
Discussion Paper No.   610 
 

 
 
 
 
 
 

 
 
 

PORTFOLIO INERTIA AND  
Ɛ -CONTAMINATIONS 

 
 
 

Takao Asano 
 
 
 
 
 
 
 
 
 
 
 
 
 

June 2004 
 
 

The Institute of Social and Economic Research 
Osaka University 

6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6319744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Portfolio Inertia and ε-Contaminations ∗

Takao Asano †

Institute of Social and Economic Research

Osaka University

Mihogaoka 6-1, Ibaraki, Osaka 567-0047

JAPAN

First version: October 7, 2003

This version: June 13, 2004

Abstract

This paper analyzes investors’ portfolio selection problems in a two-period dy-

namic model of Knightian uncertainty. We account for the existence of portfolio

inertia in this two-period framework. Furthermore, by incorporating investors’ up-

dating behavior, we analyze how new observation in the first period will affect

investors’ behavior. By this analysis, we show that new observation in the first

period will expand portfolio inertia in the second period compared with the case

in which new observation has not been gained in the first period if the degree of

Knightian uncertainty is sufficiently large.
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1. Introduction

In stock markets, it is often observed that portfolio inertia exists, that is, a situation

where some stocks are not traded or not priced for several minutes. While the existence

of portfolio inertia cannot be accounted for1 under the standard expected utility theory,2

it can be explained under non-expected utility theories.3 In this paper, we extend their

static frameworks to a two-period dynamic framework in order to incorporate decision

maker’s updating behavior. Within such a framework, we can consider the following

question: Does obtaining new information affect her portfolio inertia, which is derived

from her optimization behavior?

As Gilboa and Schmeidler (1993) point out, it is intriguing to cosider whether ob-

taining new information will shrink portfolio inertia or expand. In order to analyze such

a problem, we consider two updating rules, the Fagin-Halpern rule and Dempster-Shafer

rule, which are frequently adopted in economics and statistics.4 Recently, Epstein and

Schneider (2003) and Wang (2003) axiomatize rational decision makers’ behaviors incor-

porating their belief-updatings in the multi-period dynamic framework. In this paper,

we consider the condition under which obtaining new information will expand portfolio

inertia by way of decision makers’ belief-updating.

The organization of this paper is as follows. In Section 2 we provide a review of

non-expected utility theories, in particular, the Choquet Expected Utility and the Maxmin

Expected utility. Section 3 provides the stochastic environment of a two-period model.

Section 4 presents the two updating rules, the Fagin-Halpern and Dempster-Shafer rules.

In Section 5, we define the dilation of Knightian uncertainty. Section 6 defines the ε-

contamination, which is a restriction of the set of decision makers’ beliefs. Section 7

analyses a portfolio selection problem à la Arrow (1965) under the non-expected utility

1See Arrow (1965).
2We explain the standard expected utility theory including non-expected utility theories in the next

section.
3See Dow and Werlang (1992) that first account for the existence of portfolio inertia under the Choquet

Expected Utility Theory. Also see Asano (2003) that explains the existence of portfolio inertia under the
concept of ambiguity. For the concept of ambiguity, see Epstein (1999).

4See Section 4 in details.
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framework. Section 8 provides the main theorem of this paper. Section 9 concludes this

paper. Definitions of Choquet integrals and non-additive measures (or capacities) as well

as mathematical results about Choquet integrals are relegated to Appendix.

2. CEU and MMEU

Since Ellsberg (1961) first cast doubt on the validity of the Subjective Expected

Utility (henceforth SEU) theory axiomatized by Savage (1954),5 a number of generaliza-

tions have been proposed in order to overcome such a shortcoming and to analyze problems

that are not well explained within the framework of SEU.6 While risk is the situation in

which decision maker’s beliefs are captured by a single probability measure, uncertainty is

the situation in which decision maker’s beliefs are represented by a set of probability mea-

sures or a non-additive probability measure. The difference between risk and uncertainty

is crucial in analyzing decision maker’s behavior under “non-deterministic” environment.

The Maxmin Expected Utility (henceforth MMEU) and the Choquet Expected

Utility (henceforth CEU) are two alternatives to SEU that are extensively investigated in

economics,7 finance,8 game theory,9 and so forth. MMEU states that if a certain set of

axioms is satisfied, then DM’s beliefs are captured by a set of finitely additive measures

and her preferences are represented by the minimum of expected utilities over the set

of these measures.10 On the other hand, CEU states that if a certain set of axioms is

satisfied, then DM’s beliefs are captured by a non-additive measure and her preferences

are represented by Choquet integrals.11 These two theories are axiomatized by different

sets of axioms, respectively. However, it can be shown that CEU with a convex non-

5SEU states that if a certain set of axioms is satisfied, then DM’s beliefs are captured by a unique
probability measure and her preferences are represented by the expected utility.

6Using an easy-to-understand example, Ellsberg shows that people often violate Savage’s crucial axiom,
the Sure Thing Principle.

