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Abstract
With the growth of data, data-intensive approaches for sustainability are becoming widespread and have been endorsed 
by various stakeholders. To understand their implications, in this paper, data-intensive approaches for sustainability will 
be explored by conducting an extensive review. The current data-intensive approaches are defined as an amalgamation of 
traditional data-collection methods, such as surveys and data from monitoring networks, with new data-collection methods 
that involve new information communication technology. Based on a comprehensive review of the current data-intensive 
approaches for sustainability, key challenges are identified: the lack of data availability, diverse indicators developed from 
a narrowly viewed base, diverse definitions and values, skewed global representation, and the lack of social and economic 
information collected, especially among the business indicators. To clarify the implications of these trends, four major 
research assumptions regarding data-intensive approaches are elaborated: the methodology, epistemology, normativity, and 
ontology. Caution is required when data-intensive approaches are masked as “objective”. Overcoming this issue requires inter-
disciplinary and community-based approaches that can offer ways to address the subjectivities of data-intensive approaches. 
The current challenges to interdisciplinarity and community-based approaches are also identified, and possible solutions are 
explored, so that researchers can employ them to make the best use of data-intensive approaches.

Keywords Data-intensive approaches · Sustainability · Sustainability indicators · SDGs · Planetary boundary · Open data · 
Big data

Introduction

Trade interlinkages and global supply chains have led to 
the extraction of multiple resources (Williams et al. 2016): 
groundwater (Dalin 2017), human net primary production 
(Imhoff et al. 2004), and mineral wealth (Wiedmann et al. 
2015). Subsequently, the extraction of resources has to led 
to transboundary problems: air pollution (Zhang et al. 2017), 
biodiversity impact (Moran and Kanemoto 2017), and cli-
mate change [Intergovernmental Panel on Climate Change 
(IPCC) 2018], with the potential to cross the “planetary 
boundaries”1 (Rockström 2013). Combatting these varied 
and diverse challenges on such a scale requires data about 
trade linkages delineating different actors—consumers, 
intermediaries, and extractors—across different countries 
and consumption categories, together with tools to interpret 
the data.
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According to data proponents, data from multiple fields 
and evidence from experimentation and machine learning 
are the best approaches to provide solutions in sustainabil-
ity science research. Evidence has been emphasized as an 
important aspect in the sustainability science scholarship 
(Clark et al. 2016; Miller et al. 2014). Evidence can be pro-
vided from data obtained through experiments and this is 
finding increasing support from governments, which have 
provided the impetus for evidence-based policy making 
(House of Commons 2011; Rutter 2012). The traditional 
research on sustainability focuses on problem solving from 
a particular perspective (Komiyama and Takeuchi 2006; 
Jerneck et al. 2011; Lang et al. 2012) and sustainability 
science is positioned as a transdisciplinary research that 
provides solutions to sustainability incorporating multiple 
perspectives (Spangenber 2011; Kates 2011; Clark 2007). 
It is proposed that data-intensive approaches will facilitate 
experimentation, promote social learning, and enhance deci-
sion-making (Yarime 2017, 2018).

Yet, the impacts of data-intensive approaches are poorly 
understood. The current data infrastructure, as well as the 
data-collection strategies and their interpretation have 
not yet been carefully studied in regard to the impact on 
decision-making for sustainable development (IEAG 
2014; O’Niel 2017). The current status of data-intensive 
approaches and the implications of gaining knowledge from 
these approaches need to be studied further. In this paper, 
we explore how data-intensive approaches are used to gath-
ered evidence, collaborate across disciplines, and comple-
ment participatory and transdisciplinary approaches. We 
question the assertion made by data proponents that data 
are all that is needed. The implications of data-intensive 
approaches for sustainability are elaborated in terms of the 
research assumptions made with such approaches (O’Niel 
2017; Derman 2011; Mittelstadt and Floridi 2016).

We capture various facets and define data-intensive 
approaches for the purpose of this paper. To further explore 
the broad implications of data-intensive approaches for sus-
tainability, we establish the following research questions to 
conduct a critical literature review:

1. What are old, new, and data-driven revolutions?
2. What is the current usage of these data approaches given 

the high hopes surrounding the use of data-intensive 
approaches in sustainable development?

3. What are the research assumptions of data-intensive 
approaches and their implications for sustainable devel-
opment?

In spite of the exuberance of data proponents, informa-
tion on many sustainability related issues is still lacking. 
Furthermore, caution is required when using data-inten-
sive approaches, as they are reductive and inductive, and 

the subjectivities involved in data-intensive approaches, 
which are masked as “objective”, can skew the outcomes 
of research, as Ronald Coase cautions when he states: “If 
you torture the data long enough, it will confess”(Tullock 
2001). The current data-intensive approaches are plagued 
with ontological relativism and scientific imperialism, and 
therefore, these data-intensive approaches cannot be consid-
ered objective. Overcoming these structural issues requires 
interdisciplinary and community-based approaches that will 
offer ways to address sustainability by highlighting subjec-
tivities to make the use of data-intensive approaches objec-
tive. We will emphasize the challenges faced by research-
ers in transitioning to interdisciplinarity and community 
approaches, and recommend new approaches based on 
the review. Data can open up new directions in providing 
causality-based knowledge to provide a fertile approach to 
bridge data from the multiple fields available. Furthermore, 
data-intensive approaches such as experimental approaches, 
normative contextual approaches and quantitative storytell-
ing approaches can provide new community-based data-
intensive approaches. In addition, the author’s flag up issues 
that are often neglected, e.g., the environmental impact of 
ICT-based data-intensive approaches.

This paper is structured as follows: “Methodology” lists 
the methodology used in the paper; “Understanding data 
approaches in decision-making and research” describes the 
data-intensive approaches; “Challenges of data-intensive 
approaches: issues and implications” lists the data-inten-
sive approaches focused on sustainability; “Implications 
for future research: challenges and way forward” lists the 
assumptions made in data-intensive research approaches—
methodology, epistemology, normativity, and ontology; 
“Conclusion” discusses the implications of data-intensive 
approaches, focusing on sustainability for academia and pol-
icy making; and the last section summarizes the conclusion.

Methodology

Although data-driven approaches have been specified recently, 
data have also been part of researchers’ everyday practice. 
Furthermore, different characteristics and features of data-
driven approaches have been articulated by different propo-
nents, including researchers, policy makers, and businessmen. 
More recently, their use in sustainable development has been 
actively proposed and encouraged. As pointed out earlier, the 
implications of the use of data-intensive approaches in sustain-
able development have not been studied or discussed. At the 
same time, understanding the implications of data-intensive 
approaches, which has a varied historical context and wide-
spread usage, is fundamental. Such a diverse topics requires 
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covering a comprehensive body of literature to understand the 
past, present, and future prospects.

