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Abstract. We present several forcing posets for adding a non-reflecting sta-

tionary subset of Pω1 (λ), where λ ≥ ω2. We prove that PFA is consistent with
dense non-reflection in Pω1 (λ), which means that every stationary subset of

Pω1 (λ) contains a stationary subset which does not reflect to any set of size ℵ1.

If λ is singular with countable cofinality, then dense non-reflection in Pω1 (λ)
follows from the existence of squares.

Introduction
A classical consequence of Jensen’s principle �λ is that reflection of stationary

subsets of λ+ fails densely often; in other words, every stationary subset of λ+

contains a non-reflecting stationary set. In this paper we focus on the extrapolation
of the above conclusion to the context of stationarity in Pω1(λ): Given a cardinal
λ ≥ ω2, we say that dense non-reflection in Pω1(λ) holds if for every stationary
S ⊆ Pω1(λ) there is a stationary T ⊆ S which does not reflect to any set of size ℵ1;
that is, such that T ∩ Pω1(N) is non-stationary for every set N of size ℵ1.1

One of the purposes of this paper is to contribute to the general project of
separating forcing axioms from combinatorial statements, and more specifically
to build a model of PFA in which dense non-reflection holds in Pω1(λ) for many
instances of λ.

A well–known fact is that PFA implies the failure of �λ for all cardinals λ ≥ ω1

([15]). Yet another fact is that if PFA holds, then it is possible to force in such a
way that both PFA is preserved and for every regular cardinal κ ≥ ω2 there is a
non-reflecting stationary subset of κ. This can be seen by combining the forcing
construction in [4] in a class forcing as in Section 5 of this paper. On the other
hand, the stronger forcing axiom MM implies, for every regular cardinal κ ≥ ω2,
that every stationary subset of κ∩cf(ω) reflects ([8]). And, concerning stationarity
in Pω1(λ), MM implies that every stationary subset of Pω1(λ), for every λ ≥ ω2,
reflects to a set of size ℵ1 ([8]).2

In view of the web of implications given so far, it is natural to ask whether or
not there is any connection between PFA and the statement that every stationary
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subset of Pω1(λ) reflects to a set of size ℵ1. In this paper we show, in analogy to
what happens in the context of stationary sets of ordinals, that this is not the case.

Another purpose of this paper is to show that, when λ is a singular cardinal
of countable cofinality, dense non-reflection in Pω1(λ) follows from fairly general
pcf–theoretic assumptions.

The rest of the paper is structured as follows. In Sections 1 and 2 we deal with
dense non-reflection in Pω1(λ) for λ ≥ ω2 a regular cardinal. In Section 1 we build,
for any such λ with λ<λ = λ and any set X of size at least λ, a λ–strategically closed
poset P(X) preserving cofinalities and adding a non-reflecting stationary subset of
Pω1(X) having stationary intersection with every stationary subset of Pω1(X) in the
ground model. We also show that a suitable product Q(X) of copies of P(X) with
< λ–support has the same niceness properties and forces dense non-reflection in
Pω1(X). In Section 2 we show that the forcing Q(X) from Section 1 preserves PFA.
This shows that PFA is consistent with dense non-reflection.

In Sections 3 and 4 we focus on dense non-reflection in Pω1(λ) in the case that λ
is a singular cardinal of countable cofinality. In Section 3 we describe general situa-
tions implying dense non-reflection in Pω1(λ) for this choice of λ. These situations
are phrased in the context of pcf theory. We prove a general result (Theorem 3.2)
implying that if λ is a singular cardinal of countable cofinality such that 2λ = λ+

and �∗λ holds, then dense non-reflection holds in Pω1(λ) (Corollary 3.11). By a
result of Magidor, it is possible to force over any model of PFA in such a way that
PFA is preserved, GCH holds above ω, and �κ,ℵ2 holds for all κ ≥ ω2. Hence, in
Magidor’s model dense non-reflection in Pω1(λ) holds for all singular cardinals λ of
countable cofinality (Corollary 3.13). We finish this section by describing a situa-
tion which does not assume 2λ = λ+ but which nevertheless implies the conclusion
that dense non-reflection holds in Pω1(λ) (Corollary 3.19); this time we assume
that there is some δ < λ for which the set a of regular cardinals between δ and λ
is such that pcf(a) is countable and such that �∗κ holds, where κ ≥ λ is such that
2λ = κ+.3

Given a singular cardinal λ of countable cofinality, in Section 4 we introduce a
(λ+ 1)–strategically closed forcing P for adding a non-reflecting stationary subset
of Pω1(λ) having stationary intersection with every stationary subset of Pω1(λ) in
the ground model. A suitable product of copies of P with < λ+–support is also
(λ + 1)–strategically closed and, if 2λ = λ+, then it has the λ++–c.c. and forces
dense non-reflection in Pω1(λ).

Finally, in Section 5 we present two forcing constructions preserving PFA, while
at the same time forcing dense non-reflection in Pω1(λ) for all cardinals λ ≥ ω2

which are either regular or singular of countable cofinality. In both constructions
we start by assuming GCH above ω (which can always be forced preserving PFA).
In the first construction we build a reverse Easton iteration in which we force at
all relevant stages λ with a forcing as in Section 1 or in Section 4 for getting dense
non-reflection in Pω1(λ). The desired forcing is the direct limit of this iteration. In
the second construction we start with Magidor’s model of PFA, GCH above ω and
�κ,ℵ2 for all κ ≥ ω2, and build a reverse Easton iteration in which we keep forcing
instances of dense non-reflection in Pω1(λ) only for regular λ.

