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Abstract 
 

Before establishing his mature interpretation of infinitesimals as 
fictions, Gottfried Leibniz had advocated their existence as actually 
existing entities in the continuum. In this paper I trace the 
development of these early attempts, distinguishing three distinct 
phases in his interpretation of infinitesimals prior to his adopting a 
fictionalist interpretation: (i) (1669) the continuum consists of 
assignable points separated by unassignable gaps; (ii) (1670-71) the 
continuum is composed of an infinity of indivisible points, or parts 
smaller than any assignable, with no gaps between them; (iii) (1672-
75) a continuous line is composed not of points but of infinitely 
many infinitesimal lines, each of which is divisible and proportional 
to a generating motion at an instant (conatus). In 1676, finally, 
Leibniz ceased to regard infinitesimals as actual, opting instead for 
an interpretation of them as fictitious entities which may be used as 
compendia loquendi to abbreviate mathematical reasonings. 
 

Introduction 
 Gottfried Leibniz’s views on the status of infinitesimals are very 
subtle, and have led commentators to a variety of different 
interpretations. There is no proper common consensus, although the 
following may serve as a summary of received opinion: Leibniz 
developed the infinitesimal calculus in 1675-76, but during the 
ensuing twenty years was content to refine its techniques and explore 
the richness of its applications in co-operation with Johann and Jakob 
Bernoulli, Pierre Varignon, de l’Hospital and others, without 
worrying about the ontic status of infinitesimals. Only after the 
criticisms of Bernard Nieuwentijt and Michel Rolle did he turn 
himself to the question of the foundations of the calculus and 
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formulate his mature view that infinitesimals are mere fictions1. In 
many quarters, to boot, this mature view is seen as somewhat 
unfortunate, especially since the work of Abraham Robinson and 
others in recent years, which has succeeded in rehabilitating 
infinitesimals as actual, non-Archimedean entities2. A dissenting 
view has been given by Ishiguro, who argues (in my opinion, 
persuasively) that Leibniz’s syncategorematic interpretation of 
infinitesimals as fictions is a conceptually rich, consistent, finitist 
theory, well motivated within his philosophy, and no mere last-ditch 
attempt to safeguard his theory from foundational criticism3. But 
Ishiguro doubts that Leibniz ever held infinitesimals to be actually 
infinitely small non-Archimedean magnitudes before developing this 
interpretation. 
 In this paper I attempt to throw light on these issues by 
exploring the evolution of Leibniz’s early thought on the status of the 
infinitely small in relation to the continuum. The picture that 
emerges differs in one way or another from all those detailed in the 
previous paragraph. For one can distinguish among Leibniz’s early 
attempts on the continuum problem three different theories involving 
infinitesimals interpreted as non-Archimedean magnitudes:  (i) the 
continuum consists of assignable points separated by unassignable 
                                             
1 For a good statement of this position, see in particular D. M. Jesseph: “Leibniz on 
the Foundations of the Calculus: the Question of the Reality of Infinitesimal 
Magnitudes”, Perspectives on Science 6: 1 & 2 (1998), pp. 6-40: “the fictional 
treatment of infinitesimals clearly appears designed in response to [Wallis and 
Bernoulli] and to the critics of the calculus [Nieuwentijt and Rolle]. If I am right 
we can see this doctrine take shape through the 1690s as Leibniz tries to settle on 
an interpretation of the calculus that can preserve the power of the new method 
while placing it on a satisfactory foundation.” (p. 8). Cf. also Detlef Laugwitz: “It 
was not before 1701 that Leibniz was forced to clarify his opinions, both 
mathematically and philosophically, on the use and nature of infinitesimals”: 
“Leibniz’ Principle and Omega Calculus”, pp. 144-154 in: Le Labyrinth du 
Continu, ed J-M. Salanskis and H. Sinaceur, Paris, 1992, p. 145. 
2 But see the authoritative study by P. Ehrlich: “The rise of non-Archimedean 
Mathematics and the Roots of a Misconception : the Emergence of non-
Archimedean Grössensysteme”, forthcoming in: Archive for History of Exact 
Sciences, for an explosion of the myth that non-Archimedean systems and 
infinitesimals were purged from mathematics by Cantor and Weierstraß until the 
advent of Non-Standard Analysis. 
3 See H. Ishiguro: Leibniz’s Philosophy of Logic and Language, (Second Edition), 
Cambridge, 1990. 
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gaps (1669); (ii) the continuum is composed of an infinity of 
indivisible points, or parts smaller than any assignable, with no gaps 
between them (1670-71); (iii) a continuous line is composed of 
infinitely many infinitesimal lines, each of which is divisible and 
proportional to an element  (conatus)of a generating motion at an 
instant (1672-75). By early 1676, however, he has already reached 
the conclusion that  (iv) infinitesimals are fictitious entities, which 
may be used as compendia loquendi to abbreviate mathematical 
reasonings; they serve as a shorthand for the fact that finite variable 
quantities may be taken as small as desired, and so small that the 
resulting error falls within any preset margin  of error. Thus on the 
reading I propose here, Leibniz arrived at his interpretation of 
infinitesimals as fictions already in 1676, and not in the 1690’s in 
response to Nieuwentijt’s and Rolle’s criticisms, whatever may have 
been his later hesitations. 
 Let me begin with an overview of the argument of the paper. 
 The most important text for understanding Leibniz’s theory of 
the continuum prior to 1676 is the Theoria Motus Abstracti (TMA), 
published in 1671. For it is in the section of this work titled 
Fundamenta Praedemonstrabilia (“Predemonstrable Foundations”) 
that Leibniz gives his most explicit treatment of his early ideas; and 
in the same year Leibniz wrote a barrage of letters to leading 
intellectuals in Europe touting the theory of the continuum given 
there, stressing its claims to solve numerous problems that had 
previously been considered intractable, among them the problem of 
the original cohesion of corpuscles, and the mind-body problem. The 
tract begins with the claim that there are actually infinitely many 
actual parts in the continuum, and then proceeds to outline a novel 
theory of points. Although, frustratingly, Leibniz does not explicitly 
identify the parts with the indivisible points, this seems to be his 
intention, as I shall argue below. Leibniz has three main lines of 
justification for these points: the success of Cavalieri's method of 
indivisibles, for which they are supposed to provide a foundation; an 
argument for their existence based on an inversion of Zeno's 
dichotomy; and an appeal to the existence of horn angles as 
examples of actual infinitesimals4. These points or indivisibles are 
                                             
