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This paper proposes a Cournot game organized by three competing firms adopting bounded rationality. According to the marginal
profit in the past time step, each firm tries to update its production using local knowledge. In this game, a firm’s preference is
represented by a utility function that is derived from a constant elasticity of substitution (CES) production function. The game
is modeled by a 3-dimensional discrete dynamical system. The equilibria of the system are numerically studied to detect their
complex characteristics due to difficulty to get an explicit form for those equilibria. For the proposed utility function, some cases
with different value parameters are considered.Numerical simulations are used to provide an experimental evidence for the complex
behavior of the evolution of the system. The obtained results show that the system loses its stability due to different types of
bifurcations.

1. Introduction

The oligopoly market is an efficient market that is dominated
by a number of firms which offer and sell homogeneous or
similar products. Such market includes two popular types of
models, namely, Cournot (quantity decision) and Bertrand
(price decision) models. In Cournot models, the way that
firms control their production levels has a critical effect
on market outputs. Conversely, in Bertrand models, firms
select prices to be their strategic variables to optimize their
profits [1, 2]. Practically, the dynamic of an oligopoly game
is complex, since each oligopolistic firm must consider both
the consumers’ behaviors and the reactions of all competitors
[3]. A Cournot triopoly game is an oligopoly market with
three players that are in conflict and there is no cooperation
among them. The first idea of a Cournot oligopoly market
came to light in 1838 by Cournot [4] who proposed the
first formal oligopoly theory and treated such idea with
naive expectations on which each player assumes the last

taken values by competitors with no consideration of their
prospected reactions in the future [3]. In general, players in an
oligopoly market try to enhance their expected profit which
in turn is based onmatching among themarginal revenue and
marginal cost. Furthermore, each player can adjust his output
based on selecting his expectation rule from among various
available ones such as local bounded rational, adaptive, and
naive expectations [3, 5].

Puu [6] conducted some of the first investigations in such
economic games and thus he has concluded that various
complex dynamics could result from aCournot duopoly such
as the presence of attractors with a fractal dimension. Various
efforts were exerted then to study the dynamics of oligopoly
models with considering more firms and various amend-
ments [7, 8]. Elsadany and Awad [9] and Askar [10] pre-
sented a duopoly Cournot game model with considering the
bounded rationality and linear cost and demand functions.
Another duopoly gamemodel was studied by Bischi et al. [11],
where firms of naive expectations decided their outputs based
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on the reaction functions. Such model was then improved
by Agiza and Elsadany [12] to include two heterogeneous
players: adaptive expectation player and bounded rational
one.More improvements have been conducted in suchmodel
by Zhang et al. [13] based on considering nonlinear cost
functions.The complexity of thismodel was investigated then
by Matsumoto and Nonaka [14] with considering linear cost
functions.Other studies have been proposed and discussed in
literature. For instance, a Cournot duopoly game was studied
by Yassen and Agiza [15], taking into account the delayed
rationality. In recent years, it has been demonstrated that
oligopolistic markets may have chaotic or cyclic behavior
under some conditions [8, 16–18]. Elsadany [5] has studied
the dynamics of a Cournot duopoly model such as stability
and existence of bifurcations that are responsible for affecting
the behavior of equilibrium points. The model behavior
was studied using both Lyapunov exponents and bifurcation
diagrams, where results showed that suchmodel has a chaotic
behavior when some parameters were changed. Askar [19]
has studied the complex characteristics of a Cournot duopoly
model with the use of a gradient rule. He also developed
a generalized demand function and proposed that various
dynamic behaviors emerged from the stability to chaos
through bifurcations. Furthermore, Askar [20] has studied
other Cournot duopoly games that depend on nonlinear
demand functions.He proposed amodel of two rational firms
that compete and offer homogeneous commodities on which
their equilibrium points, bifurcation, chaos, and stability
were investigated.

