Skip to main content
Log in

Transseries and Todorov–Vernaeve’s asymptotic fields

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We study the relationship between fields of transseries and residue fields of convex subrings of non-standard extensions of the real numbers. This was motivated by a question of Todorov and Vernaeve, answered in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aschenbrenner M., van den Dries L.: H-fields and their Liouville extensions. Math. Z. 242, 543–588 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aschenbrenner, M., van den Dries, L., van der Hoeven, J.: Towards a model theory of transseries. Notre Dame J. Form. Log. 54 (3-4), 279–310 (2013)

    Google Scholar 

  3. Aschenbrenner M., van den Dries L., van der Hoeven J.: Differentially algebraic gaps. Selecta Math. 11, 247–280 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aschenbrenner M., Fischer A.: Definable versions of theorems by Kirszbraun and Helly. Proc. Lond. Math. Soc. 102, 468–502 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dahn B., Göring P.: Notes on exponential-logarithmic terms. Fund. Math. 127, 45–50 (1986)

    Google Scholar 

  6. Denef J., van den Dries L.: p-adic and real subanalytic sets. Ann. Math. (2) 128(1), 79–138 (1988)

    Article  MATH  Google Scholar 

  7. Écalle J.: Introduction aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac Actualités Mathématiques, Hermann, Paris (1992)

  8. Ehrlich P.: An alternative construction of Conway’s ordered field No. Algebra Universalis 25(1), 7–16 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ehrlich P.: The absolute arithmetic continuum and the unification of all numbers great and small. Bull. Symbol. Log. 18(1), 1–45 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Esterle J.: Solution d’un problème d’Erdős, Gillman et Henriksen et application à l’étude des homomorphismes de \({\mathcal{C}(K)}\). Acta Math. Acad. Sci. Hung. 30(1–2), 113–127 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gonshor, H.: An Introduction to the theory of surreal numbers. In: London Mathematical Society Lecture Note Series, vol. 110. Cambridge University Press, Cambridge (1986)

  12. Grigoriev, A.: On o-minimality of extensions of the real field by restricted generic smooth functions. (Preprint, available online at arXiv.org:math/0506109) (2005)

  13. Hahn, H.: Über die nichtarchimedischen Größensysteme. S.-B. Akad. Wiss. Wien, Math.-Naturw. Kl. Abt. IIa 116, 601–655 (1907)

  14. Hodges, W.: Model Theory, Encyclopedia of Mathematics and its Applications, vol. 42. Cambridge University Press, Cambridge (1993)

  15. Knebusch M., Wright M.: Bewertungen mit reeller Henselisierung. J. Reine Angew. Math. 286/287, 314–321 (1976)

    MathSciNet  Google Scholar 

  16. Knight J., Pillay A., Steinhorn C.: Definable sets in ordered structures II. Trans. Am. Math. Soc. 295(2), 593–605 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kuhlmann F.-V., Kuhlmann S., Shelah S.: Exponentiation in power series fields. Proc. Am. Math. Soc. 125, 3177–3183 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuhlmann, S., Tressl, M.: Comparison of exponential-logarithmic and logarithmic-exponential series. Math. Logic Quart. 58(6), 434–448 (2012)

    Google Scholar 

  19. Le Gal O.: A generic condition implying o-minimality for restricted C -functions. Ann. Fac. Sci. Toulouse Math. (6) 19(3–4), 479–492 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Miller C.: Exponentiation is hard to avoid. Proc. Am. Math. Soc. 122, 257–259 (1994)

    Article  MATH  Google Scholar 

  21. Pillay A., Steinhorn C.: Definable sets in ordered structures I. Trans. Am. Math. Soc. 295, 565–592 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rolin J.-P., Speissegger P., Wilkie J.A.: Quasianalytic Denjoy-Carleman classes and o-minimality. J. Am. Math. Soc. 16(4), 751–777 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schmeling, M.: Corps de Transséries. Ph.D. thesis, Université Paris VII (2001)

  24. Todorov, T., Vernaeve, H.: Asymptotic fields, generalized power series and special Colombeau algebras of generalized functions. (Manuscript) (2012)

  25. Todorov, T., Vernaeve, H.: Generalized power series and non-standard analysis: between model theory and NSA, slides of a talk given at York University (August 2009). Available online at http://maths.york.ac.uk/www/sites/default/files/Todo-rov-slides.pdf

  26. Tressl M.: Super real closed rings. Fund. Math. 194(2), 121–177 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. van den Dries L.: A generalization of the Tarski-Seidenberg theorem, and some nondefinability results. Bull. Am. Math. Soc. 15, 189–193 (1986)

    Article  MATH  Google Scholar 

  28. van den Dries, L.: O-minimal Structures. In: Hodges, W. et al. (eds.) Logic: from foundations to applications (Staffordshire, 1993), pp. 137–185. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1996)

  29. van den Dries, L.: Tame Topology and O-Minimal Structures. London Math. Soc. Lecture Note Series, vol. 248. Cambridge University Press, Cambridge (1998)

  30. van den Dries L., Ehrlich P.: Fields of surreal numbers and exponentiation. Fund. Math. 167(2), 173–188 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. van den Dries L., Lewenberg A.: T-convexity and tame extensions. J. Symb. Log. 60(1), 74–102 (1995)

    Article  MATH  Google Scholar 

  32. van den Dries L., Miller C.: On the real exponential field with restricted analytic functions. Israel J. Math. 85, 19–56 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. van den Dries L., Macintyre A., Marker D.: The elementary theory of restricted analytic fields with exponentiation. Ann. Math. 140, 183–205 (1994)

    Article  MATH  Google Scholar 

  34. van den Dries L., Macintyre A., Marker D.: Logarithmic-exponential power series. J. Lond. Math. Soc. 56, 417–434 (1997)

    Article  MATH  Google Scholar 

  35. van den Dries L., Macintyre A., Marker D.: Logarithmic-exponential series. Ann. Pure Appl. Log. 111, 61–113 (2001)

    Article  MATH  Google Scholar 

  36. van der Hoeven, J.: Asymptotique Automatique. Thèse, École Polytechnique, Paris (1997)

  37. van der Hoeven, J.: Transseries and real differential algebra. In: Lecture Notes in Math., vol. 1888. Springer, Berlin (2002)

  38. Wilkie A.: Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. J. Am. Math. Soc. 9, 1051–1094 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Goldbring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aschenbrenner, M., Goldbring, I. Transseries and Todorov–Vernaeve’s asymptotic fields. Arch. Math. Logic 53, 65–87 (2014). https://doi.org/10.1007/s00153-013-0356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-013-0356-5

Keywords

Mathematics Subject Classification (2000)

Navigation