7For example, see Nishimura and Ozaki (2002b) (job search) or Ghirardato (1994) (agency theory).
8For example, see Dow and Werlang (1992), and Epstein and Wang (1994, 1995).
9For example, see Dow and Werlang (1994), Lo (1996, 1998, 1999), and Marinacci (2000).

10MMEU is axiomatized by Gilboa and Schmeidler (1989) in the Anscombe and Aumunn (henceforth
AA) framework and axiomatized by Casadesus-Masanell, Klibanoff and Ozdenoren (2000) in the Savage
framework.

11CEU is axiomatized by Schmeidler (1989) in the AA framework and axiomatized by Gilboa (1987)
in the Savage framework.
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additive measure µ is equivalent to MMEU with the set core(µ) as a set of probability

measures.12 In this paper, we further restrict the set of probability measures P to the

ε-contamination. The reason of its restriction to the ε-contamination is provided in the

following sections.

3. Stochastic Environment

In this section, we provide the formal description of our two-period dynamic model.

Let S be a state space. Let (s1, s2) denote a generic element of S × S. Let

F = 〈Ft〉t=0,1,2, where F0 ≡ {∅, S × S}, and F1 is defined to be the algebra generated

by the set of finite partitions of S × S of the form: 〈Ei × S〉i for some finite partition

〈Ei〉
m
i=1 of S, and F2 is defined to be the algebra generated by the set of finite partitions

of S × S of the form: 〈Ei × Fj〉i,j for some finite partitions 〈Fj〉
n
j=1 of S.

For notational abuse, we denote the first-period measurable space by (S, 〈Ei〉i),

where 〈Ei〉i is the algebra generated by the partition 〈Ei〉. We denote the set of all the

probability measures on it by M (S, 〈Ei〉). Similar notational abuse applies to the second-

period measurable space denoted by (S, 〈Fj〉j). Furthermore, we denote the set of all the

probability measures on (S × S, F2) by M (S × S, F2), and denote decision maker’s set

of probability measures by P ⊆ M (S × S, F2). In this paper, we consider that decision

maker’s Knightian uncertainty is represented by the set P.

12Let S be a set, 2S be the set of subsets of S, µ be a convex non-additive measure, P be the set of
finitely additive measures on (S, 2S), and let B(S, R) denote the space of bounded functions from S into
R. Then

∫

X(s)µ(ds) = min

{
∫

X(s)P (ds) |P ∈ core(µ)

}

,

where X ∈ B(S, R) and the upper core of µ is the set of finitely additive measures on (S, 2S) that dominate
µ for all E ∈ 2S , i.e., core(µ) =

{

P ∈ P|(∀E ∈ 2S)P (E) ≥ µ(E)
}

, and the integral of the left-hand side
is in the sense of Choquet integrals. Note that

∫

X(s)µ′(ds) = max

{
∫

X(s)P (ds) |P ∈ core(µ′)

}

,

where X ∈ B(S, R), µ is a convex capacity on (S, 2S), µ′ is the conjugate of µ, and the set core(µ′) is the
lower core of µ′. We provide the definitions of Choquet integrals, capacities, convex capacities, and the
lower core of capacities in Appendix.
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Let p ∈ M (S × S, F2). Then we define p|1(·) ≡ p(· × S). Formally speaking,

p|1 is not a measure on (S, 〈Ei〉), but it can be considered as the first-period marginal

probability measure of p on (S × S, F2). In a similar way, we define the second-period

marginal probability measure, denoted by p|2, and we consider it as a measure on (S, 〈Fj〉).

Let P ⊆ M (S × S, F2). Then we define the first and second period marginal

Knightian uncertainty by

P|1 = {p|1 | p ∈ P}

and P|2 = {p|2 | p ∈ P} ,

respectively.

In order to describe updating rules after observing an event E in the first period,

we provide the definition of the Bayesian updating procedure. Let p ∈ P and let E ∈ 〈Ei〉

such that p(E×S) > 0. Then we define the probability measure on (S×S, F2) conditional

on the event E × S by

(∀E ∈ 〈Ei〉)(∀F ∈ 〈Fj〉) p|2(E × F |E) ≡
p(E × F )

p(E × S)
.

We define the Bayesian procedure by a function (p, E) 7→ p|2(·|E), where p|2(·|E) ≡

p|2(E × ·|E). That is, it maps a pair of a probability measure p on (S × S, F2) and an

event E in 〈Ei〉 in the first period, to p|2(·|E), which can be considered as the probability

measure on (S, 〈Fj〉).

Let P be decision maker’s set of beliefs, and let E be an 〈Ei〉-measurable set such

that p(E×S) > 0 for all p ∈ P. Then we define an updating rule by a function that maps

a pair (P, E) to a set of probability measures on (S, 〈Fj〉). In this paper, an updating

rule is denoted by φ.

4. Updating Rules: The Fagin-Halpern and Dempster-Shafer Rules

In this section, we provide the definitions of two updating rules that are heavily investi-

gated in statistics13 and economics,14 the Fagin-Halpern updating rule (we abbreviate it
13For example, see Dempster (1967, 1968), Shafer (1976), or Fagin and Halpern (1990).
14For example, see Gilboa and Schmeidler (1993), Denneberg (1994), or Nishimura and Ozaki (2002a).
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as the FH rule) and the Dempster-Shafer updating rule (we abbreviate it as the DS rule).

