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Abstract

How does one formalize the structure of structures necessary for the foundations of
physics? This work is an attempt at conceptualizing the metaphysics of pregeometric
structures, upon which new and existing notions of quantum geometry may find a foun-
dation. We discuss the philosophy of pregeometric structures due to Wheeler, Leibniz as
well as modern manifestations in topos theory. We draw attention to evidence suggesting
that the framework of formal language, in particular, homotopy type theory, provides the
conceptual building blocks for a theory of pregeometry. This work is largely a synthe-
sis of ideas that serve as a precursor for conceptualizing the notion of space in physical
theories. In particular, the approach we espouse is based on a constructivist philoso-
phy, wherein “structureless structures” are syntactic types realizing formal proofs and
programs. Spaces and algebras relevant to physical theories are modeled as type-theoretic
routines constructed from compositional rules of a formal language. This offers the remark-
able possibility of taxonomizing distinct notions of geometry using a common theoretical
framework. In particular, this perspective addresses the crucial issue of how spatiality may
be realized in models that link formal computation to physics, such as the Wolfram model.
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1 Introduction

Ever since the inception of general relativity and quantum field theories early and mid-20th
century, an outstanding open question in theoretical physics has concerned the quantum na-
ture of gravity, or equivalently, the quantum geometry of space and time at the Planck scale.
Contemporary approaches to quantum gravity today have thrown up a rather wide range of
proposals on the question of what the underlying building blocks of quantum geometry may
be: from discretizing topology [41, 72], to triangulated spacetime foam [60], to geometric op-
erators [66, 77], to extended objects as quantum gravitational fluctuations [23], to holographic
duals [3]. What perhaps unites these ostensibly diverse theories is the recognition of a prege-
ometry at the foundations of spacetime, which appears at energies close to the Planck scale.

How then does one undertake a comparative investigation of pregeometric structures? More
specifically, is there a universal structure underlying pregeometric building blocks of physics?
This work is an attempt at examining the metaphysics of pregeometric structures. That necessi-
tates a conceptual analysis of the structure of structures upon which existing notions of quantum
(or at the least, non-classical) geometry can be founded. Based on tools from formal language
theory, this work is a philosophical attempt at addressing a meta-theory of structures, such
that different formulations of quantum / non-classical geometries may be investigated within a
common theoretical framework. It is hoped that the synthesis of ideas presented in this work
might pave the way towards a mathematical “theory of pregeometry,” which may serve as a
formal unifying framework for conceptualizing and analyzing precise definitions of quantum
and classical spaces.

The term “pregeometry” was first coined by John A. Wheeler as an approach to the foundations
of physics that ought to encompass any underlying explanation of spacetime or quantum grav-
ity (as per Wheeler, this would also include an explanation of elementary particles) [64], [89].
One may argue that this term merely functions as a placeholder for whatever more elementary
structure is eventually found to serve its intended function. Wheeler treated the problem as
a kind of exercise in structure-substitution. That is, test every known structure, “from crystal
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lattices to standing waves and from Borel sets to the calculus of propositions” [9, pp. 17-18].
As an historic anecdote, it was also the inadequacy of most seemingly plausible structures that
led Wheeler to his ideas encapsulated in the phrase “It from Bit”. For our purposes here, by
pregeometry we will refer to symbolic/linguistic structures which do not come endowed with
any pre-assigned geometric attributes. Instead, geometric (and also non-trivial topological)
structures should be derived properties of abstract building blocks (within suitable limits, of
course). As we will discuss here, higher homotopical constructions in formal languages, ex-
pressed using higher categories, turn out to operationalize such a framework of pregeometry.
This exercise may be seen as a modern day incarnation of Wheeler’s original intuition.

We will argue that a meta-theory of structures, or for that matter any analysis concerning
the structure of structures, would be incompatible with a metaphysics based on material re-
alism. That would lead to the well-known infinite regress problem. Even a ‘Foundationalist’
stance with its “universal self-evident truths” may not provide a satisfactory resolution to the
problem. Instead, we posit that a ‘Coherentist’ philosophy of physics based on mathematical
constructivism provides the appropriate foundations for the kind of pregeometric structures
that Wheeler had in mind. Typed languages, and in particular, computational languages, are
inherently constructivist. We will argue that what we refer to as “structureless structures”, are
in fact syntactic entities (or types) that realize programs (or proofs). The study of “pre-physics”
is then presented as a constructivist paradigm, where spaces and algebras relevant to physical
theories are modeled as computational routines built from compositional rules of the underlying
formal language.