4 I am using the word ‘infinitesimal’ throughout this paper as a convenient 
substantive for the ‘infinitely small’, and as synonymous with Leibniz’s 
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distinguished from minima, or partless points, which Leibniz rejects, 
and are characterized as lacking extension, but nonetheless 
containing parts having no distance from one another, what he calls 
“indistant” parts. 
 From this foundation we can work both backwards and 
forwards. In Fundamentum (7) of the TMA, Leibniz writes “Motion 
is continuous, i.e. not interrupted by any little intervals of rest” (A 
VI, II, N41). The significance of this is at least partly biographical, 
since Leibniz himself had previously promoted such a theory. In the 
first section below I offer a reconstruction of Leibniz’s early version 
of this theory, and speculate on his reasons for abandoning it. 
 Working forwards, there is an unresolved tension in the TMA 
between the rejection of minima and the promotion of indivisibles, 
notwithstanding the distinction Leibniz draws between them in the 
justifications he gives of indivisibles. This is the tension between the 
tacit claim that the continuum is composed of indivisibles and the 
claim that they are the beginnings of intervals, which is essential to 
one of the arguments justifying them. For if every indivisible is the 
beginning of a line, and lines are composed of them, then they are 
vulnerable to the same objections (given by Sextus Empiricus in 
antiquity) that Leibniz had already used against minima. Leibniz 
apparently realized this in late 1671, and in a piece written in late 
1672 he attempts to rectify this difficulty by rejecting indivisibles for 
this reason, but retaining actual infinitesimals that are justified by 
their proportionality to incipient motions. This is the theory I analyze 
in the third section. In it infinitesimals are now homogeneous with 
the continuum they compose, and lines are no longer regarded as 
composed of points, which Leibniz now characterizes, following 
Aristotle and Ockham, as endpoints or modes having no autonomous 
existence. What we have here is in fact an actualist interpretation of 
the infinitesimal or differential calculus, with the actuality of its 

                                                                                                       
“unassignably small”. Leibniz did not begin referring to infinitely small things as 
infinitesimals until later in his career. Ironically, he attributed the term to Mercator 
when it was original with Wallis, of whose work Mercator had published an 
expansion without using Wallis’ new term! For a thorough account and analysis of 
all this, see the fine study by E. Pasini: Il reale e l’immaginario: La fondazione del 
calcolo infinitesimale nel pensiero di Leibniz, Torino, 1993, esp. pp. 7-8, 19-24. 
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infinitesimals constrained by the requirement that they be founded in 
motion. 
 There is, however, an unresolved difficulty in this theory too. 
For the defence of Cavalieri’s indivisibles (now re-interpreted à la 
Pascal as extended and divisible) depends on the idea that an actually 
infinite number of them can compose a finite extension, as in the 
TMA. But in 1672 Leibniz had already convinced himself that there 
is no actually infinite number or magnitude, if this is interpreted as a 
number or magnitude greater than all finite numbers or magnitudes. 
This throws into question any interpretation of infinitesimals as 
inverses of the infinitely large, as are Leibniz’s infinitesimals, whose 
ratios to finite quantities are “as 1 to ∞”. Leibniz appears to have put 
his doubts on hold while developing the calculus, but in 1676 he 
finally comes to terms with such difficulties in a series of papers 
written prior to his taking up his appointment to the court in 
Hanover. At about the same time that he gives a rigorous justification 
of the use of infinitesimals and infinities in quadratures (the 
calculus), he also demonstrates that the endeavours or conatus of his 
early work are not after all infinitely small motions, but arbitrarily 
small finite ones. Thus Leibniz comes to reject the actuality of 
infinitesimals in favour of an interpretation of them as fictions. The 
paper concludes with a brief examination of this syncategorematic 
interpretation of infinitesimals, which I argue is implicit in his 
dialogue penned in November (NS) 1676, Pacidius Philalethi. 
 

Phase 1 (1669): Unassignable gaps in the continuum 
       (i) the continuum is composed of assignable points separated by 

unassignable gaps; in particular, the motion of a body 
consists in its creation at assignable instants, its being non-
existent in between. 

 The textual basis for Leibniz’s first theory of the continuum is 
slender, and has to be pieced together from unpublished fragments 
and his own later testimony. In the Phoranomus, a dialogue Leibniz 
penned while he was developing his dynamics in 1689, he testifies 
that in his youth he had held that “a slower motion is one interrupted 
by small intervals of rest”—a doctrine which had been propounded 
by Arriaga and promoted by Mersenne and Gassendi as the soundest 
way of solving the problem of how one continuous motion can be 
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faster than another. This is borne out by a passage in Leibniz’s 
unpublished De rationibus motus of 1669: 
 
“Whatever moves more slowly does so because of several little 
intervals of rest (quietulas) interspersed. What moves more quickly 
does so because of fewer. A little interval of rest is an existence in 
the same place for a time smaller than any given” (A VI, II, 171). 
 
 What is interesting here is Leibniz’s characterization of an 
interval of rest as an existence for a time “smaller than any given”, 
which he explicitly distinguishes from moments or instants in the 
rigorous sense of points or true minima of time. For Gassendi, by 
contrast, the duration of such a quietula would be the smallest time 
into which a given interval could be physically divided, a “physical 
point” of time, extremely small, insensible, but finite. The physical 
continuum is thus, for Gassendi, in fact a discontinuum, even if the 
discontinuity is not discernible by the senses. But for Leibniz 
“Things which collide remain in the same place for a time smaller 
than any given, yet for longer than a moment” (ibid.). A quantity 
smaller than any given is what Leibniz elsewhere calls an 
“unassignable” or infinitely small quantity. 
 Now this implicit  mention of unassignable times tallies with the 
theory of motion that Leibniz describes with pride to his former 
teacher Jakob Thomasius in a letter of the same period: 
 
“Nothing must be supposed in bodies which does not flow from the 
definition of extension and antitypy. But only magnitude, figure, 
situation, number mobility, etc. flow from them, whereas motion 
itself does not. Hence, properly speaking, there is no motion in 
bodies existing as a real entity in them, but as I have demonstrated, 
whatever moves is continuously created, and bodies are something at 
any instant assignable in a motion, but are nothing at any 
intermediate time between the instants in an assignable motion—a 
view unheard of till now, but one that is plainly necessary, and that 
will silence the voice of the atheist” (A II, I, 23-24; April 30th 
1669)5. 
                                             
5 All translations in this paper are my own. Most are from G. W. Leibniz: The 
Labyrinth of the Continuum: Writings on the Continuum Problem, 1672-1686, 
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This is a somewhat puzzling passage, since Leibniz appears 

here to be claiming originality for a theory of continuous creation, 
when it would have been perfectly well known to both himself and 
Thomasius that Descartes (and many others, such as Erhard Weigel, 
Leibniz’s teacher in Jena) had proposed such a view.6 But I suggest 
that what is original about his proposal is not the idea of continuous 
creation itself, but this interpretation of motion as consisting in a 
body being created in a given location at an assignable time, and then 
lapsing into non-existence “at any intermediate time between the 
instants in assignable motion”. That is, he conceives there to be times 
“between the instants in an assignable motion”, although these will 
be unassignable. On this reading, Leibniz conceives of a body’s 
motion to consist in its being created at each assignable instant, and 
to be non-existent for unassignable intervals between the instants. 
Thus creation will be continuous, in that there will be no assignable 
time at which the body is not being created at a different place; yet 
motion will be “metaphysically discontinuous” (to use Leibniz’s own 
later term for this), in the sense that it does not continue beyond the 
instant at which it is created. 
 A possible objection to identifying the theories of motion given 
in the two passages is the discrepancy between the claim in the De 
rationibus motus that the body is “in existence” for an unassignable 
time between instants or moments, and the claim in the letter to 
Thomasius that a moving body is “nothing” at such a time. But this 
discrepancy is softened when one takes into account Leibniz’s belief 
that matter “is nothing if it is at rest”. As he argued explicitly in 
another fragment from about this time, “Matter is nothing if it is at 
rest. There is a demonstration of this. For whatever is not sensed is 
nothing. But that in which there is no variety is not sensed.” (A VI, 
II, N423). 