The subject matter is captured based on a literature review 
in four stages: (1) covering the past impacts of data-intensive 
approaches by studying the diverse data-collection methods, data 
interpretation techniques, and uses of data in decisions to define 
data-intensive approaches (“Understanding data approaches in 
decision-making and research”); (2) mapping the present data-
intensive approaches used in sustainable development to eluci-
date the current trends (“Challenges of data-intensive approaches: 
issues and implications”); (3) studying the implications of the cur-
rent data-intensive approaches by delineating the various research 
assumptions to understand the objective nature of data-intensive 
approaches (“Implications for future research: challenges and 
way forward”); and (4) mapping possible solutions that may be 
employed to enhance the future use of data-intensive approaches 
(“Implications for future research: challenges and way forward”).

As well as the literature review, secondary data from the 
comprehensive database are used to map the present data-
intensive approaches used in sustainable development. The 
data sources of various of data-intensive approaches is pre-
sented in Table 1. These approaches are varied, and we have 
captured wide-ranging information based on the concept 
(planetary boundary), use [Sustainable Development Goals 
(SDGs) and corporate data], and characteristics (Open and 
Big Data).

Understanding data approaches 
in decision‑making and research

There are many different data-intensive approaches for sus-
tainability that are promoted by different actors—corporate 
actors, development agencies, and researchers—and some 

of the practical applications are listed here. Data-intensive 
approaches in sustainability frameworks and corporate 
industries are promoted by multinational organizations to 
aid decision-making in regard to sustainability issues (CSIS 
and JICA 2017; Petrov et al. 2016). On the corporate side, in 
an attempt to be “more sustainable”, businesses and corpora-
tions have created Key Performance Indicators (KPIs), sus-
tainability indicators, and reporting mechanisms. Research-
ers are divided; Marland et al. (2015) and Eccles et al. (2014) 
found these developments to be adequate, while Trexler and 
Schendler (2015), Ceres and Sustainalytics (2012), and Leis-
inger and Bakker (2013) found these developments to be 
inadequate in terms of reflecting sustainability.

Similarly, at the local, national, and international gov-
ernment levels, the United Nations has set 17 aspirational 
Sustainable Development Goals (SDGs) to combat social, 
economic, and environmental challenges (United Nations 
2015). Researchers have also emphasized the role of data in 
sustainable development studies, for example, its applica-
tion in disaster management and Life Cycle Analysis (LCA) 
studies (Zhongming et al. 2014; Xu et al. 2015). Data-inten-
sive approaches are claimed to foster the transparency of 
governments and companies, making them accountable for 
their actions through the use of open data (Rockström et al. 
2013). Data-intensive approaches based on planetary bound-
aries, Sustainable Development Goals, and corporate-based 
approaches are seen to enhance decision-making by reflect-
ing dimensions of sustainability (OECD 2002).

Such a diverse range of data-intensive approaches for 
sustainability, promoted by different actors, demands a bet-
ter understanding of these approaches. In this section, we 
define data-intensive approaches as an amalgamation of 
“old” and “new” approaches of data collection and inter-
pretation. Data-intensive approaches use data made available 

Table 1  Data source used in this paper to describe various data-intensive approaches

Data-intensive approaches Data source used in the paper

Planetary boundaries Global scientists including scientists from the Stockholm Resilience Centre have pioneered the concept of 
Planetary boundaries. Information on planetary boundaries is sourced from documents and papers published 
by researchers at Stockholm Resilience Centre (Cornell and Downing 2004)

Sustainable development goals The Inter-agency and Expert Group on SDG Indicators (IAEG-SDGs) was created by United Nations Statistical 
Commission with the task of developing the global indicator framework for SDGs and targets. Information on 
SDGs is sourced from the publication of IAEG-SDGs (IAEG-SDG 2015)

Corporate data The Global Initiative for Sustainability Ratings (GISR) has been working to create a rating for raters. GISR col-
lects information on company-level sustainability ratings. Data on corporate indicators is sourced from GISR 
hub (Ceres 2016)

Open data The Open Data Impact Map created by the Open Data for Development Network (OD4D) is a public database 
of organizations that use open government data from around the world. Data on open data is sourced from 
Open Data Impact Map (Center for Open Data Enterprise 2016)

Big data The Global Pulse is an initiative of the United Nation Secretary General on big data, which has the mission 
of accelerating its adoption for sustainable development and humanitarian action. Information on big data 
approaches is sourced from the repository of the Global Pulse’s project listing on the website (Global Pulse 
2018)
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from the open data movement by providing access to diverse 
“old data” sources—e.g., surveys, monitoring stations and 
general public information—and use big “new data” col-
lected from new technologies—e.g., wearable technology, 
mobile technology, smart card technology, satellite technol-
ogy, and social media. Collecting data and producing infor-
mation based on a framework while attempting to eliminate 
biases are seen as a hallmark of the old approach. The new 
approaches are based on machine learning and controlled 
experiments, and have a disregard for theory. The data are 
understood to have a meaning that can be uncovered without 
the need for human interpretation (Crawford 2013; Craw-
ford and Schultz 2014; Callebaut 2012; Fairfield and Shtein 
2014; Puschmann and Burgess 2014).

Following this description, the section elaborates data-
intensive approaches centred on sustainable development 
frameworks that invoke both old and new data approaches. 
Based on the analysis, the challenges of diverse and disag-
gregated data-intensive approaches are listed and explained.

Old approaches

The old approach consists of data from surveys, monitoring 
stations and general public information, and uses data made 
available by the increasing movement towards open data. 
Open data can be seen as a movement towards making these 
data available for wider use to increase economic growth, 
transparency, efficiency, service delivery, and information 
sharing (World Bank 2015). Planetary boundaries, sustain-
able development, and corporate indicators are currently 
based on this approach. We further elaborate the processes 
of data collection and data interpretation and their use in 
decision-making.

Traditional approaches of data collection used in deci-
sion-making include surveys collected by government sta-
tistical agencies and researchers from data gathering sys-
tems such as census bureaus, national statistical offices, and 
environmental monitoring networks. Similarly, businesses 
collect data either to submit sustainability reports or to 
prepare key performance indictors, which are used to drive 
their business operations. The data-collection strategies are 
designed with a framework and are considered robust; how-
ever, the frequency of collection is not frequent.

The collected data are further processed into indicators, 
which are used in policy making, as they are considered 
“objective” (Head 2010; Parkhurst 2017). Indicators can be 
defined as “variables that summarize or otherwise simplify 
relevant information, make visible or perceptible phenomena 
of interest, and quantify, measure, and communicate relevant 
information” (Gallopin 1996), based on a conceptual frame-
work, connecting indicators to a broader discourse or ideo-
logical position (Gudmundsson 2003; Pintér et al. 2005). 
Composite indicators are normalized and have weights; 

that is, they are weighed against other indices/indicators, 
while simultaneously combining indicators (Böhringer and 
Jochemc 2016). This allows for the presentation of multi-
ple variables together as a single indicator, for example, the 
GDP indicator.