In literature, there are few studies that handle the eco-
nomic game of three competitors. It is a complicated game in
comparison with the duopoly one. In such studies, the main
concern is to study the complex dynamic characteristics of
the game. For example, some complex dynamics of duopoly
game were studied in [8, 21–25]. In practice, such game is
close to the economic reality and it is widely deployed in
oligopoly. However, analyzing the dynamics of such game
is a complex task. Therefore, various investigations were
performed previously with considering three homogeneous
players, such as the work performed by Puu [26] who con-
sidered three naive players. He has concluded that a triopoly
game could have complex dynamics and cycles and chaos
may happen. Agiza et al. [8] have improved the proposed
Kopel Cournot duopoly game in [10] to be a triopoly one
and have discussed the multistability of the game. Askar and
Al-khedhairi [21] have modeled a dynamic Cournot triopoly
game that is composed of three homogeneous bounded ratio-
nal players using nonlinear difference equations. They have
concluded that the change in some model parameters causes
losing the Nash equilibrium stability and the occurrence of a
complex chaotic behavior. In addition, high adjustment speed
values have caused chaos and bifurcations in the system.
Andaluz et al. [27] have considered a Cournot oligopoly
model that includes three competitive companies that offer
homogeneous goods. Tu and Wang [28] have presented a
dynamic master-slave Cournot triopoly game model with
homogeneous bounded normal players. They have analyzed
the effects of changes in the adjustment speed parameters on
the system dynamics. In addition, the parameters adjustment

method was used to control the system’s complicated behav-
ior. Various studies and investigations were performed then
on Cournot triopoly games considering heterogeneous play-
ers. For instance, a model of a Cournot triopoly game was
proposed by Ma and Ji [29] with a square inverse demand.
Such model was later investigated by Ji [30] considering
heterogeneous players. Elabbasy et al. [25] have proposed
a triopoly game with heterogeneous players in order to
study its dynamical behaviors with linear cost function.
Anothermodel of a nonlinear triopoly gamewas proposed by
Elabbasy et al. [31] using three heterogeneous players, namely,
naı̈ve, bounded rational, and adaptive players. Askar and
Alshamrani [32] have studied four different models, namely,
cooperative Cournot triopoly, rational Bertrand triopoly,
rational Cournot triopoly, and Puu triopoly, based on a
quantity competition. The Nash equilibrium corresponding
to each gamewas calculated. Inclusive theoretical and numer-
ical studies concerning the stability of fixed points were
conducted.

Other economic games in which prices are the main
variables were studied in literature. For instance, Bertrand
duopoly models were investigated by Brianzoni et al. [33],
Zhao and Zhang [34], and Fanti et al. [35] depending on
differentiated products. They have discussed that the degree
of products differentiation had a major impact on the sale
quantity and price. Bertrand duopoly model was investigated
by Zhang et al. [36] depending on the price competition
with bounded rationality. Peng [37] and Peng et al. [38]
have introduced other Bertrand models in order to study
and assess complexity of the model. Zhang and Wang [39]
and Yali [40] have also investigated the complexity of such
models, in which the bounded rationality of marginal costs
and synchronization were considered. A Bertrand triopoly
model was developed by Sun and Ma [1], in which the
bounded rational expectations were considered and both the
presence and local stability of the Nash equilibrium were
studied. Furthermore, Sun and Ma [41] have introduced a
Bertrand triopoly model using nonlinear demand functions.
Ma and Wu [42] have studied the effect of delayed decision
on the stability of a Bertrand triopolymodel.They have found
that therewas no relation between the system stability and the
time delay of decision-makers.

In economicmarket, there is also another kind of strategic
variables which is amix between price and quantity variables,
in which the resultant game by such kind of variables is
known as a Cournot-Bertrand game [32]. The competition
of such game requires a specific differentiation degree among
provided products by firms in order to prevent a firm with
lower price from dominating the game market. Arya et al.
[43], Hackner [44], Tremblay et al. [45], and Zanchettin
[46] have investigated different types of Cournot-Bertrand
games. The model of Cournot-Bertrand triopoly game is
very close to real economy. It has been studied by several
researchers in literature. For instance, C. H. Tremblay and
V. J. Tremblay [47] have investigated the static properties of
Nash equilibrium of a Cournot-Bertrand game with product
differentiation. Naimzada and Tramontana [48] have studied
the dynamic characteristics of a Cournot-Bertrand game, in
which the product differentiationwas consideredwith the use
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of linear cost function and linear demand. In [49], a master-
slave Bertrand game has been proposed. In [29], a Cournot
triopoly game was proposed based on a downstream firm
and upstream firm. It was assumed that the downstream firm
had a linear inverse demand function, while the upstream
one had a nonlinear one, in which the cost functions were
considered as nonlinear function. Tu et al. [50] have studied
and investigated some complex characteristics of a Cournot-
Bertrand triopoly game. Moreover, there are some useful
works that tackle some important characteristics of such
games including risk and uncertainty aspects. Of those
characteristics, the nonlinearity and fractals for records of
tree-ring in China have been studied in [51]. Interaction
among inducible defenses and herbivore outbreak of plants
have been modeled and studied in [52]. The time delay has
been studied in a herbivore-plant systemusing the interaction
equations of diffusion [53]. The influences of Allee on a
variety of population models have been studied in [54]. In
[55], a model of reaction-diffusion has been introduced and
discussed for plant interaction andherbivore under delay.The
impact of colored noise on a spatial predator-prey model has
been presented in [56]. For other useful works, the readers
are advised to see [57–59].