We should remark that our methods do not seem to work for the case when λ
is a singular cardinal of uncountable cofinality. For such a given λ and given any

3The existence of such a κ follows already from the existence of a set a as above.
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γ < λ with γ<γ = γ, it is possible to force dense non-reflection in Pω1(λ) by a γ–
strategically closed forcing. This can be achieved by a special case of the forcing in
Section 1. However, this forcing will blow up the power set of all cardinals between
γ and λ to at least λ. Hence, iterating this type of forcings in length Ord certainly
kills the Power Set Axiom. In fact, we do not know whether dense non-reflection is
consistent in Pω1(λ) for any singular strong limit cardinal of uncountable cofinality.

The paper should be understandable to a reader familiar with forcing, iterated
forcing, proper forcing, and generalized stationarity (see [2] and [3]). If X is a set
of size at least ℵ1, a set S ⊆ Pω1(X) = {a ⊆ X : |a| < ω1} is stationary if for any
function F : [X]<ω → X, there is a set b in S which is closed under F . A forcing
poset P is α-strategically closed, where α is an ordinal, if Player II has a winning
strategy in the following game. Players I and II take turns to build a descending
sequence of conditions in P, 〈pi : 1 ≤ i < α〉, where Player I plays pi for odd i, and
Player II plays pj for even j. If at each even stage less than α, Player II is able to
play some condition, then Player II wins. The Proper Forcing Axiom, or PFA, is
the statement that for any proper forcing poset P, if {Di : i < ω1} is a family of
dense subsets of P, then there is a filter G on P which meets Di for all i < ω1.

1. Adding Non-Reflecting Stationary Sets

Let λ ≥ ω2 be a regular cardinal. Let X be a set of size at least λ. We define
a forcing poset P(X) which adds a non-reflecting stationary subset of Pω1(X). A
condition in P(X) is a set X such that:

• X ⊆ Pω1(X),
• |X| < λ,
• for any set N in [X]ℵ1 , Pω1(N) ∩X is non-stationary in Pω1(N).

We let Y ≤ X if:
• X ⊆ Y ,
• for all y in Y \X, y is not a subset of

⋃
X.

We will prove the following main properties of P(X).
(1) P(X) is λ-strategically closed.
(2) If λ<λ = λ, then P(X) is λ+-c.c., and therefore preserves all cardinals and

cofinalities.
(3) The union of a generic filter for P(X) is a stationary subset of Pω1(X) which

does not reflect to any set of size ℵ1.
(4) For any stationary set S ⊆ Pω1(X) in the ground model, the union of a

generic filter has stationary intersection with S.
After establishing these facts, we will show that a suitable product forcing of P(X)
will force dense non-reflection in Pω1(X).

Proposition 1.1. Let 〈Xi : i < δ〉 be a descending sequence of conditions in P(X),
where δ is a limit ordinal less than λ, such that for every limit ordinal ν < δ,
Xν =

⋃
i<ν Xi. Then

⋃
i<δXi is a condition in P(X) which is below Xi for all

i < δ.

Proof. Let Y =
⋃
i<δXi. Clearly Y is a subset of Pω1(X) of size less than λ, and

for all i < δ, Xi ⊆ Y . Moreover, if y ∈ Y \Xi, then there is i < j < δ such that
y is in Xj \ Xi, and therefore y is not a subset of

⋃
Xi. So if the statement of
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the proposition fails, then there exists a set N in [X]ℵ1 such that Pω1(N) ∩ Y is
stationary in Pω1(N).

FixN in [X]ℵ1 and assume for a contradiction Pω1(N)∩Y is stationary in Pω1(N).
Let 〈ai : i < ω1〉 be an increasing and continuous sequence of countable sets with
union equal to N . Then there is a stationary set A ⊆ ω1 such that {ai : i ∈ A} is
a subset of Y .

Claim 1.2. The cofinality of δ is ω1.

Proof. If cf(δ) > ω1, then there is γ < δ such that {ai : i ∈ A} ⊆ Xγ . Thus
Pω1(N)∩Xγ is stationary, which contradicts thatXγ is a condition. Suppose cf(δ) =
ω. Fix a cofinal function f : ω → δ. Then Pω1(N) ∩ Y =

⋃
n<ω(Pω1(N) ∩Xf(n)).

Since the club filter on Pω1(N) is countably complete, there is n < ω such that
Pω1(N) ∩Xf(n) is stationary. This contradicts that Xf(n) is a condition. �

Let 〈βi : i < ω1〉 be an increasing and continuous sequence cofinal in δ. Then
Xδ =

⋃
{Xβi : i < ω1}. Define g : A→ ω1 by letting g(i) be the least ordinal such

that ai is in Xβg(i) . Note that g(i) is always a successor ordinal, since the map
j 7→ βj is normal and Xν =

⋃
j<ν Xj for every limit ordinal ν < δ.

Claim 1.3. There exists a club C ⊆ ω1 such that for all i < j in C, if i is in A
then i < g(i) < j.