Some examples of indicators developed by multilateral 
agencies and businesses are as follows. The Organization 
for Economic Cooperation and Development (OECD) 
pioneered using traditional data interpretation approaches 
through composite indicators (JRC-EC 2018; OECD 1974, 
1993, 2002), which are now popular with the UNEP (2002), 
the UNDP (2004) and the World Bank (2004), as well as 
other agencies (WRI 2003; World Council on City Data 
2015). Using these old data interpretation approaches, cor-
porate industry consortiums have developed many data-
driven approaches: sustainability indicators and reporting 
mechanisms (Global Reporting Initiative 2015; Integrated 
Reporting Council 2013; Gilman and Schulschenk 2013; 
Climate Disclosure Standards Board 2016; Carbon Dis-
closure Project 2016); specific Key Performance Indica-
tors (KPI) (Fitz-Gibbon 1990; Lydenberg et al. 2010); and 
business indices (Madnick and Siegel 2002; FTSE4 Good 
Index Series 2016; DJSI Annual Review 2015) to achieve 
sustainability-oriented goals.

The quantitative indicators mentioned above are a popular 
science–policy interface tool (Porter 1995; Boulanger 2014) 
that is used in decision-making. The composite indices and 
indicators are associated with an accepted salience, credibil-
ity, and legitimacy in the decision-making process, as they 
are considered objective (Cash et al. 2004; Parris and Kates 
2003). The idea underpinning their popularity is that scien-
tific knowledge, from indicators, compels action and has an 
impact on decision-making, where more research leads to a 
better understanding, which in turn helps to resolve political 
disagreements (Beck 2011).

New approaches

Big data refer to data that are large in volume. It is a com-
plex set of information that is difficult to understand, and 
requires the use of new tools and techniques to analyze it 
(Ward and Barker 2013). Big data have been made possible 
due to new technologies and are seen to provide informa-
tion at a higher frequency. It also provides the opportunity 
to link data, which is done through ICT technology (Heath 
and Bizer 2011); for example, the European Union pushed 
for the publication of government data in machine-readable 
formats (MELODIES Project 2016). These are seen as the 
strength of new approaches in providing “objective” data 
free of bias.

New data are gathered via different types of ICT, e.g., 
wearable technology, mobile technology, smart card tech-
nology, social media, and satellite technology (CSIS and 



959Sustainability Science (2020) 15:955–974 

1 3

JICA 2017). It is believed that ICT will play a facilitating 
role in gathering data in the future (Moir et al. 2014). Big 
data are data acquired from diverse sources, including and 
especially from ICT tools, which are exploding in numbers 
(Keeso 2014; Orts and Spigonardo 2014).

The two major interpretation strategies are predictive 
and experimental tools. These approaches are anti-theory, 
and are built explicitly for prediction, classification and to 
produce evidence through experiments for interventions. 
Co-relation-based approaches use big computing, math-
ematical modelling, and algorithms, where the emphasis is 
on unveiling correlations or patterns. The data are fed and 
trained with the help of algorithms based on a mathemati-
cal model from a sample data set and used for classifica-
tion. Rapid prototype testing (A/B testing or RCTs) studies 
particular “interventions” from an existing database or data 
collected from specific experiments (Narasimhan and Arun 
2017). Specific interventions, in comparison with theory, 
provide the reasons behind the success or failure of a par-
ticular intervention in producing “evidence”-based science 
practice. Both open “old” data and big “new” data can be 
used for A/B testing and their use has been enthused about 
by businesses.

Artificial intelligence and big computing tools such as 
analytics and algorithms are seen to play a major role in 
this movement (Brown et al. 2011). The big data move-
ment focuses on approximate analytics, scalability, and pat-
tern identification with data visualization as a key strategy 
(Lazar 2012). The use of these tools is seen to uncover hid-
den patterns, unexpected relationships, and market trends, 
and reveal preferences by providing real-time, data strik-
ing an informed balance between accuracy and timeliness 
(World Bank 2018). Furthermore, business leaders have 
stressed that data can be used for experimentation to pro-
vide evidence-based knowledge (Davenport 2009; Thomke 
and Manzi 2014; McAfee et al. 2012; Brown et al. 2011). 
While its use in sustainability-based research is not known, 
its use is prevalent in college rankings, advertising, predic-
tive policing, the selection of job applicants, evaluation of 
teachers, and the determination of creditworthiness (O’Niel 
2017).

Defining data‑intensive approaches—an 
amalgamation

The “old” and “new” data approaches appear to be simi-
lar in their claim to provide quantitative information that 
is considered “objective”. For the purpose of this paper, 
we define data-intensive approaches as quantitative meas-
ures made available from the opening of “old data” such 
as surveys, environmental monitoring data, and big “new 
data approaches” from new technology, where information 
is processed either by: interpreting data to produce indicators 

or indices, machine learning to make predictions, or experi-
ments to measure interventions. For example, in data-inten-
sive approaches, an experimentation-based or predictive 
analysis can be performed on survey or census data. Con-
currently, indices can also be constructed based on big data. 
The current data-intensive approaches for decision-making 
in regard to sustainability fall under this same category.

Data‑intensive sustainability approaches

The data-intensive approaches selected cover both old data 
approaches—planetary boundary and sustainable develop-
ment goals—and mixed approaches—corporate indicators 
and open data, and new data approaches—big data. The 
planetary boundaries and SDGs, developed by research-
ers and policy makers, currently predominantly use “old” 
data approaches. Furthermore, information on sustainable 
development from corporate indicators and open data is also 
chiefly based on old approaches. However, this is chang-
ing with data from ICT and satellite technology influencing 
corporate indicators and open data. The big data approaches 
promoted by the United Nations are exclusively based on 
new approaches. Since these approaches are varied, we have 
captured wide-ranging information about these approaches, 
which are not comparable. This serves to understand the 
current usage of these data approaches in sustainable 
development.

Planetary boundaries

The multiple planetary boundaries are selected and decided 
on through a top–down scientific process decided by a group 
of scientists. We list the data availability regarding four 
major planetary boundaries frameworks in Table 2: climate 
change, chemical pollution, nitrogen pollution, and ecosys-
tems. Data on climate change were found to be the most 
comprehensive of the four boundaries, though the data on 
climate change come primarily from networks in the devel-
oped world, making the global data quality poor. The data 
on ecosystems and biodiversity are sparse and decentralized, 
since biodiversity issues are seen as local and contextual. 
The information on nitrogen and phosphorus is patchy, with 
academic communities making efforts to develop this data-
base. The information on chemical pollution was also found 
to be lacking at a global level. However, research-driven 
networks are present and taking shape in Europe, North 
America, and East Asia.