Even though various efforts were performed in litera-
ture to study such games, more investigations need to be
performed with a focus on assessing the nonlinear and
complex performance of dynamic triopoly game models.
Therefore, this paper investigates a dynamicCournot triopoly
game, in which differentiated goods are considered, and
a utility function that is derived from CES. Our work in
this paper is outlined as follows. In Section 2, the market
utility structure of Cournot triopoly game with nonlinear
demand function derived from CES and differentiated goods
is proposed. Looking at the form of the utility function,
Section 3 studies the dynamical behavior of game for several
values of the parameter 𝛼 which represents the degree
of substitutability/differentiation among the commodities.
Finally, some concluding remarks are drawn in Section 4.

2. Market Utility

The market considered within this paper consists of three
competing firms whose strategies are the quantities they
produce. Each firm’s output is denoted by a nonnegative real
value 𝑞𝑖, 𝑖 = 1, 2, 3. We assume that the consumer’s preference
is represented by the following utility CES function:

𝑈 (q) = 3∑
𝑖=1

𝑞𝛼𝑖 q = (𝑞1, 𝑞2, 𝑞3) ∈ R
3
++, 0 < 𝛼 < 1. (1)

Since 𝛼 < 1, it is easy to check that 𝑈(q) is strictly concave.
Therefore, it is strictly quasi-concave and so has strict convex
to the origin level curves. This means that setting the total
differential 𝑑𝑈 = 0 and 𝑑𝑞1 = 0 we get the marginal rate of
technical substitution, MRTS2,3 = −𝑑𝑞3/𝑑𝑞2 = (𝑞2/𝑞3)𝛼−1,
which is strictly convex to the origin. A similar procedure
will produce MRTS1,2 and MRTS1,3. This means that the
consumer can substitute one input for another and continue
to produce the same level of output. We assume also that the

above utility function is governed by the following budget
constraint:

3∑
𝑗=1

𝑝𝑗𝑞𝑗 = 1. (2)

The inverses demand function (see the Appendix) can be
expressed as follows:

𝑝𝑗 = 𝑞𝛼−1𝑗
∑3𝑖=1 𝑞𝛼𝑖 , 𝑗 = 1, 2, 3. (3)

The case when 𝛼 = 1 has been studied by Puu [22]. In
addition, the duopoly game has been studied by Agliari et
al. [60]. For 𝛼 = 0, the market is dominated by three
monopolistic firms. When 𝛼 = 1, it means that the goods
are indistinguishable and the consumer may handle them
as identical. Lower values of this factor make the goods
interchangeable but not identical. Within this paper, we
highlight some values for the parameter 𝛼.
3. Dynamic Analysis of the Game

The profit of the 𝑖th firm is defined as follows:

Π𝑖 (𝑞𝑖) = 𝑞𝑖𝑝𝑖 − 𝐶𝑖 (𝑞𝑖) , 𝑖 = 1, 2, 3, (4)

where 𝐶𝑖(𝑞𝑖) defines the cost of the quantity produced and 𝑝𝑖
refers to the price of the quantity in the market. It is assumed
here that the firms use a cost function that is linear and takes
the form

𝐶𝑖 (𝑞𝑖) = 𝑐𝑖𝑞𝑖, 𝑖 = 1, 2, 3, (5)

where 𝜕𝐶𝑖(𝑞𝑖)/𝜕𝑞𝑖 = 𝑐𝑖, 𝑖 = 1, 2, 3, is called the marginal cost.
Substituting (3) in (4) gives

Π𝑖 (𝑞𝑖) = 𝑞𝛼𝑖∑3𝑖=1 𝑞𝛼𝑖 − 𝑐𝑖𝑞𝑖, 𝑖 = 1, 2, 3. (6)

For each firm,maximizing the profit depends on themarginal
profit. The marginal profit is calculated by taking the first
partial derivative of the above profit as follows:

𝜕Π𝑖𝜕𝑞𝑖 =
𝛼𝑞𝛼−1𝑖 (∑3𝑗=1

𝑗 ̸=𝑖

𝑞𝛼𝑗)
(∑3𝑖=1 𝑞𝛼𝑖 )2 − 𝑐𝑖, 𝑖 = 1, 2, 3. (7)

The above derivatives yield the best-reply function 𝑟𝑖, 𝑖 =1, 2, 3 (or reaction functions), as follows:

𝑞1 = 𝑟1 (𝑞2, 𝑞3) ,
𝑞2 = 𝑟2 (𝑞1, 𝑞3) ,
𝑞3 = 𝑟3 (𝑞1, 𝑞2) .

(8)
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Solving those functions gives Nash equilibrium point for the
game. Due to the nonlinearity of (7), the analytical expression
for Nash point is so complicated and then some numerical
assumptions are used. Now, a repeated Cournot triopoly
game whose players are bounded rational is considered. The
mechanism used to describe such game is called myopic
adjustment mechanism (see, e.g., [3]) and is presented by the
following equation:

𝑞𝑖,𝑡+1 = 𝑞𝑖,𝑡 + 𝑘𝑖 𝜕Π𝑖𝜕𝑞𝑖 , (9)

where 𝑘𝑖 stands for the positive parameter or the adjustment
speed of the 𝑖th firm. Substituting (7) in (9) gives the following
dynamical system:

𝑞1,𝑡+1 = 𝑞1,𝑡 + 𝑘1 [𝛼𝑞𝛼−11 (𝑞𝛼2 + 𝑞𝛼3 )(𝑞𝛼1 + 𝑞𝛼2 + 𝑞𝛼3 )2 − 𝑐1] ,

𝑞2,𝑡+1 = 𝑞2,𝑡 + 𝑘2 [𝛼𝑞𝛼−12 (𝑞𝛼1 + 𝑞𝛼3 )(𝑞𝛼1 + 𝑞𝛼2 + 𝑞𝛼3 )2 − 𝑐2] ,

𝑞3,𝑡+1 = 𝑞3,𝑡 + 𝑘3 [𝛼𝑞𝛼−13 (𝑞𝛼1 + q𝛼2 )(𝑞𝛼1 + 𝑞𝛼2 + 𝑞𝛼3 )2 − 𝑐3] .

(10)

System (10) admits steady states that satisfy the conditions

𝛼𝑞𝛼−11 (𝑞𝛼2 + 𝑞𝛼3 ) − 𝑐1 (𝑞𝛼1 + 𝑞𝛼2 + 𝑞𝛼3 )2 = 0,
𝛼𝑞𝛼−12 (𝑞𝛼1 + 𝑞𝛼3 ) − 𝑐2 (𝑞𝛼1 + 𝑞𝛼2 + 𝑞𝛼3 )2 = 0,
𝛼𝑞𝛼−13 (𝑞𝛼1 + 𝑞𝛼2 ) − 𝑐3 (𝑞𝛼1 + 𝑞𝛼2 + 𝑞𝛼3 )2 = 0.

(11)

Simple calculations reduce the algebraic system given in (11)
to the following:

𝑐2𝑞𝛼−11 (𝑞𝛼2 + 𝑞𝛼3 ) − 𝑐1𝑞𝛼−12 (𝑞𝛼1 + 𝑞𝛼3 ) = 0,
𝑐1𝑞𝛼−13 (𝑞𝛼1 + 𝑞𝛼2 ) − 𝑐3𝑞𝛼−11 (𝑞𝛼2 + 𝑞𝛼3 ) = 0,
𝑐3𝑞𝛼−12 (𝑞𝛼1 + 𝑞𝛼3 ) − 𝑐2𝑞𝛼−13 (𝑞𝛼1 + 𝑞𝛼2 ) = 0.

(12)

Solving the algebraic system yields the following steady states:

𝑒1 = (𝑞∗1 , 0, 0) ,
𝑒2 = (0, 𝑞∗2 , 0) ,

𝑒3 = (0, 0, 𝑞∗3 ) ,
ne = (𝑞∗1 , 𝑞∗2 , 𝑞∗3 ) ,

(13)

where 𝑞∗𝑖 ∈ R+ and ne represents Nash equilibrium point.
The most important thing here is to study the stability of
Nash point. Analytically, stability of Nash requires evaluating
the Jacobian matrix at it and calculate its corresponding
eigenvalues. Unfortunately, the expression of Nash ne =(𝑞∗1 , 𝑞∗2 , 𝑞∗3 ) is so complicated and hence nothing can be
said. We still have something to say about the complex
characteristics through numerical simulation, which is given
next for some cases.