We denote the FH rule as φFH and define it by

(∀P ⊆ M (S × S, F2))(∀E ∈ 〈Ei〉i) φFH(P, E) = {p|2(·|E) | p ∈ P} . (1)

Note that a decision maker who adapts the FH rule updates all the probability measures

p ∈ P following the Bayesian procedure. Also note that when E = S, φFH(P, S) = P|2

for any P. Thus the second period marginal Knightian uncertainty P|2 can be derived

from the FH rule for E = S.

Before we define the DS rule, one more definition is in order. Define a set of

first-period probability measures by

(∀E ∈ 〈Ei〉i) P∗(E) = argmax {p|1(E) | p ∈ P} .

Then we are in a position to define the DS rule by

(∀P ⊆ M (S × S, F2))(∀E ∈ 〈Ei〉i) φDS(P, E) = {p|2(·|E) | p ∈ P∗(E)} . (2)

Note that in the first period, a decision maker who follows the DS rule survives probability

measures p ∈ P that assign the maximum value to an event E, and in the second period,

she follows the Bayesian procedure for such a set of probability measures denoted by

P∗(E).

From the definitions of FH and DS rules, we can immediately prove that

(∀P ⊆ M (S × S, F2))(∀E ∈ 〈Ei〉i) φDS(P, E) ⊆ φFH(P, E).

Although this result holds for any set of probability measures P, the converse set inclusion

does not necessarily hold for any P. A question is worth considering: Does the converse

set inclusion hold by restricting the set of probability measures P? That is the topic of

Section 5. Before we investigate this topic, the definition of the dilation of Knightian

uncertainty is in order.
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5. Dilation of Knightian Uncertainty

In this section, we define the concept of dilation.15 Let P ⊆ M (S × S, F2) be the set of

probability measures. We say that the dilation of Knightian uncertainty occurs if for any

E ∈ 〈Ei〉, the next strict set inclusion holds:

φ(P, E) ⊃ P|2.

This means that if a decision maker has observed an event E ∈ 〈Ei〉 in the first

period and updates her set of beliefs P by an updating rule φ, then the updated set of

probability measures φ(P, E) expands compared with the case in which she observes no

event in the first period, that is, E = S. In this paper, a set of probability measures P is

assumed to represent decision maker’s Knightian uncertainty. Thus, the occurrence of the

dilation of Knightian uncertainty in the sense of this paper forces her to make decisions

based on “more ambiguous environment.”

6. The ε-Contamination

In this section, we restrict the set of priors P to the ε-contamination. At first, we define

the ε-contamination of some probability measure p0 on (S × S, F2).

15Seidenfeld and Wasserman (1993) provide another definition of dilation based on upper and lower
probability measures. Let P ⊆ M (S × S, F2) and let B ∈ F2 such that (∀p ∈ P) p(B) > 0. Define the
upper probability and the lower probability by

(∀A ∈ F2) P (A) ≡ sup
p∈P

p(A), and

(∀A ∈ F2) P (A) ≡ inf
p∈P

p(A),

respectively, and define the upper conditional probability and the lower conditional probability

(∀A ∈ F2) P (A|B) ≡ sup
p∈P

p(A ∩ B)/p(B), and

(∀A ∈ F2) P (A|B) ≡ inf
p∈P

p(A ∩ B)/p(B),

respectively. They define the concept of dilation as follows: B dilates A if

P (A|B) < P (A) ≤ P (A) < P (A|B).

Their necessary and sufficient conditions for the dilation to occur depend on a particular event A.
On the other hand, in this paper, we capture the concept of dilation by way of expantions of sets of

measures. Our concept of dilation is more appropriate than their concept when it comes to analyzing
economic problmes since our concept corresponds to the notion of Knightian uncertainty.
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Let p0 be a probability measure on (S × S, F2) such that p0(E × S) > 0, and let

ε ∈ (0, 1). We assume that the decision maker’s set of beliefs P is represented by the

ε-contamination of p0 on (S × S, F2) such that

P =
{

p0
}ε

≡
{

(1 − ε)p0 + εq | q ∈ M (S × S, F2)
}

.

If ε = 0, then P = {p0}
ε

reduces to P = {p0}. This corresponds to the case in

which decision maker’s belief is captured by a single probability measure. The larger this

number ε is, the more uncertain decision makers are about the true probability measure

p0.16 Thus, the number ε can be considered to be the value that captures the degree of

Knightian uncertainty. For further discussions on ε-contaminations, see Berger (1985),

Wasserman and Kadane (1990) or Nishimura and Ozaki (2002a, b).

For later use, we define the ε-contamination of p0|2(·|E) by

(∀ε ∈ (0, 1))(∀E ∈ 〈Ei〉)
{

p0|2(·|E)
}ε

=
{

(1 − ε)p0|2(·|E) + εq2 | q2 ∈ M (S, 〈Fj〉)
}

.