Apart from Wheeler, language-theoretic approaches to the foundations of physics have also been
proposed in several earlier studies pioneered by Isham and collaborators, within the context of
topos theory [36–40, 52, 53]. More recently, the Wolfram Model [13, 17, 92], Constructor The-
ory [34], Categorical Quantum Mechanics, [1,29], Quantum ZX Calculus [28,47–49], Mechanics
from Intuitionistic Mathematics [46], Operator Mechanics [16], and Assembly Theory [82],
can all be seen to be instances of different syntactic formalisms, possibly expressible within a
broader language-theoretic framework. Also, some of the modern conceptions in theories of
quantum gravity (those mentioned above) such as spin networks, causal sets, group field theo-
ries, simplicial calculus, C∗−algebras, tensor networks, matrix models, and so on, being purely
algebraic, can potentially be constructible within the context of a formal language internal to
an appropriate (higher) topos1. The key point is that the framework of formal language sub-
sumes many of the above-mentioned theories and models, and thus provides the appropriate
foundation for discussing various notions of pregeometry and geometry proposed in theories of
quantum gravity.

The outline of this paper is as follows: To set the motivation for pregeometry as ‘structureless
structure’ expressed within a formal language, in Section 2 we begin with a classification of
four types of investigations surrounding the foundations of theoretical physics. Based on that,
Section 3 leads to a discussion on foundationalism versus coherentism as philosophies of physics.
Following the latter, in Section 4 we build the case for pregeometry as structureless structure.
Section 5 presents key ideas from Leibniz’s Monadology [57], as well as Pauli-Jung’s monism [19],
both of which, one may argue, allude to modern-day ideas of pregeometry. Then in Section 6,
we elaborate how formal languages express structureless structures. Finally, in Section 7 we
conclude with closing remarks and future directions.

1This is soon to be reported in a forthcoming publication.
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2 Types of Theories of Fundamental Physics

By and large, investigations probing the modern-day foundations of theoretical physics2 can
broadly be categorized into four main classes (though not completely unrelated to each other):

• (i) Those involving interpretations of existing physical concepts and structures;

• (ii) Those involving new physical mechanisms or new phenomenological models (often
relying on existing theoretical frameworks);

• (iii) Those involving new physical structures, generalizing existing physical notions of
space, time or matter in the search for new physics; and

• (iv) Those investigations seeking radical new conceptualizations of existing physics,
in order to address questions related to ontological and metaphysical origins of structure
and the role of observers.

Efforts involving (i) concern issues such as wave function realism [5], quantum measurement
and contextuality [50], the nature of wave-particle duality [8], the problem of time in quantum
gravity [7], and many others.

Examples that fall within class (ii) involve prospective mechanisms to explain the free param-
eters, such as the masses and couplings of the standard model [42], the cosmological constant
problem [88], the dark matter/modified gravity puzzle [33,78], etc. While investigations of this
kind seek to extend known models of particle theory or cosmology, they do so largely within or
with limited modifications to the existing structural framework of quantum field theories and
general relativity.

On the other hand, present-day efforts involving (iii) typically concern new proposals for quan-
tum gravity [59,76], non-perturbative completions of gauge theories [12,14,35], noncommutative
geometry [30], physics of higher dimensions [70], emergence of spacetime from holography [86],
standard model symmetries from division algebras [43], among many others. Investigations of
this third type often propose resolutions for outstanding foundational problems by invoking
new physical principles and/or new mathematical structures that seek to generalize or extend
the scope of existing frameworks of theoretical physics.

And finally, efforts involving class (iv) investigations involve questions regarding the origins
of space, time and matter itself. Rather than generalizing existing physical structures, these
investigations seek new ontological origins such that existing physical structures may be seen
to be emergent or derivable from an underlying “pre-physical” framework. The classic example
of this is Wheeler’s pregeometry [64,89].

Historically, several of the then new ideas and developments in quantum theory and relativ-
ity originated as new mathematical formalisms of class (iii) and eventually became amenable
to investigations of class (ii) and subsequently (i). This was true even for what were consid-
ered abstract mathematical structures back in the day. Examples include Clifford algebras
and spinors introduced in quantum theory (which eventually made their way into fermionic

2For our purposes here, we restrict our discussion to the fundamental physics of particles, fields and geometry.
One could reasonably well build a case in favor of including principles from condensed matter theory. And in
fact, that very may well be the logical extension of the work discussed in this paper.
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quantum field theories) by Dirac or non-Euclidean geometries of spacetime by Einstein and
Grossmann. Falsifiable theories, at the very least, are marked by a transition from class (iv) or
class (iii) to class (ii). Based on this premise, the issue isn’t whether or not new mathematics
is necessary to inform the foundations of physics, but rather, whether or not new mathematical
formalisms will eventually become amenable to investigations of class (ii) and class (i). In
particular, investigations seeking to address the origins of established theoretical frameworks
such as quantum field theories or cosmological models, will inevitably require the introduction
of new mathematical structures, very likely, radical new ones too. The challenge then being:
How does one effectively filter out choices that do not refer to the observable universe?