Proof. Let C1 be the club set of limit ordinals α in ω1 such that for all i in α ∩A,
g(i) < α. Suppose for a contradiction there does not exist a club set C ⊆ C1 such
that for all i in C ∩ A, i < g(i). Since g(i) = i is impossible when i is a limit
ordinal, there is a stationary set A′ ⊆ A such that for all i in A′, g(i) < i. By
Fodor’s Lemma, there is a stationary set A′′ ⊆ A′ and γ < ω1 such that for all i in
A′′, g(i) = γ. Then for all i in A′′, ai ∈ Xβγ . So {ai : i ∈ A′′} is a subset of Xβγ ,
and therefore Pω1(N)∩Xβγ is stationary, contradicting that Xβγ is a condition. �

Fix a club C as in Claim 1.3. Since A is stationary in ω1, it has non-empty
intersection with the limit points of A∩C. So we can choose a closed set x contained
in A ∩ C with order type ω + 1. Let ν = max(x). Since 〈ai : i < ω1〉 is increasing
and continuous, aν =

⋃
{ai : i ∈ x ∩ ν}. Consider i in x ∩ ν. Then g(i) < ν, so

ai ∈ Xβg(i) ⊆ Xβν . It follows that ai ⊆
⋃
Xβν . Since this is true for all i in x ∩ ν,

aν ⊆
⋃
Xβν . On the other hand, ν < g(ν), so aν is in Xβg(ν) \Xβν . By the definition

of the ordering on P(X), aν is not a subset of
⋃
Xβν , which is a contradiction. �

Corollary 1.4. The forcing poset P(X) is λ-strategically closed.

Proof. By Proposition 1.1, the following strategy works: Player II plays anything
at successor stages, and plays the union of the previous plays at limit stages. �

Corollary 1.5. The forcing poset P(X) is ω1-closed. In fact, if 〈Xn : n < ω〉 is a
descending sequence of conditions, then

⋃
n<ωXn is a condition which is below Xn

for all n < ω.

Proof. For a descending sequence of order type ω, the hypotheses of Proposition
1.1 hold trivially. �

Lemma 1.6. Suppose X is in P(X) and E is a subset of X of size less than λ such
that

⋃
X ⊆ E. Then there is Y ≤ X such that

⋃
Y = E.
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Proof. Let {Ei : i ∈ I} be a partition of E \
⋃
X into countable sets, where |I| < λ.

Let Y = X ∪ {Ei : i ∈ I}. If N is in [X]ℵ1 and Pω1(N) ∩ Y is stationary, then
by the countable completeness of the club filter on Pω1(N), either Pω1(N) ∩X is
stationary or Pω1(N)∩ {Ei : i ∈ I} is stationary. The former is impossible since X
is a condition, and the latter is impossible since otherwise there are distinct i and
j in I such that Ei ⊆ Ej . So Y is a condition, and clearly

⋃
Y = E. It is easy to

see that Y ≤ X. �

Corollary 1.7. Let Ṫ be a P(X)-name for the union of the generic filter. Then
P(X) forces that Pω1(N)∩ Ṫ is non-stationary in Pω1(N) for every set N in [X]ℵ1 .

Proof. Suppose X forces Ṅ is in [X]ℵ1 . Since P(X) is λ-strategically closed, there
is Y ≤ X and N in [X]ℵ1 such that Y forces Ṅ = Ň . By Lemma 1.6 fix Z ≤ Y

such that
⋃
Z =

⋃
Y ∪ N . Then Z forces Pω1(Ṅ) ∩ Ṫ = Pω1(N) ∩ Z. For any

condition which is compatible with Z does not contain any subsets of
⋃
Z which

are not already in Z. Since Pω1(N) ∩ Z is non-stationary, Z forces Pω1(Ṅ) ∩ Ṫ is
non-stationary. �

Lemma 1.8. If λ<λ = λ, then P(X) is λ+-c.c.

Proof. Let 〈Xi : i < λ+〉 be a sequence of conditions in P(X). Then 〈
⋃
Xi : i < λ+〉

is a sequence of sets of size less than λ. Since λ<λ = λ, by the ∆-System Lemma
there is an unbounded set A ⊆ λ+ and a set a ⊆ X such that for all i < j in A,⋃
Xi∩

⋃
Xj = a. Now P(a) has size at most λ, so there are at most λ<λ = λ many

possibilities for P(a)∩Xi, for i in A. Fix i < j in A such that P(a)∩Xi = P(a)∩Xj .
We claim that Xi and Xj are compatible. Clearly Xi∪Xj is a condition. Suppose

for a contradiction Xi∪Xj is not a common refinement of Xi and Xj . Then without
loss of generality, there is y in (Xi ∪Xj) \Xi such that y is a subset of

⋃
Xi. Since

y is not in Xi, y is in Xj . So y ⊆
⋃
Xi ∩

⋃
Xj = a. Therefore y is in P(a) ∩Xj .

But P(a) ∩Xj = P(a) ∩Xi. So y is in Xi, which is a contradiction. �

Proposition 1.9. The forcing poset P(X) forces that Ṫ =
⋃
Ġ is stationary in

Pω1(X). In fact, for every stationary set S ⊆ Pω1(X), P(X) forces that Ṫ ∩ Š is
stationary.

Proof. Let S be a stationary subset of Pω1(X). Let X be a condition in P(X) and
suppose X forces Ḟ : [X]<ω → X is a function. Fix a regular cardinal θ such that
X, P(X), and Ḟ are in H(θ). Since S is stationary, we can choose a countable set
N such that:

• N ≺ H(θ),
• {X,P(X), X, Ḟ} ⊆ N ,
• N ∩ X ∈ S.

Define a descending sequence 〈Xn : n < ω〉 of conditions in N ∩ P(X) such that
X0 = X and for any set D in N which is dense open in P(X), there is n < ω such
that Xn ∈ D. This is possible since N is countable.

By Corollary 1.5, the set
⋃
n<ωXn is a condition in P(X). In particular,

⋃
n<ωXn

does not reflect to any set of size ℵ1. Let Y =
⋃
n<ωXn ∪ {N ∩ X}. Then Y

does not reflect to any set of size ℵ1. We claim Y ≤ Xn for all n < ω. Clearly
Xn ⊆ Y . Suppose y is in Y \ Xn. If y is in

⋃
n<ωXn, then there is m > n such

that y ∈ Xm \ Xn. Then y is not a subset of
⋃
Xn, since Xm ≤ Xn. Otherwise
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y = N ∩ X. Since Xn is in N , by elementarity (N ∩ X) \
⋃
Xn is non-empty.

