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ABSTRACT

In contrast with some recent theories of infinitesimals as non-Archimedean entities, Leibniz’s mature

interpretation was fully in accord with the Archimedean Axiom: infinitesimals are fictions, whose

treatment as entities incomparably smaller than finite quantities is justifiable wholly in terms of

variable finite quantities that can be taken as small as desired, i.e. syncategorematically. In this paper

I explain this  syncategorematic interpretation, and how Leibniz used it to justify the calculus. I then

compare it with the approach of Smooth Infinitesimal Analysis (SIA), as propounded by John Bell.

Despite many parallels between SIA and Leibniz’s approach —the non-punctiform nature of

infinitesimals, their acting as parts of the continuum, the dependence on variables (as opposed to the

static quantities of both Standard and Non-standard Analysis), the resolution of curves into infinite-

sided polygons, and the finessing of a commitment to the existence of infinitesimals— I find some

salient differences, especially with regard to higher-order infinitesimals. These differences are

illustrated by a consideration of how each approach might be applied to Newton’s Proposition 6 of the

Principia, and the derivation from it of the v2/r law for the centripetal force on a body orbiting around

a centre of force. It is found that while Leibniz’s syncategorematic approach is adequate to ground a

Leibnizian version of the v2/r law for the “solicitation” ddr experienced by the orbiting body, there is

no corresponding possibility for a derivation of the law by nilsquare infinitesimals; and while SIA can

allow for second order differentials if nilcube infinitesimals are assumed, difficulties remain concerning

the compatibility of nilcube infinitesimals with the principles of SIA, and in any case render the type of

infinitesimal analysis adopted dependent on its applicability to the problem at hand.
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1. INTRODUCTION

Leibniz’s doctrine of the fictional nature of infinitesimals has been much misunderstood. It

has been construed as a late defensive parry, an attempt to defend the success of his

infinitesimal calculus—understood as implicitly committed to the existence of infinitesimals as

actually infinitely small entities—in the face of criticisms of the adequacy of its foundations.

It has also been read as being at odds with other defences of the calculus Leibniz gave on

explicitly Archimedean foundations. I take the position here (following Ishiguro 1990) that the

idea that Leibniz was committed to infinitesimals as actually infinitely small entities is a

misreading: his mature interpretation of the calculus was fully in accord with the

Archimedean Axiom. Leibniz’s interpretation is (to use the medieval term) syncategorematic:

Infinitesimals are fictions in the sense that the terms designating them can be treated as if

they refer to entities incomparably smaller than finite quantities, but really stand for variable

finite quantities that can be taken as small as desired. As I have argued elsewhere (2005b),

this interpretation is no late stratagem, but in place already by 1676.

In section 2 I present this interpretation by tracing its development from Leibniz’s

early work on infinite series and quadratures to his unpublished attempt in 1701 in the essay

“Cum prodiisset” to provide a systematic foundation for his calculus. We shall see that as

early as 1676 Leibniz had succeeded in providing a rigorous foundation for Riemannian

integration, based on the Archimedean Axiom. The appeal to this axiom, generalized by

Leibniz into his Law of Continuity, undergirds his interpretation of infinitesimals as fictions

that can nevertheless be used in calculations, and forms the basis for his foundation for

differentials in “Cum prodiisset”.

I then turn to a comparison of Leibniz’s approach with the recent theory of

infinitesimals championed by John Bell, Smooth Infinitesimal Analysis (SIA), of which I give a
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brief synopsis in section 3. As we shall see, this has many points in common with Leibniz’s

approach: the non-punctiform nature of infinitesimals, their acting as parts of the continuum,

the dependence on variables (as opposed to the static quantities of both Standard and Non-

standard Analysis), the resolution of curves into infinite-sided polygons, and the finessing of a

commitment to the existence of infinitesimals. Nevertheless, there are also crucial

differences. These are brought into relief in section 4, by a consideration of how each

approach might be applied to Newton’s Proposition 6 of the Principia, and the derivation from

it of the v2/r law for the centripetal force on a body orbiting around a centre of force. It is

found that while Leibniz’s syncategorematic approach is adequate to ground a Leibnizian

version of the v2/r law for the “solicitation” ddr experienced by the orbiting body, there is no

corresponding possibility for a derivation of the law by nilsquare infinitesimals; and while SIA

can allow for second order differentials if nilcube infinitesimals are assumed, difficulties

remain concerning the compatibility of nilcube infinitesimals with the principles of SIA, and in

any case render the type of infinitesimal analysis adopted dependent on its applicability to

the problem at hand.

2. LEIBNIZ’S FOUNDATION FOR THE INFINITESIMAL CALCULUS

As Leibniz explains in his mature work, the infinite should not be understood to refer to

an actual entity that is greater than any finite one of the same kind, i.e. categorematically,

but rather syncategorematically: in certain well-defined circumstances infinite terms may be

used as if they refer to entities incomparably larger than finite quantities, but really stand for

variable finite quantities that can be taken as large as desired. Leibniz’s interpretation of

infinitesimals as fictions is intimately linked with his doctrine of the infinite. Just as the

infinite is not an actually existing whole made up of finite parts, so infinitesimals are not
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actually existing parts which can be composed into a finite whole. As Leibniz explained to Des

Bosses at the beginning of their correspondence,

Philosophically speaking, I hold that there are no more infinitely small magnitudes than

infinitely large ones, or that there are no more infinitesimals than infinituples. For I hold

both to be fictions of the mind due to an abbreviated manner of speaking, fitting for

calculation, as are also imaginary roots in algebra. Meanwhile I have demonstrated that

these expressions have a great utility for abbreviating thought and thus for invention,

and cannot lead to error, since it suffices to substitute for the infinitely small something

as small as one wishes, so that the error is smaller than any given, whence it follows that

there can be no error. (March 1706; G I 305)

The roots of this syncategorematic interpretation, like the roots of the calculus itself, can be

discerned in Leibniz’s earliest work on quadratures and infinite series, specifically in his work

on the hyperbola. Already in 1672 in his reading notes on Galileo Galilei’s Two New Sciences

(Discorsi), Leibniz had formulated the basis of his later position. There he notes Galileo’s

demonstration that there are as many square roots of (natural) numbers as there are natural

numbers, and that “therefore there are as many squares as numbers; which is impossible”,1

and then comments:

Hence it follows either that in the infinite the whole is not greater than the part, which

is the opinion of Galileo and Gregory of St. Vincent,2 and which I cannot accept; or that

infinity itself is nothing, i.e. that it is not one and not a whole. Or perhaps we should say:

when distinguishing between infinities, the most infinite, i.e. all the numbers, is
                                               
1 Relevant extracts from Galileo’s Discorsi may be found in (Leibniz 2001, pp. 352-357).
2 At EN 78, Salviati says: “for I believe that these attributes of greatness, smallness and equality do not
befit infinities, of which one cannot be said to be greater than, smaller than, or equal to another”; and
again at the end of the ensuing proof: “in final conclusion, the attributes of equal, greater, and less
have no place in infinities, but only in bounded quantities” (EN 79; Leibniz 2001, pp. 355-56). For
Gregory of St Vincent's opinion, the Akademie editors refer us to his Opus Geometricum, 1647, lib. 8,
pr. 1, theorema, p. 870 ff.
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something that implies a contradiction, for if it were a whole it could be understood as

made up of all the numbers continuing to infinity, and would be much greater than all

the numbers, that is, greater than the greatest number. Or perhaps we should say that

one ought not to say anything about the infinite, as a whole, except when there is a

demonstration of it. (Fall 1672(?); A VI, iii, 168; LLC, 8-9)

Two features of this commentary are seminal for Leibniz’s later thought: the upholding of the

part-whole axiom for the infinite, with the entailed denial that the infinite is a whole; and

the more nuanced claim that one cannot assert a property of the infinite except insofar as

one has an independent demonstration of it.

The first claim is graphically illustrated by a calculation Leibniz performs in 1674, in

which we are confronted with an infinite whole which has a direct visual representation: the

area under a hyperbola between 0 and 1. By this time, Leibniz has made great strides in

summing infinite series, and applying the results to calculate “quadratures”, the areas under

curves. In this example, he uses his knowledge to demonstrate the inapplicability of the part-

whole axiom to infinite quantities.