As we have already pointed out, the converse inclusion φDS(P, E) ⊇ φFH(P, E)

is not necessarily true except for the trivial case in which P is a singleton. However,

when we restrict the set of probability measures P to the ε-contamination, the converse

inclusion holds. That is, sets of probability measures updated by FH and DS rules are

identical. Moreover, the two updating rules, DS and FH rules can be represented by

some ε′-contamination (ε′ is defined in the next theorem) of second-period probability

measures.

Theorem 1 (Nishimura and Ozaki (2002a)). Let ε ∈ (0, 1) and let E ∈ 〈Ei〉i. Then

φFH

({

p0
}ε

, E
)

= φDS

({

p0
}ε

, E
)

=
{

p0|2(·|E)
}ε′

,

where ε′ is defined by

ε′ = ε′(ε, E) ≡
ε

(1 − ε)p0|1(E) + ε
.

16This observation can be checked by way of expansions of sets of beliefs that are represented by
P =

{

p0
}ε

.
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Proof. See Nishimura and Ozaki (2002a).

It can be proved that the next equality holds:

core(θ1) =
{

p0|2(·|E)
}ε′

≡
{

(1 − ε′)p0|2(·|E) + ε′q | q ∈ M (S, 〈Fj〉j)
}

,

where θ1 : 〈Fj〉j → [0, 1] is defined by

(∀A ∈ 〈Fj〉j) θ1(A) =

{

(1 − ε′)p0|2(A|E) if A 6= S
1 if A = S

(3)

From Fact 4, it can be shown that θ1 is a convex capacity. Thus it follows that

(∀s1 ∈ E)

∫

S

I(s1, s2)θ1(ds2) = min

{
∫

S

I(s1, s2)P (ds2) | P ∈ core(θ1)

}

= min

{
∫

S

I(s1, s2)P (ds2) | P ∈
{

p0|2(·|E)
}ε′

}

,

where the integral of the left-hand side is in the sense of the Choquet integral.

Next, we investigate the relation between the set of the first-period marginals of

the ε-contamination, P|1, and the ε-contamination of the first-period marginal probability

measures, {p0|1}
ε
.

Lemma 1. Let ε ∈ (0, 1). Let P ≡ {p0}
ε

= {(1 − ε)p0 + εq | q ∈ M (S × S, F2)}, and let

P|1 ≡
{

p|1 | p ∈ {p0}
ε}

. Then

P|1 =
{

p0|1
}ε

=
{

(1 − ε)p0|1 + εq | q ∈ M (S, 〈Ei〉)
}

.

Proof. At first, we show that {p0}
ε
|1 ⊆ {p0|1}

ε
. Let p1 ∈ {p0}

ε
|1. Then there exists

p ∈ {p0}
ε

such that p1 = p(· × S). Since p ∈ {p0}
ε
, there exists q ∈ M (S × S, F2) such

that p = (1− ε)p0 + εq. Thus, p1 = p(· × S) = (1− ε)p0|1(·) + εq|1(·), which implies that

p1 ∈ {p0|1}
ε
.

Next, we show that {p0|1}
ε
⊆ {p0}

ε
|1. Let p1 ∈ {p0|1}

ε
. Then, there exists

q1 ∈ M (S, 〈Ei〉i) such that p1 = (1 − ε)p0|1 + εq1. Let q2 ∈ M (S, 〈Fj〉j) and let p =

(1 − ε)p0 + ε(q1 × q2). Then, p ∈ {p0}
ε

and p|1 = (1 − ε)p0|1 + εq1 = p1, which implies

that p1 ∈ {p0}
ε
|1.
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By this lemma, we can show that

P|1 =
{

p0|1
}ε

= core(θ0),

where θ0 : 〈Ei〉i → [0, 1] is defined by

(∀E ∈ 〈Ei〉i) θ0(E) =

{

(1 − ε)p0|1(E) if E 6= S
1 if E = S

(4)

From Fact 4, it can be shown that θ0 is a convex capacity. Thus it follows that

(∀I)

∫

S

I(s1, s2)θ0(ds1) = min

{
∫

S

I(s1, s2)P (ds1) | P ∈ core(θ0)

}

= min

{
∫

S

I(s1, s2)P (ds1) | P ∈
{

p0|1
}ε

}

.

Again, the integral of the left-hand side is in the sense of the Choquet integral.

Similarly, we can characterize the set of second-period marginals of the ε-contamination,

P|2, by the ε-contamination of the second-period marginal probability measures, {p0|2}
ε
.

Lemma 2. Let ε ∈ (0, 1). Let P|2 ≡
{

p|2 | p ∈ {p0}
ε}

. Then,

P|2 =
{

p0|2
}ε

=
{

(1 − ε)p0|2 + εq | q ∈ M (S, 〈Fj〉)
}

.

By this lemma, it follows that

P|2 =
{

p0|2
}ε

= core(θ2),

where θ2 : 〈Fj〉j → [0, 1] is defined by

(∀F ∈ 〈Fj〉j) θ2(F ) =

{

(1 − ε)p0|2(F ) if F 6= S
1 if F = S.