Sustainable development goals

The SDGs have come to define approaches towards sus-
tainability by influencing policymakers and businesses 
around the globe. Here, we try to capture the process of 
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how these SDG indicators were decided on and collected 
and, consequently, the availability, or lack of data. Table 3 
demonstrates around 169 indicators that have been high-
lighted by the IAEG-SDGs committee. However, as of 
20 April 2017, 82, 61, and 84 indicators were classified 
as Tier I, Tier II, and Tier III, respectively. Among the 
Tier I indicators, only 75 of the 97 had data that were 
publicly accessible as of April 2017. According to the 
analysis by the Centre for Global Development (Dunning 
and Jared 2016), among the Tier 1 indicators for which 
data are more readily available, only slightly more than 
half of the countries have information on 60 of 72 indica-
tors. The Tier 1 indicator data are not readily available 
in developing countries. Even when the indicators are 
widely available, like the forest indicator, the definition 
of forests is different in each country and is based on the 
potential for timber harvesting rather than the qualitative 
health of the forest.

However, it is important to note that most of the key 
indicators of the SDGs only received comments from 
a few organizations during the IAEG-SDG Open Con-
sultation on Green Indicators, held in Bangkok from 
Wednesday, 4 November to 7 November 2015, as shown 
in Table 4. This was true for the indicators related to 
the environment, such as sustainable consumption and 
production, climate change, oceans, and terrestrial eco-
system. SDG 13 on climate change received the least 
comments, followed by the goals for oceans and marine 
resources (Goal 14) and biodiversity, forests, and deser-
tification of terrestrial ecosystems (Goal 15). The SDGs 
on health, education, and gender received the most com-
ments. It has been noted that the selection process for the 
SDG indicators has received a few comments from other 
organizations, and surprisingly, these indicators now 
influence every major platform. Most policy decisions 
globally, nationally, and regionally are framed in terms 
of these indicators.

Corporate data

Major corporate indicators and sustainability reports are 
profiled by companies for investors. Fewer indicators tar-
get business-to-customers (B2C) and business-to-business 
(B2B) audiences. The majority of corporate indicators 
focus on integrated Environmental–Social–Governance 
(ESG) issues, with significant attention being paid to carbon 
emissions. Amongst the topical focuses, the stress is on the 
environment, followed by social and governance indicators. 
These indicators reveal a relative lack of transparency and 
lack of attention to social issues. In addition, most company 
data are presented as an index, followed by rankings and 
ratings. Figures 1, 2, and 3 present these features.
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Open data

Various aspects of open data-intensive approaches are cov-
ered in Figs. 4, 5, 6, 7 and 8. Most open data are currently 
used by for-profit organizations for operational optimiza-
tion and for products and services. They are also used, to a 
lesser extent, by non-profit organizations, for advocacy and 
research purposes. Most organizations using open data work 
on ICT, governance, professional geospatial services, and 
consultancy projects. Other organizations work on thematic 
areas such as health, finance, education, energy, logistics, 

etc. Most of the organizations that utilize open data work at 
the national level, followed by the regional and global levels. 
However, the majority of open data are generated in North 
America, Europe, and East Asia.

Big data

The UN Global Pulse is a United Nations project on the 
use of big data-intensive approaches for sustainable devel-
opment. The topical and geographical focuses of these 
approaches are presented in Figs. 9 and 10, respectively. 
The geographical focus of these projects is on the develop-
ing world, with major projects in Latin America, Asia, and 
Africa. The major projects focus on the economy, food and 
agriculture, real-time monitoring, and other areas concern-
ing the SDGs. Some activities of the UN Global Pulse are 
more streamlined towards monitoring the SDGs than creat-
ing more primary data or revealing data on non-economic 
aspects of the SDGs.

Diverse and disaggregated data‑intensive approaches

The current data-intensive approaches for sustainability are 
diverse in terms of their target audience and focus, and the 
value base upon which they have been built. For example, 
the planetary boundary framework has a strong sustainabil-
ity approach, focuses on environmental issues (Rockström 
2009) and currently targets researchers and policy special-
ists. Information for many boundaries is lacking, and in 
some cases, even the mechanisms and networks regarding 
how the various kinds of data should be used and how the 
information is to be collected are missing.

The SDGs cover environmental, social, and economic 
themes to be used by business and governments. The SDGs, 
as a political process, originate from different value sets, 
as they have emerged from a global discourse on global 
environmental management (Independent Expert Advisory 
Group on a Data Revolution for Sustainable Development 
2014). Diverse indicators and policy processes stem from 

Table 3  Indicators divided by IAEG-SDG committee

Tier 1 Tier 2 Tier 3

Definition The indicator is conceptually clear, with at least 
50% of countries having them

The indicator is conceptually clear, but data are not 
regularly produced by countries

No interna-
tionally 
established 
methodol-
ogy

October 2016 159 “green” (generally agreed) 159 “green” (generally agreed) 64 “grey” 
(needs 
further dis-
cussion)

April 2017 82 (75 available online) 61 84

Table 4  Comments received for each goal at IAEG-SDG open con-
sultation on green indicators

SDG Comments 
from organiza-
tion

Poverty (Goal 1) 121
Hunger (Goal 2) 117
Health (Goal 3) 206
Education (Goal 4) 240
Gender (Goal 5) 189
Sustainable consumption and production (Goal 12) 40
Climate change (Goal 13) 19
Ocean, seas, and marine resources (Goal 14) 26
Terrestrial ecosystem (Goal 15) 40
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Fig. 1  Corporate data-intensive approaches by focus (figure by the 
author source—GISR)
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the SDGs; however, the SDGs were formed from a narrow 
base of comments during the consultation process, as high-
lighted earlier. However, the impacts of the SDGs are felt 
extensively or are experienced in society, as major policies 
by both businesses and governments are framed based on 
SDGs.

The corporate reporting strategies are influenced by 
the triple bottom approach and by the idea that businesses 
should move beyond non-financial data and towards incor-
porating those non-financial data into their corporate deci-
sion-making (Milne and Gray 2013). This has influenced the 
broader corporate data-intensive approaches, albeit with a 
small difference, as the focus is on investors and environ-
mental issues—mostly carbon, with water coming a distant 
second—followed by social and then governance issues. 
Similarly, company-based studies show that big data are 
not used in companies’ sustainability reporting but, rather, 
is used to increase energy efficiency with its focus being on 
carbon emissions (Zawistowska 2015). Furthermore, most 
corporate indicators are generated in the developed world.

Major open data-intensive approaches are seen in the 
developed world and focus on governance and ICT. On the 
other hand, corporations focus on using information avail-
able from national databases. The dominant focus of big 
data-intensive approaches stems from ideas on smart gov-
ernance, which include the use of ICT in governance. The 
big data project of the United Nations, the UN Global Pulse, 
focuses on the use of big data for sustainable development. 
Most projects at the current stage focus on economic growth, 
monitoring SDGs, and collecting real-time information.