A  C  F
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In the above diagram, which Leibniz has deliberately drawn symmetrically, MGBEM is a

hyperbola, and the variable abscissa DE = x (dashed line) is taken to vary between CB (taken

as the x-axis) and (the horizontal) ACF... Leibniz calculates the area by “applying” DE to (the

vertical) AC (= 1) as a base. He expands DE as (1 – y)–1 = 1 + y + y2 + y3 + ..., and gets the

result ACBEM =  1 +  1/2 + 1/3 + 1/4 + 1/5 + …    In modern terms, Leibniz is evaluating the area

under the curve x = (1 – y)–1 by calculating the definite integral ∫0
1 x dy using a series

expansion, to obtain

ACBEM = ∫0
1(1 – y)–1 dy = [y + y2/2 + y3/3 + y4/4... ] 0

1 = 1 +  1/2 + 1/3 + 1/4 + 1/5 + …

Now Leibniz applies the line HL = (1 + y)–1 = 1 – y + y2 – y3 + ... to the line CF (= 1) to obtain

the finite area  CFGLB. That is,

CFGLB = ∫0
1(1 + y)–1 dy = [y – y2/2 + y3/3 - y4/4... ] 0

1 = 1 -  1/2 + 1/3 – 1/4 + 1/5 + …

But if we now subtract the finite space CFGLB from the infinite space ACBEM, we obtain

 ACBEM – CFGLB  =  (1 -  1) + (1/2 + 1/2) + (1/3 – 1/3) + (1/4 + 1/4) + (1/5 – 1/5) + …

=  1 + 1/2 + 1/3 + 1/4 + 1/5 + …

= ACBEM

Leibniz comments:

Which is pretty amazing (satis mirabilis), and shows that the sum of the series 1, 1/2, 1/3

etc. is infinite, and consequently that the area of the space ACBGM remains the same

even when the finite space CBGF is taken away from it, i.e. that nothing noticeable is

taken away.
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By this argument it is concluded that the infinite is not a whole, but only a fiction; for

otherwise the part would be equal to the whole. (A VII 3, N. 3810, p.468; October 1674)

Of interest here is the close connection between the visualizable infinite whole —the

area under the hyperbola— and its expansion as an infinite series. For the infinite series is

treated as if it were a whole, has a definite sum, and so forth. But in this case the result

leads to a contradiction, given the applicability of the part-whole axiom to the infinite. Even

though this establishes the fictional nature of such infinite wholes, however, this does not

mean that one cannot calculate with them; only, the viability of the resulting calculation is

contingent on the provision of a demonstration.

As an example, we can look at another seminal calculation Leibniz made involving the

hyperbolic series, in the process of answering a challenge set him by Huygens soon after his

arrival in Paris in 1672. This was to determine the sum of the series of the reciprocal

triangular numbers, 1/1, 1/3, 1/6, 1/10, 1/15, ... Leibniz achieved this by noting that the

successive terms are twice those of the differences between successive terms of the

hyperbolic series: 1 = 2(1 - 1/2 ); 1/3 = 2(1/2 - 1/3); 1/6= 2(1/3 - 1/4); and so forth. But the sum of

a series of such difference terms will, because of the cancellation of terms, equal the

difference between the first term of the hyperbolic series and the last. Leibniz immediately

realized the generality of this result, which he enshrined in what I have elsewhere (Arthur

2005a) called his Difference Principle: “the sum of the differences is the difference between

the first term and the last” (A VII, 3, p. 95). As is well known, after generalization to infinite

series, this result will lead Leibniz to his formulation of the Fundamental Theorem of the

Calculus: the sum (integral) of the differentials equals the difference of the sums (the

definite integral evaluated between first and last terms), ∫ Bdx = [A]i
f.  Thus the sum of the

first n terms of the original series,
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∑i=1
n Ti =  1/1 + 1/3 + 1/6 + 1/10 + 1/15 + ... + 2/(n2 + n)

will be twice the difference between the (n + 1)th and the first term of the hyperbolic series:

∑i=1
n+ 1 Hi  =  1/1 + 1/2 + 1/3 + 1/4 + 1/5 +  ... + 1/(n + 1)

That is,

∑i=1
n Ti = 2(H1 – Hn+1) =  2[1 - 1/(n + 1)]

Applying similar reasoning to infinite series, Leibniz calculates that if the sum of the

infinite series S(H) = ∑i=1
∞ Hi = 1/1 + 1/2 + 1/3 + 1/4 + 1/5 +  ..., and half the sum of the reciprocal

triangular numbers 1/2S(T) = 1/2∑i=1
∞ Ti = 1/2 + 1/6 +  1/12 + 1/20 + 1/30 …, then

S(H) - 1/2S(T) = 1/2 + 1/3 + 1/4 + 1/5 +  ... = S(H) – 1

giving

S(T) = 2.

Now one might of course object to this reasoning that, since the hyperbolic series is a

diverging infinite series, Leibniz has effectively cancelled infinities in subtracting its sum S(H)

= ∑i=1
∞ Hi from both sides of the equation above. Clearly this would not be news to Leibniz,

given the argument for the fictionality of the infinite treated as a whole given above. And

indeed, Leibniz is sensitive to the need for rigour here. He acknowledges that this application

of the Difference Principle “ought to be demonstrated to come out in the infinite” (362), and

proceeds to show how this can be done. This is crucial, for in the above reasoning Leibniz has

treated the infinite series as if they are wholes. But this can only be done, according to his

commentary on Galileo, if there is a corresponding demonstration. Moreover, treating the

infinite series as wholes is equivalent to treating them as if they had last terms, since

otherwise the Difference Principle would not be applicable. This gives the all-important

connection between Leibniz’s doctrines of the fictionality of infinite wholes and the



8

fictionality of infinitesimals. A justification of treating the infinite series as wholes is at the

same time a justification of treating them as if they had a last, infinitely small term or

terminatio, 1/∞.

Leibniz’s demonstration proceeds by taking an arbitrarily small yth term as the

terminatio of the series, where “y signifies any number whatever”. For the hyperbolic series

the terminatio of a finite series of terms H(y) will be 1/y, and for the series of reciprocal

triangular numbers ∑T(y), it will be 2/(y2 + y), since the yth triangular number is (y2 + y)/2.

Thus when half the series ∑T(y) is subtracted from ∑H(y), the terminatio of the resulting

series will be 1/y - 1/(y2 + y), or  (y2 + y - y)/ (y3 + y2), or 1/(y + 1). But this is the terminatio

for ∑H(y + 1). Leibniz does not complete this demonstration in these terms, preferring to

proceed to a geometrical depiction in terms of a triangle, but it entails that for arbitrarily

large y, the sum of half the series, 1/2∑T(y), is 1 - 1/(y + 1). So the sum of the reciprocal

triangular numbers, ∑T(y), approaches 2 arbitrarily closely as y is taken arbitrarily large.

Correspondingly, the terminatio of either this series or the hyperbolic series is not actually 0,

but an arbitrarily small number.

This, then, yields the link between Leibniz’s syncategorematic interpretation of the

infinite and his interpretation of infinitesimals as fictions. To treat the infinite series as whole

is to treat it as if it has an infinitieth term or infinitely small terminatio; whereas in fact the

number of terms is greater than any number that can be given, and the magnitude of the

terminatio is correspondingly smaller than any that can be given. This connection is stated

explicitly by Leibniz in an annotation he made on Spinoza’s Letter on the Infinite in the Spring

of 1676:

Finally those things are infinite in the lowest degree whose magnitude is greater than

we can expound by an assignable ratio to sensible things, even though there exists
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something greater than these things. In just this way, there is the infinite space

comprised between Apollonius' Hyperbola and its asymptote, which is one of the most

moderate of infinities, to which there somehow corresponds in numbers the sum of

this space: 1/1 + 1/2 + 1/3 + 1/4 +  ..., which is 1/0. Only let us understand this 0, or

nought, or rather instead a quantity infinitely or unassignably small, to be greater or

smaller according as we have assumed the last denominator of this infinite series of

fractions, which is itself also infinite, smaller or greater. For a maximum does not

apply in the case of numbers. (A VI 3, 282; LLC, 114-115)

For some time Leibniz appears to have hesitated over this interpretation, and as late as

February 1676 he was still deliberating about whether the success of the hypothesis of

infinities and the infinitely small in geometry spoke to their existence in physical reality too.

But by April of the same year the syncategorematic interpretation is firmly in place, and we

find Leibniz exploring the implications of the rejection of the infinitely small in a series of

mathematico-physical reflections.3 During the same period he was putting the finishing

touches to his treatise on the infinitesimal calculus, De quadratura arithmetica (Leibniz,

1993), which he submitted for the Academie Française in the summer of 1676. Here we find

his first explicit exposition of the interpretation of infinites and infinitesimals as fictions, and

the provision of a theorem which, in Leibniz’s words, “serves to lay the foundations of the

whole method of indivisibles in the soundest way possible”. Indeed, as Eberhard Knobloch has

remarked, this theorem is a “model of mathematical rigour” (2002, p. 72).