Consider for instance, the longstanding problem of reconciling quantum field theory with general
relativity. It is widely believed that such a reconciliation between these founding pillars of
modern physics will markedly alter our understanding of major open problems in theoretical
physics today, including, the origin of our universe, the origin of matter and the fundamental
forces, the quantum mechanics of black holes, and the nature of space and time; among others.
A key question underlying many of these issues is the following: What are the underlying
building blocks of space, time and quantum fields? Any theory attempting to bring together
quantum field theory with general relativity will, at the very least, have to take a definitive
stance on the nature of these building blocks. While it seems there is widespread consensus on
the view that space, time and matter are fundamentally discrete [52], [45]; specific proposals
concerning the nature of this discretization (often described in terms of “quanta” of space, time
or matter) and consequently the underlying mathematical structure one needs to start with,
differ quite a bit. Notable examples include: (a) Theories of quantum gravity, including Loop
Quantum Gravity (LQG) [77], String Theory and its proposed non-perturbative completion,
M-theory [23], Group Field Theory [66], the Causal Sets Program [41], Causal Dynamical
Triangulation (CDT) [60]; (b) Approaches seeking a unification of the fundamental forces,
either within the context of Supersymmetric Gauge Theories [6], or within the framework
of F-theory [22], or based on the representation theory of exceptional Lie algebras such as
those associated to the group E8 [58]; (c) Models of Emergent Spacetime from entanglement
entropy [86], from Energetic Causal Sets [32], from Emergent Gravity [87], the AdS/CFT
correspondence [3], and other realizations of black hole holography [10,11,15]; (d) Pregeometric
models as building blocks of spacetime, as those initiated by Wheeler [64], [89], and recent
approaches based on Homotopy Type Theory [13,17,18].

Extracting empirical verifiability from the multitude of above-mentioned mathematical propos-
als and filtering out physically redundant ones has been and continues to be a rather daunting
challenging. Recent collaborative projects in quantum gravity phenomenology seek in part to
address this problem (see [2] for a status review of the field). Nonetheless, the point remains
that each of these competing proposals of quantum gravity find themselves having to introduce
into the foundations of physics new abstract mathematical structures in order to attempt ex-
tensions beyond or reconciliations between our existing notions of space, time and matter. This
is the essence of class (iii) and class (iv) investigations. Even in a future scenario, where one
or more of the above proposals turns out to be an empirically adequate (or at least falsifiable)
description of quantum gravity, questions about the origins of that new theory will potentially
remain open and require new structures and extensions beyond its existing framework.
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3 The Epistemic Regress Problem: Foundationalism vs.
Coherentism

Any classification of theories, as the one presented above, into more and more fundamental
ones, confronts us with an obvious philosophical problem. For instance, consider the principle
of ‘inferential justification’ in the context of epistemology [85]. This states that: “To be justified
in believing A on the basis of B one must be, (1) justified in believing B, and (2) justified in
believing that B makes probable A” [51]. Hence, any approach to the foundations of physics
based exclusively on inferential justification, in the sense of seeking explanations of explanations
recursively, leads to an infinite regress problem. This is particularly relevant if one were to insist
on a fundamentally materialist ontology.

Of course, issues such as the one stated above, have extensively been discussed in the philosophy
of physics, and more generally, in theories of epistemic justification [85]. Typical resolutions of
this problem adopt either a stance of ‘foundationalism’ or ‘coherentism’.

• Foundationalism assumes the existence of certain self-evident truths that can, in principle,
halt the regress [51];

• Coherentism requires that statements within that system self-cohere, forming an inter-
dependent web of of mutual justification [65].

In the context of physics, the search for realizations of foundationalism could manifest in terms
of what is sometimes referred to as the ‘final theory’3. On the other hand, proposals grounded
in coherentism emphasize the role of relations (rather than objects) and compositionality, such
that attributes of a system are described in relational terms.

More specifically, one may ask, what kind of relational frameworks should one examine as
plausible candidates for investigating how structural properties of space, time and matter might
emerge? Our answer to this is to consider formal languages as the framework for pregeometric
foundations of physics.

• A Formal Language L refers to a collection of “well-formed” strings Σ∗ over an alphabet
Σ (usually a set of finitely many letters), where the superscript "∗" denotes the Kleene
product over Σ (the free monoid over the alphabet). The moniker “well-formed” refers
to syntactic constraints that can be specified either by a generative grammar or a set of
n − ary relations based on a universal algebra. These relations recursively specify how
the letters of Σ can be composed to form strings in L.

• For use in theorem proving or automated reasoning protocols, it is often useful to addi-
tionally equip the language L with a deductive system.

• A Deductive System (also called Proof System) within a language L consists of an
axiom schema and / or a collection of inference rules, which can be used for theorem-
proving within L.