(5)

From Fact 4, we can show that θ2 is a convex capacity.

7. Portfolio Selection Problem

In this section, we consider a portfolio selection problem à la Arrow (1965) in a two

period framework. At first, the setup is in order. After that, we analyze the portfolio

selection problem in two different setting. The first setting is the one in which a decision

9



maker observes an event E in the first period and updates her set of probability measures

P = {p0}
ε

by the FH rule. The second is the one in which she observes no event in the

first period and updates P by the FH rule, which is equal to the second-period marginal

of P, P|2, as we have already pointed out.

Let W ∈ R+ be the wealth at t = 0, N ∈ R be the amount of money invested at

t = 0, q > 0 be the price of a risky asset at t = 0, and X be the random payoff of the asset

at t = 2, where X is F2-measurable. Moreover, let u : R → R be a monotonic increasing

concave function. We assume that an investor obtains new information at t = 1, but she

does not gain any payment at t = 1. We are in a position to define her objective function.

The objective function is

V (X(s1, s2))

= min
p∈P

Ep

[

min
p∈P

Ep [X|F2]

∣

∣

∣

∣

F1

]

(6)

= min
p∈P

∫
[

min
p∈P

Ep [X|F2]

]

p|1(ds1)

= min
p∈P

∫
[

min
q∈φF H(P,E)

∫

u (W − N + (N/q)X(s1, s2)) q(ds2)

]

p|1(ds1)

= min
p∈P|1

∫
[

min
q∈φF H(P,E)

∫

u (W − N + (N/q)X(s1, s2)) q(ds2)

]

p(ds1)

= min
p∈{p0|1}

ε

∫

[

min
q∈{p0|2(·|E)}ε′

∫

u (W − N + (N/q)X(s1, s2)) q(ds2)

]

p(ds1)

=

∫

S

[
∫

S

u (W − N + (N/q)X(s1, s2)) θ1(ds2)

]

θ0(ds1), (7)

where θ0 : 〈Ei〉i → [0, 1] is defined by

(∀E ∈ 〈Ei〉i) θ0(E) =

{

(1 − ε)p0|1(E) if E 6= S
1 if E = S,

θ1 : 〈Fj〉j → [0, 1] is defined by

(∀A ∈ 〈Fj〉j) θ1(A) =

{

(1 − ε′)p0|2(A|E) if A 6= S
1 if A = S,

and ε′ is defined in Theorem 1. Note that DM’s set of beliefs P is captured by the

ε-contamination of p0, and her updating rule φ(P, E) is characterized by the FH rule
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φFH(P, E). Also note that the penultimate equality holds by Lemma 1 and Theorem

1. For axiomatizations of this preference (6), see Epstein and Schneider (2001) or Wang

(2003).

An investor is supposed to invest in two assets, a riskless asset and a risky asset.

The problem is to choose the amount of money N so as to maximize

∫

S

[
∫

S

u (W − N + (N/q)X(s1, s2)) θ1(ds2)

]

θ0(ds1).

That is, she is supposed to choose the amount of money N to invest the risky asset so as

to maximize her non-expected utility of the terminal payoff.

Theorem 2. The investor will neither buy nor sell the risky asset, if q satisfies:

∫

S

∫

S

X(s1, s2)θ1(ds2)θ0(ds1) < q <

∫

S

∫

S

X(s1, s2)θ
′
1(ds2)θ

′
0(ds1),

where θ′0 and θ′1 are the conjugate of θ0 defined by Equation (4) and the conjugate of θ1

defined by Equation (3), respectively. 17

This theorem states that there exists portfolio inertia in a two-period setting, in

which DM’s beliefs are represented by the ε-contamination P = {p0}
ε
, and her set of

probabilities P is updated by the FH rule (DS rule).

Proof. Assume that

q >

∫

S

∫

S

X(s1, s2)θ1(ds2)θ0(ds1). (8)

17Observe that
∫

S

∫

S

X(s1, s2)θ
′
1(ds2)θ

′
0(ds1)

= max
p∈core(θ′

0
)

∫
[

max
q∈core(θ′

1
)

∫

X(s1, s2)q(ds2)

]

p(ds1)

= max
p∈core(θ0)

∫
[

max
q∈core(θ1)

∫

X(s1, s2)q(ds2)

]

p(ds1)

= max
p∈{p0|1}

ε

∫

[

max
q∈{p0|2(·|E)}ε

′

∫

X(s1, s2)q(ds2)

]

p(ds1).

11



Then, for all N ≥ 0,

∫

S

[
∫

S

u (W − N + (N/q)X(s1, s2)) θ1(ds2)

]

θ0(ds1)

≤

∫

S

u

(
∫

S

(W − N + (N/q)X(s1, s2)) θ1(ds2)

)

θ0(ds1)

=

∫

S

u

(

W − N + (N/q)

∫

S

X(s1, s2)θ1(ds2)

)

θ0(ds1)

≤ u

(
∫

(

W − N + (N/q)

∫

X(s1, s2)θ1(ds2)

)

θ0(ds1)

)

= u

(

W − N + (N/q)

∫

S

∫

S

X(s1, s2)θ1(ds2)θ0(ds1)

)

< u(W − N + (N/q)q)

= u(W ),

where the first and second inequalities follow from Jensen’s inequality, the first and second

equalities follow from Fact 2, and the strict inequality follows from Equation (8).

