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In this paper we provide a Gentzen-type formulation of Schroeder-Heister’s
system of [1]. This system is important from both philosophical and practi-
cal points of view: Its philisophical importance is due to the characterization
which it provides for the intuitionistic connectives, while the practical one is
due to the fact that its notion of higher-order rules and its method of treating
the elimination rules were incorporated into the Edinburgh LF (A general
logical framework for implementing logical formalisms on a computer, which
was developed in the computer science department of the university of Ed-
inburgh. See [4],[5]). We shall show that the notions of S.H. that are the
most difficult to handle (discharge functions and subrules) become redun-
dant in the Gentzen-type version. The complex normalization proof of S.H.
in [2] can be replaced therefore by a standard cut-elimination proof. More-
over, the unusual form of some of the elimination rules of 5.H. corresponds
to natural, standard form of antecedent rules in sequential calculi. We be-
lieve also that the sequential presentation sheds new light on the connection
between S.H.’s higher-order rules and the intuitionistic implication and on
S.H.’s characterization of the intuitionistic connectives.

We assume in what follows an acquaintance with at least the introduction
and the first two sections of [1].

1 The system GSH

1.1 The language

As customary while trying to get rid of discharge functions, we start by in-
troducing a new formal symbol F into the language (in [1] this symbol is used
only in the meta-language):

Formulas:



Rules:
R:= A|(Ry,...,R, = A)

Sequents:
S:= FA|R,...,R,FA
We shall use A, B as syntactic variables for formulas, R for rules, I'; A for

finite sets of rules. I' = A just means A in case [' is empty.

1.2 The pure system:

Logical axioms:

AF A
Weakening:
I'-A
AR A
(=h):
AL HA 0 ALTLEA,

ALDNy . AL (T =4, .= A4,) = AFA

1.3 General GSH systems

S.H. permits in [1] the addition of various basic “rules” to the basic system.
In this way we really get a family of systems. Now, for each system in
this family we can construct a corresponding general GSH-system by adding
to pure GSH local inference rules as follows: Whenever (I'y = A;),(I'y =
Ay)y...,(I'y = A,) = Ais a “basic rule” add to pure GSH the non-logical
rule:

AL F A L AL T A,
AL A FA

Note that since we are using sequents rather than formulas in our calculi, we
do not need the concept of “discharge functions” which was used by S.H.!

Notation: Let R be the rule (Ry,...,R, = A). We shall use A F R
as an abbreviation for A, Ry,...R, F A and A kg R as an abreviation for
“AF R is provable”.

Note: The notation A F R was used already by S.H..



2 The relations between GSH and S.H. sys-
tem

A natural translation of a proof-tree in S.H. formalism into a tree of sequents
can be obtained, as usual, by replacing each formula A in the original tree by
the sequent I' = A |where I is the set of assumptions (in the original proof)
on which A depends. It is immediately seen that any direct applications of
an assumption rule is transformed in this way into an application of (=),
while every direct application of a basic rule is transformed into an applica-
tion of the corresponding non-logical inference rule. In general, however, the
resulting tree of sequents is not a proof tree in GSH, since S.H. permits in his
formalism also indirect applications of a rule, through a direct application of
one of its subrules (see definition below). Nevertheless, we shall show that
the resulting tree of sequents can be converted into a GSH- proof-tree of the
root sequent.

Definition:
1. R is a subrule of itself.

2. If every element of I} is a subrule of some element of I'; (1 <7< n)
then
(T = By),...,(I'' = B,)= A

is a subrule of

(I'h= By),...,(I'h = B,) = A.

At the rest of this section “F¢” will refer to some fix general GSH.

Proposition 1: If I' - R and every rule in I' is a subrule of some rule

in A then A R4 R.

Proof: By induction on the length of the proof of the given sequent. The
base case requires the use of weakening. The other cases follow easily from
the induction hypothesis.

Corollary: If R’ is a subrule of R then R+ R'.

Proof: By induction on the complexity of R it is easy to prove that R F¢ R.
The corollary is then proved by applying the proposition to this sequent.