3See [26] for a nice historical account of Heisenberg’s Weltformel (World Formula), a final theory reducing
all of physics, known and unknown, to the interactions of one elementary quantum field.
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• We will call a formal language equipped with a deductive system as a Computational
Language. This is sometimes also referred to as a formal system.

As alluded to above, we shall mainly be interested in formal languages that are computational
languages. These are typically typed languages equipped with a deductive system, using which
one may construct proofs and programs. Computational languages are inherently constructivist
in the sense their proof systems only allow constructivist mathematical proofs (those in which
proofs by contradiction are not permitted; consequently, a proof that a given property holds,
requires constructing an algorithm that realizes an instance of that property). These systems
are based on Intuitionistic logic, which as we shall see, allows for expressing theories of physics
that are not bound to an a priori use of continuum notions.

In fact, this brand of constructivism founded in formal language is not exclusive to physics. It
turns out that many type theories originating from a constructivist paradigm of mathematics
are formal systems that are distinct from ZFC set theory (in that, they do not enforce the law
of the excluded middle or the axiom of choice). Rather, many of these type theories and their
associated toposes based on the univalence axiom of homotopy type theory [4,68]. In particular,
this suggests that there does not exist merely one preferred axiomatization to describe all of
mathematics, as proponents of the Hilbert school of thought may have hoped for. Rather, there
are multiple universes (or toposes) where mathematics can be formulated. These universes may
be founded on very distinct axiomatization schemes, which nonetheless can be transformed from
one to another [83], [84].

How does formal language relate to pregeometry? In the next few sections we will argue
that our “structureless structures” are in fact syntactic entities (types) that realize programs
(proofs) in a formal language. Within the modern set-up of Homotopy Type Theory, spaces
and algebras relevant to physical theories can be modeled as computational routines built from
compositional rules of a formal language. Arguably, the kind of constructivism guiding the
current foundations of mathematics turn out to be important for the foundations of physics
too.

4 Pregeometry as Structureless Structure

What kind of structures should a constructivist coherentism entail for class (iv) investigations
relevant to the foundations of physics? As alluded to above, formal language, and in particular,
computational languages based on syntactic structures, their compositions and rules of com-
putation provide the constructivist building blocks for a realization of pregeometry that does
not hinge on pre-existing notions of space, time and matter. Such formal constructs necessarily
shift away from a materialist ontology of physics.

• Structureless Structures thus refer to symbolic and relational entities of a formal
language. These symbolic structures are the building blocks of proofs, programs and
computations.

When Wheeler introduced the notion of pregeometry, he thought about it as an all-encompassing
approach to the very foundations of physics, with the idea that pregeometry ought to transcend
any structural explanation of space, time, matter and even physical law [64, 89]. Pregeometry
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was thus intended as a broad conceptual framework from which one may seek, or upon which
one may build, descriptions of quantum gravity. As mentioned, at the time, Wheeler treated
the problem as a structure-substitution exercise, meaning that he tested every known structure,
with the objective of seeking structural abstractions that might serve as the building blocks
of the physical universe. In particular, he examined abstractions of lattices, waves, Borel sets
and importantly, the calculus of propositions. Additionally, Wheeler also introduced what he
referred to as “Observership”. This he deemed as crucial for any physical theory [9] (see [25]
for a recent discussion on Wheeler’s ideas of observership and their relation to our experiences
of space and time). Indeed, some of these ideas eventually led him to his now well-known
‘mantra’: “It from Bit”.

Yet another angle that inspired Wheeler to considering pregeometry as the foundation of all of
physics came from a gravitational collapse argument (“the crisis of collapse”): if the universe
can collapse, then it will take space, time, matter, and law with it; therefore, there needs to be
something that transcends these in such a way as to not be subject to the same demise (see [24]
for an insightful historical overview). Moreover, this something (the pregeometry) needs to be
such that it can forge a way for the universe to come into being. It must provide building
blocks. Hence, it serves cosmogonical and cosmological functions in Wheeler’s thinking. This
crisis of collapse curtails the kind of approach Einstein was attempting (which Wheeler also
initially pursued in his earlier geometrodynamical investigations), in which space itself is the
primordial substance from which all else is constructed. Despite the impressive topological
gymnastics involved in constructing mass, charge and (with extreme difficulty) spin from space
alone, contemporary theory is simply inadequate to the task when the collapse problem is faced.