Case 1 (no symmetry). Putting 𝛼 = 0.5 in (10) yields the
following system:

𝑞1,𝑡+1 = 𝑞1,𝑡 + 𝑘1( √𝑞2 + √𝑞3
2√𝑞1 (√𝑞1 + √𝑞2 + √𝑞3)2 − 𝑐1) ,

𝑞2,𝑡+1 = 𝑞2,𝑡 + 𝑘2( √𝑞1 + √𝑞3
2√𝑞2 (√𝑞1 + √𝑞2 + √𝑞3)2 − 𝑐2) ,

𝑞3,𝑡+1 = 𝑞3,𝑡 + 𝑘3( √𝑞1 + √𝑞2
2√𝑞3 (√𝑞1 + √𝑞2 + √𝑞3)2 − 𝑐3) .

(14)

Proposition 1. The Nash equilibrium of system (10) satisfies
the condition (√𝑞1 − √𝑞2)/(√𝑞2 − √𝑞3) = (𝑐1√𝑞1 − 𝑐2√𝑞2)/(𝑐2√𝑞2 − 𝑐3√𝑞3).
Proof. By sitting 𝑞𝑖,𝑡+1 = 𝑞𝑖,𝑡, 𝑖 = 1, 2, 3, in (10), one gets

√𝑞2 + √𝑞3
2√𝑞1 (√𝑞1 + √𝑞2 + √𝑞3)2 − 𝑐1 = 0,

√𝑞1 + √𝑞3
2√𝑞2 (√𝑞1 + √𝑞2 + √𝑞3)2 − 𝑐2 = 0,

√𝑞1 + √𝑞2
2√𝑞3 (√𝑞1 + √𝑞2 + √𝑞3)2 − 𝑐3 = 0

(15)

and by simple computations, it is easy to prove that (√𝑞1 −√𝑞2)/(√𝑞2 − √𝑞3) = (𝑐1√𝑞1 − 𝑐2√𝑞2)/(𝑐2√𝑞2 − 𝑐3√𝑞3).
Knowing no explicit form of Nash equilibrium does not give
any information about its stability and hence we study its
stability numerically by assuming that 𝑐1 = 0.19, 𝑐2 = 0.18,
and 𝑐3 = 0.17. This gives the following Nash point: ne =(0.5736977767, 0.6170010524, 0.6653988313). The Jacobian
at this point takes the form

𝐽 = [[[[
[

1 − 0.2719454580𝑘1 −0.02702099162𝑘1 −0.02601975598𝑘1
−0.02522346292𝑘2 1 − 0.2430223650𝑘2 −0.02342099165𝑘2
−0.02242469878𝑘3 −0.02162346300𝑘3 1 − 0.2161009218𝑘3

]]]]
]

(16)
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Figure 1: Bifurcation diagram for system (10) with respect to the parameter: (a) 𝑘1 and the values of the other parameters are fixed, 𝑘2 = 4,𝑘3 = 5, 𝑐1 = 0.19, 𝑐2 = 0.18, and 𝑐3 = 0.17; (b) 𝑘2 and the values of the other parameters are fixed, 𝑘1 = 10, 𝑘3 = 5, 𝑐1 = 0.19, 𝑐2 = 0.18, and𝑐3 = 0.17.

whose characteristic equation is given by

𝜗3 + 𝐴1𝜗2 + 𝐴2𝜗 + 𝐴3 = 0, (17)

where

𝐴1 = −3 + 0.2719454580𝑘1 + 0.2430223650𝑘2
+ 0.2161009218𝑘3,

𝐴2 = 0.06540726537𝑘1𝑘2 + 0.05818417896𝑘1𝑘3
+ 0.05201091414𝑘1𝑘3 − 0.4860447300𝑘2
− 0.4322018436𝑘3 − 0.5438909160𝑘1 + 3,

𝐴3 = −1 + 0.2719454580𝑘1 + 0.2430223650𝑘2
− 0.05201091414𝑘2𝑘3 − 0.05818417896𝑘1𝑘3
− 0.06540726537𝑘1𝑘2 + 0.2161009218𝑘3.

