
Gentzenizing Schroeder-Heister's Naturalextension of natural deductionArnon AvronOctober 19, 1997In this paper we provide a Gentzen-type formulation of Schroeder-Heister'ssystem of [1]. This system is important from both philosophical and practi-cal points of view: Its philisophical importance is due to the characterizationwhich it provides for the intuitionistic connectives, while the practical one isdue to the fact that its notion of higher-order rules and its method of treatingthe elimination rules were incorporated into the Edinburgh LF (A generallogical framework for implementing logical formalisms on a computer, whichwas developed in the computer science department of the university of Ed-inburgh. See [4],[5]). We shall show that the notions of S.H. that are themost di�cult to handle (discharge functions and subrules) become redun-dant in the Gentzen-type version. The complex normalization proof of S.H.in [2] can be replaced therefore by a standard cut-elimination proof. More-over, the unusual form of some of the elimination rules of S.H. correspondsto natural, standard form of antecedent rules in sequential calculi. We be-lieve also that the sequential presentation sheds new light on the connectionbetween S.H.'s higher-order rules and the intuitionistic implication and onS.H.'s characterization of the intuitionistic connectives.We assume in what follows an acquaintance with at least the introductionand the �rst two sections of [1].1 The system GSH1.1 The languageAs customary while trying to get rid of discharge functions, we start by in-troducing a new formal symbol ` into the language (in [1] this symbol is usedonly in the meta-language):Formulas: A1



Rules: R ::= A j (R1; : : : ; Rn ) A)Sequents: S ::= ` A j R1; : : : ; Rn ` AWe shall use A;B as syntactic variables for formulas, R for rules, �;� for�nite sets of rules. �) A just means A in case � is empty.1.2 The pure system:Logical axioms: A ` AWeakening: � ` A�;� ` A()`): �1;�1 ` A1 : : : �n;�n ` An�1;�2; : : : ;�n; ((�1 ) A1); : : : ; (�n ) An)) A) ` A1.3 General GSH systemsS.H. permits in [1] the addition of various basic \rules" to the basic system.In this way we really get a family of systems. Now, for each system inthis family we can construct a corresponding general GSH-system by addingto pure GSH local inference rules as follows: Whenever (�1 ) A1); (�2 )A2); : : : ; (�n ) An)) A is a \basic rule" add to pure GSH the non-logicalrule: �1;�1 ` A1 : : : �n;�n ` An�1; : : : ;�n ` ANote that since we are using sequents rather than formulas in our calculi, wedo not need the concept of \discharge functions" which was used by S.H.!Notation: Let R be the rule (R1; : : : ; Rn ) A). We shall use � ` Ras an abbreviation for �; R1; : : :Rn ` A and � `G R as an abreviation for\� ` R is provable".Note: The notation � ` R was used already by S.H..2



2 The relations between GSH and S.H. sys-temA natural translation of a proof-tree in S.H. formalism into a tree of sequentscan be obtained, as usual, by replacing each formula A in the original tree bythe sequent � ` A ,where � is the set of assumptions (in the original proof)on which A depends. It is immediately seen that any direct applications ofan assumption rule is transformed in this way into an application of ()`),while every direct application of a basic rule is transformed into an applica-tion of the corresponding non-logical inference rule. In general, however, theresulting tree of sequents is not a proof tree in GSH, since S.H. permits in hisformalism also indirect applications of a rule, through a direct application ofone of its subrules (see de�nition below). Nevertheless, we shall show thatthe resulting tree of sequents can be converted into a GSH- proof-tree of theroot sequent.De�nition:1. R is a subrule of itself.2. If every element of �0i is a subrule of some element of �i (1 � i � n)then (�01 ) B1); : : : ; (�0n ) Bn)) Ais a subrule of (�1 ) B1); : : : ; (�n ) Bn)) A:At the rest of this section \`G" will refer to some �x general GSH.Proposition 1: If � `G R and every rule in � is a subrule of some rulein � then � `G R.Proof: By induction on the length of the proof of the given sequent. Thebase case requires the use of weakening. The other cases follow easily fromthe induction hypothesis.Corollary: If R0 is a subrule of R then R `G R0.Proof: By induction on the complexity of R it is easy to prove that R `G R.The corollary is then proved by applying the proposition to this sequent.Theorem 1: � ` A in a S.H.-system i� � `G A in the correspondingGSH. 3



