
expected utility rule (S). Under his hypothesis that the actual world is
a P-world, the agent has preferences for its being a P-world and for its
being a (—P)-world. It is important to keep in mind when considering
—P,P that this is not a preference for —P & P, and it is certainly not a
belief in —P & P. One may have a well-defined unconditional prefer-
ence for a proposition one strongly believes false, and one may have a
conditional preference for a proposition assumed false — not just
because the proposition may not be assumed to be known false, but
mainly because preference and desire may be directed toward proposi-
tions in which one does not believe. 1 may desire that Pegasus be alive
and willing to carry me wherever I please; and I may still desire this,
under my hypothesis that Pegasus never lived in the actual world.

It will often turn out that making the hypothesis P (or the hypothesis
—P) does not perturb an agent’s preference for P. Let W be “Candi-
date C wins the election,” and let S be “I go swimming this after-
noon;” it is quite plausible that I be indifferent between W, W,W, and
W,—W; and also between S, S.S, and S,—S. But consider the New-
comb problem, letting A, be “I take both boxes,” and the smoking
gene problem, letting A; be “I smoke the cigarette.” In the former
case, it-is highly plausible that A,,A, is ranked below A,, and A,,—A,
is ranked above A,. Under the hypothesis that I take both boxes, my
preference for taking both boxes is diminished, since worlds in which I
take both boxes are worlds where an empty opaque box is likely. And
since in worlds in which I do not take both boxes a filled opaque box is
likely, the hypothesis that I do not take both raises my preference for
taking them. For similar reasons, in the smoking gene example I prefer
A, —A to A to A, A,. Another example that reinforces the idea that
preferences like A,A and A,—A make nontrivial sense is the story of
the man who met death in Damascus, from Gibbard and Harper
(1976): when the story is elaborated in the way Gibbard and Harper
do, it is clear that the man prefers A,—A to A to A,A, where A is “I
go to Aleppo.” In the theory that follows we will see that conditional
preferences like A,A and A,—A are important. The failure of an act
proposition A to be ranked equally to A,A is an indication that use of
the causal expected utility rule (S), rather than a simpler special case of
it, is appropriate in evaluating A.
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Two further points about conditional preference: First, though the
examples so far mentioned have all been of the form P,Q where P is a
proposition, conditional preferences for mixtures of the form m,Q are
also included in the agent’s preference system. But hypotheses are
always taken to be propositions rather than mixtures; under a parti-
cular hypothesis H the agent’s preferences form a mixture set (in our
sense, mixtures only on partitions) written My. Second, notice that
mixtures are only formed under single conditional hypotheses; the
agent is not assumed to have preferences like 0.6(P,Q) + 0.4(—P,R).
Luce and Krantz (1971) have a well-known theory in which disjunctive
preferences, each disjunct conditional on different hypotheses, are
assumed to be in the preference system. And Balch and Fishburn
(1974) present such a theory with mixtures like 0.6(P,Q) + 0.4(—P,R).
I regard such preferences as intuitively very problematic and formally
unnecessary.

The remarks made so far clearly amount to less than a complete
account of conditional preference, but at this point I shall proceed with
the description of the theory’s preference systems and representation
theorem. I claim that the assumptions made by this theory about
conditional preference are actually not very strong, and that whatever
correct account of conditional preference emerges from the intuitions I
have appealed to will be consistent with those assumptions.'”

DERIVATION OF CAUSAL EXPECTED UTILITY THEORY

I will discuss the axioms for rational preference systems and the repre-
sentation theorem soon. Let us look ahead in this section and see how
the results stated there provide a foundation for causal expected utility
decision theory. Fishburn’s 1973 representation theorem shows that a
preference system (X, =) which satisfies the axioms to be stated below
can be represented by a probability measure P and utility function U.
U is linear and order-preserving, P is unique, U is unique up to
positive linear transformation, and the following utility rule holds for
all x in X:

(F1)  U(x,BvC) = P(B/BvC) U(x,B) + P(C/BvC)U(x,C)

whenever x,B and x,C are in X, and B and C are'incompatible.ll And
for A and a partition of propositions B,, B,, ..., B, such that A,B; is
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in X for each i, iterated application of (F1) gives us the rule
(F2)  U(A) = ZP(B;) U(A,B).