Data-intensive approaches have varying focuses, as 
summarized in Table 5. The challenges with data-intensive 
approaches are: the lack of data availability, especially 
for planetary boundaries; diverse SDG indicators devel-
oped from a narrowly viewed base; skewed global rep-
resentation of open data and big data; the lack of social 
and economic information collected, especially among 
the corporate indicators; and the narrow focus on issues 
related to governance in the current open data and big 
data approaches. The development of these approaches 
shows that their current biases are based on the diverse 
definitions and values that have shaped them. Furthermore, 

Fig. 2, 3  Corporate data-inten-
sive approaches by type and 
target audience (figure by the 
author source—GISR)
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Fig. 4  Open data use by companies (figure by author source—Center 
for Open Data Enterprise)
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Fig. 5  Geographical distributions of companies using open data (fig-
ure by the author source—Center for Open Data Enterprise)
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structural issues with data-intensive approaches such as 
data availability, data collection, data interpretation, and 
data presentation can further compound the issues of data-
intensive approaches towards sustainable development. 
An analysis of the research assumptions of data-intensive 
approaches is used to deconstruct the impacts towards sus-
tainable development.

Challenges of data‑intensive approaches: 
issues and implications

To understand the subjective nature of data-intensive 
approaches, we deploy the use of four research approaches 
to describe various research assumptions in data-intensive 
approaches:

1. Methodology—the research design, methods, 
approaches, and procedures used in an investigation that 
is well planned to find out something (Keeves 1997).

2. Epistemology—as Cooksey and McDonald (2011) put 
it, looking into what counts as knowledge.

3. Normativity—the values associated with the approach.
4. Ontology—the assumptions we make to believe that 

something makes sense or is real (Scotland 2012).

The discussion is based on a literature review of gen-
eral data-intensive approaches; and the examples are spe-
cific to sustainability sciences. We delve into the challenges 
of methodology, epistemology, ontology, and normativity 
with regard to data-driven approaches, mapping the related 
issues and implications for data-intensive approaches. In 
comparison with the purported objectivity of data-inten-
sive approaches, we show the subjectivity of data-intensive 
approaches in: the data collection and data interpretation; the 

Fig. 6, 7  Characteristics of com-
panies using open data (figure 
by the author source—Center 
for Open Data Enterprise)
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framework employed; the normative values utilized; and the 
ontological frames used.

Methodology

In this section, we cover issues surrounding data collection 
and data interpretation. Collecting data that bring about 
better results is necessary for monitoring performance and 
decision-making (Shepherd et al. 2015). However, unlike 
governments, firms do not collect regular data on crucial 
uses. Evidence of this can be seen when they are not able 
to present data when there is regulatory pressure to do so 
(Davenport 2015). Furthermore, selecting the relevant met-
rics and learning the necessary skills to handle new forms 
of data are a major concern (Paddison 2013; Association of 
Chartered Certified Accountants 2013). In general, although 
companies claim to use voluntary guidelines, no major crite-
ria are used to make any commitments towards sustainability 
to influence strategic decision-making (Cort 2015). Shah 
et al. (2012) have stressed that executives do not manage 
information well and focus on technology rather than on the 

information itself. It has been emphasized, however, that 
technology is not the solution in terms of corporate sustain-
ability (Redman 2013).

Even minor issues with data storage in Excel can change 
the results of an analysis (Ziemann et al. 2016), although 
these details regarding data collection remain hidden 
(Edwards et al. 2011). The non-transparent aspects of data 
collection need to be revealed (Weller and Kinder-Kurlanda 
2015; Olteanu et al. 2016). Human cognitive biases inten-
tionally or unintentionally result in biases with data suiting 
the researcher’s needs being chosen (Parkhurst 2017). It is 
necessary to address data issues considering the confirma-
tion bias while using data in the context of sustainability 
science (Samson 2014). For example, unintentional human 
biases can result in a “sliding baseline”. One study on fisher-
ies was evaluated by experts who had fixed their baselines to 
the times when they first started working, rather than when 
the fishery was in its untouched state (Pauly 1995). This 
greatly impacted the way in which the data was collected 
and how the analysis was carried out. Results that do not 

Fig. 9  Big data projects by topi-
cal focus (figure by the author 
source—Global Pulse 2018)
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incorporate historical information can be unreliable as the 
wrong baselines are extrapolated (Guzman 2015).

Data interpretation plays an important role in academic 
research and data from the same source can be interpreted in 
various ways. One single peer-reviewed publication exempli-
fied that 29 analyses and interpretations were derived from 
one dataset (Silberzahn and Uhlmann 2015). The method 
used in the study highlighted that players play an important 
role in the interpretation of data and can lead to multiple 
conclusions. Cases of statistical and objective illusion reveal 
a need to expose partisanship associated with data interpre-
tation in statistical analysis (Berger and Berry 1988).

“Raw data” are an oxymoron and there is a need to focus 
on the weakness of data recording practices and data inter-
pretation methods, and the cognitive biases at play during 
the methodological process (Gitelman 2013). The detailed 
processes of data collection and interpretation are fraught 
with these hidden frameworks, or lack thereof, which can 
lead to subjectivity.

Even among the data-intensive approaches, there is a ten-
dency to handle the methodological issues regarding old and 
new approaches with confusion; for example, James et al. 
(2013) and Varian (2014) emphasize the tension between 
traditional causal inferences (econometrics) and correlation-
based prediction (machine learning and RCTs). Other schol-
ars have emphasized experiments with data as an alternative 
to prediction and the statistical analysis of data (Brown et al. 
2011). However, the danger with these approaches is mis-
perceiving correlation as causation and finding “mislead-
ing” patterns in the data (McAfee et al. 2012). The subjec-
tive process of data collection and data interpretation is not 
adequately emphasized.

It is necessary to use data-intensive approach analysis 
tools that focus on novel measurement, research designs, 
and statistical learning to embrace heterogeneity in research. 
Understanding the challenges of data access, data manage-
ment, and computation, and asking the right questions are 
critical aspects of better research methodologies. Data 
are not to be considered sacrosanct, as a narrow focus on 
data can lead to the development of diverse conclusions 
depending on the interpretive framework that is implicitly 
or explicitly used, thus leading to relativism. Proponents of 
data-intensive approaches have to emphasize the importance 
of subjectivity in the process of interpretation to be more 
proactive towards attaining objective scientific results.

Epistemology

Frameworks, concepts, and tools need to be used to over-
come the diverse framings of different datasets. However, 
there are a multitude of sustainability assessments that 
have been developed based on varying subjects and specific 
framings (Bond et al. 2012; Bond and Morrison-Saunders 
2011). Several ecosystem processes have not yet been iden-
tified and efforts to link individual, regional, national, and 
corporate levels with these planetary boundaries’ concepts 
are ongoing (Nykvis 2013; Dao et al. 2015; Cole et al. 2014; 
Rockstrom et al. 2009). Similarly, understanding the foot-
print approaches—water footprint and carbon footprint—
together and applying them to the national, corporate, or 
product levels is still elusive (Galli et al. 2011). These issues 
present an unsurmountable challenge to the current data-
intensive approaches.

