

Computational complexity in the

philosophy of mind: unconventional
methods to solve the problem of logical

omniscience

Safal Raman Aryal

February 1st, 2022

Table of Contents

i. Abstract ... 3

ii. Introduction .. 4

iii. Human Complexity Classes Error! Bookmark not defined.

i. Abstract

The philosophy of mind is traditionally concerned with the study of mental processes,

language, the representation of knowledge and the relation of the mind shares with the

body; computational complexity theory is related to the classification of computationally

solvable problems (be it via execution time, storage requirements, etc...). While there

are well-established links between computer science in general \& the philosophy of

mind, many possible solutions to traditional problems in the philosophy of mind have

not yet been analyzed from the more specific lens of computational complexity theory.

In his paper "Why Philosophers Should Care about Computational Complexity", Scott

Aaronson argues that many conventional theories of epistemology & mind implicitly

make the presupposition of omniscience (by supposing that knowing base facts means a

knower necessarily understands derivative facts) - he proposes that computational

complexity theory could explain why this is not the case. In this paper, I argue for a

theory of mental representation & epistemology compatible with Aaronson's

observations on complexity theory, overcoming that presupposition of omniscience.

ii. Introduction

The problem of logical omniscience arises fundamentally from treating epistemic logic

(the logic explaining the acquisition & knowledge of beliefs) as a branch of modal logic

(the branch of logic dealing with formalizing systems of possible truths). When the

deliberation of belief is treated as a model problem, the problem of how exactly people

can make inferences over such large systems of logic arises – how can one go through

many thousands of propositions every time that is required? (“The Problem of Logical

Omniscience”).

Indeed, the modal theory of belief implies that this speedy deliberation must also occur

in other domains unrelated to constructing beliefs – this theory implies that any

propositional knowledge rooted in a logical system implies that the knower would know

every possible statement under that system. So, if a knower were to learn the Peano

axioms, they would also possess knowledge of the solution to the Poincaré conjecture.

This is an obviously problematic model of human knowledge: there is no trivial

automatic deduction of inferences within larger logical systems, so what are avenues

that can be taken to resolve this inconsistency?

The traditional solution to the problem of logical omniscience (as it is called, as this

state would imply all people become “logically omniscient”) is one of acknowledging the

idea of “implicit knowledge” – which is knowledge that does not necessarily need to be

acquired but is innately present in everyone (or specific groups, depending on the logical

framework in question). Thus, the problem is solved as follows: of certain frameworks,

people have implicit knowledge & can deduce conclusions within them quickly &

effectively. There is also a parallelism with respect to the logical frameworks themselves:

sometimes they contain implicit knowledge which must be deduced only with reference

to other systems and is thus acquired by those means. The example of mathematics,

however, comes back to haunt this solution – people do seem to have innate knowledge

of certain branches of mathematics (arithmetic being the most prominent example), and

mathematics is self-contained, meaning that there is no implicit knowledge that can be

uncovered through juxtaposition with other frameworks, and the only implicit

knowledge is that that the propositions contained within mathematics can imply. This

solution breaks down in these situations.

Scott Aaronson, professor of computer science at UT Austin, was one of the first

academic scholars within computer science to note the same thing as I have here – in his

paper “Why Philosophers Should Care About Computational Complexity”, he notes that

the problem of logical omniscience is one that could be solved through the application of

concepts from computational complexity theory. As a huge topic, summarizing it

concisely is difficult, but fundamentally, computational complexity theory is the study

of how many steps and how much space (among many other quantitative indicators of

use) certain computations take. It studies these relations in a precise & mathematical

manner and is the standard way for computer scientists to analyze the effectiveness &

performance of algorithms (Aaronson 10).

For example, let us say there is a function which computes the square of a number. One

operation is required to square a number – either the square operation is applied

directly, or it is multiplied by itself (and one could say the square operation is an

abbreviation of the latter, but in some computer systems it is possible that they serve a

similar function). If we were to try to measure the time complexity of this function (the

amount of steps it takes to execute), we would say it takes 1 step. Squaring 56 numbers,

on the other hand, takes 56 of these “steps”. By mapping steps to operations that a

computer performs, it is possible to assess the differences between different types of

algorithms – choosing the correct one to perform the correct tasks.

Computational complexity theory can also be used to calculate the amount of space that

certain algorithms use up in the address space, with reference to fixed memory

constraints present on computer systems. It can be used to understand even natural

processes: by mapping the stages of evolution onto computational steps, it is possible to

estimate how much computational power simulations of the phenomenon would require.

Given this flexible & interdisciplinary application, it is surprising that before Aaronson,

no one thought to apply computational complexity theory to the study of philosophy,

and especially the problem of logical omniscience.

iii. Complexity Classes & discussion of a possible solution

A complexity-theoretic solution to the problem of logical omniscience could take the

following form given the computational complexity of deducing certain conclusions (for

example, the Poincaré conjecture, or the fastest route through Kathmandu’s subway

system), it is impossible that an “instantaneous knowledge” could arise within a person

about their nature – thus, rendering the problem solved. This avoids having to draw the

tenuous distinction between implicit & explicit knowledge that has been the approach in

modal logic.