If U is a utility function and P the probability measure which repre-
sent my preferences, (F2) says that, for example, the utility I attach to
swimming this afternoon U(S) is equal to my degree of belief in rain
P(R) times the utility of swimming under the hypothesis that it rains,
plus P(—R) times the utility of S under the hypothesis —R. In the
smoking gene problem, the utility I attach to smoking, A;, is equal to
my degree of belief that I have the gene, P(G), times the utility of A;
under the hypothesis G, plus P(—G) times U(A;,—G). This agrees
with causal decision theory’s evaluation of A;, since the weights are not
P(G/Ay) and P(—GJ/A;) as in V-maximization theory.

When we compare (F2) with the V-maximization rule (J) it is clear
that they agree when for each i, P(B;) = P(B/A) and U(A,B;) = U(A
& B;). Since the function U is order-preserving, the latter conditions
hold when I am indifferent between A,B; and A & B;. So if I believe

the states B; are statistically independent of A, and my conditional
preferences for A under the hypotheses B; are the same as my uncon-
ditional preferences for the conjunctions A & B;, then evaluation of A
using V-maximization will agree with this theory’s evaluation of A.

If A is an act proposition, however, we are likely to want to evaluate
it in terms of its possible consequences, rather than to use some other
partition of states. And in any interesting decision problem, of course,
the statistical independence will not hold — I will believe that A’s
possible consequences are influenced by whether or not I do A. There
is another direction we may take, though, in seeking cases where the
two rules agree: If I am indifferent between A and A,A (doing A,
under the hypothesis I do A), and if for all i, I am indifferent between
A & C;and A,(A & C;), then it is easy to see that (F2) agrees with rule
(J). By order-preservation of U,

U(A) = U(A,A) = SP(A & C/A)U(A,A & C).

So by substitution,
= ZP(C,-/A) UA & C).

So in such cases I may use the V-maximization rule (J) and I will get
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the correct value for U(A). I think it turns out that these conditions,
that A ~ A,A and that A & C; ~ A,(A & C;), are satisfied in the
ordinary decision situations where we expect V-maximization to give
the correct evaluations of the available acts. The first says that my
hypothesis that I do A does not perturb my preference for A, and it
was discussed above. The second says that my preference for A, under
my hypothesis that I do A and consequence C; results, is equal to my
unconditional preference for the conjunction of A and result C;. In
ordinary situations I think this simply requires that the C;’s be accurate
descriptions of the possible consequences of doing A that 1 care
about. Call it a requirement that the C;’s are well-selected consequence
descriptions.

When does (F2) take the form of rule (S), the causal expected utility
rule? Well, it does if it agrees with V-maximization, and if V-maxi-
mization in turn agrees with causal expected utility theory (i.e. with (S)
for some appropriate K-partition). So in cases where that is true and
where A ~ A,A, (F2) yields the causal expected utility rule which
agrees (as it should) with V-maximization.

What about cases in which A + A,A? Such cases include, as I have
claimed above, the causal counterexamples to V-maximization. In these
cases A is correctly evaluated by the causal expected utility rule when
appropriate K-partitions can be found. How does (F2) yield the rule
(S)? If we suppose that the agent is not indifferent between A and
A,A, then for most state descriptions B; we have little reason to expect
that he will be indifferent between A,B; and A,(A & Bj;). But some
state descriptions B; may align those preferences after all: among the
descriptions which do this are descriptions which make up appropriate
K-partitions. For example, in the smoking gene story my hypothesis
that I smoke the cigarette A; devalues my preference for A;. But
consider my preferences A,,G and A,,(A,; & G) where G is “1 have the
gene.” My preference for A;, under my hypothesis that I have the
gene, is not devalued by the additional hypothesis that I smoke. My
preference for A, was already devalued by the hypothesis G and (given
the story assumed in this example) is not further affected by supposing
that I do light up. Similarly for —G. Having or not having the gene is
what matters in this decision problem, and once I suppose that I do or
that I do not, my preference for A; is fixed, with respect to the addi-
tional hypothesis A,. This is true in general of propositions which are
members of adequate K-partitions — the hypothesis that one of them
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holds in the actual world fixes the value of the act to the extent that
whether or not the additional hypothesis that the act is done is added,
the agent’s preference for it remains the same.