In the treatise Leibniz promotes his new method of performing quadratures directly

“without a reductio ad absurdum” (Prop 7, Scholium; De quadratura, 1999, p. 35), by what

we would now call a direct integral. This, he believes, necessarily involves the assumption of

“fictitious quantities, namely the infinite and the infinitely small” (35). The traditional
                                               
3 See Arthur (2005b) for a full discussion of the development of Leibniz’s views on infinitesimals.
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Archimedean method of demonstration was by a double reductio ad absurdum: it would be

shown that a contradiction could be derived on the assumption that the quantity in question

was smaller than a given value, and another contradiction on the assumption that the

quantity in question was greater than that value, thus proving that it equalled it. Leibniz’s

method is instead to proceed by an application of the Archimedean Axiom. This axiom

(actually due to Eudoxus) asserts that for any two geometric quantities x and y (with y > x), a

natural number n can be found such that nx > y. This also entails that no matter how small a

geometric quantity is given, a smaller can be found, and it is this property to which Leibniz

appeals. Thus he prefers a justification “which simply shows that the difference between two

quantities is nothing, so that they are then equal (whereas it is otherwise usually proved by a

double reductio that one is neither greater nor smaller than the other)” (35). That is, he

applies the Archimedean axiom to demonstrate that the error involved in calculations with

infinitely small differences can be reduced to a quantity less than any given quantity by

taking a difference sufficiently small, rendering it effectively null.

Moreover, this justification does not have to be effected in every case: it is enough to

show that it can be done in a general case. This Leibniz does in a case that is surprisingly

general, given the usual accusations about the parlous lack of justification he and Newton are

alleged to have provided for their methods. For the key theorem that Leibniz successfully

demonstrates in De quadratura arithmetica using this Archimedean method is what is now

known as Riemannian Integration, as Eberhard Knobloch has shown in detail (2002).4 This is

Proposition 6; (Leibniz provides a similar justification for his Theorems 7 and 8). In his

demonstration of Proposition 6 (1999, pp. 30-33), Leibniz first identifies and then relates the

sum of the “elementary rectangles [rectangula elementales]” (that is the Riemannian sum of

                                               

4 The exposition I give is indebted to Knobloch’s (2002), but in the symbolization I have followed
Leibniz’s own from the De quadratura (Leibniz 1999).
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unequal rectangles by which the curve is being approximated, which we may denote Q), and

that of the mixtilinear figure [spatium gradiformis] that is the area under the curve between

two ordinates 1L and 4D, which we may denote A. Then he demonstrates that the difference

between the area and the sum of the elementary rectangles, A – Q, can be no greater than

the area of a certain rectangle whose height is the maximum height y4D of any of the

elementary rectangles, and whose width is the distance between the two ordinates 1L and 4D.

Thus A – Q £ 1L4D ¥ y4D. But because the curve is assumed continuous, Archimedes’ Axiom

applies. Thus the height y4D, even though it is greater than the heights of all the other

elementary rectangles, “can be assumed smaller than any assigned quantity, for however

small it is assumed to be, still smaller heights could be taken.” Therefore the area of the

rectangle 1L4Dy “can also be made smaller than any given surface”. Thus the difference A – Q

too “can also be made smaller than any given quantity. QED.” (pp. 30-33) There is therefore

no error involved in calculating the quadrature as the sum of an infinity of infinitesimal areas,

provided this is understood to mean that there are more little finite areas than can be

assigned, and that their magnitude is smaller than any that can be assigned.

The point here is not that Leibniz has two methods, one committed to the existence of

infinitesimals and the other Archimedean;5 nor is it the case that he simply uses the

infinitesimal calculus and then airily refers to the fact that one could instead have used an

Archimedean method. It is that, as examples like this demonstrate, the Archimedean Axiom

justifies proceeding as if there are infinitesimals, and at the same time demonstrates that

what they really stand for are finite quantities which can be taken as small as desired. Once

this is demonstrated in a suitably general case, it also justifies the use of these fictions in

other analogous cases. As Leibniz himself writes, “Nor is it necessary always to use inscribed

or circumscribed figures, and to infer by reductio ad absurdum, and to show that the error is

                                               
5 Cf. Bos (1974/75) on “Leibniz’s two different approaches to the foundation of the calculus” (p. 55).
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smaller than any assignable; although what we have said in Props. 6, 7 & 8 establishes that it

can easily be done by those means.” (Scholium to Prop. 23, Leibniz 1993, 69)

In effect, the application of the Archimedean Axiom enables a kind of Arithmetic of

the Infinite. In his article, Knobloch identifies a number of rules which are tacitly applied by

Leibniz in De quadratura, “without demonstrating them, only relying on the ‘law of

continuity’” (2002, 67). Examples are “1. Finite + infinite = infinite”, “2.1 Finite ± infinitely

small = finite”, “2.2 x = (y + infinitely small) fi x – y ª 0 (is unassignable)”. 2.2 can be

demonstrated by Leibniz’s method as follows. Suppose x = y + dx, where dx > 0, and suppose

dx is actually infinitely small, i.e. smaller than any given difference, yet is a geometric

quantity. It will then have an assignable ratio to another geometric quantity z such that, by

the Archimedean Axiom, a number n  > 0 can be chosen to make nz = dx. Therefore z will be

dx/n and thus smaller than dx, contrary to supposition. Therefore x – y = dx is unassignable;

the difference between x and y is smaller than any quantity assignable; it is incomparable

with (has no finite ratio to) any finite quantity. What this means is that there can be no

assignable error in equating x – y with 0. Similar demonstrations can be given for the other

rules.

The full “Law of Continuity” that Leibniz will publicize for the first time in 1688 is an

attempt to codify the method that we have just been examining:

When the difference between two instances in a given series, or in whatever is

presupposed, can be diminished until it becomes smaller than any given quantity

whatever, the corresponding difference in what is sought, or what results, must of
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necessity also be diminished or become less than any given quantity whatever.  (A VI 4,

371, 2032)6

But in a second formulation it also appears to be a generalization of the approach to

infinite series we examined above, where the infinite limiting term or terminatio is included

as if it were an infinitieth term in the series:

If any continuous transition is proposed that finishes in a certain limiting case (terminus),

then it is possible to formulate a general reasoning which includes that final limiting

case.7

It is the Law of Continuity in this form that forms the basis of Leibniz’s later attempts to

ground the rules of the calculus. His first attempt, “Nova Methodus pro Maximis et Minimis”

(1684), was not clear to his contemporaries, and was in any case vitiated by a number of

errors. He made another attempt in a paper drafted around 1701, “Cum prodiisset”, which

was first published by Gerhardt in 1846. The contents of this paper have been lucidly

explained by Henk Bos in his classic article on Leibniz’s calculus (1974/75). In it the

differentials dx and dy are finite, arbitrarily small, and variable: they are neither fixed

quantities, nor infinitely small ones. Leibniz proceeds by letting (d)x be a fixed finite line

segment, and then defining another segment (d)y, for all finite dx and dy > 0, by the

proportion

(d)y:(d)x = dy:dx (2.1)

                                               
6 Leibniz adds: “Or, to put it more commonly, when the cases (or given quantities) continually
approach one another, so that one finally passes over into the other, the consequences or events (or
what is sought) must do so too.” (A VI 4, 371, 2032; translations mine.)
7 Translated from the Latin quotation from (Leibniz, 1701, 40) given by Bos (1974/75, 56).
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            dy

 d(x)

              y

     x     dx

   s

But the same (d)y can also be given an interpretation in the limit when the variable dx = 0,

namely through the proportion

(d)y:(d)x = y:s (2.2)

where s is the subtangent to the curve.8

Now, since the resulting formula is still interpretable even in the case where dx = 0, the

Law of Continuity asserts that this limiting case may also be included in the general

reasoning: dy:dx can be substituted for (d)y:(d)x in the resulting formulas even for the case

where dx = 0, with dy and dx in this case interpreted as fictions. If a third variable v is

involved, which varies with x, (d)v:(d)x can be defined in an entirely analogous way.

That this foundation suffices for first-order differentials and the rules of the calculus is

best shown by an example. In Cum prodiisset… Leibniz offers the following proof of the rule

for the differentiation of a product d(xv) = xdv + vdx. He lets ay = xv (here the purpose of the

constant a is to conserve the homogeneity of the equation), and then allows x, y, and v all to

increase infinitesimally. Following Bos, I quote Leibniz’s own demonstration:

                                               
8 As Bos reports (1974-75, 62-63), this idea at the foundation of Leibniz’s justification of the calculus in
Cum prodiisset”, defining the ratio of dy and dx at the beginning of the interval by means of a
proportion to finite line segments, is also found in his first publication on the calculus (1684).