There are, however, some issues with this solution to the problem: for one, the mind

does not perceive the complexity of tasks in necessarily the same way that computers

would. For example, the proof to Fermat’s Last Theorem took centuries to discover and

it took an odd association made by Andrew Wiles within the field of elliptic curves to

arrive at it, but the proof itself would be rather simple. Given that the basic rules of

mathematics can be arranged logically in a formal & straightforward manner to arrive

at it, to a computer, finding Fermat’s Last Theorem would theoretically be a rather

simple task if the statements could be phrased that way (because of non-computability,

I doubt this is an actual example, but there are probably other instances, like the

Pythagorean theorem). This is the fundamental observation that a computer’s method

of classifying complexity is not the same as a human being. The second issue that it is

unknown whether human minds operate as computers. It will be argued that this is

irrelevant to constructing a complexity-theoretic solution to the problem.

Computational complexity classes are grouped together by aggregating the number of

steps that certain operations take even when scaled up, most commonly in the form of

finding functions which fit their models. For example, a function which calculates the

nth term of a quadratic sequence might involve squaring a number, then adding its

product with the number 5, and then adding the constant 7. Another function might

deal with a sequence that has more terms, but because in both cases the number of

operations does not grow with the size of the input, they belong to the complexity class

𝑂(1) (which means that they take a multiple of 1 step to complete).

Contrast this to a function which operates on lists. Since the lengths of lists vary

considerably from one another, a function which adds a number to every member of a

list or multiplies it by a constant might be considerably complex for some lists and

certainly less complex for others. In this case, the number of steps the function takes

depends on the number of members in the list, and the relation is one of direct

proportionality – which is called 𝑂(𝑛). Other types of growth (and decrease, though this

is unlikely) relations are also possible – the point is that precise categorizations of the

number of steps operations take are possible in the first place.

This is not so simple when dealing with the case of human reasoning. In human

reasoning, it is often not possible to track the number of steps a certain deduction took

to make because they are not made in the same procedural manner as they are for

computers. For example, returning to Andrew Wiles’ example, it took him years to

reach his insights about elliptic curves – and this clearly required a lot of mental

deliberation. Obviously, it did not take long for reviewers to read through them &

understand the logic by which he employed them, but it did take him time. A

computational representation of his proof does not allow for an accurate representation

of his labor.

A part of this problem comes from the fact that the inner workings of individual minds

are often obscure – as much as we are conscious, many judgements of ours are made

preconsciously and outside of our explicit deliberation. These clearly involve our basic

biological cognitive faculties, but it does not seem necessary for them to invoke our

conscious cognitive faculties because they have concurrent operations with our bodies.

One way around this through the lens of complexity theory is formulate new complexity

classes: ones specifically fit to explain the limits of human cognition by imposing

complexity limits through understanding the average biological limitations that people

face.

Consider the work in standardizing batteries for intelligence tests, for example. The task

of an intelligence test designer is to formulate a battery of tests which assesses human

cognitive ability as broadly as possible and reduces them to basic skills. Often, these

basic skills are put on percentile scales to understand how measurements of them are

interpreted statistically – and this percentile understanding could be used to calculate

an “upper limit” for the inferences that a person is able to make within their long-term

and short-term memories, and thus classify their thoughts into a “complexity class”

relative to the rest of the sample on which the test is normed.

While this is not a direct analogy to assessing the computational complexity of a given

idea or train of thought with reference to human limitations directly, it does manage to

accomplish one task – quantify the degree to which a person may be able to reason.

Once this is done, assessments can be made of whether it may be out of reach for a

person to perform certain tasks. For example, a child could not prove the Poincaré

conjecture, because their ideal state of logical omniscience is limited by biological

cognitive factors, and this is represented by a numerical value based on cognitive

abilities.

Instruments assessing cognitive abilities have obvious flaws, and it is not intended to

promote them blindly as tools to do this with. Rather, what is being prompted is an

approach which breaks down cognitive abilities in understanding logical propositions to

assess a given individual’s likelihood of being able to make certain deductions which

employ skills associated with that – and through calculating “complexity classes” on this

basis, the basic logic behind Aaronson’s solution is preserved.

This also eliminates the problem of having to deliberate on whether or not

computational reasoning maps directly onto human reasoning: insofar as an appropriate

model is developed to make the quantitative classification of cognitive abilities, the

inaccessibility of the mind simply means that the fact of why the brain performs with

complexity is considered outside of the scope of this brand of philosophy: the job of the

philosopher here is simply to resolve the epistemological conundrum that arrives from

having to consider the problem of logical omniscience.

iv. Conclusion

Scott Aaronson’s proposition to use aspects of computational complexity theory to solve

the problem of logical omniscience has considerable promise – it provides a neat solution

to the problem of how exactly deductions are created and allows for flexible ambiguity

in committing to a computationalist theory of mind. Empirical concerns remain about

the efficacy of how cognitive ability assessments of adequate quality could be designed

to assess them accurately enough to allow for the consideration of complicated problems

– the understanding of “cognition” here is limited to the logical type.

v. Works Cited

“ The Problem of Logical Omniscience .” The Problem of Logical Omniscience, 5 Apr.
2001, https://www.informatik.uni-leipzig.de/~duc/Thesis/node15.html.

Aaronson, Scott. “Why Philosophers Should Care About Computational Complexity.”
ArXiv.org, 14 Aug. 2011, https://arxiv.org/abs/1108.1791.