So if we return to (F2), assume that A,B; ~ A,(A & B;), and then,
in recognition of the special character of this partition of state descrip-
tions, rewrite them as K;’s, we have

U(A) = SP(K;) U(A,A & K)).
]

This will generate the rule (S) if we can find a partition of consequence
descriptions which for each K; satisfies our condition stated earlier for
well-selected C;’s: If there is a partition Cy, ..., C, such that A,(A &
Ci & K;) ~ A & C; & K for all i,j, then we can use (F2) to analyze
U(A,A & K;) in terms of the possible consequences:

UAA & K)) = 2 P(C/A & K)) U(A,A & C; & K))
= Ei:P(C,-/A & K)U(A & C; & K;).

And so by substitution into the first equation of this paragraph:
T i

This is the causal expected utility rule (S).
So when A + A,A our theory endorses rule (S) for partitions K,
..., K, and C,, ..., C, which satisfy

A,K] ~ A,(A & K]) and

for all i and j. This is a nice result since these are exactly the conditions
that we should expect appropriate K and C partitions to satisfy. Skyrms
describes the appropriate K-propositions as maximally specific descrip-
tions of the factors the agent believes are outside his influence and
causally relevant to those outcomes of his available alternatives which
matter to him. When such a description K; is made a conditional
hypothesis, it may of course perturb the agent’s preference for one of
his alternatives A: A;,G > A, in the smoking gene example. But once
that hypothesis is made, the uncertain states of the world which may
influence the outcome of the action (including the states which are
correlated with but not caused by the action) are fixed, and the addi-
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tional hypothesis that A is done should not further perturb the prefer-
ence for A. The condition A,K; ~ A,(A & K;) captures the idea behind
Skyrms’ appropriate K-partitions, and it does so in the desirable way
mentioned earlier: adequate K-partitions are picked out by reference
to the way they behave in the agent’s preference system.

Now any foundation for rational decision theory, even oné which
provides the nice results shown above, depends much for its adequacy
on the assumptions about preference contained in its axioms. In the
next section, I shall present the axioms for rational preference and the
theorem. Discussion of the adequacy of the axioms can be found in
Armendt (1983) and (1986a). 1 shall conclude with some sketchy re-
marks about the possibility of providing a different foundation — one
more like the Jeffrey—Bolker foundation for V-maximization.

THE AXIOMS AND THEOREM

The structure which is interpreted as the agent’s preference ranking is
a collection of mixture sets each of whose basic elements are members of
a Boolean algebra of propositions. The mixture sets are like Herstein—
Milnor mixture sets, except that only mixtures of partitions are de-
fined. Each mixture set corresponds to the agent’s preferences under
the hypothesis that some one element of € is true. We start with our
set of propositions € that describe states, acts, and consequences. After
deleting the contradictory proposition, we construct a set M of all
mixtures or gambles on partitions of propositions in €’ (€' = € — ¢).
M is a large set containing all such mixtures, and M X T is the set of all
the agent’s unconditional preferences.

Al. € is a Boolean algebra of propositions. And €' = € — ¢.

A2. M is a mixture set formed from é’, i.e. ¢’ = M, and:
a. Closure under mixing: For all A,B € €’ such that A & B =
¢, and all « € [0,1],

«A + (1 - )B € M;

and for all mixtures m on A, A,, ..., A, and for all B
disjoint from each A;:

am + (1 — o)A; and am + (1 — «)B are in M;



CAUSAL EXPECTED UTILITY 17

b. Identity: for all m;, m, in M, and for all «,p € [0,1]:

1(m;) + 0(my) = m,
am; + (1 — )ymy = (1 — )my + am,
Blam; + (1 — cymy] + (1 — BY)my = afmy + (1 — of)m,.