Suppose that

q <

∫

S

∫

S

X(s1, s2)θ
′
1(ds2)θ

′
0(ds1). (9)

Then, for all N ≤ 0,

∫

S

[
∫

S

u (W − N + (N/q)X(s1, s2)) θ1(ds2)

]

θ0(ds1)

≤

∫

S

u

(
∫

S

(W − N + (N/q)X(s1, s2)) θ1(ds2)

)

θ0(ds1)

=

∫

S

u

(

W − N − (N/q)

∫

S

−X(s1, s2)θ1(ds2)

)

θ0(ds1)

=

∫

S

u

(

W − N − (N/q)

(

−

∫

S

X(s1, s2)θ
′
1(ds2)

))

θ0(ds1)

≤ u

(
∫

S

(

W − N + (N/q)

∫

S

X(s1, s2)θ
′
1(ds2)

)

θ0(ds1)

)

= u

(

W − N − (N/q)

∫

S

−

[
∫

S

X(s1, s2)θ
′
1(ds2)

]

θ0(ds1)

)

= u

(

W − N − (N/q)

(

−

∫

S

∫

S

X(s1, s2)θ
′
1(ds2)θ

′
0(ds1)

))

< u (W − N − (N/q)(−q))

= u(W ),

12



where the first and second inequalities follow from Jensen’s inequality, the first and third

equalities follow from Fact 2, the second and fourth equalities follow from Fact 3, and the

strict inequality follows from Equation (9).

Next, we consider the case in which she does not update her set of belifes P,

which is still assumed to be characterized by the ε-contamination of p0. That is, it is

assumed that her set of second-period beliefs is represented P|2, which is the set of her

second-period marginal probability measures defined by

P|2 = {p|2 | p ∈ P} .

As we have already pointed out, P|2 is equal to the FH rule, φFH(P, E) for E = S.

In this case, her objective function turns out to be

V (X(s1, s2))

= min
p∈P

∫
[

min
q∈φF H(P,S)

∫

u (W − N + (N/q)X(s1, s2)) q(ds2)

]

p|1(ds1)

= min
p∈P|1

∫
[

min
q∈φF H(P,S)

∫

u (W − N + (N/q)X(s1, s2)) q(ds2)

]

p(ds1)

= min
p∈P|1

∫
[

min
q∈P|2

∫

u (W − N + (N/q)X(s1, s2)) q(ds2)

]

p(ds1)

= min
p∈{p0|1}

ε

∫
[

min
q∈{p0|2}

ε

∫

u (W − N + (N/q)X(s1, s2)) q(ds2)

]

p(ds1)

=

∫

S

[
∫

S

u (W − N + (N/q)X(s1, s2)) θ2(ds2)

]

θ0(ds1), (10)

where θ0 : 〈Ei〉i → [0, 1] is defined by

(∀E ∈ 〈Ei〉i) θ0(E) =

{

(1 − ε)p0|1(E) if E 6= S
1 if E = S,

and θ2 : 〈Fj〉j → [0, 1] is defined by

(∀F ∈ 〈Fj〉j) θ2(F ) =

{

(1 − ε)p0|2(F ) if F 6= S
1 if F = S.

Note that the fourth equality holds by Lemmas 1 and 2.

The problem is to choose the amount of money N so as to maximize
∫

S

[
∫

S

u (W − N + (N/q)X(s1, s2)) θ2(ds2)

]

θ0(ds1).

13



Similarly, we can prove the following theorem.

Theorem 3. The investor will neither buy nor sell the risky asset, if q satisfies:

∫

S

∫

S

X(s1, s2)θ2(ds2)θ0(ds1) < q <

∫

S

∫

S

X(s1, s2)θ
′
2(ds2)θ

′
0(ds1),

where θ′0 and θ′2 are the conjugate of θ0 defined by Equation (4) and the conjugate of θ2

defined by Equation (5), respectively.

Proof. The proof is omitted.

This theorem states that there also exists portfolio inertia in a two-period model,

in which DM’s beliefs are represented by the ε-contamination P = {p0}
ε
, and she does

not obtain any information at t = 1, that is, P is restricted to the second period, P|2.

Now, a question is worth raising: whether portfolio inertia expands or shrinks

when she obtains new information in the first period compared with the case in which

she has not gain any information in the first period? In the next section, we provide an

answer to this question.

8. Expansion of Portfolio Inertia

In this section, we consider the problem posed in the last section: whether obtain-

ing new information will shrink or expand portfolio inertia?

In a two-period setting, we consider the following two cases. The first case is the

one in which a decision maker observes an event E ∈ 〈Ei〉i in the first period, and she

evaluates a second-period event by the probability measures updated by the Bayesian

procedure. The second case is the one in which she observes no event in the first period,

that is, E = S, and she evaluates the second-period event similar to the first case.