15

Proof: ay + dy= (x + dx)(v + dv)

      = xv + xdv + vdx + dxdv,

and, subtracting from each side the equals ay and xv, this gives

ady = xdv + vdx + dxdv

or ady/dx = xdv/dx + v + dv

and transposing the case as far as possible to lines that never vanish, this gives

a(d)y/(d)x = x(d)v/(d)x + v + dv

so that the only remaining term which can vanish is dv, and in the case of vanishing

differences, since dv = 0, this gives

a(d)y = x(d)v + v(d)x

as was asserted. … Whence also, because (d)y:(d)x always = dy:dx one may assume this

in the case of vanishing dy, dx and put

ady = xdv + vdx.9

As a second example of this approach, it will be instructive to examine Leibniz’s

criticisms of Newton’s proof of his Lemma 9 in the Principia and the demonstration he offers

in its stead. For, as Leibniz correctly recognized, Lemmas 9-11 are crucial for Newton’s proofs

of the inverse square law; Lemma 10 in particular, is a corollary of Lemma 9, and is appealed

to by Newton (in the first edition of the Principia) in the proof of Proposition 6. Each of

Newton’s lemmas is an instance of his Method of First and Last Ratios, and establishes a ratio

between quantities as they are on the very point of being generated or vanishing. The figures,

accordingly, are “ultimate” ones, depicting what Whiteside has aptly termed “limit

                                               
9 Leibniz, “Cum prodiisset”, pp. 46-47; quoted from Bos (1974-75, 58). The ellipsis omits an obvious
error in calculation not important for the argument.
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motions”,10 the motions a body would undergo during a “moment” if it continued with the

velocity it had at the beginning of that moment. Leibniz had no objection to this procedure;

but he did object to what he found in Proposition 6, namely the treatment of a curved

trajectory in such an ultimate moment as compounded from two motions, one a rectilinear

inertial motion along the tangent, and the other an acceleration towards the centre. This was

an objection of his of long standing, and is closely related to his syncategorematic

understanding of moments and of infinite division. In a piece written at the beginning of April

1676, he reasoned that if there were such a thing as a perfect fluid —by which he meant

matter divided all the way down into points, each individuated by a differing motion— then

“a new endeavour [would] be impressed at any moment whatever” on a body moving in the

fluid. But this would be to compose a curved line form points and time from instants, and

would also entail an “impossible” composition at every single instant:

But if this is conceded, time will actually be divided into instants, which is not possible.

So there will be no uniformly accelerated motion anywhere, and so the parabola will

not be describable in this way. And so it is quite credible that circles and parabolas and

other things of that kind are all fictitious.... For supposing a point moves in a parabolic

line, it will certainly be true of it that at any instant it is moving with a uniform motion

in one direction, and with a uniformly accelerated motion in another, which is

impossible. (A VI 3, 492; LLC, 74-77)11

When he first confronted Newton’s Principia some 12 years later, Leibniz’s initial reaction

was therefore to believe that there was a mistake in Newton’s composition of motions in

deriving Proposition 6. On his understanding, in an ultimate moment only straight line motions

                                               
10 Whiteside 1967, p. 154 and passim.
11 Here Leibniz appears to be applying a principle he had just formulated: “If a given motion can be
resolved into two motions, one of them possible and the other impossible, the given motion will be
impossible.” (A VI 3, 492; LLC, 72-73)
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(and equivalently the lines they would traverse in such a moment) can be compounded, since

ultimately the curve is resolved into an infinite-sided polygon with fictional straight sides,

each one representing a geometric “indivisible” or ultimate difference between successive

values. Seeing the dependence of Proposition 6 on Lemmas 9 and 10, therefore, he

concentrated his attention on them.

In Lemma 9, Newton has a curved trajectory depicted in  an ultimate moment, and a

claim is made that “the areas of the [curvilinear] triangles ADB and AEC will ultimately be to

each other in the squared ratio of the sides”, i.e. ∆ADB:∆AEC = AD2:AE2 (1999, 437). Newton

performs his proof by using his Method Of Finite Surrogates: here these surrogates are the

lines Ae and Ad, which are finite, with Ae remaining fixed, and in proportion to AD and AE,

which are supposed variable; likewise Abc is a fixed portion of curve similar to ABC, with the

elements of the curve AB and AC supposed variable, gradually shrinking toward A until B and

C “come together” with it. The line AGg is tangent to both curves at A. Newton’s proof then

proceeds by noting that in the limit A, B and C coincide, –cAg vanishes, and “the curvilinear

areas Abd and Ace will coincide with the rectilinear areas Afd and Age, and thus (by Lemma

5) will be in the squared ratio of these sides Ad and Ae” (437). Therefore, given the assumed

proportionality between these finite surrogates and the infinitesimals, “the areas ABD and

ACE also are ultimately in the squared ratio of the sides AD and AE. QED” (437).
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         e      g    c Newton’s Lemma 9

         d b

         E C

         D        B

         A

Leibniz’s reaction to Newton is fraught with multiple ironies. One of them is his not

noticing that Newton’s method of finite surrogates is to all intents and purposes identical to

his own way of justifying the calculus, as he would later adumbrate it in “Cum prodiisset”,

explained above.12 For in his notes he dispenses with the finite surrogates completely, so as to

concentrate on the curvilinear figures that Newton has depicted in his ultimate moment.

(This irony is compounded by the fact that Leibniz rather arbitrarily replaces Newton’s letters

E and C by (D) and (B), the same bracket notation he usually uses for finite lines.) Here is his

diagram, statement and criticism of Newton’s Lemma 9, following the description given by

Domenico Bertoloni Meli:

                                               
12 One’s first thought would be that perhaps Leibniz had cribbed the method from his reading of
Newton; in his excellent discussion Guicciardini (1999, 161) draws attention to some other wording of
Leibniz’s later justifications that show Newton’s influence. But the dates undermine this more cynical
view about Leibniz’s “finite surrogates”: in his first publication on the calculus (1684), Leibniz had
promoted his differentials as finite variable quantities bearing a proportion to fixed lines (albeit in a
form that was not easy for his contemporaries to understand). See Bos (1974/75, 57, 63).
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 (D) (B)

   D   B Leibniz: Newton’s Lemma 9

   A

If AB, A(B)are unassignable, DADB and DA(D)(B) will be in the squared ratio of the

sides (+ namely, it must be understood that the Ds are similar, and so angle BA(B) has

a ratio to angle DAB that is infinitely small, but this does not seem to be true, since in

DAB(B) the side B(B) has an assignable ratio to AB or A(B), and so to AD and DB.+)

That is, Leibniz objects that in the limit Ds ADB and A(D)(B) will not be similar, since

Newton’s diagram already represents the ultimate moment, and in it angle BA(B) has a finite

rather than infinitesimal ratio to the sides of the triangles. In an effort to show that Newton

has made an error in calculating with infinitesimals, Leibniz proceeds with his own

calculation, in which the infinitesimal order of the angle BA(B) with respect to AB and AD is

rendered explicit by setting AD = x, DB = y, A(D) = x +  dx, and D(B) = y +  dy. Leibniz does not

succeed in demonstrating any error on Newton’s part; nor in fact is there an error, as Meli

observes, since as x ends to zero so does dx, so that ultimately the triangles become similar.

Nevertheless, even though he fails to show anything wrong in Newton’s procedure, Leibniz’s

workings provide us with a nice illustration of his approach to the differential calculus. First

he expresses y as a series expansion in x: y = a + bx + cx2 + ex3 + .... Now since x = 0 when y =

0, we have a = 0 —a point Leibniz first realized, and then subsequently forgot, rendering his
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calculation inconclusive. But as Meli shows, the lemma follows fairly easily from these

premises. For

xy = bx2 + cx3 + ex4 + ... (2.3)

so that since (assuming Lemma 5) area[ADB] = AD•DB/2,

area[ADB] = xy/2 = 1/2(bx2 + cx3 + ex4 + ...) (2.4)

Meli remarks that “If x becomes infinitesimal, the terms in x3, x4, ...are negligible, and the

area of ADB (= xy/2) is indeed proportional to AD2 (= x2)” (242). But in fact we can be more

rigorous. For although Leibniz apparently thought Newton’s finite surrogates could be

dispensed with, they are completely in accord with his way of proceeding. Thus let DB:AD =

db:Ad, etc., as Newton had assumed, with db and Ad finite, and with this ratio remaining in a

finite and non-vanishing proportion to ec and Ae (with Ae fixed) even as x Æ 0. Then

DB/AD = AD•DB/AD2 = b + cx + ex2 + ... (2.5)

 But since this equals db:Ad, which is finite and non-vanishing as x Æ 0, it follows that

2 ¥ area[ADB)]/AD2 = AD•DB/AD2 =  b (const.) (2.6)

The same reasoning will apply for DA(D)(B), giving

area[ADB)]:area[A(D)(B)] = AD2:A(D)2 (2.7)

Newton’s Lemma is therefore sound even by Leibniz’s lights, as indeed he came to realize

despite not having successfully completed this calculation.13 Much the same applies to Lemma

                                               
13 As Meli reports (Bertoloni 1993, 103), Leibniz’s attitude seems to have undergone a sea change on
moving on from Section 1 of the Principia on First and Last Ratios to section 2, on the determination of
central forces. Accordingly, in the first set of Excerpts Leibniz took from the Principia the following
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11, stating that the curvature of a trajectory at a given point is the same as the curvature of

the osculating circle at that point, a result that will be of importance to us below. In the first

stage of composition of his Marginalia identified by Meli, Leibniz objects to Newton’s

Corollary 7 to Proposition 4, in which the proportionality of centripetal forces to v2/r, proved

in Proposition 4 for bodies rotating uniformly in circular orbits, is extended to non-circular

orbits for limit-motions: “Since I do not yet accept the generality of Lemma 11, I also doubt

the generality of this corollary 7”. Somewhat later, according to Meli, he corrected himself:

“On the contrary, this is true, because the considerations on the secant of the angle made by

the radius from the centre to the curve, and that of the radius of the osculating circle to the

curve, vanish on account of the similarity of the figures.”14 That is, according to Meli’s

analysis, “since Proposition 4 is stated in the form of a proportion between the homologous

elements of two similar figures, their similarity cancels out the dependence of paracentric

conatus [—the endeavour toward the centre—] on the secant of the angle and on the

osculating radius” (Meli, p. 107). What all this means, in effect, is that in calculations of

centripetal force, in the limit the force can be treated as if directed towards the centre of

the osculating circle and the radius (or distance from the centre of force to the curve) may be

set equal to the radius of that circle. (We shall exploit this result in proving Proposition 6

below.)