The set X is the set which contains all the agent’s preferences, condi-
tional and unconditional. It contains all the elements of M X T together
with the elements of Mp for every proposition P in ¢’. For each P in
€', Mp is interpreted as the set of the agent’s preferences for the
elements of M under the hypothesis P. It is a (possibly improper)
subset of M X P. It is assumed to be a mixture set in the sense given
above. X is the union of all the Mp’s and is ordered by the relation =.
Notice that mixtures of conditional preferences are only allowed when
they are formed under the same hypothesis: X contains [«P + (1 —
«)O],R but not «P,R + (1 — ®)Q,S.

A3. For all P € €', Mp = M X P is a mixture set (see A2). Also,
MT =MXT.
A4. The set X is the union of all the Mp’s and is ordered by =.

We now come to a pair of axioms which are Herstein—Milnor’s axioms
for mixture set functions generalized to X (which is a union of mixture
sets), and incorporating our restriction that mixtures be on disjoint
propositions

AS5. Forall A, B € €, all x,A, y,A € M, such that mixtures on x,A
and y,A are defined, and all z,B € Mg, these sets are closed in
[0,1]:

{o: (ax + (1 — ®)y),A = z,B} and
{a: z,B = (x + (1 — ) y),A}.
A6. Forall A, B € ¢, all x,A, y,A € My, and for all z,B, w,B €

Mg, if x,A ~ z,B and y,A ~ w,B, and if the mixtures below are
defined, then

[Vax + Voyl,A ~ [Voz + Vaw],B.

Setting A = B, axioms AS and A6 are almost the Herstein—Milnor
axioms, and in the absence of any restrictions on mixing, would imply
that Herstein—Milnor’s axioms are satisfied by the elements of mixture
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set M, for every A. So then (via the Herstein—Milnor theorem) for
every M, there exists a real-valued utility function U, which is linear
and order-preserving over M,, and is unique up to positive linear
transformation. The next axiom, A7, yields these results even in the
presence of the restriction that only mixtures on partitions are defined:

A7. For all A € €', for all x,A = y,A, there exist disjoint P and QO
such that P,A, Q,A € M, and

PA=xA=yA=QA.

Axiom 8 guarantees that whenever A & B = ¢ and x,A and x,B exist,
then so does x,(A v B). Axiom 9 then states Fishburn’s averaging
principle. Axiom 10 is a non-triviality condition.

A8. Forall A, B € € suchthat A & B = ¢, and for all x € M, if
x,A € My and x,B € Mg, then x,(A v B) € M.

A9. Forall x,A and x,Bin X, if A & B = ¢ and x,A = x,B, then
x,A =x,(A v B) = x,B.

A10. For some x, y € X, x > y.

Axiom 11 is required to generate the comprehensive utility function U
on X from the many Up’s on the Mp’s. From the x and y whose
existence it asserts, a gamble z on x and y (or on stand-ins for which
the gamble is defined) will be found such that z,A ~ z,B. This axiom
denies that there are two incompatible hypotheses A and B such that
every element of M, is preferred to the corresponding element of Mg,
and it is a fairly strong structural condition:

All. Forall A, B € €' such that A & B = ¢, there exist x,y € M
such that x,A > x,B and y,B > y,A.

Axioms Al—All imply the existence of a utility function U on X
which is linear, order-preserving, and unique up to positive linear
transformation, and also the existence for each incompatible A and B
in €’ of unique non-negative real numbers which sum to 1, P4, g(A)
and P4, p(B), such that

U(X,A v B) = PAVB(A) U(va) + PAVB(B) U(x’B),

for all x,A, x,B € X (Fishburn, Th. 3). Axiom 12 is required to
guarantee the additivity of the probabilities P, and the chain condi-
tion: Pc(A) = P(B) Pg(A), whenever A > B => C:
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Al12. For all A,B,C € %b’ that are pairwise incompatible, if there is
an x € M such that x,A ~ x,B, then there is a y € M such that
exactly two of y,A, y,B, and y,C are indifferent.