                                                                                                       
selected, translated, edited and with an introduction by Richard T. W. Arthur, New 
Haven and London, 2001; abbreviated LLC. 
6 Thus Leroy Loemker writes: “Leibniz’s theory of ‘continuous creation here 
seems merely to mean the source of all motion in God and is therefore very similar 
to the Cartesian opinion which he later criticized.” (Gottfried Wilhelm Leibniz: 
Philosophical Papers and Letters. 2nd edition, Loemker, Leroy, ed., Dordrecht, 
1976, p. 104). 
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 Thus the picture we have is this: at any assignable instant, the 
body is at an assignable point in space. But these assignable instants 
are separated by unassignable times during which the body is at rest. 
There being nothing in such a body by which it can even be 
discriminated, it is “nothing” during these times between the instants 
at which God creates it. 
 Now I am not suggesting that we have here a sophisticated 
mathematical theory of motion. As Leibniz himself says, these are 
speculations “pleasing to an adolescent”, dating from his fallow 
youth “when I was not yet versed in Geometry”7. Nevertheless, they 
are not necessarily therefore hopelessly naïve. In fact, they bear a 
remarkable resemblance to a theory of motion recently proposed by 
William McLaughlin and Sylvia Miller, which utilizes concepts of 
Edward Nelson’s “Internal Set Theory” to resolve Zeno’s paradoxes 
of motion.8 On this interpretation, a (numerical) infinitesimal is 
defined as an entity “greater than 0 and less than every positive 
standard real” (376). That is, the real line is comprised of points 
corresponding to the reals, which Nelson calls “standard numbers”, 
but there is an infinitesimal interval on each side of every such point. 
Nevertheless, no two standard numbers can differ by an infinitesimal 
interval. For the difference between any two standard numbers is 
standard: but an infinitesimal is by definition less than any standard 
number. McLaughlin and Miller propose to solve Zeno’s paradox of 
motion on this basis. As McLaughlin explains it in a companion 
article, their argument is that “a trajectory and its associated time 
interval are in fact densely packed with infinitesimal regions”, so 
that, although no motion is taking place at any of the assignable 
instants that can be labeled by standard numbers, it can nevertheless 
occur in the infinitesimal regions on either side of them.9

 Now it seems that this argument could apply equally to 
Leibniz’s first theory. For here too no two assignable instants can be 

                                             
7 Phoranomus, Dialogus II, in: Physis 28, n. 23, ed. André Robinet, 1991, 797-885; 
p. 803. 
8 W. I. McLaughlin and S. Miller: “An Epistemological Use of Nonstandard 
Analysis to Answer Zeno’s Objections Against Motion”, in: Synthese 92, pp. 371-
384, 1992. 
9 W. I. McLaughlin: “Resolving Zeno’s Paradoxes”, in: Scientific American, 
November 1994, pp. 84-89: p. 87, c1.  

 



Actual Infinitesimals in Leibniz’s Early Thought 9 

separated by an interval of time that is infinitesimal. For the 
difference between two assignable instants must be an assignable 
interval; but an infinitesimal interval is unassignable. This means that 
we cannot suppose the continuum to be composed of assignable 
instants separated by unassignable gaps, even if it consists of them. 
Thus there is a tension between the claim that the motion is 
continuous, in that there is no assignable instant at which it will not 
exist, and that it is discontinuous, in the sense that there really are 
gaps in the motion, even if unassignable, so that motion requires 
God’s repeated acts of re-creation. Leibniz shows some awareness of 
this tension when he makes a last attempt to finesse it in his dialogue 
on the continuity of motion Pacidius Philalethi, composed in 1676: 

“And these kinds of spaces are taken in geometry to be points or null 
spaces, so that motion, although metaphysically interrupted by rests, 
will be geometrically continuous—just as a regular polygon of 
infinitely many sides cannot be taken metaphysically for a circle, 
even though it is taken for a circle in geometry, on account of the 
error being smaller than can be expressed by us” (LLC, n. 62, p. 
409). 

 But by 1676, as we shall see, Leibniz has moved beyond this 
theory, which is only mentioned by him here for the sake of 
completeness. He cancels this passage and omits it from the fair 
copy, after commenting that it is “not at all to be defended, lest the 
reasonings of geometry or mechanics be subverted by metaphysical 
speculations” (ibid.).  
 In fact, Leibniz had already abandoned this account in favour of 
a continuist metaphysics of motion within a year of writing the letter 
to Thomasius quoted from above. For although he thought well 
enough of that letter to have it published with his edition of Nizolius 
in 1670, one of the few changes in the published version is precisely 
the excision of the above passage. After the clause “But only 
magnitude, figure, situation, number mobility, etc. flow from them” 
he simply replaces the rest of the passage with the parenthetical 
remark, “(Motion itself does not flow from them, whence it follows 
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that bodies do not have motion except by means of incorporeals)”10. 
This is a nod to the new theory he developed in 1670 under the 
influence of Hobbes, where the continuity of motion is construed in 
terms of Hobbesian conatus or endeavours, reconstrued as 
incorporeal “beginnings” of motion. This theory, elaborated by 
Leibniz in a series of working papers over the following year, was 
published in 1671 as the Theoria Motus Abstracti (TMA). 
 

Phase 2: Indivisible, unextended points 
 (ii)   The continuum is composed of indivisibles, defined as parts 

smaller than any assignable, with no gaps between them. 
Indivisibles have indistant parts, but no extension, and stand in 
the ratio of 1 to ∞ with the continuum they compose. Having 
parts, they have magnitude, so that any two indivisibles of the 
same order and dimension have a finite ratio. 

 Let us then turn to the theory Leibniz outlines in the 
Fundamenta Praedemonstrabilia of his TMA. He begins this account 
with the claim that there are actually infinitely many parts in the 
continuum, in defiance of Aristotle, Descartes and White (who 
denied the actuality, the infinitude, and the parts, respectively): 

“(1) There are actually parts in the continuum, contrary to what 
the most acute Thomas White believes, and  
(2) these are actually infinite, for Descartes's “indefinite” is not 
in the thing, but the thinker” (A VI, II, 264; LLC, 339).  

 Leibniz then proceeds to articulate a novel theory of points. He 
rejects the standard Euclidean definition of a point as cujus pars 
nulla est (“that whose part is nothing”, or “that which has no part”), 
as well as Hobbes’s proffered improvement, “that whose part is not 
considered”, in favour of a conception of it as something unextended, 
but which nevertheless has parts that are “indistant” from one 
another: 

 
“(3) There is no minimum in space or body, that is, nothing which 
has no magnitude or part...  
(4) There are indivisibles ôr unextended things, otherwise neither the 
beginning nor the end of a motion or body is intelligible... 
                                             
10 “(Motus ipse ex iis non fluit, unde nec corpora motum habent nisi ab 
incorporeis.)” A II, I, N54, 443. 
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(5) A point is not that which has no part, nor that whose part is not 
considered; but that which has no extension, ôr whose parts are 
indistant, whose magnitude is inconsiderable, unassignable, is 
smaller than can be expressed by a ratio to another sensible 
magnitude unless the ratio is infinite, smaller than any ratio that can 
be given. But this is the basis of the Cavalierian Method, whereby its 
truth is evidently demonstrated, inasmuch as one considers certain 
rudiments, so to speak, or beginnings, of lines and figures smaller 
than any that can be given” (A VI, II, 264-65; LLC, 339-40). 
 