                                                                                                                                                      
year, “lemma 9 is transcribed without commentary, and seems to be accepted without difficulty”
(242).
14 Marginalia, M 42 A: translated from the Latin quoted by Meli, p. 107.
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3. SMOOTH INFINITESIMAL ANALYSIS

Smooth Infinitesimal Analysis has many features in common with Leibniz’s approach. It

begins, like Leibniz, by eschewing the composition of the continuum from an infinity of

points. In contrast to the account of the continuum established by Cantor based on Point Set

Theory, according to which a continuous line is an infinite (indeed, nondenumerably infinite)

set of points, SIA is rooted in Category Theory, and mappings rather than points are taken as

basic. The category of smooth manifolds, Man, is embedded in an enlarged category C which

contains “infinitesimal” objects, and a topos SetC is then formed of sets varying over C. “Each

smooth topos E is then identified as a certain subcategory of SetC. Any of these toposes has

the property that its objects are undergoing a form of smooth variation, and each may be

taken as a smooth world.” (Bell 1998, 14). With this foundation secured, a great many results

of differential calculus may be obtained “—with full rigour— using straightforward calculations

with infinitesimals in place of the limit concept” (Bell, 1998, 4), as if infinitesimals exist.

Here I say “as if infinitesimals exist” advisedly. For another feature that SIA has in

common with Leibniz’s approach is that, whilst it licenses certain infinitesimal techniques, it

is not committed to the existence of infinitesimals in the continuum. That is, as in Leibniz’s

theory, infinitesimals are fictions in a precisely defined sense. The sense in which they are

fictions in SIA, however, is that although it is denied that an infinitesimal neighbourhood of a

given point, such as 0, reduces to zero, it cannot be inferred from this that there exists any

point in the infinitesimal neighbourhood distinct from 0. Thus the Law of Excluded Middle,

and with it the Law of Double Negation, both fail in smooth worlds. Bell explains this as

follows. Define two points a and b on the real line (as represented in a smooth world S) as

distinguishable iff they are not identical, i.e. iff ÿa = b, where ‘=’ denotes identity. Now
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define the infinitesimal neighbourhood I(0) of a given point 0 as the set of all those points

indistinguishable from 0. That is, define I(0) as follows:

I(0) =def { x | ÿÿx = 0] (3.1)

Now if the Law of Double Negation (or, equivalently, the Law of Excluded Middle) held in

S, we could infer that x = 0 for each x in I(0), so that the infinitesimal neighbourhood of 0 I(0)

would reduce to {0}. But we know that this neighbourhood does not reduce to {0} in  S. So we

cannot infer the identity of points from their indistinguishability. Again, suppose there is a

point a in I that is distinguishable from 0, i.e. suppose there is a point a e I  such that ÿa = 0. 

But since a e I, ÿÿa = 0 by definition. But this is a contradiction. Therefore it is not the case

that there exists a point a in I that is distinguishable from 0. That is, the logic of smooth

worlds is intuitionistic logic: the Law of Noncontradiction holds, as we have just seen; but the

Laws of Excluded Middle, Double Negation, and one form of Quantifier Negation do not hold

in smooth worlds. From ÿ("x Œ I)x = 0 (it is not the case that all members of I are identical

with 0), we can not infer that ($x Œ  I)ÿx = 0 (there is a member of I that is distinguishable

from 0).15 This makes precise the older conception of an infinitesimal difference as a

difference smaller than any assignable, but not zero. It does so, in effect, by denying that an

unassignable difference reduces to zero, but not allowing the inference from this that there

exists an unassignable difference different from zero. it is in this sense that the infinitesimal

intervals of SIA are fictional.

On this foundation Bell erects the theory of SIA. First he defines D as consisting in those

points x in R  such that x2 = 0. The letter e then denotes a variable ranging over D (21). The

fundamental assumption is then that every curve is microstraight (pp. 9, 22). That is,

                                               
15 More precisely, the logic of smooth toposes is free first-order intuitionistic or constructive logic. See
Bell 1998, 101-102.
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arbitrary functions f: R Æ R are assumed to behave locally like polynomials, so that with f(x)

= a0 + a1x + a2x2 + ... anxn  and  e2 = 0, we have

f(e) = a0 + a1e for any e in D. (3.2)

 This is the Principle of Microstraightness, and it implies that (e,f(e) lies on the tangent to the

curve at the point (0,a0). It also entails (if one considers only the restriction of g of f to D)

that g is affine on D. That consideration motivates the Principle of Microaffineness (p. 23):

For any map g: D Æ R, there exists a unique b in R such that, for all e in D, we have

g(e) = g(0) + eb. (3.3)

This principle allows one to define the derivative of an arbitrary function f: R Æ R as follows

(p. 26). Define  the function gx(e) = f(x + e). By  Microaffineness it follows that there is a

unique bx such that for all e in D,

 f(x + e) = gx(e) = gx(0) + ebx = f(x) + ebx (3.4)

If we allow x to vary, the values bx will constitute a new function, the derivative f´(x):

 f(x + e) = f(x) + e f´(x) (3.5)

If the function f is a function of time, and e is an infinitesimal time, we have as a direct

consequence of this the Principle of Microuniformity (of natural processes): any such process

may be considered as taking place at a constant rate over the “timelet” e (p. 9). Another

important consequence of Microaffineness is the Principle of Microcancellation: for any a,b in

R, if ea = eb for all e in D, then a = b (p. 24). I quote Bell’s proof:
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Suppose that, for all e in D, all ea = eb  and consider the function g: D Æ R defined by

g(e) = ea. The assumption then implies that g has both slope a and slope b: the

uniqueness clause in Microaffineness yields a = b. (p. 24)

I will now illustrate the neatness and simplicity of SIA by means of two examples: (i) the

proof of the product rule for derivatives, and (ii) the proof of Newton’s Proposition 1 of the

Principia, the Kepler Area Law. For both of these illustrations I shall follow Bell’s exposition.

(i) The Product Rule for Derivatives

Let y(x) = f(x)g(x). We wish to prove that y´ = f´g + f g´. By the definition of the derivative,

f(x + e) = f(x) + ef´(x), (3.6)

and likewise for g and  y. Thus since

y(x + e) = f(x + e)•g(x + e), (3.7)

we have

y(x) + ey´(x) = [f(x) + ef´(x)]•[g(x) + eg´(x)] (3.8)

= y(x) + e[f´(x)g(x) + g´(x)f(x)] + e2 f´(x)g´(x) (3.9)

Now subtracting y from both sides and assuming e2 = 0, we have

ey´(x) = e[f´(x)g(x) + g´(x)f(x)], and thus (3.10)

y´(x) = f´(x)g(x) + g´(x)f(x) (3.11)

The inference from (3.10) to (3.11) is guaranteed by the Principle of Microcancellation: if ea =

eb for all e in D, then a = b. As we saw, this in turn depends on the nilsquare property e2 = 0.

So in the proof, this property is invoked three times: indirectly in the definition of the

derivative (3.6), in the inference from (3.9) to (3.10) directly, and again indirectly in proving

the Microcancellation property involved in the inference from (3.10) to (3.11).
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(ii) Newton's Proposition 1, the Kepler Area Law

In his proof of this law, Bell assumes that the area A, the radius r and the angle q are all

functions of t, which increases by a nilsquare infinitesimal e “with e in D”. “Then by

Microstraightness the sector OPQ is a triangle of base r(t + e) = r + er´ and height

r sin[q(t + e) – q(t)] = r sineq´ = req´” (Bell , 69) (3.12)

Here the nilsquare property is invoked in Microstraightness, in the definitions of the

derivatives r´ and q´, and again in the equating of sineq´ with eq´. Since the area is half the

base times the height, this gives for the area of sector OPQ

OPQ = 1/2(r + er´)req´ = 1/2er2q´ (3.13)

if the term 1/2e
2rr´q´ is dropped, again invoking the nilsquare property. But the area OPQ is

the increment in area produced by the motion of the radius vector,

OPQ = A(t + e) – A(t) =  eA´(t) (3.14)

so that (3.8) and (3.9) give, by Microcancellation,

A´(t) = 1/2r2q´ (3.15)

From this Bell then proves that A´´(t) = 0, so that, assuming A(0) = 0, we have the Area Law

A(t) = kt, (3.16)

where k is a constant.