In order to analyze this problem, we define the “informational value” according to

Nishimura and Ozaki (2002a). Let E ∈ 〈Ei〉i and let δ(E) be defined by

δ(E) = max
j=1,··· ,n

∣

∣p0|2(Fj|E) − p0|2(Fj)
∣

∣ ,

14



where δ(E) ∈ [0, 1]. This number δ(E) is one of the measures to capture the informational

value of knowing that an event E has occurred in the first period. Note that δ(E) = 0

implies that observing an event E in the first period will not affect decision maker’s

evaluation of an event F in the second period.

Some comments are in order before we provide the main result of this paper. In

the following theorem, we assume two additional conditions. The first is the condition

that m ≥ 2. This condition together with the assumption that p0(E × S) > 0 imply that

0 < p0|1(E) < 1. The second is the condition that F ∈ 〈Fj〉
n
j=1 is such that p0|2(F ) > 0.

These two conditions imply that the first and the fourth inequalities in the following

theorem hold with strict inequality.

Now we are in a position to present the main result of this paper. If ε, which is the

degree of contamination of p0, and which can be considered as the degree of Knightian

uncertainty, is sufficiently large with respect to the informational value of the observation

E, δ(E), then obtaining new information expands portfolio inertia compared with the case

in which an investor does not obtain new information.

Theorem 4. An investor neither buys nor sells the risky asset if q satisfies:

∫

S

∫

S

X(s1, s2)θ2(ds2)θ0(ds1) < q <

∫

S

∫

S

X(s1, s2)θ
′
2(ds2)θ

′
0(ds1),

where θ′0 and θ′2 are the conjugate of θ0 defined by (4) and the conjugate of θ2 defined by

(5), respectively. Let P = {p0}
ε

and let m ≥ 2. Furthermore, let F ∈ 〈Fj〉
n
j=1 such that

p0|2(F ) > 0. Suppose that the following inequality holds:

ε >
p0|1(E)

(1 − p0|1(E))minj p0|2(Fj)
δ(E). (11)

Then, for such an asset price, the following inequalities hold:

∫

S

∫

S

X(s1, s2)θ1(ds2)θ0(ds1) <

∫

S

∫

S

X(s1, s2)θ2(ds2)θ0(ds1) <

q <

∫

S

∫

S

X(s1, s2)θ
′
2(ds2)θ

′
0(ds1) <

∫

S

∫

S

X(s1, s2)θ
′
1(ds2)θ

′
0(ds1),

where θ′0, θ′1 and θ′2 are the conjugate of θ0 defined by (4), the conjugate of θ1 defined by

(3) and the conjugate of θ2 defined by (5), respectively.
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This theorem states that obtaining new information expands portfolio inertia com-

pared with the case in which she does not obtain new information as long as ε is sufficiently

large.

Proof. In order to prove the statement, it suffices to show that

θ1(F ) < θ2(F ),

for any F ∈ 〈Fj〉j such that p0|2(F ) > 0.

When δ(E) = 0, it follows that

(1 − ε)p0|2(F ) − (1 − ε′)p0|2(F |E)

= (1 − ε)
(

p0|2(F ) − p0|2(F |E)
)

− (ε − ε′)p0|2(F |E)

= (ε′ − ε)p0|2(F |E) > 0,

where the second equality holds since δ(E) = maxj |p
0|2(F |E) − p0|2(Fj)| = 0 and ε′ > ε,

and the inequality holds since ε′ > ε and p0|2(F |E) > 0.

When δ(E) > 0, it follows that

(1 − ε)p0|2(F ) − (1 − ε′)p0|2(F |E)

= ε′
(

1 − ε

ε′
p0|2(F ) −

1 − ε′

ε′
p0|2(F |E)

)

= (1 − ε)ε′
[(

1 − ε

ε
p0|1(E) + 1

)

p0|2(F ) −
1

ε
p0|1(E)p0|2(F |E)

]

≥ (1 − ε)ε′
[(

1 − ε

ε
p0|1(E) + 1

)

p0|2(F ) −
1

ε
p0|1(E)

(

p0|2(F ) + δ(E)
)

]

= (1 − ε)ε′
[

(

1 − p0|1(E)
)

p0|2(F ) −
δ(E)

ε
p0|1(E)

]

≥ (1 − ε)ε′
[

(

1 − p0|1(E)
)

min
j

p0|2(Fj) −
δ(E)

ε
p0|1(E)

]

> (1 − ε)ε′

[

(

1 − p0|1(E)
)

min
j

p0|2(Fj) − δ(E)p0|1(E)

(

p0|1(E)

(1 − p0|1(E)) minj p0|2(Fj)
δ(E)

)−1
]

= 0,

where the second equality follows from the definition of ε′, the first inequality follows from

the definition of δ(E), and the strict inequality follows from the assumption.
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9. Conclusion

In this paper, we investigate a portfolio selection problem à la Arrow (1965) in a two period

dynamic model of Knightian uncertainty. We explain the existence of portfolio inertia in

the two-period framework in which decision maker’s preference is represented by MMEU

and her beliefs are captured by the ε-contamination. Moreover, by incorporating her

updating behavior (the FH rule or the DS rule), we show that new observation in the

first period will expand portfolio inertia in the second period compared with the case in

which new observation has not been gained in the first period if the degree of Knightian

uncertainty is sufficiently large.