Therefore y = N ∩ X is not a subset of
⋃
Xn.

Clearly Y forces that N∩X is in Ṫ∩Š. So it suffices to show that Y forces N∩X is
closed under Ḟ . Let a1, . . . , an be inN∩X. LetD be the dense open set of conditions
in P(X) which decide the value of Ḟ (a1, . . . , an). By elementarity, D is in N . Fix n
such that Xn is in D, and let b ∈ X be such that Xn forces Ḟ (a1, . . . , an) = b. By
elementarity, b is in N . Since Y ≤ Xn, Y forces Ḟ (a1, . . . , an) = b is in N ∩X. �

We now consider a product forcing of the poset P(X) with <λ-support. Let κ be
the cardinality of Pω1(X). Define Q(X) as the set of partial functions p : κ+ → P(X)
with domain of size less than λ, and let q ≤ p if dom(p) ⊆ dom(q) and for all i in
dom(p), q(i) ≤ p(i) in P(X).

Proposition 1.10. The forcing poset Q(X) is ω1-closed and λ-strategically closed.

This proposition follows by an easy argument using the corresponding properties
of P(X). So by the next proposition, if λ<λ = λ then Q(X) preserves all cardinals
and cofinalities.

Proposition 1.11. If λ<λ = λ, then Q(X) is λ+-c.c.

Proof. Let 〈pi : i < λ+〉 be a sequence of conditions in Q(X). Consider i < λ+.
Let Ei =

⋃
{
⋃

(pi(α)) : α ∈ dom(pi)}. Then Ei is a subset of X of size less than
λ, and for each α in dom(pi),

⋃
(pi(α)) ⊆ Ei. Let qi ≤ pi be a condition such that

dom(qi) = dom(pi) and for all α in dom(qi),
⋃

(qi(α)) = Ei. This is possible by
Lemma 1.6.

It suffices to find i < j such that qi and qj are compatible. Since λ<λ = λ, apply
the ∆-System Lemma to find an unbounded set A ⊆ λ+ and a set a ⊆ κ+ such
that for all i < j in A, dom(qi) ∩ dom(qj) = a. Applying the ∆-System Lemma
again to the collection {Ei : i ∈ A}, find an unbounded set B ⊆ A and a set b ⊆ X
such that for all i < j in B, Ei ∩ Ej = b.

The set P(b) has size at most λ. So there are at most λ<λ = λ many possibilities
for a sequence 〈P(b) ∩ qi(α) : α ∈ a〉, for i in B. Fix i < j in B which have the
same such sequence.

To show qi and qj are compatible, it suffices to show that if α is in dom(qi) ∩
dom(qj) = a, then qi(α) and qj(α) are compatible in P(X). If not, then without loss
of generality there is α in a and a set x in (qi(α)∪qj(α))\qi(α) such that x is a subset
of

⋃
(qi(α)) = Ei. Then x is in qj(α), so x is a subset of

⋃
(qj(α)) = Ej . Hence x is a

subset of Ei∩Ej = b. Therefore x is in P(b)∩qj(α). But P(b)∩qj(α) = P(b)∩qi(α).
So x is in qi(α), which is a contradiction. �

Let α be an ordinal less than κ+. For p in Q(X), let pα = p � α and pα = p �
[α, κ+). Define Qα(X) = {pα : p ∈ Q(X)} and Qα(X) = {pα : p ∈ Q(X)}, with
the obvious orderings. Then Q(X) is isomorphic to Qα(X) × Qα(X) by the map
p 7→ 〈pα, pα〉. Note that Q(X) =

⋃
α<κ+ Qα(X).

The following easy lemma is similar to Proposition 1.10.

Lemma 1.12. For all α < κ+, Qα(X) and Qα(X) are both ω1-closed and λ-
strategically closed.

Lemma 1.13. Assume λ<λ = λ. Let Ṡ be a Q(X)-name for a subset of Pω1(X).
Then there is α < κ+ such that Q(X) forces Ṡ is in V Qα(X).
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Proof. Since Q(X) does not add any new countable subsets of X, Q(X) forces that
Ṡ is a subset of the ground model. Let Ḟ be a Q(X)-name for a surjection of κ
onto Ṡ. For each i < κ let Ai be a maximal antichain of Q(X) which is contained
in the dense open set of conditions which decide the value of Ḟ (i). Since Q(X) is
λ+-c.c., each Ai has size at most λ. As λ ≤ κ,

⋃
i<κAi has size at most κ. Since

Q(X) =
⋃
α<κ+ Qα(X), there is α < κ+ such that

⋃
i<κAi is a subset of Qα(X).

Let G be a generic filter for Q(X) over V . Let S = ṠG and F = ḞG. Then
S is equal to the set of a in Pω1(X) such that there is i < κ and a condition X

in Ai ∩ G such that X forces Ḟ (i) = a. Let Gα = {pα : p ∈ G}. Then Gα is a
generic filter for Qα(X) over V . By the choice of α, pα = p for all p in

⋃
i<κAi. So

Ai ∩G = Ai ∩Gα for all i < κ. Therefore S is equal to the set of a in Pω1(X) such
that there is i < κ and a condition X in Ai ∩Gα which forces Ḟ (i) = a. So S is in
V [Gα]. �

Theorem 1.14. Assume λ<λ = λ. Then Q(X) preserves all cardinals and cofinal-
ities, and forces that every stationary subset of Pω1(X) contains a stationary subset
which does not reflect to any set of size ℵ1.