Theorem 1: I' - A in a S.H.-system iff I' F¢ A in the corresponding
GSH.



(Note that “I' = A” is a metaproposition for S.H. systems, while it is a formal
assertion in the corresponding GSH. “I' k¢ A” is again a metaproposition

for GSH).

Proof: The implication from right to left is proved by induction. The proof
uses the fact that the basic rules of a general GSH exactly correspond to
the way in which formal “higher-order rules” are applied according to S.H.’s
definition of his system (but where I' = A has the original meaning of a
proposition in the meta-language of S.H.’s formalism).

For the converse we prove by induction on length of proofs the following
general claim: if A is derivable in 5.H.’s system from the assumptions I', and
every rule in I' is a subrule of some rule in A, then A F5 R. Details are
similar to the proof of proposition 1, and are left to the reader.

Theorem 2:(“cut elimination”) If [' ¢ R and A, Rt R' then I';) A ¢ R'.
Proof: By double induction on the complexity of R and on the sum of the
lengths of the proofs of the two given sequents. The treatment of = is similar
to that of D in intuitionsitic sequential calculus, and so we omit the standard
details.

Corollary 1: Let A be a finite set of rules. Then I' = A is derivable in
the corresponding general GSH (see section 1.3) ifft A,I' = A is derivable in
the pure system.

Proof: Using the corollary of proposition 1 it is easy to show that - R
is provable in the corresponding general GSH for every R in A. It follows
therefore from theorem 2 (applied to the general GSH) that if A,I' - A is
derivable in the pure system then I' = A is derivable in the generalized one.
The converse can be proved by a direct induction on the length of proofs in

the general GSH.

Corollary 2: Let A be a finite set of rules. Then I' = A is derivable in
the corresponding general GSH iff it is derivable in the system which is ob-
tained from the pure one by adding - R as an axiom for every R in A and
taking cut as a primitive rule.

Proof: This follows easily from the characterization given in the previous
corollary and the cut elimination theorem for the pure system.

Discussion: It might be useful to make a digression here for discussing
the role of cut-elimination in Gentzen-type systems. As we emphasize in
[6], what characterizes a logic is usually not only its set of theorems, but the
consequence relation (C.R.) defined by it. Now , given a Gentzen-type formal
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system, there are two basic ways of associating C.R.s with it (compare [7]):

The external C.R. Fg: Ay,..., A, Fg B iff the sequent - B is derivable

if we add F Ay,...,F A, as axioms (i.e., basic sequents) to the system.

The internal C.R. F;: Ay,..., A, F; B iff the sequent A,,..., A, F B is

provable (in the given formalism).

The cut rule should be taken as primitive in order for kg to actually be a
C.R.. Tt is then immediate that it is at least as strong as F;. In the case
of 7, on the other hand, Cut should be taken as primitive or else be shown
admissible. If the Gentzen type system satisfies some natural conditions (see
[6]) then in either case F; will be equivalent to Fg. The real meaning of
cut elimination then is that Ay,..., A, Fg B iff there exists a cut-free proof
of Ay,..., A, b B. If the given formalism is well-behaved then this might
imply the sub-formula property and/or decidability for 5. From this point
of view Theorem 1 presents a true cut-elimination theorem in the case of the
pure calculus. 1

The two charaterizations of provability in a general GSH which were given
in the last two corrolaries have a clear correspondence with the two C.R.s
described above. They also describe two natural ways of defining a C.R. us-
ing a natural deduction formalism (usually, but not always, these two ways
are trivially equivalent). The official definition which was given in 1.3 corre-
sponds to a third way which was available in the present case and was chosen
by S.H.. The main property of the systems which are obtained by this def-
inition is that their non-logical rules can never introduce in an antecedent
something that has not been already present at one of the antecedents of
the premises. The fact that cut elimination obtains for these general GSH
systems is due to this proprty. However, decidability and the subformula
property are not gauranteed in the general case by this cut elimination, and
Theorem 1 may have therefore little significance in case there is an infinite
number of non-logical rules. This is the case, e.g., when the set of basic rules
is defined using schemes—recall that S.H.’s notion of a “rule” is a local one
and is identical to what usually is taken only as an instance of a rule of infer-
ence! In section 4 we shall have the opportunity to charaterize an important
class of cases in which a significant version of cut-elimination again obtains.