(18)

For ne to be locally asymptotically stable, the following
Routh-Hurwitz conditions should be satisfied:

1 + 𝐴1 + 𝐴2 + 𝐴3 > 0,
1 − 𝐴1 + 𝐴2 − 𝐴3 > 0,

𝐴23 < 1,
(1 − 𝐴23)2 − (𝐴2 − 𝐴1𝐴3)2 > 0.

(19)

Now, some numerical simulations are carried out to get
more insights into the stability of system (10). Such simula-
tions contain bifurcation diagrams, phase portrait, Lyapunov
exponents, basin of attraction, and 2D bifurcation diagram.
System (10) includes six parameters, three parameters for the

speed of adjustments 𝑘1, 𝑘2, and 𝑘3 and three parameters for
the firms’ costs 𝑐1, 𝑐2, and 𝑐3. Let us first fix the values of 𝑘2,𝑘3, 𝑐1, 𝑐2, and 𝑐3 and see the influence of the parameter 𝑘1 on
the system. Let 𝑘2 = 4, 𝑘3 = 5, 𝑐1 = 0.19, 𝑐2 = 0.18, and𝑐3 = 0.17. Figure 1(a) clearly shows a bifurcation diagram that
appears when 𝑘1 becomes close to the value 𝑘1 = 7.221. After
that a sequence of period doubling bifurcations appeared and
this leads to the instability of the equilibrium point. To see
the influences of the parameter 𝑘2 on the system behavior
(10), we take 𝑘1 = 10, 𝑘3 = 5, 𝑐1 = 0.19, 𝑐2 = 0.18, and𝑐3 = 0.17. Figure 1(b) shows that the behavior of system (10)
is entirely unstable. The system is chaotic for any value of
the parameter 𝑘2. It is shown that Nash equilibrium point
loses its stability for any values for the speed of adjustment𝑘2. Similarly, Figure 2(a) shows that the system’s behavior
against the parameter 𝑘3 is entirely unstable. The system
contains some other parameters that may have influences on
the stability of system behavior.These parameters are the cost
parameters. To see the influences of these parameters, let us
fix the following: 𝑘1 = 10, 𝑘2 = 4, 𝑘3 = 5, 𝑐2 = 0.18, and𝑐3 = 0.17; it is shown in Figure 2(b) that flip bifurcation
is detected and therefore the system is unstable against the
cost parameter 𝑐1. The simulation has shown that any value
of the cost parameter 𝑐1 will not give any stabilization of
Nash point. Furthermore, as shown in (15), Nash equilibrium
depends on those costs’ parameter and hence any value for
those parameters alters the value of Nash point and gives
instability of it. The same results are obtained for the other
cost parameters by using 𝑐2 or 𝑐3 instead of 𝑐1. Figures 3(a) and
3(b) show the phase portrait and strange attractor of system
(10) at the same set of cost parameters but different values of
the speed of adjustment parameters.

Because of the nonlinearity of the system, more complex
coexistence characteristics may be detected. For example,
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Figure 3: (a) Phase portrait for 2 cycles at 𝑘1 = 8.5, 𝑘2 = 5, 𝑘3 = 7, 𝑐1 = 0.19, 𝑐2 = 0.18, and 𝑐3 = 0.17. (b) Phase portrait for 4 cycles at 𝑘1 = 9,𝑘2 = 5, 𝑘3 = 7.5, 𝑐1 = 0.19, 𝑐2 = 0.18, and 𝑐3 = 0.17.

Figures 3(a), 3(b), and 4(a) show different types of stable
period cycles. By taking planar sections of the three dimen-
sional basins, Figure 4(b) shows a section of the basin of
attraction of period cycle 2 at 𝑞3 = 5.04 which is parallel
to the (𝑞1, 𝑞2) coordinate plane. The basin of attraction in
Figure 4(b) contains different colors, in which the grey color
refers to the basin of attraction of the diverging trajectories
and the other two colors are for the basin of attraction of
period cycle 2. Similarly, Figures 5(a) and 5(b) show planar
sections of the basin of attraction for period cycles 4 and 8,
respectively. These sections are obtained at 𝑞3 = 5.39 and𝑞3 = 5.81. In Figure 6, different chaotic attractors for system
(10) are given and this makes us study more the influences
of the system’s parameters on it. In the (𝑘1, 𝑘2)-plane, where
we fix the other parameters to 𝑞0,1 = 0.11, 𝑞0,2 = 0.12,