Proof. Let G be a generic filter for Q(X) over V . Let S be a stationary subset of
Pω1(X) in V [G]. By the last lemma, there is α < κ+ such that S is in V [Gα], where
Gα = {pα : p ∈ G}.

Let H = {p(α) : p ∈ G}. Then H is a generic filter for P(X) over V [Gα]. Let
T =

⋃
H. By Corollary 1.7 and Proposition 1.9, T does not reflect to any set of

size ℵ1 and T ∩ S is stationary. Clearly then T ∩ S does not reflect to any set
of size ℵ1, and since Q(X) does not add any subsets of X of size ℵ1, this remains
true in V [G]. Since Qα+1(X) is ω1-closed in V and Qα+1(X) does not add any new
countable subsets of V , Qα+1(X) is ω1-closed in V [Gα ∗H]. Therefore Qα+1(X) is
proper in V [Gα ∗H]. It follows that T ∩ S remains stationary in V [G]. �

2. Dense Non-Reflection and PFA

Let λ ≥ ω2 be a regular cardinal such that λ<λ = λ and X a set of size at least
λ. Let κ be the cardinality of Pω1(X). Using the notation of Section 1, let P(X)
denote the forcing poset which adds a non-reflecting stationary subset of Pω1(X)
with conditions of size less than λ, and let Q(X) denote the <λ-support product of
κ+ many copies of P(X). We will abbreviate Q(X) as Q in what follows. Recall that
Q is λ-strategically closed and λ+-c.c., and so preserves all cardinals and cofinalities.

The goal of this section is to prove:

Theorem 2.1. Assume PFA. Then Q forces PFA and that every stationary subset
of Pω1(X) contains a stationary subset which does not reflect to any set of size ℵ1.

By Theorem 1.14, Q forces that every stationary subset of Pω1(X) contains a
stationary subset which does not reflect to any set of size ℵ1. So it suffices to show
that Q forces PFA.

If A and B are subsets of Q, we say that A and B are cofinally interleaved if for
all p in A there is q in B such that q ≤ p, and for all q in B there is r in A such
that r ≤ q. When we write q(i) for a condition q in Q, this will denote the empty
set if i is not in dom(q), although strictly speaking q(i) is undefined.

Let Ṙ be a Q-name for a proper forcing poset. We will prove that Q forces that
PFA holds with respect to Ṙ. Here is a rough outline of the proof. Suppose q∗ is a



8 DAVID ASPERÓ, JOHN KRUEGER, AND YASUO YOSHINOBU

condition in Q which forces {Ḋi : i < ω1} is a family of dense open subsets of Ṙ.
We will define a Q∗ Ṙ-name Ṡ for a forcing poset such that the iteration Q∗ Ṙ∗ Ṡ is
proper. An application of PFA to this iteration will enable us to obtain a condition
in Q below q∗ which forces there is a filter on R which intersects Ḋi for all i < ω1.

To define Ṡ, consider a generic filter G∗H for Q∗Ṙ over V . Working in V [G∗H],
define S as the set of sequences s = 〈si : i ≤ γ〉 satisfying:

• γ < ω1,
• si is in G for all i ≤ γ,
• sj ≤ si for i ≤ j ≤ γ,
• for every limit ordinal ν ≤ γ, dom(sν) =

⋃
i<ν dom(si), and for every ξ in

dom(sν), sν(ξ) =
⋃
i<ν s

i(ξ).
• for every limit ordinal ν ≤ γ, there is a countable set A ⊆ Q in V such that
{si : i < ν} and A are cofinally interleaved.

The ordering on S is by extension of sequences.
Note that for every q in G, there is a dense set of conditions t = 〈ti : i ≤ δ〉 in S

such that ti ≤ q for some i ≤ δ. Indeed, let s = 〈si : i ≤ γ〉 in S be given. Since
sγ and q are both in G, we can choose sγ+1 in G which is below sγ and q. Then
t = 〈si : i ≤ γ + 1〉 is as desired. Also note that for every ordinal ξ < ω1, there is a
dense set of conditions t = 〈ti : i ≤ δ〉 in S such that δ ≥ ξ. For example, given a
condition s = 〈si : i ≤ γ〉 in S, where γ < ξ, extend s to t = 〈si : i ≤ ξ〉 by letting
si = sγ for γ ≤ i ≤ ξ.

Let Ṡ be a Q ∗ Ṙ-name for the forcing poset S described above.

Proposition 2.2. The iteration Q ∗ Ṙ ∗ Ṡ is proper.

Proof. Let θ be a regular cardinal larger than 2|Q∗Ṙ∗Ṡ| such that Q ∗ Ṙ ∗ Ṡ is in
H(θ). Let N be a countable elementary substructure of H(θ) with Q ∗ Ṙ ∗ Ṡ in N .
Consider a condition q ∗ ṙ ∗ ṡ in N . We will find a condition q′ ∗ ṙ′ ∗ ṡ′ below q ∗ ṙ ∗ ṡ
which is N -generic. First, since Q forces that Ṙ is proper, choose a Q-name ṙ′ for
a condition in Ṙ which is below ṙ and is N [Ġ]-generic.

To define q′, choose a descending sequence 〈qn : n < ω〉 of conditions in N ∩ Q
such that q0 = q and for every D in N which is a dense open subset of Q, there
is n < ω such that qn is in D. This is possible since N is countable. Define q′

so that the domain of q′ is equal to
⋃
n<ω dom(qn), and for α in the domain of q′,

q′(α) =
⋃
n<ω qn(α). By Corollary 1.5, for all α in dom(q′), q′(α) is a condition

in P(X) which is below qn(α) for all n < ω. So clearly q′ is a condition in Q and
q′ ≤ qn for all n < ω.