The limitation of the language to sequents of the form I' = A is, to our
opinion, artificial. Notationally, in fact, we have already abandoned it (and
so did S.H. himself!). The next theorem “officially” removes this limitation:

Tt would have been better to call it the “sub-rule” property here. Unfortunately, this
name has already another meaning!



Theorem 3: I' - R iff I' F R is provable in the system obtained by
generalizing the concept of a sequent to allow rules on the right side of the
F and by adding to GSH the inference-rule:

I,Ri,....,R,F A
I'F(Ri,...,R, = A)

moreover: Theorems 1 and 2 are true for the extended system.
we leave the proof to the reader.

3 GSH and intuitionistic implicational cal-
culus

Theorem 3 above indicates that S.H.’s system is just a new (somewhat
strange) formulation of the pure implicational intuitionistic calculus. We
claim that there is no real difference between S.H.’s = and the intuitionistic
D. The following definition and proposition make this claim precise:

Definition: Let RU be the set of S.H. rules, IMP— the set of sentences of
the pure implicational calculus, Int_,—the pure intuitionistic implicational

calculus. Define v:RU—=IMP, u:IMP—RU as follows:
1

I~

A)=A

[N]

I~

o
. v(Ri,...,R, = A)=v(R) D (v(R:) D(--- D (v(R,) DA))...)
3. u(p) =p (p atomic)

4 uw(A1 D (A D (- (A4, Dp))...) =u(4y),...,u(4,) = p (patomic)

Note that since{Ry,..., R,} is a set, v is multiple-valued!
Theorem 4:

l. u(v(R)) =R
A

2. b, v(u(A))
3. f Ry,...,R, Fspy R then v(Ry),...,v(R,) Frnt, v(R).
4. If Ay, ..., An Fre, B then u(A1),...,u(4,) Fsu u(B).

proof: Easy.



Theorem 4 and the formulation of GSH suggest a new Gentzen-type for-
mulation of intuitionistic logic, in which the usual (DF) rule is replaced by:

LA ---I',HA,
Iy,oo, 0, (AiD(A2D...DB)...)FB

It is not difficult to show that this formulation is correct and that it admits
cut-elimination. It might even seem more intuitive than the ordinary one.
The trouble with it is that the new rule is not exactly a rule in the ordinary
sense, not even a rule schema: It includes an infinite number of rule-schemes
(for each n there is a corresponding rule with exactly n premises). A natural
question to ask is therefore: What should be done in order to replace this
infinite number by a finite number of rules with a fix number of premisesl’
Well, the answer should allow us to derive every n-instance of the new “rule”.
This sould naturally be done by induction. For the base case we need the
rule:

Tk A
I,A>BFB

For the induction step we need a rule which will permit us to pass from:

and from:

Tk A

to

A, 1 DA, D---D(A1DB)...)FB
If we denote 4,41 by A, A, D (+-- D (A1 D B)...) by C we get that the rule

needed is:

'A TI,CFB
[LASDCFB

This is, of course, the ordinary (DF) rule in Gentzen systems. (Since B+ B
is an axiom, the rule needed for the base case is also covered by this rule!)

4 On introduction and elimination rules

S.H. presents in his paper the following method for adding new n-ary oper-
ators to a language L:

Let ®1(Ay,...,A,),...,Pn(A1,...,A,) (m > 0) be a list of lists of rule-
schemes. A new n-operator S, expressing the “common content” of ®¢,...,®,,,
can then be introduced by the following rule schemes:



Introduction rules:
Q,(Ay,...,A,) = S(A1,...,4,) (1<i<m)
Elimination rule:
(&= A),(P2=A),..., (P = A),(S(44,...,A4,)) = A
(where @, = ®;(Ay,...,A,) i=1,...,m)

S.H. shows then that the validity of these rules is a necessary and suffi-
cient condition for the following to be true:

(*)For all A4y,..., A, and for every R:
S(Ay,...,A,)FRiffforall 1 <:<m ®,(Ay,...,A,)F R.