The sum-over-histories ideas were part of an initial simple attempt to quantize gravity using
what would now be recognized as integrating over moduli spaces of geometries and fields. It was
largely Wheeler’s PhD student Charles Misner who did this early work on quantum gravity [64].
The aim was to try and generate more structure in space by allowing for quantum fluctuations of
the geometrical (and topological) properties, in order to produce multiply-connected wormholes
that could be used to thread fields and explain how point-charges can appear to emerge in a
purely continuous field theory. However, in addition to the collapse problem, Wheeler was also
motivated by the a desire for the deeper constructibility of the world of physics. As he put it
using an analogy:

Glass comes out of the rolling mill looking like a beautifully transparent and homoge-
neous elastic substance. Yet we know that elasticity is not the correct description of
reality at the microscopic level. Riemannian geometry likewise provides a beautiful
vision of reality; but ... is inadequate to serve as primordial building material. [67, p.
544]

Central to this new approach to physics, in which one seeks the deepest level of structure, is
that idea that one ought not to start from the upper levels in order to figure things out. In
other words, part and parcel of Wheeler’s approach was a quite radical constructivism. It is no
good, from this point of view, to consider conventional quantization approaches in which one
begins with the classical system and then applies a procedure to it. This corresponds to our
artificial methodology, rather than nature’s own technique for creating the world which is, after
all, already quantum. What pregeometry and constructivism share, and what we also share, is
the belief that our aim, in foundational work, must be to find the methods and materials that
nature herself uses to build the world.
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It is worth remarking that that many of the contemporary theories of quantum gravity, in fact,
are set up with a fair share of a priori geometric structures (see examples (a) - (c) mentioned
earlier). On the other hand, a truly pregeometric description of the kind Wheeler had in mind,
ought to be one from which all geometric features of the physical universe should be derived
( [63] discusses this point at length). Hence, it is the precursors of geometry (and one may
argue, even topology) that make up the genuinely pregeometric building blocks of the universe.
Now, given the common expectation, that blending general relativity and quantum mechanics,
would permit “foam-like” realizations of geometry, at energies close to those that existed in the
early universe, this implies, at the very least, that a set of more fundamental rules regarding
connectivity of spacetime that are independent of topology and dimensionality, are required (as
emphasized by Wheeler). Formulations of theoretical physics based on pregeometric structures
then allow one to work with deeper underlying rules that are not dependent on classical struc-
tural assumptions about the properties of space and time. As we shall see, such an approach
capitalizes upon deep connections between theoretical physics, computation, proof theory and
homotopy. It is such pregeometric entities that we will hereon in refer to as “Structureless
Structures”4.

5 Pregeometry in Metaphysics

Of course, the idea that "something" has to transcend space, time and matter has long since
been part of philosophical discourse, in particular, metaphysics [75]. One of the early proponents
of relationalism in the metaphysics of space and time, was none other than Gottfried Wilhelm
Leibniz (in contrast to his contemporary at the time, Isaac Newton). Leibniz, however, was
thinking of something beyond merely material or physical relationalism. Those views led him
to the concept of ‘monads’ [57]. Leibniz’s Monadology was an attempt to codify an entire
philosophical system. For all its encompassing majesty, it was notable for its extreme brevity5.
The Monadology can in all likelihood also be viewed as the first example of a pre-space theory.
Leibniz argued in favor of a set of features of space from principles applying to a set of relations
that are not spatial themselves. That is, the relations between monads are used to set up a
correspondence to phenomenal space, with its characteristic features such as extension6. In
this sense, his monadological theory of space is more primitive than the usual kind of physical
relationalism, in which relations are simply thought to involve the objects of physics, with
spatial relations being secondary to those objects (i.e. supervenient) in an ontological sense7. In
Monadology, a different kind of object ends up being primary (i.e. the monad is fundamental),
and the relations hold between these such that both space, the objects of physics, and every
other thing in the manifest world, emerge from this more basic layer. Moreover, monads
are simples (“the true atoms of nature”) in the sense of admitting no further reduction or
decomposition into other elements. That is, they have no structural elements of their own and

4Here we arrive at this with a focus on pregeometry. However, connections between physics, computation
and formal systems have been discussed in other contexts too. For instance, relating to undecidable dynamics
and the edge of chaos in [69]; or founded on monoidal categories, quantum processes and cobordisms in [20].

5In fact, it was so brief that Leibniz later added annotations pointing the reader to other works for clarifi-
cation.

6See [75] for a detailed study of Leibniz’s deeper philosophy of space.
7Wheeler himself was influenced by some of Leibniz’s ideas on space, time and matter. A historical account

of this intersection of ideas can be found here: [44].
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so provide a kind of structureless structure. And yet, from this simple foundation, according
to Leibniz, we can generate all of the incredible complexity of the world.

The monads collectively provide all possible perspectives of a world, as tiny independent mir-
rors (or points of view). However, there is also a sense in which the monads are carrying out
a pre-set program (or entelechy), coordinated with all other monads, in a pre-established and
divinely choreographed dance determined to generate (i.e. construct) the best of all possible
worlds. While there are the well-known principles of sufficient reason and identity of indis-
cernibles providing basic constraints on this construction, the principles themselves do not
directly determine what is constructed. Rather, they inform the composition of the monads
into complex structures which is then carried out through the pre-established harmony. A ma-
jor reason for the introduction of pre-established harmony was to explain the mind-body (or
soul-body) correlations. For Leibniz there was no causal link and the correlation simply follows
from the common cause in which both were set on their way.