Axioms Al1—A12 imply the representation theorem:

THEOREM (Fishburn, 1973). If ¢, X, and = satisfy axioms 1—12
above, then there is a real-valued function U on X and a finitely-additive
probability measure P4 on {A & B:B € €} for each A € €’ such that:

i. x,A > y,Biff Ux,A) > U(y,B), for all x,A and y,B in X;

ii. U(-,A) is linear (as a function on M,) for each A in €',

ili. Pc(A) = Po(B) Pg(A) whenever A> B> C,A€%,and B, C €
¢';

iv. Ux,A v B) = P,4,g(A)U(x,A) + P4, p(B) U(x,B) whenever x A,
x,B€E€ Xand A & B = ¢;

furthermore, the P,’s are unique and U is unique up to positive linear

transformation.

Clause (iii) of this theorem provides measures Py even when P(B)
= 0. Note that whenever A = B and P{(B) > 0, Pg(A) = P{A/B).
Clause (iv) of the theorem is the general form of our theory’s rule (F1)
relating the utilities of a proposition or mixture under different condi-
tional hypotheses.

Proof: Fishburn’s system does not include the restrictions that ap-
pear in A2 (a), the closure condition on mixing, which restrict mixing
to incompatible propositions. (This restriction permits us to regard
mixtures as always on partitions, since we can think of «P + (1 — o)Q
as aP + (1 — «)Q + 0[—P & —Q)]. Fishburn does not include such a
restriction because he takes acts, rather than propositions, to be the
object of preference.) Restricting the closure condition on mixing in
this way leads to the introduction of Axiom 7, which is not Fishburn’s,
into our system. The proof of the theorem for our system is as in
Fishburn (1973), with the following modifications:

First, one can check the proof of the Herstein—Milnor theorem to
see that it applies to the sort of mixture sets we employ (mixture sets
such that the closure condition on mixing asserts only the existence of
mixtures on certain subsets of elements in the set, i.e. disjoint proposi-
tions and mixtures of them): the checking of the proof is completely
straightforward, up to the assertion that is Theorem 7, and the sub-
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sequent definition of the utility u, in the original Herstein—Milnor
paper (1953). These concluding steps of the Herstein—Milnor theorem
require that for arbitrary r, and r, there are elements a and b such that
ro and r; fall in S,, (the subset of the ordered preferences lying
between elements a and b), and such that mixtures on a and b are
defined. The axiom that has been added, Axiom 7, guarantees that
such disjoint elements a and b exist. The proof then goes through as in
the original Herstein—Milnor paper.

So alter Fishburn’s proof as follows: Where the antecedents of asser-
tions in Fishburn’s proof mention mixtures, add to the antecedents of
the assertions that the mixtures are well-defined. Where the conse-
quents of assertions in Fishburn’s proof assert the existence of mixtures
(for scaling the utility functions) on x and y, say ax + (1 — @)y,
substitute assertion of the existence of ax™ + (1 — «)y™*, which is
obtained as follows:

Suppose x = y. Apply Axiom 7 to find disjoint P and Q such that
P=x =y = Q. Use the version of Herstein—Milnor that holds for the
sets of mixtures on partitions to obtain

x* =8P+ (1—-B)0 ~x, and
y* = ByP + (1 - By)Q ~ Y.

So ax* + (1 — «)y™* is well-defined (Axiom 2a), and is ranked with ox
+ (1 — o)y (Herstein—Milnor for mixtures on partitions). The mixture
ax* + (1 — a)y* will play the role in scaling our system’s utilities that
the mixture ox + (1 — «)y (which may not be well-defined) played in
Fishburn’s proof. :