(Note that \� ` A" is a metaproposition for S.H. systems, while it is a formalassertion in the corresponding GSH. \� `G A" is again a metapropositionfor GSH).Proof: The implication from right to left is proved by induction. The proofuses the fact that the basic rules of a general GSH exactly correspond tothe way in which formal \higher-order rules" are applied according to S.H.'sde�nition of his system (but where � ` A has the original meaning of aproposition in the meta-language of S.H.'s formalism).For the converse we prove by induction on length of proofs the followinggeneral claim: if A is derivable in S.H.'s system from the assumptions �, andevery rule in � is a subrule of some rule in �, then � `G R. Details aresimilar to the proof of proposition 1, and are left to the reader.Theorem 2:(\cut elimination") If � `G R and �; R `G R0 then �;� `G R0.Proof: By double induction on the complexity of R and on the sum of thelengths of the proofs of the two given sequents. The treatment of) is similarto that of � in intuitionsitic sequential calculus, and so we omit the standarddetails.Corollary 1: Let � be a �nite set of rules. Then � ` A is derivable inthe corresponding general GSH (see section 1.3) i� �;� ` A is derivable inthe pure system.Proof: Using the corollary of proposition 1 it is easy to show that ` Ris provable in the corresponding general GSH for every R in �. It followstherefore from theorem 2 (applied to the general GSH) that if �;� ` A isderivable in the pure system then � ` A is derivable in the generalized one.The converse can be proved by a direct induction on the length of proofs inthe general GSH.Corollary 2: Let � be a �nite set of rules. Then � ` A is derivable inthe corresponding general GSH i� it is derivable in the system which is ob-tained from the pure one by adding ` R as an axiom for every R in � andtaking cut as a primitive rule.Proof: This follows easily from the characterization given in the previouscorollary and the cut elimination theorem for the pure system.Discussion: It might be useful to make a digression here for discussingthe role of cut-elimination in Gentzen-type systems. As we emphasize in[6], what characterizes a logic is usually not only its set of theorems, but theconsequence relation (C.R.) de�ned by it. Now , given a Gentzen-type formal4



system, there are two basic ways of associating C.R.s with it (compare [7]):The external C.R. `E : A1; : : : ; An `E B i� the sequent ` B is derivableif we add ` A1; : : : ;` An as axioms (i.e., basic sequents) to the system.The internal C.R. `I : A1; : : : ; An `I B i� the sequent A1; : : : ; An ` B isprovable (in the given formalism).The cut rule should be taken as primitive in order for `E to actually be aC.R.. It is then immediate that it is at least as strong as `I . In the caseof `I , on the other hand, Cut should be taken as primitive or else be shownadmissible. If the Gentzen type system satis�es some natural conditions (see[6]) then in either case `I will be equivalent to `E . The real meaning ofcut elimination then is that A1; : : : ; An `E B i� there exists a cut-free proofof A1; : : : ; An ` B. If the given formalism is well-behaved then this mightimply the sub-formula property and/or decidability for `E. From this pointof view Theorem 1 presents a true cut-elimination theorem in the case of thepure calculus. 1The two charaterizations of provability in a general GSH which were givenin the last two corrolaries have a clear correspondence with the two C.R.sdescribed above. They also describe two natural ways of de�ning a C.R. us-ing a natural deduction formalism (usually, but not always, these two waysare trivially equivalent). The o�cial de�nition which was given in 1.3 corre-sponds to a third way which was available in the present case and was chosenby S.H.. The main property of the systems which are obtained by this def-inition is that their non-logical rules can never introduce in an antecedentsomething that has not been already present at one of the antecedents ofthe premises. The fact that cut elimination obtains for these general GSHsystems is due to this proprty. However, decidability and the subformulaproperty are not gauranteed in the general case by this cut elimination, andTheorem 1 may have therefore little signi�cance in case there is an in�nitenumber of non-logical rules. This is the case, e.g., when the set of basic rulesis de�ned using schemes|recall that S.H.'s notion of a \rule" is a local oneand is identical to what usually is taken only as an instance of a rule of infer-ence! In section 4 we shall have the opportunity to charaterize an importantclass of cases in which a signi�cant version of cut-elimination again obtains.The limitation of the language to sequents of the form � ` A is, to ouropinion, arti�cial. Notationally, in fact, we have already abandoned it (andso did S.H. himself!). The next theorem \o�cially" removes this limitation:1It would have been better to call it the \sub-rule" property here. Unfortunately, thisname has already another meaning! 5