The varying framings need to be integrated to present 
a well-rounded view of sustainability and this poses a 

Table 5  Data-intensive approaches and their various characteristics

Data-intensive approaches Target audience Geographical area Focus Values

Planetary boundaries Predominantly research-
ers and policy makers

Developed world Climate change, biodiversity 
loss, biogeochemical, ocean 
acidification, land use, 
freshwater, ozone depletion, 
atmospheric aerosols, and 
chemical pollution

Strong sustainability, limits to 
growth

SDG Business and government World Greater emphasis on social 
and economic issues, than 
the environment

Sustainable development, Rio 
declaration

Corporate indicators Focusing on investors Developed world Environment followed by 
social. Not much information 
on governance

The triple bottom approach, 
UNEP FI—business should 
move beyond financial data

Open data (excluding SDGs 
and PBs)

Public Developed world IT and governance, with a 
focus on national data

Facilitate government trans-
parency, accountability and 
public participation

Big data—UN Global Pulse United Nations Developing world Economic, SDGs, and real-
time information

Information technology, smart 
city, smart governments
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significant challenge (Gasparatos et al. 2012). There has not 
been much research on how to integrate the diverse tools 
and their different values (Gasparatos 2010; TEEB 2010). 
There needs to be a tool-based integration of the LCA frame-
work—an absolute measure—with the planetary boundaries 
concept—a relative measure (Bjørn et al. 2015; Bjorn and 
Hauschild 2015). The integration of the LCA and planetary 
boundaries framing of a firm’s environmental sustainability 
would require a decoupling of the environmental impacts 
from their growth in production by not increasing their por-
tion of the safe operating space (Kim and Kara 2014). Com-
panies explicitly do not make any reference to safe operating 
space in their frameworks, and as they do not refer to any 
ecological limits, information about “sustainability” contin-
ues to remain hidden (Bjørn et al. 2017).

In comparison with a framework-based indicator con-
ceptualization, experiment-based approaches founded on 
interventions are preferred for their ease-of-use, as they 
lack the use of theory. It has been suggested that evidence-
based knowledge production should use a hierarchy of 
evidence (placed in descending order): system reviews of 
RCTS, RCTs, observational studies, mechanistic explana-
tions, expert opinions, and anecdotal experience (Blunt 
2015; Greenhalgh 1997). This hierarchy privileges certain 
modes of knowledge production, which is not beneficial 
for sustainability science research, as it has ambitions to be 
transdisciplinary.

Data “without a theory” can be taken to work as a control 
theory when the certainty of the research process is well 
established and when the research involves measurable 
outcomes or a simple policy, where decision makers have 
enough reaction time. Furthermore, both “evidence” from 
controlled experiments and indicators pertain to measuring 
or counting, and not exploring or knowing the meaning of 
that measure. The issues related to sustainable development 
are complex, however, and the solutions need to be partici-
patory and encompass many stakeholders.

Data-intensive approaches will not work well with com-
plex issues that have long-term horizons, as is the case with 
most sustainability challenges. Sustainability challenges 
have long time horizons, and are complex and uncertain 
(Small and Sampson 2014). Furthermore, social scientist 
Justin Grimmer (2015) suggests that big data should be 
complemented with the knowledge of social scientists when 
dealing with humans. When this is done in data-intensive 
research, it can bring scientifically valuable knowledge to 
data-based approaches (Starr 2014). The sense-making skills 
of humans are crucial in the era of “human–machine part-
nerships”, one application of big data (Davenport 2016). 
Theory, sense-making skills, and contextual approaches 
bring depth to understanding context-based awareness of 
research (Crawford 2013). This calls for frameworks when 
using and interpreting data (Mazzocchi 2015).

Furthermore, the use of evidence has been found to be 
inadequate by philosophers of science, who have pointed 
out that such studies can devalue other forms of evidence or 
knowledge such as causality-based basic sciences and the 
tacit knowledge that accumulates with practice and expe-
rience (Anjum et al. 2018; Greenhalgh et al. 2014). It is 
crucial for sustainable development that information from 
diverse knowledge bases are integrated. Excessive reliance 
on data-intensive approaches, however, can create a hierar-
chy of evidence, which can be detrimental to the practice 
of sustainability and the integration of knowledge. Thus, 
researchers should also focus on how this knowledge is ana-
lyzed, integrated, and used in decision-making by emphasiz-
ing frameworks and theory, which are the building blocks 
of scientific knowledge production. Integration frameworks 
that can represent ecological boundaries and human values, 
and incorporate participatory processes are necessary to 
legitimize knowledge production and make the data-inten-
sive approaches relevant for decision-making.

Normativity

The problems of sustainability are fundamentally value 
laden, and hence political. However, not all data-intensive 
approaches reflect these normative assumptions. It may be 
summarized that eco-efficiency, eco-effectiveness, and social 
justice are three major elements of sustainability (Gray and 
Bebbington 2005). Planetary boundaries provide the safe 
operating space concept that can also be further broken 
down into eco-efficiency and eco-effectiveness. Mihelcic 
et al. (2003) noted:

“(eco-efficiencies) alone are not sufficient to achieve 
sustainability, because even systems with efficient 
material and energy use can overwhelm the carrying 
capacity of a region [eco-effectiveness] or lead to other 
socially unacceptable outcomes”.

Though eco-efficiency is often discussed, the concept 
of eco-effectiveness should be added to data-intensive 
approaches, as it relates directly to ecological capacity 
(Bjørn and Hauschild 2015). For example, while cost–ben-
efit analysis (CBA) is popular in sustainability science 
research, it carries the notions of a “utilitarian approach” 
espoused by Bentham (Sandel 2010). It is viewed as a rep-
resentation of monetary values, claiming that higher utility 
is achieved when there is a higher monetary output, such 
that the monetary focus disregards normative assumptions 
of eco-efficiency, eco-effectiveness, and social justice.

Furthermore, these approaches do not adequately 
emphasize the importance of inter-generational equity, 
intra-generational equity, and the safe operating space con-
cept. Issues of social justice and ethics are also not well 
studied within sustainability science (Nelson and Vucetich 
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2012). For example, concerns for social equity are miss-
ing from public policy measures of cities’ sustainability 
indices (Wachsmuth et al. 2016). Social justice issues are 
relatively difficult to engage in given the claimed objec-
tive stance of data-intensive approaches (Newell and Fry-
nas 2007). This corroborates what we see in our findings, 
that the importance of social justice has not gained much 
emphasis in either enterprise reports or policy making. 
Research on eco-effectiveness and social justice should, 
therefore, be further improved.

Both Campbell’s law (Campbell 1979) and Goodhart’s 
law (Strathern 1997) stress the pitfalls of primarily using 
indicators and data in policy making and research. Quan-
titative measures are important for decision-making; how-
ever, excessive reliance can allow them to be hijacked for 
political purposes and can lead to the control of knowl-
edge by certain actors. As stressed earlier, data-intensive 
approaches should be not understood as value neutral 
(Redman 2013; Goldenberg 2005; Parkhurst 2017), as they 
are derived from data collection, data interpretation, and 
framework methodologies that have specific values and 
assumptions that are not adequately revealed. Furthermore, 
data-intensive approaches capture tactical issues, but fall 
short of capturing issues of strategy. These strategies to 
address the challenges of sustainable development involve 
questions like, “What is to be sustained?”, and “What is to 
be developed?” Asking the right questions requires input 
from local communities and experts, and data-intensive 
approaches focusing on service delivery and monitoring 
might not provide tactical operation knowledge.