 It seems clear that Leibniz intends the indivisibles or  
“beginnings” of a body or motion occurring in (4) to be identified 
with the unassignables of (5), since they are both described as 
infinitely small unextended things. An odd feature of this 
presentation, though, is that these indivisibles or unassignables are 
not explicitly identified with the “actually infinite parts” referred to 
in (1) and (2), i.e. they are not said to compose the continuum11. 
Nevertheless, this must be what Leibniz intends. For in his letters he 
describes the TMA as providing a solution to the problem of the 
composition of the continuum in terms of points one greater than 
another, which would make little sense if the points were not parts of 
the continuum12. This is confirmed by a closer inspection of the 
theory. For in (13) Leibniz refers to these indivisible points as parts 
of space, albeit parts smaller than any given part. Indeed they must 
be, in order for a moving body to be said to occupy a greater part of 
space at the point of contact than it would if at rest (this is crucial to 
his theory of cohesion): 
 

                                             
11 One might —as Leibniz himself would later— hold that the continuum is 
divided into an infinity of finite parts, separated by indivisible points that are not 
parts. 
12 “But what do I anticipate being clarified by this [theory of points]? I believe the 
Labyrinth of the Continuum can scarcely be escaped in any other way” (to Henry 
Oldenburg, 11 March 1671; A II, I 90); “[the TMA] examines the reasons for 
abstract motions, and unfolds the wonderful nature of the continuum... so that as 
one endeavour is greater than another, so is one point greater than another, in 
which way I not only escaped from that whole labyrinth of the continuum, but also 
saved the Cavalierian geometry of indivisibles” (to Lambert van Velthuysen, May 
1671; A II, I , 97). 
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“(13) One point of a moving body in the time of its endeavour, i.e. in 
a time smaller than can be given, is in several places or points of 
space, that is, it will fill a part of space greater than itself, or greater 
than it fills when it is at rest, or moving more slowly, or 
endeavouring in only one direction; yet this part of space is still 
unassignable, or consists in a point, although the ratio of a point of a 
body (or of the point it fills when at rest) to the point of space it fills 
when moving, is as an angle of contact to a rectilinear angle, or as a 
point to a line” (A VI, II, 265; LLC, 340-41). 
 
 It seems very probable that Leibniz was inspired to construct 
this theory by Hobbes’s attempt to provide a sound philosophical 
foundation for Cavalieri’s Method of Indivisibles13. For not only 
does Leibniz interpret Cavalieri’s indivisibles similarly to Hobbes, 
but two other features of Hobbes’s analysis are also to be found in 
his own: (i) a proposed redefinition of ‘point’ intended to replace 
Euclid’s, which is considered defective; (ii) a justification of these 
arbitrarily small points in terms of “horn angles” (a horn angle is the 
angle of contact between a straight line and a curve, usually the arc 
of a circle). 
 Leibniz’s theory is by no means just a version of Hobbes’s, 
however. In the first place, he rejects Hobbes’s definition of a point 
as a line “whose length is not considered” (more precisely, a body 
whose length, breadth and depth are not considered)14, opting instead 
for an interpretation of points as actually infinitely small, in 
opposition to Hobbes’s finitism. He interprets the horn angles as 
support for this position, in that one horn angle may be bigger than 
another while both are less than any rectilinear angle that can be 
assigned.15 Interesting too in this connection is Leibniz’s passing 
                                             
13 See Jesseph, Foundations, for a detailed treatment of Leibniz’s debt to Hobbes. 
For a succinct account of Cavalieri’s method, see K. Andersen: “Cavalieri’s 
Method of Indivisibles”, in Archive for History of Exact Sciences 31, 4, 1985, pp. 
291-367.  
14 All Hobbes’s mathematical objects are bodies: a surface is a body whose depth 
is not considered, a line a surface whose breadth is not considered. See T. Hobbes: 
De Corpore, VIII, 12; excerpts in LLC, 559. 
15 That Leibniz was not mistaken in taking horn angles for actual infinitesimals is 
shown by an interesting article by S. K. Thomason: “Euclidean Infinitesimals”, in: 
Pacific Philosophical Quarterly 63, 168-185. Thomason shows that one could 
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mention of the Scholastic Theory of Signs in fundamentum 18. This 
appears to have emboldened him in his idea that points, though 
unextended, may nevertheless have a structure or situation of 
(unextended) parts. That is, the parts will have a situation even 
though they are “indistant” or “lack distance” from one another.  
 The importance of this property of points is that it enables 
Leibniz to evade some of the traditional objections to composing the 
continuum from points. In his Parmenides (138a) Plato had argued 
that a thing without parts cannot have a situation, and Aristotle had 
built on this argument in his Physics (231b), where he argued that 
indivisibles, being partless, cannot be joined. Similarly, Sextus 
Empiricus argued that if a line were composed of points one would 
not be able to divide it, since a point has no parts.16 Again, if a line 
were composed of partless points or minima, there would be as many 
points in the diagonal as in the side of a given square, since they can 
be put into a 1-1 correspondence; but then there will be none in the 
line that is their difference, contrary to the initial supposition that 
every line is composed of points. 
 Leibniz addresses both of these objections by acknowledging 
that they apply to true minima, or partless points, in contradistinction 
to the points he has defined: 
 
“(3) There is no minimum in space or body, that is, there is nothing 
which has no magnitude or part. For such a thing has no situation, 
since whatever is situated somewhere can be touched by several 
things simultaneously that are not touching each other, and would 
thus have several faces; nor can a minimum be supposed without it 
following that the whole has as many minima as the part, which 
implies a contradiction” (A VI, II, 264; LLC, 339). 
 
 The first objection does not apply to his own points because 
these are asserted to have parts, albeit unextended ones, and thus a 
situation to one another, even though the parts are indistant. 
Moreover, since magnitude of a quantity is defined as “the 
multiplicity [multitudo] of its parts”, Leibniz’s points (unlike 
                                                                                                       
construct a consistent theory of horn angles within Euclidean geometry, in which 
they would indeed count as non-Archimedean infinitesimals.  
16 Sextus Empiricus, Against the Physicists I, 288. 
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Galileo’s parti non quante) may have a magnitude. Because of this, 
he assumes, they avoid Sextus’s objection too. 
 The theory of magnitude of these points is further clarified by 
(6) and (10); 
 
“(6) The ratio of rest to motion is not that of a point to space, but that 
of nothing to one. 
(10) Endeavour is to motion as a point is to space, i.e. as one to 
infinity, for it is the beginning and end of motion” (A VI, II, 265; 
LLC, 340-41). 
 