In this paper, we provide the results in which decision maker’s beliefs are captured

by the ε-contamination. However, this set of beliefs is more restrictive than the set core(µ),

which is the set of probability measures dominating a convex non-additive measure µ,

and which is extensively investigated in the literature on non-expected utility theories.

Thus, one of the interesting topics for future research is to extend the results based on

ε-contaminations to the ones based on sets of probability measures, core.
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Appendix

A.1 Choquet Integrals

Let S be a set and let 2S be the power set of S. A set function µ : 2S → [0, 1] is

a non-additive measure (or capacity) if (a) µ(∅) = 0 and (b) E, F ∈ 2S and E ⊂ F

imply µ(E) ≤ µ(F ), where ∅ denotes the empty set. The conjugate of a capacity µ is

defined by µ′(E) = 1 − µ(Ec) for all E ∈ 2S. A non-additive measure µ is convex if

µ(E ∪ F ) + µ(E ∩ F ) ≥ µ(E) + µ(F ) for all E, F ∈ 2S. The upper core and lower core of

a capacity µ, denoted by core(µ) and core(µ), respectively, are defined by

core(µ) =
{

p ∈ P| (∀E ∈ 2S) p(E) ≥ µ(E)
}

,

core(µ) =
{

p ∈ P| (∀E ∈ 2S) p(E) ≤ µ(E)
}

,

where P is the set of probability measures on (S, 2S). If a capacity µ is convex (concave),

then core(µ) (core(µ)) is non-empty. See Fact 6.

Let B(S, R) denote the space of bounded functions from S into R and let X ∈

B(S, R). The integral of X with respect to a non-additive measure µ is called the Choquet

integral, and is defined by

∫

X(s) µ(ds)

=

∫ ∞

0

µ ({s ∈ S|X(s) ≥ α}) dα +

∫ 0

−∞

[µ ({s ∈ S|X(s) ≥ α}) − 1] dα,

where integrals on the right hand side are in the sense of Riemann integrals.

A.2 Mathematical Results

Fact 1.

(∀X, Y ∈ B(S, R)) X ≥ Y ⇒

∫

X(s) µ (ds) ≥

∫

Y (s) µ (ds).

Fact 2.

(∀X ∈ B(S, R))(∀a ∈ R)(∀b ∈ R+)

∫

(a + bX(s))µ (ds) = a + b

∫

X(s)µ (ds).
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Fact 3.

(∀X ∈ B(S, R))

∫

X(s) µ(ds) = −

∫

−X(s) µ′(ds),

where µ′ is the conjugate of µ.

Fact 4. Let P be a probability measure, and let f : [0, 1] → [0, 1] be a monotonic increas-

ing function satisfying f(0) = 0 and f(1) = 1. Furthermore, define a real valued function

f ◦ P : 2S → [0, 1] such that

(∀A ∈ 2S) f ◦ P (A) = f(P (A)).

Then f ◦ P is a non-additive measure. If f is a concave (convex) function, then f ◦ P is

concave (convex). In particular, any real valued function P α : 2S → [0, 1], defined by

(∀A ∈ 2S) P α(A) = (P (A))α,

is a concave non-additive measure when α ∈ (0, 1) and is a convex non-additive measure

when α ∈ (1,∞).

Fact 5. Let µ and ν be probability capacities on (S, 2S). If µ(E) ≤ ν(E) for all E ∈ 2S,

then

(∀X ∈ B(S, R))

∫

X(s)µ(ds) ≤

∫

X(s)ν(ds).

Fact 6. If µ is a convex capacity, then core(µ) is non-empty.

Proof. See Kelley (1959).

Fact 7. If µ is a capacity, then

core(µ) = core(µ′),

where µ′ is the conjugate of µ.

Theorem 5. If µ is a convex capacity, then the following equality holds:

(∀X ∈ B(S, R))

∫

X(s)µ(ds) = min

{
∫

X(s)P (ds)

∣

∣

∣

∣

P ∈ core(µ)

}

.
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Proof. See Schmeidler (1989).

Corollary 1. If µ is a concave capacity, then the following equality holds:

(∀X ∈ B(S, R))

∫

X(s)µ(ds) = max

{
∫

X(s)P (ds)

∣

∣

∣

∣

P ∈ core(µ)

}

.

Theorem 6 (Jensen’s Inequality). Let (S, 2S, µ) be a measure space with µ(S) = 1,

where µ is a non-additive measure. Let X : S → (a, b) be in B(S, R), and u be a concave,

increasing and real-valued function on (a, b). Then for all non-additive measures µ,

∫

u(X(s)) µ(ds) ≤ u

(
∫

X(s) µ(ds)

)

.

Proof. See Asano (2003).
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