Theorem 3: � `G R i� � ` R is provable in the system obtained bygeneralizing the concept of a sequent to allow rules on the right side of the` and by adding to GSH the inference-rule:�; R1; : : : ; Rn ` A� ` (R1; : : : ; Rn ) A)moreover: Theorems 1 and 2 are true for the extended system.we leave the proof to the reader.3 GSH and intuitionistic implicational cal-culusTheorem 3 above indicates that S.H.'s system is just a new (somewhatstrange) formulation of the pure implicational intuitionistic calculus. Weclaim that there is no real di�erence between S.H.'s) and the intuitionistic�. The following de�nition and proposition make this claim precise:De�nition: Let RU be the set of S.H. rules, IMP| the set of sentences ofthe pure implicational calculus, Int!|the pure intuitionistic implicationalcalculus. De�ne v:RU!IMP, u:IMP!RU as follows:1. v(A) = A2. v(R1; : : : ; Rn ) A) = v(R1) � (v(R2) � (� � � � (v(Rn) � A)) : : :)3. u(p) = p (p atomic)4. u(A1 � (A2 � (� � � (An � p)) : : :)) = u(A1); : : : ; u(An)) p (p atomic)Note that sincefR1; : : : ; Rng is a set, v is multiple-valued!Theorem 4:1. u(v(R)) = R2. `Int! v(u(A)) � A3. If R1; : : : ; Rn `S:H: R then v(R1); : : : ; v(Rn) `Int! v(R).4. If A1; : : : ; An `Int! B then u(A1); : : : ; u(An) `S:H: u(B).proof: Easy. 6



Theorem 4 and the formulation of GSH suggest a new Gentzen-type for-mulation of intuitionistic logic, in which the usual (�`) rule is replaced by:�1 ` A1 � � ��n ` An�1; : : : ;�n; (A1 � (A2 � : : : � B) : : :) ` BIt is not di�cult to show that this formulation is correct and that it admitscut-elimination. It might even seem more intuitive than the ordinary one.The trouble with it is that the new rule is not exactly a rule in the ordinarysense, not even a rule schema: It includes an in�nite number of rule-schemes(for each n there is a corresponding rule with exactly n premises). A naturalquestion to ask is therefore: What should be done in order to replace thisin�nite number by a �nite number of rules with a �x number of premises?Well, the answer should allow us to derive every n-instance of the new \rule".This sould naturally be done by induction. For the base case we need therule: � ` A�; A � B ` BFor the induction step we need a rule which will permit us to pass from:�; An � (An�1 � � � � � (A1 � B) : : :) ` Band from: � ` An+1to �; An+1 � (An � � � � � (A1 � B) : : :) ` BIf we denote An+1 by A, An � (� � � � (A1 � B) : : :) by C we get that the ruleneeded is: � ` A �; C ` B�; A � C ` BThis is, of course, the ordinary (�`) rule in Gentzen systems. (Since B ` Bis an axiom, the rule needed for the base case is also covered by this rule!)4 On introduction and elimination rulesS.H. presents in his paper the following method for adding new n-ary oper-ators to a language L:Let �1(A1; : : : ; An); : : : ;�m(A1; : : : ; An) (m � 0) be a list of lists of rule-schemes. A new n-operator S, expressing the \common content" of �1; : : : ;�m,can then be introduced by the following rule schemes:7



Introduction rules:�i(A1; : : : ; An)) S(A1; : : : ; An) (1 � i � m)Elimination rule:(�1 ) A); (�2 ) A); : : : ; (�m ) A); (S(A1; : : : ; An))) A(where �i = �i(A1; : : : ; An) i = 1; : : : ;m)S.H. shows then that the validity of these rules is a necessary and su�-cient condition for the following to be true:(*)For all A1; : : : ; An and for every R:S(A1; : : : ; An) ` R i� for all 1 � i � m �i(A1; : : : ; An) ` R.Examples:Conjunction: Here m = 1, �1(A;B) = fA;Bg. The rules are:intro. : A;B ) A ^Belim. : (A;B) C); (A ^B)) CDisjunction: Here m = 2, �1(A;B) = fAg, �2(A;B) = fBg.intro. : A) A _B B ) A _Belim. : (A) C); (B) C); (A _B)) CImplication: Here m = 1, �1(A;B) = fA) Bg.intro. : (A) B)) A � Belim. : ((A) B)) C); (A � B)) CTurning now to our Gentzen-type version, suppose �i = fRi;1; : : : ; Ri;mig(i = 1; : : : ;m). Then for each i, the i-introduction rule of S.H. is translatedaccording to 1.3 into the basic rule:�1 ` Ri;1(A1; : : : ; An) �2 ` Ri;2(A1; : : : ; An) � � � �mi ` Ri;mi(A1; : : : ; An)�1;�2; : : : ;�mi ` S(A1; : : : ; An)The elimination rule, on the other hand, becomes:�1;�1 ` A �2;�2 ` A � � � �m;�m ` A � ` S(A1; : : : ; An)�;�1;�2; : : : ;�m ` A8