In this context, it is interesting to note the philosophical parallels of Leibniz’s metaphysics with
Wolfram’s model of physics (or rather, “pre-physics”) [92]. Analogous to Leibniz’s monads, in
the Wolfram model, abstract rewriting events comprise the “atoms of nature”. These events are
generated by rewriting rules, that realize abstract computation. Based on local rule application,
rewriting events are knitted together via causal relations. These are the causal graphs of the
Wolfram model. The irreducible rewriting events and their mutual relations, taken in some
appropriate limit, are hypothesized as models of spacetime geometries [13,17,18]. Furthermore,
Wolfram’s model has a remarkably similar explanation for the correspondence of the world to the
mind in that they both emerge from the same initial rules for construction and emerge in parallel
with the mind (or observer) simply sampling the world and providing a perspective [93, 94],
much like a monad, where different observers perceive the whole universe from different points
of view. Likewise, one can find a similar generation of variety in the Wolfram model through
this dislocation of a single, unified structure into many of points of view [71].

Of course, Leibniz’s theory, as it stands, cannot provide a satisfactory foundation for physics.
At least, not one of much practical value in terms of showing how our present theories and phe-
nomena can be constructed. Our aim in this work is to discuss some developments, including
very recent ones, in this direction. Ultimately, the approach we focus on, that is, structureless
structure from formal language, places the ontological weight on the very rules of construction
themselves. By contrast with Leibniz’s “God as architect” (as he puts it in S.89 of his Mon-
adology), here the metaphor is better expressed as “Nature constructing itself", in particular,
space, time, matter and law.

Besides Leibniz, notions of pre-physical substrates of existence have also been discussed in the
philosophy of mind, in particular, ideas related to monism of mind and matter [19]. In the
context of the mind-body problem, the philosophy of monism seeks to resolve the metaphysical
debate between physicalism and idealism by proposing a fundamentally new neutral substrate
that is by itself neither physical nor mental, but instead, whose various manifestations then
realize the physical and mental components of the world. A prominent example of this school of
thought is dual-aspect monism proposed by the physicist Wolfgang Pauli and the psychologist
Carl Jung. Dual-aspect monism posits that the physical and mental are merely complementary
perspectives of an underlying neutral substrate [19]. In other words, the physical universe,
including mental states of agents within it, are to be built upon a metaphysically fundamen-
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tal layer of reality that is both pre-physical and pre-mental. From this perspective, monism
necessitates pregeometric building blocks for our perceived reality.

6 Pregeometric Theories from Formal Language

What then should constitute the essence of pregeometric structure from which space, time
and matter all emerge? For one, pregeometry being structureless structure, cannot arise from
yet another unbeknownst physical substrate. A foundationalist philosophy of pregeometry
can potentially admit an irreducible underlying substrate. But then, one would need to posit
that the existence of such a substrate be accepted as a “universal self-evident truth”, such
that one cannot ask further questions about its nature or origins. This may seem a rather
unsettling predicament to have to accept within a scientific theory. Furthermore, even if such
a universal self-evident entity existed, how should one describe it (as opposed to explaining it)
within a given theory without alluding to any spatial or temporal notions, including internal
spaces (those describing internal degrees of freedom corresponding to internal symmetries, spin
or gauge indices)? On the other hand, a coherentist philosophical stance places precedence
on relations rather than objects and posits that structure emerges from the metaphysics of
abstract relations. In a philosophy of this kind, emphasis is placed on the ontology of relations
rather than the ontology of objects.

It turns out that the appropriate mathematical framework to formalize a theory of abstract
relations and their properties is what is called a ‘Formal System’ with well-defined rules of
compositionality. Formal languages are precisely such systems. Formal systems lie at the
heart of mathematical logic, computer science, cryptography and several other branches of
mathematics. More pertinently, formal language, and in particular, Homotopy Type Theory
and the Univalent Foundations program have been at the forefront of important recent advances
seeking a new constructivist foundation for all of mathematics [68, 83, 84]. Here, we seek to
identify appropriate parallels arising from developments in mathematics to the foundations of
physics. We reckon that the application of homotopy type theory and its representation in
higher category theory will be extremely useful for:
(i) Exploring higher symmetries and spaces in physics, that cannot readily be captured by
current methods; and for
(ii) Seeking a constructivist foundation for physics, where structures intrinsic to notions of the
continuum are not fundamental, but emerge within well-defined limits.