𝑞3,0 = 0.13, 𝑘3 = 5, 𝑐1 = 0.19, 𝑐2 = 0.18, and 𝑐3 = 0.17,
cycles with different periods are detected and are presented
in Figure 7(a). This figure presents a 2D bifurcation diagram
of different types of period cycles of system (10). These cycles
are of period 1 (basin in grey), period 2 (basin in blue),
period 4 (basin in red), period 6 (basin in green), period
8 (basin in yellow), and period 9 (basin in cyan) and the
white color is associated with unfeasible trajectories. From
the bifurcation diagrams given above, all these cycles become
unstable by increasing the values of the parameters 𝑘1, 𝑘2, and𝑘3 giving the appearance of cycles with high periodicity and
then rise of chaotic attractors. We follow the same procedure
of discussion regarding the costs parameters. Figure 7(b)
depicts the 2D bifurcation diagram for the cost parameters
in the plane (𝑐1, 𝑐2) at 𝑞0,1 = 0.11, 𝑞0,2 = 0.12, 𝑞3,0 = 0.13,
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Figure 5: (a) Plane section of basin of attraction at 𝑘1 = 9, 𝑘2 = 5, 𝑘3 = 7.5, 𝑐1 = 0.19, 𝑐2 = 0.18, 𝑐3 = 0.17, and 𝑞3 = 5.39. (b) Plane section of
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𝑘1 = 8.5, 𝑘2 = 5, 𝑘3 = 7, and 𝑐3 = 0.17. Different colors refer
to different types of periodic cycles.

Case 2 (homogeneous and symmetric case). In this case, we
assume a homogeneous and symmetric case by fixing the
parameters 𝑘1 = 𝑘2 = 𝑘3 = 𝑘 and 𝑐1 = 𝑐2 = 𝑐3 = 𝑐.
Putting 𝑐 = 0.2 in (15) gives the following Nash equilibrium:
ne = (0.56, 0.56, 0.56). Figure 8(a) shows a flip bifurcation
in which the Nash point is asymptotically stable for values of
the 𝑘 parameters less than 5.53 but for any values for the cost
parameter 𝑐 in (0, 0.2) the point becomes entirely unstable,
as given in Figure 8(b). Another useful tool of numerical
simulation is to study the maximum Lyapunov exponents
(MLE) as function of interested system’s parameters. It is clear
in Figures 8(c) and 8(d) that the value of MLE changes from

negative to positive at the bifurcation point and hence the
system equilibrium point becomes unstable.

In Figure 9(a), we present the basin of attraction regard-
ing the two parameters 𝑘 and 𝑐. The figure shows a number
of cycles with different periods. The white color in it refers
to the unfeasible trajectories, while the grey one presents
the diverging trajectories. The other figure gives the phase
portrait of the behavior of the studied system (Figure 9(b)).
Now, we give some brief studied cases for the system at
different values of the parameter 𝛼. We start with 𝛼 = 0.3
(interchangeable commodities but not quite identical) with
the same set of cost parameters. It is shown in Figure 10(a) that
theNash point in this case loses its stability due to bifurcation.
We observe, however, that there is an asymptotic stability of
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Figure 7: (a) 2D bifurcation diagram in the plane (𝑘1, 𝑘2) at 𝑞0,1 = 0.11, 𝑞0,2 = 0.12, 𝑞3,0 = 0.13, 𝑘3 = 7, 𝑐1 = 0.19, 𝑐2 = 0.18, and 𝑐3 = 0.17. (b)
2D bifurcation diagram in the plane (𝑐1, 𝑐2) at 𝑞0,1 = 0.11, 𝑞0,2 = 0.12, 𝑞3,0 = 0.13, 𝑘1 = 8.5, 𝑘2 = 5, 𝑘3 = 7, and 𝑐3 = 0.17.