In order to define ṡ′, consider a generic filter G ∗ H for Q ∗ Ṙ over V which
contains q′ ∗ ṙ′. Let M = N [G∗H]. Then M is an elementary substructure of H(θ)
in V [G ∗H]. Since q′ ∗ ṙ′ is N -generic, M ∩ V = N . Let s = ṡG∗H .

Choose a descending sequence 〈sn : n < ω〉 of conditions in M ∩ S such that
s0 = s and for any D in M which is dense open in S, there is n < ω such that sn is
in D. This is possible since M is countable. For each n let sn = 〈si : i ≤ γn〉. Let
γ = sup{γn : n < ω}. Note that for each n, sn is countable, and therefore sn is a
subset of M . So si is in M for all i < γ.

Claim 2.3. The set {si : i < γ} is cofinally interleaved with {qn : n < ω}.

Proof. Consider qn. Since q′ is in G and q′ ≤ qn, qn is in G. Let D be the dense
open set of conditions 〈ti : i ≤ δ〉 in S such that ti ≤ qn for some i ≤ δ. Then D is
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in M by elementarity. So there is m such that sm = 〈si : i ≤ γm〉 is in D. Then
for some i ≤ γm, si ≤ qn.

On the other hand, consider si. Since si is in M ∩ Q and M ∩ V = N , si is in
N∩Q. Let E be the dense open set of conditions in Q which are either incompatible
with si or below si. By elementarity, E is in N . Fix n such that qn is in E. Since
q′ is in G and q′ ≤ qn, qn is in G. Also si is in G. So qn and si are compatible.
Therefore qn ≤ si. �

Let us recall the choice of q′. The domain of q′ is equal to
⋃
n<ω dom(qn),

which by Claim 2.3 is equal to
⋃
i<γ dom(si). For each ξ in the domain of q′,

q′(ξ) =
⋃
n<ω qn(ξ), which by Claim 2.3 is equal to

⋃
i<γ s

i(ξ). So clearly q′ ≤ si

for all i < γ. Also q′ is in G. Let sγ = q′ and define s′ = 〈si : i ≤ γ〉. Since
{qn : n < ω} is in V , s′ is in S and s′ ≤ sn for all n < ω.

Let ṡ′ be a Q ∗ Ṙ-name for s′. Then q′ ∗ ṙ′ ∗ ṡ′ is a condition in Q ∗ Ṙ ∗ Ṡ which
is below q ∗ ṙ ∗ ṡ and is N -generic. �

It follows that Q ∗ Ṙ ∗ Ṡ preserves ω1.
Fix a sequence 〈q̇i : i < ω1〉 of Q ∗ Ṙ ∗ Ṡ-names such that Q ∗ Ṙ ∗ Ṡ forces:
• q̇i is in Ġ for all i < ω1,
• for every q in Ġ, there is i < ω1 such that q̇i ≤ q,
• q̇j ≤ q̇i for i ≤ j < ω1,
• for every limit ordinal ν < ω1, dom(q̇ν) =

⋃
i<ν dom(q̇i), and for all ξ in

dom(q̇ν), q̇ν(ξ) =
⋃
i<ν q̇

i(ξ).
• for every limit ordinal ν < ω1, there is a countable set A ⊆ Q in V such

that {q̇i : i < ν} and A are cofinally interleaved.
We will use the following standard fact (for a proof see Theorem 2.53 of [17]).

Proposition 2.4. Assume PFA and let P be a proper forcing poset. Let θ be a
regular cardinal such that P is in H(θ). Then there are stationarily many N in
[H(θ)]ℵ1 such that ω1 ⊆ N , N ≺ H(θ), P ∈ N , and there exists a filter on P which
is N -generic.

Suppose q∗ is in Q, {Ḋi : i < ω1} is a family of Q-names, and q∗ forces Ḋi is a
dense open subset of Ṙ for all i < ω1.

Fix a regular cardinal θ such that Q ∗ Ṙ ∗ Ṡ, 〈q̇i : i < ω1〉, and {Ḋi : i < ω1} are
in H(θ). Applying Proposition 2.4, fix N , K, and K1 satisfying:

• N is in [H(θ)]ℵ1 and ω1 ⊆ N ,
• N ≺ H(θ),
• Q ∗ Ṙ ∗ Ṡ, 〈q̇i : i < ω1〉, q∗, and {Ḋi : i < ω1} are in N ,
• K is a filter on Q ∗ Ṙ ∗ Ṡ which is N -generic,
• K1 is the set of q for which there is q ∗ ṙ ∗ ṡ in N ∩K,
• q∗ is in K1.

The last statement can be arranged since (Q/q∗) ∗ Ṙ ∗ Ṡ is proper.
Using the fact that K is a filter and is N -generic, it is easy to show that K1 is

a filter on N ∩Q.
For each i < ω1 there is a dense set of conditions in Q ∗ Ṙ ∗ Ṡ which decide the

value of q̇i. By elementarity, this dense set is in N . Since K is N -generic, let qi

be the unique condition in Q such that there is a condition in N ∩K which forces
q̇i = qi. By elementarity, qi is in N .
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Lemma 2.5. The sequence 〈qi : i < ω1〉 satisfies:

(1) qi is in K1 for all i < ω1,
(2) for all q in N ∩K1, there is i < ω1 such that qi ≤ q,
(3) qj ≤ qi for all i ≤ j < ω1,
(4) for every limit ordinal ν < ω1, dom(qν) =

⋃
i<ν dom(qi), and for all ξ in

dom(qν), qν(ξ) =
⋃
i<ν q

i(ξ).