While Wheeler himself had suggested a propositional calculus as a pregeometric framework
from which the emergence of physical structures may be sought (though he ultimately had to
introduce a ‘participator’ to deal with undecidable propositions of physics); our contention here
is that formal language permits the expression of generic pregeometric calculi. As mentioned,
this parallels the way mathematicians discuss universes of mathematics using Homotopy Type
theory. A formal language encompasses a system of primitive symbols (or ground types) along
with relations for constructing composite types which can be used to construct clauses and
sentences. The latter constitute propositions expressible within the language. A language can
additionally be equipped with axioms and inference rules for a deductive logic using which
one can reason about its propositions. However, propositions are only declarative statements.
One can go further. Including variables and quantifiers allows one to extend a propositional
system to one that includes predicates, thus expressing formulae, whose validity (truth) may
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subsequently be evaluated within a specified interpretation (semantic modality). Based on the
logical relations and inference rules that a given language admits, one can then construct proofs
relating one formula to another, that is, prove theorems within that language.

Besides Wheeler’s pregeometry, the role of formal language towards conceptualizing new foun-
dations for quantum theory and physics on discrete spaces has been extensively investigated by
Chris Isham and collaborators [40,53]. Rather than pregeometry per se, the motivations for the
latter arose in seeking an axiomatization of physical theories within a common mathematical
framework - that of topos theory. Toposes are categories that behave like Sets (the category of
sets). Like Sets, toposes are equipped with the category-theoretic analogue of Cartesian prod-
ucts, disjoint unions, a singleton set, a notion of a set of functions, and importantly, a notion
of sub-sets of objects (i.e., sub-objects). Thus, toposes are formal “places” where foundations
of mathematics can be formulated. Examples of toposes other than Sets are the category of
finite graphs, the category of G-sets, the category of presheaves over a small category.

Even more generally, attempts seeking a formal axiomatic framework for physical theories, pre-
date Wheeler, going all the way back to David Hilbert. In his 1900 address at the International
Congress of Mathematics in Paris, Hilbert stated his famous 23 open problems of mathematics.
Of these, the 6th problem referred to a universal axiomatization of physics (see [31] for a
historical overview). Apart from the issue of whether such axiomatizations ought to be universal
or even complete, it set the course for seeking mathematical formulations of physical theories
using a common (axiomatic and / or inferential) framework. Then, towards the latter half of
the 20th century, with rapid advances in category theory, William Lawvere, one of the founders
of categorical logic, sought to build the foundations of mathematics in topos theory (as opposed
to set theory) [55]. Lawvere was also interested in applications of topos theory towards the
formalization of physics [56], which was subsequently followed up by Isham and others (as noted
above).

It is worth noting that, while the topos-theoretic foundations discussed here offer the elegant
possibility of expressing theories of physics through a “mathematically unified” framework,
they do not carry the usual baggage of grand unification of physical theories. This allows
for a potentially background independent formulation of a broad class of physical theories.
In particular, Isham’s work proposes specifically distinct toposes for classical and quantum
mechanics [36,37]. The key objective of their program was to do away with any a priori use of
continuous spatial or temporal constructs in formulating notions related to classical or quantum
systems. As stated in [36], “the use of continuous properties associated to space and time would
be deemed a major error if those turned out to be fundamentally incompatible with what is
needed for a theory of quantum gravity”. The contention there was that theories of a physical
system should be formulated within a topos that depends on both, the theory-type and the
system-type. In turn, any topos-theoretic approach employs formal language. This is because
of a well known result in topos theory that there exists an internal formal language associated to
each topos [54]. In fact, not only does each topos generate an internal language, but, conversely,
a language satisfying appropriate conditions generates a topos [54]. The goal in [40] was to
find a novel structural frameworks within which new types of theory can be constructed, and
in which continuum quantities play no fundamental role. These works proposed an abstract
language-theoretic formulation of classical and quantum mechanics which primarily addresses
questions related to kinematics of classical and quantum systems in arbitrary spaces. Going
beyond this kinematical description, the question is how does one generalize topos-theoretic
approaches to address pregeometric theories as well as other effective theories at high energies?
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More generally, the kind of languages admissible in toposes are typed languages. Type theory
provides the building blocks to formally construct such languages. Given their constructivist
flavor, the logic expressed by type theories in toposes is intuitionistic logic. This means one
need not enforce the law of the excluded middle or the axiom of choice in these formal systems.
Furthermore, the natural extension of intuitionistic type theory is Homotopy Type Theory
(HoTT), which includes homotopy n-types, up to ∞-types. The representation of homotopy
types takes us beyond the realm of standard category theory to higher category theory, which
includes morphisms between morphism (representing homotopies between types). This tower of
higher morphisms goes all the way to ∞-categories. Formal languages expressed in homotopy
type theory are internalized in higher categories, and consequently higher toposes.