As a historical note, we may remark that Bell’s procedure is closely related to that

pioneered by the 17th C Dutch mathematician Bernard Nieuwentijt.16 In his treatment (which

was independent of Newton’s and Leibniz’s) Nieuwentijt laid down a number of axioms. The

                                               
16 See the succinct account of Nieuwentijt’s theory in Mancosu (1996, p. 158ff).
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first states (in Mancosu’s rendering) that “anything that when multiplied, however many

times, cannot equal another given [finite] quantity, however small, cannot be considered a

quantity —geometrically, it is a mere nothing.” (159) Axiom 2 states that any arbitrary finite

quantity can be divided into arbitrarily many equal or unequal parts less than any given

quantity, so that the division of a finite quantity b by an infinite number m yields an

infinitesimal quantity. (This is in accord with Axiom 1, since b/m may be multiplied by the

product of the infinite number m and the finite number c/b so that it does equal any other

finite quantity c.) But it now follows (lemma 10) that if two infinitesimal quantities b/m and

c/m are multiplied together, their product bc/mm is zero. For when multiplied by the largest

possible number m, the product bc/m is still infinitesimal, and therefore cannot be made

equal to any other finite quantity; by Axiom 1, the product of any two infinitesimal quantities

is therefore zero. Nieuwentijt’s infinitesimals are nil-square infinitesimals.

There are, of course, many profound differences between SIA and Nieuwentijt’s

approach. For SIA, like Leibniz’s approach, is based on smoothly varying geometric quantities,

whereas Nieuwentijt’s infinitesimals are defined through division by an infinite number m,

where m is the largest number. SIA presupposes intuitionistic logic, whereas Nieuwentijt’s

logic is classical. Nieuwentijt’s theory does not admit higher order differentials, whereas, as

we shall see, this is possible in SIA. But the key points it has in common with Nieuwentijt’s

approach are these: the Principle of Microaffineness, which “entails that all curves are

‘locally straight’” (110);  and the Nilsquare Property, which guarantees that all squares and

higher powers of infinitesimals are intrinsically zero, and not just by comparison with other

quantities.17

                                               
17 Mancosu has very aptly summarized the difference between Nieuwentijt’s approach and Leibniz’s on
p. 160. One of these differences is that on Nieuwentijt’s theory, the infinitesimal b/m cannot be
eliminated from computations; but Bell’s Principle of Microcancellation shows how to circumvent this
problem. Bell has provided a useful comparison of the difference between SIA and Nonstandard Analysis
in his book on p. 110.



28

4. PROPOSITION 6 OF NEWTON’S PRINCIPIA

The comparison between Leibniz’s syncategorematic approach and that of SIA can be set in

sharp relief by applying both to the same example. Because of its historical importance, and

also because it gave both Leibniz and Varignon some measure of grief18 and therefore

presents itself as an excellent touchstone, I shall take Newton’s Proposition 6 of Book 1 of the

Principia, the theorem that is the basis of his derivation of the inverse square law of

attraction due to gravity, together with its application to find an expression for the

centripetal force in terms of the instantaneous velocity v and radius r. I shall first present

Newton’s statement and his own proof of the proposition (from the first 1687 edition of the

Principia) with some commentary. Then I will proceed to a proof of the proposition using the

infinitesimal methods of Leibniz, following the method outlined by Nico Bertoloni Meli in his

proof of Proposition, and showing how it is justifiable on the syncategorematic interpretation

of infinitesimals. Then I will proceed to a consideration of how a proof might be effected

using SIA. We will see that this is not as straightforward as might be supposed from Bell’s

presentation of SIA and his proof of Proposition 1 above; and this in turn will lead to some

reflections on the relationship between SIA and Leibniz’s approach.

Newton states Proposition 6 as follows:

Figure 2
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18 On Varignon and Leibniz on central force see Bertoloni Meli (1993, 81-83, 201ff.).
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If a body P, revolving about a centre S, describes any curved line APQ, while the

straight line ZPR touches that curve at any point P; and to the tangent from any other

point Q of the curve, QR is drawn parallel to the distance SP, and the perpendicular

QT is dropped onto the distance SP: I say that the centripetal force is as the reciprocal

of the solid SP2•QT2/QR, provided that the quantity of this solid is always taken as that

which is made when the points P and Q come together.

In the first edition19 Newton gives the following proof:

For in the indefinitely small figure QRPT the nascent linelet QR, if the time be given,

is as the centripetal force (by law 2), and if the force be given, as the square of the

time (by lemma 10), and thus, if neither be given, as the centripetal force and the

square of the time jointly, and thus the centripetal force is as the linelet QR directly

and the square of the time inversely. But the time is as the area SPQ, or its double SP

¥ QT, that is, as SP and QT jointly, and thus the centripetal force is as QR directly and

SP2 ¥ QT2 inversely, that is, as SP2•QT2/QR inversely. QED.

We may now determine an expression for the centripetal force in an infinitesimal timelet dt, or

moment o, in terms of v  and r as follows. In the limit, the curvature of the arc QP is represented

by the curvature of the corresponding osculating circle: this means that SP can be taken as

the radius of this circle.20 As is clear from the figure below, if NP = 2SP is the diameter of he

circle, then –NQP is a right angle, so that QR:PQ = PQ:NP = PQ:2SP, giving

QR = PQ2/2SP (4.1)

                                               
19 As Cohen and Whitman explain, Proposition 6 of the 1st edition becomes Corollary 1 of Proposition 6
in the 2nd and 3rd editions (453-54).
20 See discussion above; see also Newton’s Corollary 7 (8 in the 2nd and 3rd editions) to Proposition 4:
“And the application is made by substituting the uniform description of areas for uniform motion, and
by using the distances of bodies from the centres for the radii.” (Newton, Principia, Cohen and
Whitman, p. 451.)
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But in the moment o (i.e. dt) the velocity v is as PQ and SP = r, so the centripetal force F is as

QR/o2 = (PQ2/o2)/2SP = 1/2(v2/r) (4.2)

In fact, the factor of proportionality 1/2 cancels, since in modern terms  QR = 1/2a dt2. Thus

F/m = v2/r (4.3)

As explained above, Leibniz could not accept the validity of Newton’s demonstration of

Proposition 6, involving as it did a composition of a uniform motion with a uniformly accelerated

motion. Subsequently he came to see that Newton’s way of applying his Lemmas to limit-

motions involved no mathematical error, but still preferred a composition of two uniform motions,

rejecting the physicality of Newton’s instantaneous acceleration.21 The precise development of

Leibniz’s views from his initial reactions to Newton’s Principia  to the development of his own

rival dynamics of celestial motion has been analysed in a brilliant and careful study of the

surviving documents by Bertoloni Meli (1993). As Meli has shown with respect to Newton’s

Proposition 4, the two ways of analyzing the composition of motion, Newton’s composition of a

rectilinear uniform motion along the tangent with a uniform acceleration towards the centre, and

Leibniz’s composition of a rectilinear uniform motion along the chord with a rectilinear uniform

motion towards the centre, each lead to the same mathematical result (pp. 78-84). Following his

                                               
21 “La voye est plus simple,” Leibniz wrote to Varignon in October 1706, “qui ne met pas l’acceleration
dans les elemens, lorsqu’on n’en a point besoin. Je m’en suis servi depuis de 30 ans.” (GM IV 150-151;
Bertoloni Meli, 1993, 81).
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lead, I shall sketch here a slightly modernized account of a Leibnizian proof of Proposition 6

using Leibniz’s own preferred composition (which Newton had also followed in Proposition 1),

where the body undergoes an inertial motion between successive impulses so as to arrive at

successive points on the curve, with the inertial and impulse motion composed to form the new

resultant motion in each case.