In the context of Gentzen-type systems it is, however, much more natu-ral to replace the natural-deduction-style \elimination" rules by introductionrules in the antecedent. This can be achieved by substituting fS(A1; : : : ; An)gfor � at the above version of the elimination rules. Using the axioms we thenobtain: �1;�1 ` A �2;�2 ` A � � � �m;�m ` AS(A1; : : : ; An);�1;�2; : : : ;�m ` AUsing cuts it is not di�cult to show that the two formulations above are infact equivalent.Examples:disjunction: The rules we get are:� ` A� ` A _B � ` B� ` A _ B �1; A ` C �2; B ` C�1;�2; A _B ` Cconjunction: We get:�1 ` A �2 ` B�1;�2 ` A ^B �; A;B ` C�; A ^ B ` Cimplication: We get:� ` A) B� ` A � B (� �; A ` B� ` A � B ) �; A) B ` C�; A � B ` CNote that the rules we got for conjunction and disjunction are the usualGentzen -type rules for them. This is true even for conjunction, the elimina-tion rule for which looks somewhat unusual in S.H.'s formulation. For � wejust get the identity between) and � 2. Again the corresponding rules aremore intuitive than in the setting of S.H., but the fact that S.H. treats )as basic forces us in this case to derive the usual rules for � by the detourthrough ) which we made in the previous section.Using standard methods, it is not di�cult to show that any system whichcan be de�ned by gradually introducing new operators, using the above twokinds of introduction rules, admits cut-elimination 3. From this we can easilydeduce S.H.'s result concerning the conservative character of his introduction2This is another evidence that there is no real di�erence between the two3This is the important case we promise at the discussion in section 2!9



and elimination rules (theorem 4.8 of [1]). S.H. himself used for this a nor-malization theorem which he has proved in [2]. Normalization is, of course,the natural-deduction counterpart of cut-elimination. However, at least inthe present case cut-elimination is easier to show and to use, since we are freehere from the complications caused by the notions of subrules and dischargefunctions.Finally, a remark about S.H.'s characterization of the intuitionistic con-nectives and their de�nability power. As we show above, there is no realdi�erence between) and the intuitionistic �. It is almost trivial, therefore,that the \common content" of �1; : : : ;�m is given bym_i=1 mîj=1 v(Ri;j) (where �i = fRi;1; : : : ; Ri;mig)This is the real content of S.H.'s theorem about the de�nability within theintuitionistic propositional calculus of all the connectives which can gradu-ally be de�ned using his method of intro. and elim. rules (? corresponds tothe case m = 0) 4. The philosophical signi�cance of this characterizationdepends on the degree of priority one is willing to attach to S.H.'s \higher-order rules" over the corresponding implicational sentences. Because of thelocal character of S.H.'s rules (as opposed to what we usually call \rules ofinference") the two notions seem to me, at least, just to be variants of eachother. Another reservation which I have concerning this characterization isthat it seems to me to force us to regard negation as a derived rather than aprimitive connective: I see no way of directly de�ning it by intro. and elim.rules without introducing ? �rst!References[1] P. Schroeder-Heister., A natural extension of natural deduction J.S.L, vol.49, 1984, pp. 1284-1299.[2] P. Schroeder-Heister., Untersuchungen zur regellogischen Deutung vonAussagenverkn�upfungen. Dissertation, Bohn, 1981.[3] D. Prawitz., Proofs and the meaning of the logical constants in J. Hin-tikka (ed.) Essays on Mathematical and Philosophical Logic, Rei-del 1978.[4] Avron A., Honsell F. and Mason I., Using typed lambda calculus to im-plement formal systems on a machine, Technical Report, Laboratory forthe Foundations of Computer Science, Edinburgh University, 1987, ECS-LFCS-87-31.4Similar characterization of the de�nability of logical connectives is given in [3].10
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