Examples:

Conjunction: Here m =1, ®,(A, B) = {4, B}. The rules are:
intro. : A, B=AAB
elim.: (A,B=C),(AANB)=C

Disjunction: Here m =2, (A, B) = {A}, ®2(A, B) = {B}.
intro. : A= AV B B= AVEB
elim.: (A= 0C),(B=C),(AvB)="C

Implication: Here m =1, ®,(A, B) = {A = B}.
intro.: (A= B)=ADB
elim.: (A= B)=C),(A>B)=C

Turning now to our Gentzen-type version, suppose ®; = {R;1,..., R, }
(t=1,...,m). Then for each 7, the i-introduction rule of S.H. is translated
according to 1.3 into the basic rule:

Arb Rii(Any. . An) Aok Rig(Ay,. . Ay) -+ Ay b R (Ar,. .., Ay)
ALAs, . A FS(AL.. A

The elimination rule, on the other hand, becomes:

[, & A Ty, ® b A T, @b A AF S(A,..., A)
AT,y T, FA




In the context of Gentzen-type systems it is, however, much more natu-
ral to replace the natural-deduction-style “elimination” rules by introduction
rules in the antecedent. This can be achieved by substituting {S(A,...,4,)}
for A at the above version of the elimination rules. Using the axioms we then
obtain:

[, kA Ty bk A--T,,0,FA
S(A,...,A), 1,1y, Tt A

Using cuts it is not difficult to show that the two formulations above are in
fact equivalent.

Examples:

disjunction: The rules we get are:

I'FA I'FB I,AFC T4,BFC
IFAVB I'FAVB [, Ty, AVBFC

conjunction: We get:

I+A T,FB IABFC
[, T,F AAB T AANBFC

implication: We get:

I'-A= B = RAFB) A= BFC
I'-ADB - I'-ADB INADBFRFC

Note that the rules we got for conjunction and disjunction are the usual
Gentzen -type rules for them. This is true even for conjunction, the elimina-
tion rule for which looks somewhat unusual in S.H.’s formulation. For D we
just get the identity between = and D ?. Again the corresponding rules are
more intuitive than in the setting of S.H., but the fact that S.H. treats =
as basic forces us in this case to derive the usual rules for D by the detour
through = which we made in the previous section.

Using standard methods, it is not difficult to show that any system which
can be defined by gradually introducing new operators, using the above two
kinds of introduction rules, admits cut-elimination ®>. From this we can easily
deduce S.H.’s result concerning the conservative character of his introduction

2This is another evidence that there is no real difference between the two
3This is the important case we promise at the discussion in section 2!



and elimination rules (theorem 4.8 of [1]). S.H. himself used for this a nor-
malization theorem which he has proved in [2]. Normalization is, of course,
the natural-deduction counterpart of cut-elimination. However, at least in
the present case cut-elimination is easier to show and to use, since we are free
here from the complications caused by the notions of subrules and discharge
functions.

Finally, a remark about S.H.’s characterization of the intuitionistic con-
nectives and their definability power. As we show above, there is no real
difference between = and the intuitionistic D. It is almost trivial, therefore,
that the “common content” of ®,...,®,, is given by

<3

K3

/\ ’U(Rm‘) (Whel’e ¢, = {RiJ; SR Ri,mi})
15=1

This is the real content of 5.H.’s theorem about the definability within the
intuitionistic propositional calculus of all the connectives which can gradu-
ally be defined using his method of intro. and elim. rules (L corresponds to
the case m = 0) *. The philosophical significance of this characterization
depends on the degree of priority one is willing to attach to S.H.’s “higher-
order rules” over the corresponding implicational sentences. Because of the
local character of S.H.’s rules (as opposed to what we usually call “rules of
inference”) the two notions seem to me, at least, just to be variants of each
other. Another reservation which I have concerning this characterization is
that it seems to me to force us to regard negation as a derived rather than a
primitive connective: I see no way of directly defining it by intro. and elim.
rules without introducing L first!
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