 That is, the ratio of a point to a line is 1 to ∞, not 0 to 1. Points 
are not “nothings”, as Wallis termed them17, but are proportional to 
the motions generating them. Take, for instance, a line segment of 
finite magnitude F. This is composed of an infinity of parts, each 
smaller than any assignable, whose magnitude is therefore F/∞. 
Points of different magnitudes are generated by motions at different 
uniform speeds: 
 
“(18) One point is greater than another, one endeavour is greater 
than another, but one instant is equal to another, whence time is 
expounded by a uniform motion in the same line, although its parts 
do not cease in an instant, but are indistant. In this they are like the 
angles at a point, which the Scholastics (whether following Euclid's 
example, I do not know) called signs, as there appear in them things 
that are simultaneous in time, but not simultaneous by nature, since 
one is the cause of the other” (A VI, II, 266; LLC, 341). 
 
 Thus if we take two points p and q that are the beginnings of 
two different lines described in time T by the unequal uniform 
motions (whose speeds are) M and N, they will be proportional to the 
endeavours that are the beginnings of these motions, M/∞ and N/∞, 
resp. Therefore even though they are infinitely small they will be in 
the ratio M:N, i.e. in the same ratio as their generating motions. An 
infinity of points of length MT/∞ will compose a line of length MT, 
just as an infinity of endeavours M/∞ will compose the motion M. 
                                             
17 Again, see Jesseph, Foundations, for an illuminating treatment of the 
relationship of the views of Wallis and Leibniz on the infinitely small. 
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 In this last respect, the composition of a continuous motion M 
from an infinity of endeavours M/∞, the theory contrasts with 
Leibniz’s earlier theory of metaphysically discontinuous motion, as 
he implicitly observes: 
 
“(7) Motion is continuous, i.e. not interrupted by any little intervals 
of rest. For 
(8) once a thing comes to rest, it will always be at rest, unless a new 
cause of motion occurs” (A VI, II, 265; LLC, 340-41). 
 
 Finally, Leibniz justifies the existence of these endeavours or 
beginnings of motions with the following ingenious inversion of 
Zeno’s dichotomy argument18: 
 
“(4) There are indivisibles or unextended things, otherwise neither 
the beginning nor the end of a motion or body is intelligible. This is 
the demonstration: any space, body, motion and time has a beginning 
and an end. Let that whose beginning is sought be represented by the 
line ab, whose midpoint is c, and let the midpoint of ac be d, that of 
ad be e, and so on. Let the beginning be sought to the left, on a's 
side. I say that ac is not the beginning, since dc can be taken away 
from it without destroying the beginning; nor is ad, since ed can be 
taken away, and so on. Therefore nothing is a beginning from which 
something on the right can be taken away. But that from which 
nothing having extension can be taken away is unextended. 
Therefore the beginning of a body, space, motion, or time (namely, a 
point, an endeavour, or an instant) is either nothing, which is absurd, 
or is unextended, which was to be demonstrated” (A VI, II, 264; 
LLC, 339). 
 
 In calling this an inversion of Zeno’s dichotomy argument I 
mean that, while Zeno argued for the unreality of motion on the 
grounds that  the motion could never begin, Leibniz takes the reality 

                                             
18 For a detailed analysis of the this inversion of Zeno’s dichotomy and its place in 
Leibniz’s thought, see R. T. W. Arthur: “Leibniz’s Inversion of Zeno’s 
Dichotomy,” forthcoming in: Corporeal Substances and the Labyrinth of the 
Continuum in Leibniz, eds. M. Mugnai and E. Pasini. [=Studia Leibnitiana, 
Supplementa  ]. 
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of motion for granted and uses the dichotomy argument to argue that 
the beginning must be unextended. Indeed, since this argument is 
applicable to any subinterval of the motion, it entails the stronger 
conclusion that any subinterval whatever must contain an unextended 
beginning. Given the proportionality of points to endeavours, this 
argument therefore provides a powerful justification for Leibniz’s 
notion of extensionless points. 
 There is, however, a problem of consistency with this theory 
that has been pointed out by other commentators. For the assumption 
that a line is composed of points —even points like Leibniz’s that 
have parts and magnitude, but no extension— is just as susceptible to 
Sextus Empiricus’s objection as the assumption of true minima 
which Leibniz had rejected in the TMA. He appears to have realized 
this late in 167119, but the argument for it is given explicitly in a 
paper written in the winter of 1672/3 (De minimo et maximo)20, 
where he now identifies indivisibles with minima and rejects both. 
His version there of Sextus’ argument (which I have elsewhere 
dubbed “Leibniz’s Diagonal Argument”) runs as follows:  
 
“There is no minimum, ôr indivisible, in space and body.  
For if there is an indivisible in space or body, there will also be one 
in the line ab. If there is one in the line ab, there will be indivisibles 
in it everywhere. Moreover, every indivisible point can be 
understood as the indivisible boundary of a line. So let us understand 
infinitely many lines, parallel to each other and perpendicular to ab, 

                                             
19 In a letter to Arnauld dated November, 1671, Leibniz wrote: “there are no 
indivisibles, but there are unextended things” (A II, I, 172). P. Beeley takes this to 
have been Leibniz’s position all along: see his Kontinuität und Mechanismus, esp. 
pp. 258-9. For criticisms, see O. B. Bassler: “The Leibnizian Continuum in 1671”, 
in: Studia Leibnitiana 30 (1998), no. 1, pp. 1-23; p. 19, and R. T. W. Arthur: “The 
Enigma of Leibniz’s Atomism”, in: Oxford Studies in Early Modern Philosophy, I 
(2003), D. Garber and S. Nadler ed.s, pp. 183-227; 196. 
20 “De minimo et maximo. De corporibus et mentibus (On Minimum and 
Maximum; on Bodies and Minds): A VI, III, N5; LLC, 8-19. 
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to be drawn from ab to cd. Now no point can be assigned in the 
transverse line or diagonal ad which does not fall on one of the 
infinitely many parallel lines extending perpendicularly from ab. For, 
if this is possible, let there exist some such point g: then a straight 
line gh may certainly be understood to be drawn from it 
perpendicular to ab. But this line gh must necessarily be one of all 
the parallels extending perpendicularly from ab. Therefore the point 
g falls—i.e. any assignable point will fall—on one of these lines. 
Moreover, the same point cannot fall on several parallel lines, nor 
can one parallel fall on several points. Therefore the line ad will have 
as many indivisible points as there are parallel lines extending from 
ab, i.e. as many as there are indivisible points in the line ab. 
Therefore there are as many indivisible points in ad as in ab. Let us 
assume in ad a line ai equal to ab. Now since there are as many 
points in ai as in ab (since they are equal), and as many in ab as in 
ad, as has been shown, there will be as many indivisible points in ai 
as in ad. Therefore there will be no points in the difference between 
ai and ad, namely in id, which is absurd” (A VI, III, 97; LLC, 8-11). 
 