Figure 3
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As in Proposition 1, we suppose the deflections to occur at equal time intervals, dt, so

that if the uniform velocity along PQ is v, PQ = vdt. Likewise, if the deflection due to the

impulse is QR, and the velocity along QR parallel to SP  is w, QR = wdt. Now we need to find a

relation between QR, PQ, and the radius SP. This can be achieved by noting that the

curvature of the arc QP can be taken in the limit to be represented by the curvature of the

osculating circle. This is the substance of Newton’s Lemma 11, mentioned above. Leibniz had

eventually concluded that Lemma 11 was correct, so that, as stated above, the force can be

treated as directed towards the centre of the osculating circle with SP taken as its radius.22 As

is clear from the figure below, with QR and SP parallel and equal, QR/PQ = PQ/SP, so that

                                               
22 Cf. Leibniz, De conatu: “Let E be the centre of the osculating circle to the curve at CC; it is clear
that the angle 2CE3C is equal to the angle of deflection K2C3C. But the elements of the curve are in the
compound ratio of the osculating radii EC, and of the angles of deflection. Therefore the angles of
deflection are in the compound ratio of the elements directly and the osculating radii reciprocally.
Therefore finally the paracentric endeavours are in the squared ratio of the velocities compounded
directly with the simple ratios of the secants which the angles of the radii from the centre of



32

QR = PQ2/SP. (4.4)

R

P

Q     O

S

But SP is finite and PQ is first order infinitesimal; therefore QR must be second order

infinitesimal. Thus the velocity w, although constant because it represents a uniform motion,

must be a first order differential du, so that

QR = w•dt = du•dt = d(dr/dt)•dt = ddr (4.5)

Meanwhile

PQ2/SP = v2dt2/r (4.6)

Combining (4.4), (4.5) and (4.6) we have

ddr = v2dt2/r (4.7)

As Leibniz would express this, the solicitation in equal infinitesimal times dt is as v2 and

inversely as r. Leibniz’s notion of solicitation, as Meli explains very clearly, is not to be

confused with Newton’s acceleration: solicitation is as an element of velocity (here du),

velocities are as u = Údu, and forces as Údu or u2 (p. 88). We shall return to this point later.

                                                                                                                                                      
endeavour have to the curve, taken with the osculating radii reciprocally.”  (See Meli, 1993, 255, 260.)
The result is repeated by Leibniz in “Inventum a me est” (265).
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This addresses the mathematical physics. But a crucial question remains: is Leibniz

entitled to his second order differentials, given his understanding of first order differentials

as fictions? It is known that he had some confusions about second order differentials,

mistakenly believing that they can be taken as elements of first order infinitesimals in the

same way that first order infinitesimals can be taken as elements of finite quantities, and not

appreciating that relations involving them in general depend on a specification of the

progression of the variables (or, equivalently, on the choice of an independent variable).

Given this, is it possible to allow terms like ddr above? Can it be given a syncategorematic

interpretation  analogous to the one we saw for first order differentials above? The answer to

these questions has already been provided by Henk Bos in his penetrating study of the

Leibnizian calculus (1974/75). If one assumes that ddr is absolute —i.e. not dependent on

which variable is taken as independent variable— as Leibniz did in his attempt to derive a

formula for second order differentials in “Cum prodiisset”, then one will run into trouble. But

this is not necessary, and as Bos has shown, a derivation of a formula for second order

differentials consistent with the syncategorematic interpretation may successfully be

achieved along the lines Leibniz had tried, provided an independent variable is specified.

That is the case here. We are tacitly assuming, as do Leibniz and Newton, that time

may be taken as independent variable, so that dt is constant, and ddt = 0. Under this

assumption one may derive legitimate formulas involving second order differentials such as

ddr, such as the following. Assume r = wt, where w is a velocity. We will show that

ddr = t•ddw + 2 dw•dt (4.8)

For this to be justified syncategorematically, let (d)r and (d)(d)r be finite lines and (d)w and

(d)(d)w finite velocities such that in the fixed finite time (d)t the following proportions

always hold for all finite dt ≠ 0:
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(d)r:(d)t = dr:dt (4.9)

 (d)w:(d)t = dw:dt (4.10)

 (d)(d)r:(d)t2 = ddr:dt2 (4.11)

 (d)(d)w:(d)t2 = ddw:dt2 (4.12)

Assume further that these ratios all have an interpretation when dt = 0. Then each can be

substituted for its counterpart involving dt in any formula, as we assumed with Leibniz above.

Now from r = wt the following relation is derivable by elementary algebra:

ddr = t•ddw + w•ddt + 2 dw•dt + 2dw•ddt + 2dt•ddw + ddt•ddw (4.13)

Since dt is constant, and ddt = 0, we may drop the terms in ddt. Dividing by dt2 gives

ddr:dt2 = t•ddw:dt2 + 2 dw:dt + 2dt•ddw:dt2 (4.14)

Now “transposing the case as far as possible to quantities that never vanish”, i.e. by

substituting the equivalences (1)-(4), we obtain

(d)(d)r:(d)t2 = t•(d)(d)w:(d)t2 + 2(d)w:(d)t + 2dt•(d)(d)w:(d)t2 (4.15)

By hypothesis, this formula remains interpretable when dt = 0, when the last term vanishes.

So the Law of Continuity asserts that this limiting case may also be included in the general

reasoning: dr:dt can be substituted for (d)r:(d)t etc. in the resulting formulas even for the

case where dt = 0, with dr, ddr, etc. in this case interpreted as fictions. Therefore

ddr:dt2 = t•ddw:dt2 + 2 dw:dt (4.16)

or

ddr = t•ddw + 2 dw•dt QED. (4.17)
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Now let us turn to the task of deriving this result using Smooth Infinitesimal Analysis.

Here we are immediately confronted with the difficulty that the basic principles of SIA as

expounded so far, as embodied in the Principle of Microuniformity, will not countenance time

variation of geometric quantities across an infinitesimal interval. As Whiteside (1966) has

shown, if we want the infinitesimal elements of the curve to be rectilinear, as they are by the

Principle of Microstraightness, then they must be second order infinitesimals, in contradiction

to Microuniformity. Relatedly, if we try to duplicate the Leibnizian calculation above using

nilsquare infinitesimals, this means that any second order differential, such as Leibniz’s ddr

representing solicitation, is identically zero. This can be seen as follows. If the moment dt is

taken to be a nilsquare infinitesimal, then PQ2 = (vdt)2 = v2dt2 = 0. Thus

QR = ddr = PQ2/SP = 0

That is, to use Leibniz’s terms, there can be no solicitation along QR. In Newton’s terms, if

the force at the very beginning of the interval is “given as the square of the time inversely”,

i.e. as 1/(SP•QT)2 with SP•QT proportional to dt, then the acceleration in the moment dt is

undefined. For the nascent triangle SPQ has an area dA = 1/2SP•QT = kdt, so dA2 = k2dt2 = 0.

This does not entail any inconsistency within SIA, which is perfectly able to derive

results analogous to the Leibnizian relation (1) above for second order derivatives, as opposed

to second order differentials. Thus supposing r = wt, and that t  is the independent variable

as before, with respect to which all derivatives are taken. Then, by the iterative definition of

the derivative in SIA (Bell, 1998, 27), er¢ = [r]t + e t and er¢¢ = [r¢]t + e t. Therefore

     er¢ = [r]t + e t = [wt]t + e t  = (t + e)•w(t + e) — t•w(t) (4.18)

= t• [w(t + e) — w(t)] + e•w(t + e)

=  etw¢  + e•w(t + e)
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=  etw¢  + e•[w(t) + ew¢(t)]

=  etw¢  + ew + e2w¢ (4.19)

Thus, by the principle of microcancellation,

       r¢ = tw¢  + w + ew¢ (4.20)

From this it is easy to derive

      er¢¢ = [r¢]t + e t = [tw¢  + w + ew¢]t + e t

=  etw¢¢  + 2ew¢+ 2e2w¢¢ (4.21)

Again, by microcancellation and applying e2 = 0,

r¢¢ =  tw¢¢  + 2w¢  (4.22)

The problem, however, is that with e2 = 0, we are unable to apply SIA to Proposition 6.

Nevertheless, it is possible to define second- and higher-order differentials within SIA,

as Bell explains in his book. In particular, following Bell’s prescription, we may define a

second-order differential as one for which dx3 = 0. In other words, instead of nilsquare

infinitesimals we adopt nilcube ones, ones such that  e3 = 0.23 For such a differential in

general dx and dx2 (i.e. e and e2) are not equal to zero. Thus with dt = e, ddt = 0 and dw/dt =

w¢ etc., if we multiply both sides of (4.21) by e, we may obtain an expression for ddr:

ddr  = e2r¢¢ = e2t•w¢¢  + 2e2w¢ + 2e3•w¢¢ (4.23)

in agreement with the Leibnizian formula (4.17), since e3 = 0.

Such an expedient, however, seems to me to fail on two counts. On the one hand, the

solution is ad hoc: the introduction of nilcube infinitesimals is motivated by nothing other

than the inadequacy to the problem of an infinitesimal analysis based on nilsquare

                                               
23 This was suggested to me by John Bell in conversation as a way of tackling Newton’s Proposition 6.
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infinitesimals. On the other hand, all the principles of SIA that we have depended upon above

depend critically on the nilsquare property. As can be seen by reviewing the SIA proofs given

above, the proof of the Product Rule depends on three applications of the nilsquare property,

and the proof of Proposition 1 on six such applications. Even the formula for ddr given above

relies on multiple applications of the definition of the derivative, and of the Principle of

Microcancellation. But both of these depend on the nilsquare property. These difficulties are

compounded when it is considered that Newton’s Proposition 6 appeals to the Area Law that

was demonstrated in Proposition 1, so that the moments dt have to be the same in each case,

and cannot be represented by different kinds of infinitesimals.