COMPARISON WITH JEFFREY-BOLKER; SPECULATION ABOUT
ANOTHER FOUNDATION

The foundation presented above is, in some important ways, better
than others in the literature: most important, it is a foundation for the
best theory of rational choice available, and it generates that theory in
a natural way. In other respects, this foundation fares no worse than
others: the constraints on rational preference systems imposed by the
axioms are at least as plausible as conditions for rational preference as
are those of other theories; the richness assumptions about the pre-
ference orderings are strong, but no stronger than assumptions gener-
ally made by other theories. In one respect, however, another theory
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has an advantage this theory lacks: the Jeffrey—Bolker theory has, as I
noted before, the very nice feature that lotteries or mixtures are not
built into the preference ordering — so in that theory it is really true
that probability and utility measures are derived from purely qualita-
tive preference.'? It is true that the Jeffrey—Bolker foundation also has
unusual uniqueness results, weaker than those of other theories, but in
my view this does not detract from the elegance of the theory. In the
terminology of Krantz e al. (1971), the Jeffrey—Bolker theory pro-
vides a fundamental measurement of preference by probability and
utility, whereas other theories do not.

Can a theory with this virtue of the Jeffrey—Bolker theory be given
for conditional preference, generating causal decision theory in the
natural way I have described above? I think the answer is probably
“yes’”, though I do not have the theory now. I cannot say very much
more than it is a project worth pursuing, but the following seems worth
mentioning:

1. Since (a) the Jeffrey—Bolker axioms guarantee the existence of
closely related pairs of probability and utility functions for any prefer-
ence ordering satisfying the axioms, (b) the utility functions are order-
preserving, and (c) the causal counterexamples to V-maximization
show that the Jeffrey—Bolker utilities mismeasure the agent’s prefer-
ences in those situations, it is clear that the agent’s preferences violate
one or more of the axioms of the Jeffrey—Bolker theory. It strikes me
that among the axioms the only plausible candidate for a violation that
accounts for the causal counterexamples is the Impartiality condition.'?
Getting clear about exactly how Impartiality is violated in these prob-
lems should be a useful step in the project.

2. Another axiom important to the Jeffrey—Bolker theory is their
Averaging condition,'* which is like an important axiom of Fishburn’s
(see Axiom 9). In both theories the axioms seem quite reasonable.
Can their presence in the two theories be exploited?

These points seem worth noticing if it is the Jeffrey—Bolker theory
that one seeks to adapt to get the kind of foundation under discussion.
The other obvious place to look for ideas is the Luce and Krantz
theory — in spite of their commitment to the peculiar disjunctive
conditional preferences, that theory (or parts of it) may well be useful
to the project. Of course, the idea of looking to Jeffrey—Bolker has
been strongly suggested to me by the points Skyrms and Jeffrey have
made about applying it to causal decision theory. As I mentioned early
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in the paper (see note 1), they have both sketched foundations for
causal decision theory. In both cases they apply Jeffrey—Bolker theory
in combination With an assumed prior specification of appropriate
K-partitions. I would like to see a foundation as elegant as Jeffrey—
Bolker that preserves the solution to the problem of selecting K-parti-
tions I have presented above. Until one is given, I think the foundation
presented here (based on Fishburn’s theory, let me emphasize) is the
best available.

Department of Philosophy
Ohio State University

NOTES

! 1t is the second of the virtues that I want to emphasize for this foundation: I am aware
of two other sketches of foundations for causal decision theory which perhaps share the
first virtue. Richard Jeffrey presents one in the concluding section of his (1981), and
Brian Skyrms gives another in the concluding section of his (1982). Both suggestions
depend on a prior specification of appropriate K-propositions (dependency hypotheses),
and so they lack the second virtue described more fully below.

2 The Twin Prisoners’ Dilemma is a standard Prisoner’s Dilemma, with the additional
assumption that each prisoner believes that the other prisoner makes choices very much as
he does. So each prisoner believes that there is a strong statistical correlation between his
choice and the other’s choice. For prisoner A, Pr(B rats / I rat) is high, and Pr(B cooperates
/ 1 cooperate) is high. Likewise for B. Each prisoner still believes, however, that his choice
and action do not causally influence the other’s choice and action. See Jeffrey (1983),
Example 11 in Chapter 1.