 From a modern perspective this argument is apt to seem 
fallacious: it looks as though Leibniz has conflated the measure of 
the set of points in a line with the number of points contained in it. 
Just because there is the same number of indivisible points in ai as in 
ad, it does not follow that their difference id has zero measure. But 
this presupposes a rather anachronistic point of view for appreciating 
this argument, for Leibniz’s whole theory precisely depends on a 
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notion of point as possessing a non-zero magnitude: this is what 
enables Leibniz to claim that one point may have a ratio to another. 
Also, prior to modern measure theory there was no way to compose a 
magnitude from points which lack magnitude21. Adopting a 
perspective that is more historically sensitive, one can treat Leibniz’s 
argument on its own terms as follows. It can be seen to depend on 
four assumptions: (i) that there are points everywhere in a given line, 
each of which can be considered to be the beginning of any other 
line, and; (ii) that the given line can be regarded as composed of 
these points as parts; (iii) that all the points of any given line are of 
equal magnitude; and (iv) that the whole is greater than the part. 
Assumption (i) allows the establishment of a 1-1 correspondence 
between the points of any two lines, by connecting them with parallel 
straight lines. The trouble is that by (iii) each of the points on any 
one of the parallels connecting the lines ab and ad will be of equal 
magnitude, so that by (ii) the magnitudes of ab and ad will be equal. 
By a similar argument the magnitudes of ab and ai will be equal. 
Thus the magnitude of ad, the whole, will equal the magnitude of ai, 
the part, contradicting (iv). 
 Leibniz’s solution is to give up his identification of the actually 
infinitely small with unextended points or indivisibles. That is, if the 
infinitely small “beginnings” in a line are taken to be indivisible in 
the sense of having zero extension, then there is nothing to prevent 
such points being taken as the endpoints of other lines, as in 
assumption (i). But this enables the Diagonal Paradox, as explained 
above. Consequently the idea of indivisibles or points of zero 
extension composing an extended line must be dropped. Leibniz’s 
attempt to distinguish minima (having zero magnitude) from 
indivisibles (having zero extension) does not succeed. 
 Another way of expressing this point is in terms of dimensional 
homogeneity22. In characterizing his points as indivisible beginnings, 

                                             
21 Cf. Spinoza, from his Letter on the Infinite: “For it is the same thing for a 
duration to be composed out of moments as for a number to arise solely by the 
addition of noughts (Idem enim est durationem ex momentis, quam numerum ex 
sola nullitatum additione oriri”; quoted from Leibniz’s version, A VI, III, 280; 
LLC, 110-11). 
22 This point about dimensional homogeneity has been lucidly explained by Bassler 
in “The Leibnizian Continuum in 1671”. 
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Leibniz was trying to justify the idea of a point as a rudiment or 
beginning from which the line could be considered as generated. But 
the diagonal paradox throws into question the whole idea of the 
composition of the line from unextended points, and thus the 
composition of any continuum of dimension d from elements of 
dimension d – 1. The saving of Cavalieri requires the “points” to 
have an infinitely small extension, rather than to be unextended 
indivisibles. If points are considered as truly dimensionless or 
unextended, then the Diagonal Paradox shows that they cannot 
compose a line: their ratio to a finite line would be 0 to 1, not 1 to ∞, 
as intended. This realization leads Leibniz to modify his theory 
accordingly. 
 

Phase 3: infinitely small lines proportional to endeavours 
   (iii)   a continuous line is composed of infinitely many infinitesimal 

lines, each of which is divisible and proportional to a 
generating motion at an instant (conatus) (1672-75). 

In De minimo et maximo,  as we have seen, Leibniz uses the 
Diagonal Argument to reject indivisibles. But immediately 
afterwards he reaffirms the existence of infinitely small actuals or 
beginnings of motion with a reiteration of the Inverted Zeno 
argument23:  

 
 “There are some things in the continuum that are infinitely small, 
that is, infinitely smaller than any given sensible thing.  
 

 ,  ,  ,    ,        , 
a e d   c       b  

 
First I show this for the case of space as follows. Let there be a line 
ab, to be traversed by some motion. Since some beginning of motion 
is intelligible in that line, so also will be a beginning of the line 
traversed by this beginning of motion. Let this beginning of the line 
be ac. But it is evident that dc can be cut off from it without cutting 
                                             
23 Although Leibniz appears to have already distinguished his points from 
indivisibles in his letter to Arnauld of 1671 (see note 19 above), here he goes 
further, characterizing the infinitely small not as unextended points, but as 
infinitely small lines. 
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off the beginning. And if ad is believed to be the beginning, from it 
again ed can be cut off without cutting off the beginning, and so on 
to infinity. For even if my hand is unable and my soul unwilling to 
pursue the division to infinity, it can nevertheless in general be 
understood at once that everything that can be cut off without cutting 
off the beginning does not involve the beginning. And since parts can 
be cut off to infinity (for the continuum, as others have 
demonstrated, is divisible to infinity), it follows that the beginning of 
the line, i.e. that which is traversed in the beginning of the motion, is 
infinitely small” (A VI, III, 98-99; LLC, 12-13). 
 
 This argument, as before, depends on an assumption (in 
contradiction to Zeno) that the phenomenon of motion is real, and (in 
agreement with Zeno) that, in order for there to be a real motion, it 
must have an intelligible beginning. From this, however, a 
contradiction is derivable, if infinitesimals are thought of as 
preexisting parts of space and body: 
  
“I shall show that if there is some space in the nature of things 
distinct from body, and if there is some body distinct from motion, 
then indivisibles must be admitted. But this is absurd, and contrary to 
what has been demonstrated. Suppose we understand a point as an 
infinitely small line, there being one such line greater than others, 
and this line is thought of as designated in a space or body; and 
suppose we seek the beginning of some body or of a certain space, 
i.e. its first part; and suppose also that anything from which we may 
cut off something without cutting off the beginning cannot be 
regarded as the beginning: with all this supposed, we shall 
necessarily arrive at indivisibles in space and body. For that line, 
however infinitely small it is, will not be the true beginning of body, 
since something can still be cut off from it, namely the difference 
between it and another infinitely small line that is still smaller; nor 
will this cease until it reaches a thing lacking a part, or one smaller 
than which cannot be imagined, which kind of thing has been shown 
to be impossible.” (A VI, III, 99-100; LLC, 14-17). 
 
 This is a curious line of reasoning. Leibniz argues that if the 
infinitely small elements of a line are unextended or indivisible, as he 
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had concluded in the TMA, then they would be susceptible to 
Sextus’s refutation. If, on the other hand, they are regarded as 
infinitely small lines, then, so long as they are extended, they will not 
be  true beginnings as required by the Inverted Zeno argument. Here 
he finds a third option. This is to regard them as infinitely small lines 
modulo a particular generating motion: infinitely small lines are 
contingent on, and must be defined in terms of, the infinitely small 
beginnings of motion or conatûs (ôr endeavour).  
 
“But if a body is understood as that which moves, then its beginning 
will be defined as an infinitely small line. For even if there exists 
another line smaller than it, the beginning of its motion can 
nonetheless be taken to be simply something that is greater than the 
beginning of some other slower motion. But the beginning of a body 
we define as the beginning of motion itself, i.e. endeavour, since 
otherwise the beginning of the body would turn out to be an 
indivisible” (A VI, III,100; LLC, 16-17). 
 