Even if the results of data-intensive approaches are 
extrapolated, as Davidian and Louis (2012) put it, there 
is a need for society to “be able to interpret increasingly 
complex information and recognize both the benefits 
and pitfalls of statistical analysis” (Busch 2014). How-
ever, political deliberation of knowledge (Parkhurst 2017; 
Pearce 2014) is undergone when data-intensive approaches 
imply consensus for a public policy move. Data-intensive 
approaches should provide room for diverse evidence from 
different knowledge bases, which can allow for “disagree-
ment and consensus” to explore the tension between tech-
nocracy and democracy (Horton 2015; Parkhurst 2017), 
as the centralized use of data-intensive approaches may 
inhibit innovation and the democratic needs of society 
(Ratti and Helbing 2016). Data-intensive approaches 
should be open and participative; this can lead to insight 
and action through contestation and discussion in society.

An over-reliance on data-intensive approaches stalls the 
participation of diverse stakeholders in decision-making, as 
“evidence” and “indicators” from data-intensive approaches 
are presented as objective tools, which are regarded as better 
than subjective consensus building or democratic processes. 

Under these circumstances, data-intensive approaches do not 
provide much space for discussion and deliberation.

Ontology

Ontological frames dictate how conceptual frameworks are 
chosen for indicator development, data collection, and data 
interpretation. Ontology relates to a template or a frame 
that stratifies the nature of reality and includes the object, 
process, particular, individual, whole, part, event, property, 
quality, state, etc. (Poli 1999). Indicators, indices, and rat-
ings are based on frames regarding reality and tied to onto-
logical assumptions. Indicators should be able to measure 
the impact of the progress made in achieving sustainabil-
ity, and additionally tie information to the local context, as 
frames and indicators are co-produced. This allows for their 
subjective and objective information to be critically under-
stood (Boulanger 2014).

Machine learning-based approaches work well in reveal-
ing patterns from a large sample. However, they lack the 
ability to reveal information about a singular event or object. 
The results of controlled experiments with statistically sig-
nificant results still produce marginal advantages in prac-
tice. The results from these approaches overemphasize rules 
while having a poor fit with issues of multiple causation 
(Greenhalgh et al. 2014). This requires understanding causal 
structures or having supporting information on intervening 
variables, which require theory or other empirical means 
(Cartwright and Hardie 2012).

The emphasis on “causation” is a hallmark of scientific 
knowledge production. The ontological focus of sustaina-
bility science as system-based research (Clark 2007; Span-
genber 2011), where sustainability challenges are wicked 
problems (Rittel and Webber 1972), requires knowledge 
and evidence that reflect the holism and complexity of the 
real world, and causality between variables, which might be 
captured from studies other than data-intensive approaches.

Controlled experiments and indicator driven approaches 
are reductive, and machine learning-based approaches are 
inductive. The ontological underpinnings of an evidence-
based approach rest on a narrow definition of “evidence”, 
reflecting reductionism, universalizing the results, capturing 
frequency, and representing probability, or a homogenization 
of the unit of analysis. Machine-based approaches are based 
on Baconian induction, moving from specific to general. The 
ontological assumptions of sustainability science and data-
intensive approaches are divergent, and their use without 
reflection can lead to scientific imperialism of data-inten-
sive approaches or ontological relativism, which is against 
scientific knowledge production (Persson et al. 2018a, b). 
Data-intensive approaches capture a part of reality, while the 
challenges of sustainability require a larger knowledge base.
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Implications for future research: challenges 
and way forward

The major challenges in the data-intensive sustainabil-
ity approaches identified were: the lack of data availabil-
ity, diverse indicators developed from a narrow base, and 
skewed global representation. Furthermore, the subjectiv-
ity in the structures of data-intensive approaches were dis-
cussed in regard to: data collection and data interpretation, 
the framework employed, the normative values, and the 
ontological frames employed.

However, if data-intensive approaches can overcome their 
structural issues using scientific approaches and community-
based approaches, they will offer ways to address sustain-
ability. In this section, we first map the current challenges 
to interdisciplinarity and community-based approaches 
and then elucidate possible solutions that researchers may 
employ. In addition, we also raise the important issues per-
taining to the long-term sustainability of ICT approaches, 
i.e., the environmental impact of ICT-based data-intensive 
approaches.

Data and academia—interdisciplinarity

We emphasize the challenges that researchers face in transi-
tioning to interdisciplinarity and recommend focusing on the 
potential of mechanisms and explanations to complement 
data-intensive research.

There is a longstanding discussion among philosophers 
on unification and pluralism relating to how knowledge is 
produced. Grantham (2004) called for either the theoretical 
or practical unification of fields, stressing that the “theories 
and/or methods of a field can guide the generation of new 
hypotheses in a neighbouring field”. In its efforts, sustain-
ability science has been called upon to take on interdiscipli-
narity, which Jantsch (1970) characterizes as “coordination 
by the higher level concept”. A broader vision of integration 
was articulated by the National Research Council (2004) as 
“information, data, techniques, tools, perspectives, concepts, 
and/or theories from two or more disciplines or bodies of 
specialized knowledge”.

A current challenge in academic research, as Smaldino 
and McElreath (2016) stress, is that bibliometric data make 
it easy for academics to focus on their productivity and 
impact factor. This forces researchers to fit their research 
into the bounds of high-impact journals and thus weakens 
research outcomes (Werner 2015; Sarewitz 2016). Richard 
Horton, editor of The Lancet, states, “Part of the problem 
is that no one is incentivised to be right” (Horton 2015). 
Furthermore, not all disciplines are open to interdisciplinary 

research. Economists, for example, are not keen on inter-
disciplinary research, while sociologists, political scientists, 
psychologists, and historians are more open to it (Colander 
2005; Fourcade et al. 2015). The abundance of data in one 
field should not divert the attention of researchers to data 
rich topics, leading to the neglect of pertinent interdisci-
plinary research questions. Though data rich topics might 
create new information and expand a knowledge base, and 
the knowledge created may not have a significant impact in 
addressing sustainability.

Forscher (1963) worried that the academic culture was 
interested in pieces of knowledge, which he termed “bricks”, 
but was not as concerned in placing the bricks as a con-
nected whole. This lack of a coherent whole has also been 
recently articulated as an issue in sustainability research 
(Hoffman 2015).

Thoren and Persson (2013) proposed the use of problem-
feeding and defined it as when “…questions and problems 
are transferred to sciences better capable of researching 
them”. One major obstacle in problem-feeding, however, is 
the ontology of terminologies used in different fields. For 
example, the term “cause” has different meanings in law 
and science. The use of shared terminologies or interactional 
expertise can facilitate discussion between researchers and 
practioners to link data through frameworks and methods, 
leading to interdisciplinarity.