How then do topological and geometric spaces relevant to physics (and mathematics) arise from
type-theoretic building blocks? One of the key takeaways from the synthetic geometry and
homotopy type theory program is that the notion of space arises from functorial constructions
involving ∞-toposes [79,81,84]. Geometry is thus inherited from higher structures, and induced
upon local structures by taking sections or projections of the total space [17, 18]. Homotopy
type theory provides a syntactic formalism for realizing higher structures. The objects of
the ∞-topos under consideration are the so-called ‘∞-groupoids’. The latter are categories
endowed with a tower of higher morphisms, up to infinity (and invertibility conditions). Via
Grothendieck’s hypothesis, ∞-groupoids realize models of formal topological spaces [21]. With
additional ‘cohesivity conditions’, one also obtains synthetic geometric spaces in ∞-toposes
from this construction [81], [79], [80], [83], [84]. These authors also show how quantum field
theories with higher gauge symmetries can be formalized in ∞-toposes [81], [79], [80]. Higher
homotopical structures in formal languages expressed using higher categories thus provide us
a useful formal framework for constructing pregeometric physics as well as theories of higher
symmetries.

Furthermore, a computational realization of the above ∞-groupoid constructions was shown
in [13, 17, 18]. This construction was based on what are called ‘Multiway Systems’, the non-
deterministic rewriting systems of the Wolfram model [91, 92]. Using a type-theoretic repre-
sentation of multiway rewriting systems, [17] provide an algorithmic construction of higher
homotopies on non-deterministic rewriting systems. This connection between abstract rewrit-
ing systems and higher homotopies suggests a way to realize spatial structures and geometry
from purely pregeometric models such as those based on rewriting systems (mentioned above).

7 Outlook and Discussions

In conclusion, this work serves as an initial metaphysical exploration of a plausible description
of pregeometric building blocks for the physics of spacetime, based on formal language. We
have put forth the proposal that syntactic structures formalized in computational languages
model the kind of pregeometric structures that Wheeler had in mind concerning the foundations
of physics. We described these pregeometric structures as structureless structure to emphasize
the necessity to shift away from a fundamentally material ontology. Instead, these are symbolic
and relational structures of a formal language.

Our approach to pregeometry takes seriously a constructivist stance on the laws and structures
of the physical universe; not merely in terms of how observers may perceive the universe, but
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more importantly, in metaphysical terms, as to how these laws and structures might come into
being. Such a perspective closely aligns with Wheeler’s intuitions of pregeometry as something
that transcends space, time, matter and law. Indeed, this flavor of constructivism, not sur-
prisingly, resembles the kind of constructivism that has been recognized in recent advances in
the foundations of mathematics, particularly in the context of Homotopy Type Theory and the
Univalence Foundations program [68]. Speaking of the “unreasonable effectiveness of mathe-
matics” point of view [90], it is perhaps fitting that the metaphysics of spacetime geometry
directly draws from formal advances in metamathematics. A computational realization of this
connection between metamathematics and physics in terms of rewriting systems can be found
in [95]. All in all, a language-theoretic constructivist framing serves as an important conceptual
advance for approaches that emphasize the interplay between computation and physics, such
as the Wolfram model.

Given that the coherentist constructivism discussed here follows from requiring to go beyond
a materialist ontology for pregeometry, this implies that primitives of pregeometry are not
merely discretizations of classical structures in physics. Its about nature constructing itself from
abstract computation using syntactic compositions and relations. Simply replacing classical and
quantum systems on continuous spaces with their discrete counterparts is unlikely to capture
the full essence of Planck scale physics8. The plausible emergence of space, time and matter,
and theories describing them at or below the Planck length, will likely require new mathematical
formalisms that go beyond mere replacements of classical real or complex analysis with discrete
geometry. Recent advances in homotopy theory, higher algebra and topos theory offer new
mathematical methods for such investigations (see [61,73,74] for works in this direction). Also,
worth noting that the strict dichotomy between continuous versus discrete geometry may be a
bit misleading given that there exist examples of geometric formalisms that are by themselves
neither continuous nor discrete, such as operator algebras that realize “pointless geometry” [16,
30]. Rather, it is the representation and spectrum of these operators that may take continuous
or discrete values under different conditions. This feature has been exploited in models of
quantum gravity such as loop quantum gravity, noncommutative geometry and group field
theories [30, 66,77].

As mentioned earlier, approaches advocating the use of formal language to conceptualize the
foundations of physics, by themselves, are not new. However, the newly developing mathemat-
ical formalism of homotopy type theory [68], extended topological field theories [62], operator
mechanics [16,27], infinity-categories [74], infinity-toposes [79], higher-arity algebras [96–98], etc
offer new ways to investigate pregeometric structures formalized in computational languages. A
recurring theme in these investigations is that of higher structures. A language-theoretic prege-
ometric formalism based on higher structures will likely bridge, or at the very least, help identify
crucial intersections between existing constructivist and background-independent approaches
to quantum gravity.
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