Nash point in this case. Some other useful numerical tools
to inspect the influence of the system’s parameters on the
trajectories, whether they converge to periodic orbits and
chaotic attractor, are discussed. The maximum Lyapunov
exponent (MLE) gives an evident for the occurrence of chaos
when it takes positive values. In order to get a better view
for MLE, the dynamic system is left to evolve for 𝑡 = 104
time units and then the Lyapunov exponent is calculated
according to that value. It is clear in Figure 10(b) that for both
parameters 𝑐1 and 𝑘1 is positive and consequently existence of
chaotic motions is appeared. Finally, Figures 10(c) and 10(d)
show the phase portrait and the bifurcation diagram for the
system at 𝛼 = 0.3. It is clear that the system is unstable for any
values for the cost parameter 𝑐1. Another interesting case is
when 𝛼 = 0.7. This case gives a more complicated behavior of
the system. Figure 11(a) shows the bifurcation diagram and as

one can see Nash point is unstable. In addition, coexistence
of four-piece chaotic attractor is detected and plotted in
Figure 11(b) at 𝑘1 = 12, 𝑘2 = 12, 𝑘3 = 14, 𝑐1 = 0.19, 𝑐2 = 0.18,
and 𝑐3 = 0.17.
4. Conclusion

In this paper, a utility function that is derived from the CES
production function has been used to study the competition
among three Cournot firms. Analysis of this competition
has been performed under the assumption of linear cost
function and for some important cases on which substi-
tutability degree among commodities has been considered.
Numerical simulations have been used to confirm either
the stability or the instability of Nash equilibrium point.
The numerical results have shown that the stability of the
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Figure 8: (a) Bifurcation diagram for the symmetric case of system (10) at 𝑐 = 0.2, 𝑞0,1 = 0.11, 𝑞0,2 = 0.12, and 𝑞3,0 = 0.13. (b) Bifurcation
diagram for the symmetric case of system (10) at 𝑘 = 7.8, 𝑞0,1 = 0.11, 𝑞0,2 = 0.12, and 𝑞3,0 = 0.13. (c)Themaximum Lyapunov exponents with
respect to 𝑘. (d) The maximum Lyapunov exponents with respect to 𝑐.

equilibrium point has been affected by bifurcation routed to
chaos. Furthermore, the obtained results have confirmed the
bad influences of parameters on the behavior of the system.
The results obtained in this paper have extended existing
results in literature that have studied duopoly cases.

Appendix

Using the utility function and the budget constraint, the
Lagrange function is written as follows:

L (𝑞1, 𝑞2, 𝑞3, 𝜆) = 𝑞𝛼1 + 𝑞𝛼2 + 𝑞𝛼3
+ 𝜆 (1 − 𝑝1𝑞1 − 𝑝2𝑞2 − 𝑝3𝑞3) , (A.1)

where 𝜆 is defined as a Lagrange multiplier. The first-order
conditions of (A.1) yield

𝜕L𝜕𝑞1 = 𝛼𝑞𝛼−11 − 𝜆𝑝1 = 0,
𝜕L𝜕𝑞2 = 𝛼𝑞𝛼−12 − 𝜆𝑝2 = 0,
𝜕L𝜕𝑞3 = 𝛼𝑞𝛼−13 − 𝜆𝑝3 = 0,
𝜕L𝜕𝜆 = 1 − 𝑝1𝑞1 − 𝑝2𝑞2 − 𝑝3𝑞3 = 0

(A.2)
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Figure 11: (a) Bifurcation diagram for the case (𝛼 = 0.7) with respect to 𝑘1 at 𝑐1 = 0.19, 𝑐2 = 0.18, 𝑐3 = 0.17, 𝑞0,1 = 0.11, 𝑞0,2 = 0.12, and𝑞3,0 = 0.13. (b) The phase portrait at 𝑘1 = 12, 𝑘2 = 12, 𝑘3 = 14, 𝑐1 = 0.19, 𝑐2 = 0.18, and 𝑐3 = 0.17.

whose solutions are

𝑝1 = 𝛼𝑞𝛼−11𝜆 ,
𝑝2 = 𝛼𝑞𝛼−12𝜆 ,
𝑝3 = 𝛼𝑞𝛼−13𝜆 .

(A.3)

Using the budget constraints with simple calculations, one
can easily get

𝑝1 = 𝑞𝛼−11𝑞𝛼1 + 𝑞𝛼2 + 𝑞𝛼3 ,
𝑝2 = 𝑞𝛼−12𝑞𝛼1 + 𝑞𝛼2 + 𝑞𝛼3 ,
𝑝3 = 𝑞𝛼−13𝑞𝛼1 + 𝑞𝛼2 + 𝑞𝛼3 ,

(A.4)

which can be rewritten in the form

𝑝𝑗 = 𝑞𝛼−1𝑗
∑3𝑖=1 𝑞𝛼𝑖 . (A.5)
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