Proof. (1) Let D be the dense open set of conditions in Q which are either incom-
patible with qi or below qi. Let E be the dense open set of conditions in Q ∗ Ṙ ∗ Ṡ
of the form q ∗ ṙ ∗ ṡ such that q is in D. By elementarity, D and E are in N . Since
K is N -generic, fix q ∗ ṙ ∗ ṡ in N ∩K ∩ E. Then q is in K1 ∩D.

We claim that q is compatible with qi, and hence q ≤ qi since q is in D. Fix a
condition q0 ∗ ṙ0 ∗ ṡ0 in N ∩K which forces q̇i = qi. Then q0 is in K1. Since K1 is
a filter, let q1 be in K1 which is below q and q0. Then q1 ∗ ṡ0 ∗ ṙ0 forces that q and
qi are both in Ġ, and hence are compatible. So indeed q and qi are compatible.

Now q is in K1, q ≤ qi, and qi is in N ∩ Q. Since K1 is a filter on N ∩ Q, qi is
in K1.

(2) Let q be in K1. Fix q ∗ ṙ ∗ ṡ in N ∩K. Since q ∗ ṙ ∗ ṡ forces that q is in Ġ,
it forces that there is i < ω1 such that q̇i is below q. Let E be the dense open set
of conditions in Q ∗ Ṙ ∗ Ṡ which are either incompatible with q ∗ ṙ ∗ ṡ, or force for
some i < ω1 that q̇i ≤ q, and in addition decide the value of q̇i. By elementarity,
E is in N . Since K is N -generic, fix q0 ∗ ṙ0 ∗ ṡ0 in N ∩ K ∩ E. Fix i < ω1 such
that q0 ∗ ṙ0 ∗ ṡ0 forces q̇i ≤ q and q̇i = qi. Then q0 ∗ ṙ0 ∗ ṡ0 forces qi ≤ q. So in fact
qi ≤ q.

(3) Choose conditions q0 ∗ ṙ0 ∗ ṡ0 and q1 ∗ ṙ1 ∗ ṡ1 in N ∩K which decide q̇i and
q̇j respectively as qi and qj . Since K is a filter, let q ∗ ṙ ∗ ṡ be a refinement of these
two conditions. Since Q ∗ Ṙ ∗ Ṡ forces q̇j ≤ q̇i, q ∗ ṙ ∗ ṡ forces qj ≤ qi. So indeed
qj ≤ qi.

(4) Consider a limit ordinal ν < ω1. Then Q∗Ṙ∗Ṡ forces dom(q̇ν) =
⋃
i<ν dom(q̇i).

Since qν ≤ qi for all i < ν,
⋃
i<ν dom(qi) ⊆ dom(qν). Let E be the dense open set

of conditions in Q ∗ Ṙ ∗ Ṡ which decide q̇ν and also decide for some countable set
A ⊆ Q in V that {q̇i : i < ν} and A are cofinally interleaved. By elementarity, E is
in N . Since K is N -generic, fix q ∗ ṙ ∗ ṡ in N ∩K ∩E. Let A be a countable subset
of Q which q ∗ ṙ ∗ ṡ forces is cofinally interleaved with {q̇i : i < ν}. Then A is in N ,
and q ∗ ṙ ∗ ṡ forces that dom(q̇ν) =

⋃
{dom(s) : s ∈ A}. Note that since {q̇i : i < ν}

is forced to be a subset of Ġ, q ∗ ṙ ∗ ṡ forces A ⊆ Ġ.
Consider ξ in dom(qν). Let E1 be the dense open set of conditions which are

either incompatible with q ∗ ṙ ∗ ṡ, or are below it and decide for some s in A that ξ
is in dom(s). Since N ∩K∩E1 is non-empty, clearly there is s in A such that ξ is in
dom(s). Let E2 be the dense open set of conditions which are either incompatible
with q ∗ ṙ ∗ ṡ, or are below it and decide for some i < ν that q̇i ≤ s, and moreover
decide q̇i. Then there is i < ν such that qi ≤ s, and therefore ξ is in dom(qi). This
proves the first part of (4). The proof of the second part of (4) is almost the same
argument. �

Define q′ in Q as follows. The domain of q′ is equal to
⋃
i<ω1

dom(qi). For each
ξ in dom(q′), let q′(ξ) =

⋃
i<ω1

qi(ξ). By Proposition 1.1 and Lemma 2.5, for all
ξ in dom(q′), q′(ξ) is in P(X) and q′(ξ) ≤ qi(ξ) for all i < ω1. Therefore q′ is in
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Q and q′ ≤ qi for all i < ω1. By Lemma 2.5(2), q′ ≤ q for every q in N ∩K1. In
particular, q′ ≤ q∗.

Let G be a generic filter for Q over V which contains q′. Let R = ṘG, and for
i < ω1 let Di = ḊG

i . In V [G], define H as the set of conditions r in R such that
there is q ∗ ṙ ∗ ṡ in N ∩K such that r = ṙG.