Terms such as “flexibility” and “resilience” have been 
proposed for their ability in allowing “conceptual coordi-
nation” between disciplines or “interactional expertise” to 
connect themes with sustainability science (Asokan et al. 
2017). The use of mechanisms is an interesting area of 
research, especially for sustainability, as they have been 
used in biology, neuroscience, and psychology (Craver and 
Tabery 2017). Their functionality in social science has also 
been emphasized (Lucas 1988; Elster 1989; Hedström and 
Ylikoski 2010; Deaton 2010). Furthermore, available data 
can open new directions in providing causality-based knowl-
edge derived from data-intensive mechanism experiments 
(Ludwig et al. 2011). A scale-based approach has also been 
suggested, which provides a set of scales for structuring sus-
tainability science data across disciplinary boundaries and a 
range of sustainability topics (Asokan et al. 2019). Mecha-
nism experiments, explanations, mechanisms, and concepts 
for coordination provide a fertile approach to bridge data 
from the multiple fields available, reflecting a large base 
of knowledge, and clarifying the subjectivities to make 
data-intensive approaches “objective”. The data proponents 
should reflect on and critically analyze the philosophical 
issues raised in the previous section, to make all of the sub-
jectivities of diverse data-intensive approaches explicit to 
promote a better understanding.
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Enterprises and policy making—community‑based 
approach

We propose that a community-based data-intensive approach 
needs to reflect the local context, global ecosystem, and 
diverse values. Contextual approaches, experimental 
approaches, and quantitative storytelling approaches can 
provide a community-based approach orientation to the 
existing data-intensive approaches.

A community-based approach would incorporate a 
diverse knowledge base that includes the scientific knowl-
edge of an ecosystem with accounted-for personal values, 
power dynamics, institutional play, and philosophical values. 
The “hierarchy of evidence” places data and data-intensive 
approaches on a higher pedestal, where politics, personal 
values, power dynamics, institutional play, and philosophi-
cal values are sidestepped. In comparison with knowledge 
that is formed from a narrow base, such as the current data-
intensive approaches, a community-based approach would 
progressively facilitate decision-making towards sustainabil-
ity by incorporating the human values, local contexts, and 
global ecosystem processes.

There is a tendency among some researchers to legitimize 
certain values as playing a “positive or negative” role in the 
environment (Grenier 1998; Sundar 2000; Agrawal 1995). 
For example, indigenous knowledge is claimed to have posi-
tive value, though this is not always the case. However, the 
knowledge representing values from experience should be 
empirically tested, as it can reflect confirmation bias that 
cannot be generalized to a larger population and provide 
an incorrect representation of a dynamic fast-changing eco-
system (Munro 2014). However, local values and power 
dynamics could be utilized to inform research agendas for 
data-intensive approaches based on practical experience 
rather than wholesale integration of indigenous knowledge 
(Persson et al. 2018b).

In addition to values, the sustainability performance of 
enterprises and entities need to be “systematic, structured, 
and integrated” (Searcy 2016), such that they are connected 
to the local context and global ecosystem process. To do 
so, enterprise sustainability should ensure “scientifically 
informed standards” that incorporate the ecosystems’ “land 
use and land conversion, clean air (including greenhouse 
gas emissions), availability and quality of freshwater, deg-
radation of coastal and marine habitats, and sustainable use 
of renewable resources such as soil, timber, and fisheries” 
(Kareiva et al. 2015). There is a crucial need to understand 
these interactions and their implications for and between 
enterprises and policy making (Ruggie 2017).

We suggest three community-based data-intensive 
approaches to capture the local context, global ecosystem, 
and diverse value sets to inform subjectivities and thereby 
make data-intensive approaches “objective”.

Context-based indicators should capture normative 
aspects such as social justice, eco-efficiency, and eco-effec-
tiveness while also capturing local contexts. Context-based 
approaches contrast with the absolute and relative indicators 
in use today. Context-based indicators are defined as valid 
data placed appropriately in context (Slater and Zwat 2015). 
Some enterprises are developing context-based greenhouse 
gas emission indicators such as the CSI metric and C-FACT 
(Autodesk Inc 2016; BTplc 2016; Sustainability Context 
Group 2012). The chief discussions revolve around how 
appropriate references to and allocations of global “safe 
operating space” should be developed for these contextual-
ized indicators (Raupach et al. 2014).

New experimental approaches based on local data, e.g., 
smart city projects or satellite-based community projects, 
can help in steering new forms of data-intensive approaches. 
Living labs or niche experiments, for example, allow exper-
imentation at the local governance scale (Caniglia et al. 
2017). These experiments can be either Darwinian experi-
ments or generative experiments and can reveal knowledge 
for innovation through variations and solutions through iter-
ative and adaptive processes, respectively (Ansell and Bar-
tenberger 2016). These experimental approaches, in com-
parison with controlled experiments, could directly focus on 
sustainability problems or sustainability solutions (Bulkeley 
and Castán Broto 2013; Evans and Karvonen 2011).

The results from data-intensive approaches can be com-
municated through quantitative storytelling (QST), empha-
sizing diverse quantitative narratives to the public (Giampi-
etro et  al. 2014). QST emphasizes a rough quantitative 
appraisal of multiple frames rather than the quantification 
of a single frame, such that the frames are tested for their 
feasibility, viability, and desirability. Importantly, the data-
intensive approaches should look at presenting the informa-
tion and data to the public in an easily accessible manner. 
Adopting these steps could create a community-based data-
intensive approach that incorporates values, local contexts, 
and relevance for governance.

Environmental impact of data‑intensive approaches

The nature of “internet use” is evolving and forms of data 
growth are emerging that are more disconnected from 
human activity and time use than ever before. This suggests 
that although there may well be limits, in principle, to some 
forms of growth, the total data traffic seems likely to con-
tinue expanding. This calls for careful attention to the nature 
of the trends involved as a basis for intentionally building 
limits to internet use, data storage, and data size before the 
considerable levels of internet electricity demand become 
problematic (Hazas et al. 2016).
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Conclusion

In this paper, the current data-intensive approaches are 
defined as an amalgamation of the old data approaches, 
which were dependent on surveys and environmental moni-
toring networks, with new data approaches from new ICT 
and satellite technologies. An extensive literature review was 
conducted, and the implications of data-intensive approaches 
were discussed with a particular emphasis on sustainabil-
ity. Four research approaches—methodology, epistemol-
ogy, normativity, and ontology—were deployed to describe 
various research assumptions in data-intensive approaches. 
The subjectivities of data-intensive approaches during data 
collection, as well as the frameworks, normative values and 
ontological frames employed were also elaborated. Possible 
solutions to these challenges were explored, which research-
ers could employ to enhance the future use of data-intensive 
approaches by tapping into interdisciplinarity and improving 
community-based approaches.
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