3 Suppose I value the pleasure I would derive from smoking this cigarette (act A;) at 2
utiles, while I attach a large negative utility to contracting cancer, —1000 utiles. My
utility function might say V(S) = 2, V(—S) = 0, V(X) = —1000, V(—X) = 0, where S is
“I enjoy this cigarette,” and X is “I contract cancer.” Suppose I have these degrees of
belief, where A, is the act of refraining from smoking the cigarette:

P(S & XIA,) = 0.7 P(S & X/A,) = 0.01

P(S & —XIA,) = 0.25 P(S & —XIA,) = 0.04

P(-S & XIA,) = 0.04 P(-S & XIA,) = 0.25

P(-S & —XIA) = 001  P(—S & —X/A,) = 0.7
(J) tells us that

V(A,) = ZP(CIA)V(C; & A,)

— 0.7(=998) + 0.25(2) + 0.04(—1000) + 0.01(0) ~ —738 and
V(A,) = 0.01(-998) + 0.04(2) + 0.25(~1000) + 0.7(0) = —260

4 See Stalnaker (1972) for the suggestion these theories build on.
5 It may be that the agent is unsure about the causal structure of his decision problem:
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he may have partial belief in a number of hypotheses about it. It is important to note
that causal expected utility theory adequately handles these more complicated and more
complicated and more realistic decision problems. The idea is simple: build his various
hypotheses about the causal story into his appropriate K-partition. The hypotheses
describe states of affairs beyond his influence which are relevant to the outcomes of his
action. Each hypothesis will suggest a partition of factors which, according to the
hypothesis, are appropriate K’s; the expanded partition whose members are conjunc-
tions of these factors with the hypotheses will be an appropriate K-partition. For details
on this, see Skyrms (1979, pp. 136—138). The idea goes back to Savage (1954).

6 1 regard the sophisticated V-maximization theories as very interesting, but not because
they are theories as good as causal decision theory. Only unreasonably strong assump-
tions about the agent’s sclf-knowledge and about his fallibility in executing his chosen
actions will save these V-maximization theories from approximating the correct answers
that causal decision theory gives, or from getting the correct answers almost all the time.
See Jeffrey (1981, 1983) and Eells (1982) for the variations.

7 Eells (1982). )

8 In the following discussion I will sometimes use the phrase, “the agent has a prefer-
ence for x” to mean simply “x appears in the agent’s preference ranking,” rather than “x
ranks higher than some y in the agent’s preference system.

% So like all such theories we fail here to provide a “fundamental measurement” of
preference, since the mixing coefficients build some probability structure into the prefer-
ences from the beginning. I will discuss this point and the possibility of giving a mixture-
free foundation below. )

1 A more extensive treatment of the notion of conditional preference appears in
Armendt (1986b). An important point made there is the following: A preference P,Q is
the agent’s preference for P, under the supposition that Q holds. And the supposition
that Q is one in which the agent’s beliefs about the causal structure of the world are
minimally altered (unless explicitly cancelled by Q). The supposition that Q is not a
supposition that Q occurs no matter what the agent does, for example (though the agent
might make such a supposition; the point here is that it is a different supposition from
simply supposing that Q). I take this tendency to preserve the agent’s beliefs about
causal structures — the ways states, acts, and consequences produce each other in the
actual world — as entirely appropriate in a theory of conditional preference tied to
rational action, where the agent is interested in producing (in the actual world) desirable
actions and consequences.

! In the precise statement of this rule given below, P(B/Bv C) is written Py, (B). The
representation theorem actually finds probability measures Py, on subsets of € for every
proposition Q in €’. It establishes that these probabilities behave as conditional prob-
abilities; see clause (iii) of the theorem. The probability measure P in the text is the
measure Py.

2 The Luce and Krantz (1971) theory also has a purely qualitative preference ordering,
but as I mentioned before, it incorporates disjunctive conditional preferences that I find
very problematic.

13 The Impartiality condition states that if A, B, and C are pairwise disjoint, and A ~ B
~C,and (A v C) ~ (B v C), then for all D disjoint from A and from B, (A v D) ~ (B
v D). See Jeffrey (1983), p. 147.

14" Averaging says that if A and B are disjoint, and A = B, then A = A v B = B. See
Jeffrey (1983), p. 146.
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