Figures 
 
(i)     (ii) 
      a             a 
           (i) 
       (i)        (2b)     (d) 
  (1b)   i       (2b)           (d) 
 
  (1b)          (2b)             (d) 
 
      b       d         b     d 
 
Regula (bi)     Regula (bd) 

   θ       

 
 We can make sense of this as follows. Infinitely small lines are 
intelligible only in terms of their proportionality to the endeavours of 
corresponding generating motions. Thus if the infinitesimals (1b) and 
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(i) in the lines ab and ai are generated by the motion of a regula24 
parallel to bi moving from a to bi, the infinitesimals in ab will be 
equal to those in ai; but they will be of a different magnitude than the 
infinitesimals (2b) in ab generated by the motion of a regula parallel 
to bd moving from a to bd. In fact, if the regula (bi) moves with 
velocity v for a time t to reach bi, and the second regula reaches bd 
in the same time, the infinitesimals (1b) and (i) will be of magnitude 
(vt/∞) and the infinitesimals (2b) and (d) of magnitude (vtsecθ/∞), 
since the latter will be generated by a motion whose effective 
velocity is vsecθ. But what this means is that infinitesimals exist as 
elements or actual parts of a line only relative to a given generating 
motion. But the same real line cannot really be composed of 
infinitesimals corresponding to different motions, as ab is in figures 
(i) and (ii). Yet the infinitesimals of lines from the two distinct 
motions can be compared. 
 Now the interpretation of Cavalierian points as indefinitely 
small lines is also in keeping with the interpretation Pascal gives 
them in his Lettres de A. Dettonville, contenant quelques-unes de ses 
inventions de géometrie (1659).25 Thus when Leibniz reads the 
Lettres on Huygens’ suggestion in the first half of 1673, he is already 
in a state of total receptivity to Pascal’s reading. Actually, however, 
as Enrico Pasini has perceptively observed, Pascal does not interpret 
Cavalieri’s indivisibles directly as infinitely small lines. Rather, he 
interprets indivisible points as marking the divisions of a line into 
indefinitely many such infinitesimal lines, and indivisible lines as 
dividing a plane into indefinitely small rectangles or parts. On this 
reading, the parts are in each case homogeneous with the continuum 
they compose, rather than being indivisible elements of one fewer 
dimensions. Pascal had written 
 
“Let there be understood to be an indefinite multiplicity of planes 
between them, parallel and equally distant (this means that the 
distance from the first to the second is equal to the distance from the 
second to the third, and to that from the third to the fourth, and so 
on), which planes cut all the proposed magnitudes into an indefinite 
                                             
24 For the importance of the regula to Cavalieri’s method, see Andersen: 
“Cavalieri’s Method”, pp. 299ff. 
25 This is argued in detail by E. Pasini: Il reale e l’immaginario, esp. pp. 50-59. 
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multiplicity of parts, each one comprised between any two of these 
neighbouring planes.” (Pascal, Lettres de A. Dettonville, 7-8) 
 
 Pasini comments: “Such parts are, in distinction from the usual 
version of the method of indivisibles, comprised between the lines 
that individuate them, and not identical with them. They are therefore 
extended, and for this reason dimensionally homogeneous with 
everything of which they are a part”26. This contrasts, for instance, 
with John Wallis (whom Leibniz had also just read at Huygens’ 
suggestion), who had regarded Cavalieri’s planes as directly 
composed from lines, which he allowed might be equated with 
parallelograms27. Thus Wallis’s method fudges over a dimensional 
difference, and cannot be said to be either clear or rigorous. On 
Pascal’s interpretation, on the other hand, as Pasini explains, 
whenever a surface is covered with lines that divide the area, they are 
understood to be distributed over the infinitely small parts of the 
straight line taken as the base of the figure, each of which functions 
as a unity, so as to generate equal rectangles of indefinitely small 
size:  
 
“When one speaks of the sum of an indefinite multiplicity of lines one 
always has in view a certain line by the equal and indefinite parts of 
which they are multiplied. But when this line (by the equal portions 
of which they are understood to be multiplied) is not expressed, it is 
necessary to understand that it is that by whose division they 
originate [or by which they are multiplied].” (Pascal, Lettres de A. 
Dettonville, 11; Pasini, p. 53) 
 
 This neatly resolves the difficulty of dimensional homogeneity. 
Each line (or ordinate) is multiplied by an infinitesimal segment of 
the line which functions as a unity (since the ratio of such successive 
                                             
26 “Tali parti sono, a differenza che nella abituale versione del metodo degli 
indivisibili, comprese tra linee che le individuano e non identiche con esse. Sono 
dunque estese e percìo omogenee per dimensione con il tutto di cui sono parte...” 
Pasini, pp. 51-52, my translation. 
27 In his Treatise on Conic Sections, 1655, Prop. 1, Wallis had written of 
Cavalieri’s planes as “composed of infinite parallel lines, or rather (as you may 
prefer) of infinite parallelograms of equal height, the height of each of which is 
therefore 1/∞ of the height of the whole”. Cf. Pasini, pp. 45ff. 
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equal parts is one), so that the area of the figure is composed from an 
indefinite multiplicity of indefinitely small areas. On this Leibniz 
follows Pascal: 
 
“[I]n the Geometry of Indivisibles, when it is said that the sum of 
lines equals a certain surface or that the sum of surfaces equals a 
given solid, it is necessary for there to be given a unity, that is, for 
there to be a certain line to which they are understood to be applied, 
ôr into one of whose infinitely many equal parts, which represents 
the unity, they are multiplied, so that from them arise infinitely many 
surfaces, each of which is, however, smaller than any given surface” 
(Leibniz, Lh 35 15 1, f. 20; Pasini, p. 53). 
 
 Leibniz notes: “the indivisibles [of Cavalieri’s Geometria] must 
be defined as infinitely small, ôr that whose ratio to a sensible 
quantity is infinity.”28 Similarly, in On Minimum and Maximum he 
had defined the “infinitely small things” in the continuum as “things 
infinitely smaller than any given sensible thing”29.  
 A full account of this stage of Leibniz’s thinking on 
infinitesimals would include a detailed description of his method of 
sums and differences. As is well known, he generalized results 
obtained with difference series involving discrete finite differences to 
the case of continuous geometrical lines, which were regarded as 
composed of an infinity of infinitely small differences, or differentia. 
Thus given a series A, such as that of the reciprocal natural numbers  
1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 ..., and a second series B whose terms 
are the differences of consecutive terms of the original series, here 1/2 
+ 1/6 + 1/12 + 1/20 + 1/30 + ..., the sum of the B series of differences is 
the difference between the first and last terms of the original A 
series. Generalizing to infinitely small differences, the area under a 
                                             
28 De admirandis arithmeticae infinitorum paradoxa (On the Wonderful Paradox 
of the Arithmetic of the Infinite); Lh 35 15 1, f. 20v; first half of 1673; translated 
from the passage quoted in Pasini, p. 54. 
29 “Infinite parva, seu infinities minora, quovis sensibili dato”; A VI, III, 98; LLC, 
12-13. The talk of “a more profound contemplation” also evokes Leibniz’s boast in 
De minimo that “This wonderful method of demonstration, unnoticed by anyone 
else, became clear to me from a more intimate knowledge of indivisibles (Mira et a 
nemine observata haec demonstrandi ratio mihi patuit, ex interiore indivisibilium 
cognitione)”; A VI, III, 99; LLC, 14-15. 