Even assuming these difficulties could be overcome, however, the first objection

concerning the adhocness of assuming nilcube infinitesimals in place of nilsquare ones to

prove Proposition 6 is acute. For if we have no independent means to determine whether

nilsquare infinitesimals are adequate to a given problem, then the kind of analysis we should

apply is left to depend only on the specifics of the problem.

How does this situation bear on Leibniz’s foundation for infinitesimals? For, as Bell

observes, the procedure in SIA is very close to Leibniz’s. Leibniz’s polygonal representation of

curves is closely related to Bell’s Principle of Microstraightness: in each case the curve is

analyzed as compounded of infinitesimal straight segments that are in a certain sense

fictional parts. But whereas in SIA the “area deficit” is simply stipulated to be zero (p. 8)

—that is, it is shown to be of the order of dx2, where x is the independent variable, and thus

rigorously equal to zero— in Leibniz’s justification of Riemannian integration the Area Deficit

is shown to be zero in the limit by an application of the Archimedean Axiom without any

assumption about the nilpotency of infinitesimals. In fact, using Leibniz’s method it is

possible —as we saw in the above proofs of Lemma 9 and Proposition 6— to have the second
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order differential ddr proportional to the square of a first order infinitesimal. Because QR =

QP2/SP, with QP first order infinitesimal and SP finite, QR must be second order infinitesimal

to preserve orders of infinity. This is impossible with nilsquare infinitesimals.

As we saw, Leibniz was able to derive the result (4.7),

du = ddr µ v2/r (4.24)

for the solicitation in an arbitrary infinitesimal interval of time dt. Here du is an element of

velocity, and a simple integration of it gives a velocity, i.e., on Leibniz’s understanding,

increases its order of infinity without changing its dimension. (In his calculations he tends to

leave the dependence on the time interval tacit, as here with the dependence on dt2.)24

Similarly, two integrations of ddr raise it two orders of infinity, and give a finite line r. We

would read Leibniz’s expression, however, as giving us a second derivative with respect to

time,

d2r/dt2 = v2/r = du/dt (4.25)

namely an acceleration, from which the velocity u is obtainable by an integration with

respect to time, and the radius r by two such integrations. So from a modern perspective a

non-zero solicitation in a moment or “timelet” dt is equivalent to an acceleration, contrary to

Leibniz’s understanding. Leibniz’s conception of his differentials as independent of a

specification of the variables is able to survive so long as he remains within first order

infinitesimals. But it gets him into trouble with second order differentials, where relations

involving them have to specify an independent variable, as Bos has explained with admirable

clarity. Indeed, Bos argues that Leibniz’s approach to the foundations of the calculus leads

naturally to the introduction of differential quotients and even derivatives, and from there to
                                               
24 See Bos (1974/75, 5-10, 12-35) and Meli (1993, 66-73) for clear expositions of the difference between
Leibniz’s understanding of differentiation and integration and the modern conception.
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the concept of a function (1974/75, 59-66). But when Leibniz’s second order differentials are

recognized to be functions of an independent variable (here, time), the corresponding

adjustment to the understanding of differentials strips him of his grounds for resisting the

composition of a uniform motion from an inertial motion and an accelerated one: in motion

under a central force, Microstraightness implies the failure of Microuniformity.

Thus Leibniz is able to uphold the Principle of Microuniformity because of a different

understanding of how physical quantities are integrated in the calculus; but a successful

grounding of the calculus through the syncategorematic interpretation leads to an

abandonment of this position, and with it, Principle of Microuniformity. SIA with nilsquare

infinitesimals is able to uphold Microuniformity, à la Nieuwentijt, only by equating the

squares of all first-order infinitesimals to zero, and therewith rejecting the entire apparatus

underlying Newton’s calculation of central forces, from Lemma 9 through to Proposition 6 and

its corollaries and applications —all of which involve time variation of quantities across an

infinitesimal time, and quantities depending on the squares of nascent or evanescent areas

which are, as in the Nieuwentijtian calculus, necessarily equal to zero.

5. CONCLUSION

Despite many points in common, we have seen that Leibniz’s syncategorematic approach to

infinitesimals and the theory of Smooth Infinitesimal Analysis are by no means equivalent.

Indeed, the conceptions of infinitesimal quantities at the heart of each approach are radically

diverse. According to John Bell, “The property of being a nilsquare infinitesimal is an intrinsic

property, in no way dependent on comparisons with other magnitudes or numbers.” (Bell,

1998, 2). Therein, it would appear, lies the source of the difficulties identified above.

Nilsquareness is intrinsic to the nilsquare infinitesimal, but the nilsquare infinitesimal is not

intrinsic to the problem. Thus the type of infinitesimal assumed (nilsquare, nilcube, etc.) has
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to be determined by its applicability to the problem at hand, i.e. by extrinsic criteria. There

is no such problem in principle with Leibniz’s syncategorematic infinitesimals. On this

approach, the vanishing of infinitesimal quantities is always a comparative affair, and is

grounded on a strictly Archimedean geometry. It remains to be seen, however, whether the

Leibnizian syncategorematic approach can be set on a foundation adequate to modern

mathematical standards of rigour.
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References

Arthur R. T. W. (2005a). “The remarkable fecundity of Leibniz's work on infinite series”, a

review article of A VII 3 and A II 5, forthcoming in Annals of Science.

Arthur R. T. W. (2005b). “From Actuals to Fictions: Four Phases in Leibniz's Early Thought on

Infinitesimals” forthcoming in Studia Leibnitiana, ed. Mogens Laerke and Mark Kulstad.

Bell, J. L. (1998). A Primer of Infinitesimal Analysis. Cambridge: Cambridge University Press.

Bertoloni Meli, Domenico (1993). Equivalence and Priority: Newton versus Leibniz. Oxford,

Clarendon Press.

Bos, H. J. M. (1974-75). “Differentials, Higher-Order Differential and the Derivative in the

Leibnizian Calculus”, Archive for the History of the Exact sciences, 14, 1-90.

Gerhardt, C. I. ed. (1849-63): Leibnizens Mathematische Schriften (Berlin and Halle: Asher

and Schmidt; reprint ed. Hildesheim: Olms, 1971), 7 vols; cited by volume and page, e.g.

GM.II.316.



41

Gerhardt, C. I. ed. (1875-90): Der Philosophische Schriften von Gottfried Wilhelm Leibniz

(Berlin: Weidmann; reprint ed. Hildesheim: Olms, 1960), 7 vols; cited by volume and

page, e.g. G.II.268.

Guicciardini, Niccolò. Reading the Principia. Cambridge: Cambridge University Press.

Ishiguro, Hidé (1990). Leibniz’s Philosophy of Logic and Language (2nd ed.) Cambridge:

Cambridge University Press.

Knobloch, Eberhard (2002). “Leibniz’s Rigorous Foundation of Infinitesimal Geometry by

means of Riemannian Sums.” Synthese 133: 59-73.

 Leibniz, G. W. (1684). “Nova methodus pro maximis et minimis, itemque tangentibus, quae

nec fractas, nec irrationales quantitates moratur, et singulare pro illis calculi genus.”

Acta Eruditorum, October 467-473. GM v 220-226.

Leibniz, G. W. (1701). “Cum prodiisset atque increbuisset Analysis mea infinitesimalis …”  in

Leibniz (1846), pp. 39-50.

Leibniz, G. W. (1846). Historia et Origo calculi differentialis a G. G. Leibnitzio conscripta

(ed. C. I. Gerhardt). Hannover.

Leibniz, G. W. (1923-): Sämtliche Schriften und Briefe, ed. Akademie der Wissenschaften der

DDR (Darmstadt and Berlin: Akademie-Verlag; cited by series, volume and page, e.g. A VI

2, 229.

Leibniz, G. W. (1993). De quadratura arithmetica circuli ellipseos et hyperbolae cujus

corollarium est trigonometria sine tabulis. Ed. and commentary by Eberhard Knobloch.

Göttingen: Vandenhoek & Ruprecht.



42

Leibniz, G. W. (2001). The Labyrinth of the Continuum: Writings on the Continuum Problem,

1672-1686. Ed., sel. & transl. R. T. W. Arthur. New Haven: Yale University Press;

abbreviated LLC with page number.

Mancosu, Paolo (1996).  Philosophy of Mathematics and Mathematical Practice in the

Seventeenth century. Oxford: Oxford University Press.

Newton, Isaac (1999). The Principia: Mathematical Principles of Natural Philosophy. Trans. I.

Bernard Cohen and Anne Whitman. Berkeley: University of California Press.

Whiteside, D. T. (1966). “Newtonian Dynamics”. History of Science 5, 104-117.

Whiteside, D. T. (ed.) (1967). The Mathematical Papers of Isaac Newton, Volume 1, 1664-

1666. Cambridge: Cambridge University Press.