 



Actual Infinitesimals in Leibniz’s Early Thought 25 

curve B(x), consisting in the sum ≡ of the infinitesimal elements 
B(x)dx from x = a to x = b, could be obtained analogously by taking 
the difference between the values of a second curve C(x), C(b) - 
C(a), where the curve C(x) is constructed so that value of B at x is the 
slope of C at x, {C(x + dx) – C(x)}/dx.  
 Different “progressions of the variables” would correspond to 
which infinitesimal was regarded as being held constant, acting as 
the “unit” multiplied into the ordinates to preserve their dimensional 
homogeneity. Thus, in contrast to Wallis’s “arithmetic of the 
infinite”, an area would not be composed of an infinity of lines, but 
of an infinity of infinitesimal rectangles, the ordinates B(x) of the 
derivative curve “applied to” (i.e. multiplied into) dx. But the 
elements B(x)dx are not elements in an absolute sense, since one 
could equally have taken the dy’s as units.  
 Leibniz had thus come a long way from Cavalieri. But he 
retained the connection at the foundation of Cavalieri’s method 
between the infinitesimals and the motions generating the figures. As 
he wrote to Malebranche in 1675, “it is necessary to maintain that the 
parts of the continuum exist only insofar as they are effectively 
determined by matter or motion”30. The relativity of the composition 
of the continuum from infinitesimal parts to the progression of the 
variables selected is still understood in terms of infinitesimals being 
defined by the endeavours of the corresponding generating motion. 
 By Spring of 1676, however, this situation has changed 
dramatically. In a paper written in early April, he refers to a “very 
recent demonstration” that endeavours are not, after all, infinitely 
small motions: 
 
“But on the other hand there is the great difficulty that endeavours 
are along tangents, so that motions will be too. For I have 
demonstrated elsewhere very recently that endeavours are true 
motions, not infinitely small ones” (A VI, III, 492; LLC, 75)31. 
 
 The significance of this change of view cannot be understated. 
For it spells the demise of the actualist interpretation of infinitesimals 
                                             
30 Letter to Malebranche, March-April 1675 (?): G I, 322; Malebranche, Oeuvres, 
97 
31 Exactly what demonstration Leibniz is referring to here is unclear. 
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of Leibniz’s third theory. In a series of papers he strives to work out 
the significance of this for understanding the continuity of motion. 
But regarding infinitesimals themselves, from now on he regards 
them as useful fictions, without status as actual parts of the 
continuum. 
 His mathematical investigations, it is true, had already been 
pulling him in this direction. The regarding of the infinite and the 
infinitely small as fictions would seem to be concomitant on his 
rejection of infinite number already in 1672/73. For since the 
infinitely small quantities of De minima are inverses of infinitely 
large ones, as explained above, a rejection of infinite number and 
infinite wholes would seem to require some such interpretation of the 
infinitely small. And in October 1674, Leibniz explicitly describes 
infinite wholes as fictions (A VII, III, 468). 
 Pulling against this, on the other hand, were a variety of 
considerations concerning matter and substance. One of these was 
his belief that the unequal flow of fluid matter around a solid in a 
plenum would divide matter into a “multiplicity of infinitely many 
points [infinitorum punctorum] or bodies smaller than any that can be 
assigned” (A VI, III, 473; LLC, 47), that is, actually infinitely small 
parts of matter. To prevent such a dissolution of matter into a 
“powder of points”, as he later called it, there must be atoms, 
“indissectible bodies”, infinite multiplicities of points “held together 
by motion or a mind of some sort” (ibid.).32 Mind here is conceived 
as an organizing principle analogous to the “substantial forms” of the 
Scholastics.33 Thus as late as February 1676 Leibniz was still 
vacillating over whether “there is something infinitely small, though 
not indivisible” (“On the Secrets of the Sublime”, A VI, III, 474; 
LLC, 49): “Since we see that the hypothesis of infinites and the 
infinitely small [hypothesin infinitorum et infinite parvorum] is 
splendidly consistent and successful,” he reasons, “this increases the 
likelihood that they really exist” (A VI, III, 475; LLC, 51). 

                                             
32 Leibniz’s motivations, biological and theological, for believing in atoms, are 
explored in R. T. W. Arthur: “The Enigma of Leibniz’s Atomism”, in: Oxford 
Studies in Early Modern Philosophy, Volume 1 (2003), 183-227. 
33 See also R. T. W. Arthur: “Animal Generation and Substance in Sennert and 
Leibniz”, in: The Problem of Animal Generation in Modern Philosophy, ed. Justin 
Smith (2005), pp. 304-359. 
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 In April 1676, however, Leibniz comes to see that the infinite 
division of matter can be interpreted syncategorematically: “Being 
divided without end is different from being divided into minima, in 
that [in such an unending division] there will be no last part, just as 
in an unbounded line there is no last point” (A VI, III, 513; LLC, 
119). In “Infinite Numbers” of April 10th any entity such as a line 
smaller than any assignable, or the angle between two such lines, is 
firmly characterized as “fictitious” (A VI, III, 498-99; LLC, 89). 
There are no such things in rerum natura, even though they express 
“real truths”: “these fictitious entities are excellent abbreviations of 
propositions, and are for this reason extremely useful” (A VI, III, 
499; LLC, 89-91). But if the unassignable is a fiction, then perfectly 
fluid matter consisting in unassignable points must be impossible, 
and so must atoms composed of such points. This is the view we find 
Leibniz adopting in the dialogue Pacidius Philalethi of November 
(NS) of the same year, and the arguments given there against the 
reality of atoms will be repeated for the rest of his intellectual career. 
 

Conclusion 
 
 In this paper I have tried to document the changes in Leibniz’s 
understanding of the infinitely small  in his early work. What we find 
there is surprisingly rich and varied. Leibniz appears to have 
entertained in succession several significantly different theories of 
the infinitely small, from the one implicit in his original conception 
of continuous creation and motion in 1670 through to the 
interpretation of infinitesimals as fictions in 1676. In between he had 
developed a continuist and non-Archimedean theory, based on 
Hobbes’s endeavours and Cavalieri’s indivisibles, involving points 
lacking extension, and then a second interpretation of Cavalieri that 
made the infinitely small extended and homogeneous to the 
continuum they compose, but made their existence relative to a given 
motion. Even had he not developed the differential calculus, these 
theories of the infinitely small would hold great interest, and not only 
for their impact on the development of Leibniz’s thought on natural 
philosophy and its metaphysical foundations. It is remarkable that the 
same thinker who provided one of the most subtle and convincing 
interpretations of infinitesimals as fictions should have first 
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articulated three accounts of infinitesimals as actuals that closely 
anticipate features of several modern theories.34

                                             
34 It is a pleasure to acknowledge Mark Kulstad for his diligence in arranging the 
Young Leibniz conference at which this paper was presented, and I thank those in 
attendance for their helpful comments. I am also indebted also to my former 
institution, Middlebury College, for the sabbatical leave during which an earlier 
draft of this paper was written. 
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