We claim that H generates a filter on R. Consider r1 and r2 in H. Then there
are qi ∗ ṙi ∗ ṡi in N ∩K such that ri = ṙGi for i < 2. Let E be the dense open set of
conditions in Q ∗ Ṙ ∗ Ṡ which are either below qi ∗ ṙi ∗ ṡi for i < 2, or incompatible
with at least one of them. By elementarity, E is in N . Since K is N -generic, fix
q ∗ ṙ ∗ ṡ in N ∩K ∩ E. Clearly q ∗ ṙ ∗ ṡ is below qi ∗ ṙi ∗ ṡi for i < 2. Let r = ṙG.
Then r is in H. Now q is in N ∩K1, so q′ ≤ q. Therefore q is in G. But q forces
ṙ ≤ ṙ1, ṙ2. So r ≤ r1, r2.

To complete the proof, we show that H ∩Di is non-empty for all i < ω1. Let E
be the set of conditions q ∗ ṙ ∗ ṡ in Q ∗ Ṙ ∗ Ṡ such that either q is incompatible with
q∗, or q forces ṙ is in Ḋi. Then E is dense open, because q∗ forces Ḋi is dense open
in Ṙ. By elementarity, E is in N . So let q ∗ ṙ ∗ ṡ be in N ∩K ∩ E. Then q is in
K1 and q forces ṙ is in Ḋi. Since q′ ≤ q, q is in G. Therefore r = ṙG is in H ∩Di.
This completes the proof of Theorem 2.1

3. Dense Non-Reflection at a Singular Cardinal

We describe some natural situations in which dense non-reflection holds in Pω1(λ),
where λ is a singular cardinal with countable cofinality, and show that such dense
non-reflection is consistent with PFA.

First we review some basic pcf theoretic definitions. Let a be a set of regular
cardinals with |a| < min(a). We write

∏
a for the set of functions f with domain

a such that f(κ) ∈ κ for all κ in a. Suppose D is a filter on a. For functions f
and g in

∏
a, let f ≤D g if the set {κ ∈ a : f(κ) ≤ g(κ)} is in D, and similarly

with f <D g. For a regular cardinal µ, a sequence of functions ~f = 〈fi : i < µ〉 in∏
a is a scale in

∏
a/D if fi ≤D fj for i < j < µ, and for any function h in

∏
a,

h ≤D fi for some i < µ. The cobounded filter on a is the filter generated by the
complements of the proper initial segments of a.

In Theorem 1.5 of Chapter 2 of [14], Shelah proved:

Theorem 3.1. Let λ be a singular cardinal. Then there is a set a of regular
cardinals cofinal in λ with order type cf(λ) and cf(λ) < min(a) such that there
exists a scale ~f = 〈fi : i < λ+〉 in

∏
a/D, where D is the cobounded filter on a.

A scale ~f = 〈fi : i < µ〉 in
∏

a/D is said to be an ω1-better scale if for every
limit ordinal α < µ with cofinality ω1, there is a club set c ⊆ α with order type ω1

such that for any β in c, there is a set A in D such that for all γ in c ∩ β and κ in
A, fγ(κ) < fβ(κ). (See [6] for more information on better scales.)

Let F be a filter on a set X and κ a cardinal. We say that F is κ-generated if
there is a family {Ai : i < ξ} of fewer than κ many sets in F such that for any set
A ⊆ X, A is in F iff Ai ⊆ A for some i < ξ. We say that F is countably generated
if F is ω1-generated. For any infinite cardinal λ, the club filter on Pω1(λ) is (2λ)+-
generated, since for every club C ⊆ Pω1(λ) there is a function F : [λ]<ω → λ such
that C contains the club set of a in Pω1(λ) which are closed under F .

The main theorem of this section is:
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Theorem 3.2. Let λ be a singular cardinal with countable cofinality. Let a be a
countable set of regular uncountable cardinals cofinal in λ, and µ a regular cardinal
larger than λ. Suppose that:

(1) The club filter on Pω1(λ) is µ+-generated,
(2) There is a countably generated filter D on a and an ω1-better scale 〈fi : i <

µ〉 in
∏

a/D.

Then every stationary subset of Pω1(λ) contains a stationary subset which does not
reflect to any set of size ℵ1.

Proof. For any countable set b ⊆ λ, let χb denote the function in
∏

a defined by
letting χb(κ) = sup(b∩ κ) for all κ in a. Note that for any function h in

∏
a, there

are club many b in Pω1(λ) such that h <D χb.
Fix a stationary set S ⊆ Pω1(λ). We will find a stationary set T ⊆ S which does

not reflect to any set of size ℵ1. Fix a family {Ci : i < µ} of club subsets of Pω1(λ)
such that for every club C ⊆ Pω1(λ), there is i < µ such that Ci ⊆ C. Clearly any
set T ⊆ Pω1(λ) is stationary if it has non-empty intersection with Ci for all i < µ.

To construct T , we define by induction a sequence 〈bi : i < µ〉 and a normal
function G : µ→ µ such that for all i < µ:

(I) bi is in S ∩ Ci,
(II) fG(i) <D χbi <D fG(i+1).

Suppose i < µ and 〈bj : j < i〉 and G � i are defined as required. If i = 0 let
G(i) = 0. If i is a limit ordinal, let G(i) = sup{G(j) : j < i}. If i = j + 1, choose
G(i) larger than G(j) so that χbj <D fG(i). This is possible since ~f is a scale. Now
applying the stationarity of S, choose bi in S ∩ Ci satisfying fG(i) <D χbi . This
completes the construction.

Let T = {bi : i < µ}. By property (I), T is a stationary subset of S. Suppose
for a contradiction that N is a subset of λ of size ℵ1 and Pω1(N) ∩ T is stationary
in Pω1(N).

Let β be the least ordinal such that Pω1(N)∩{bi : i < β} is stationary in Pω1(N).
Choose an increasing and continuous sequence 〈ai : i < ω1〉 of countable sets with
union equal to N . Then {ai : i < ω1} ∩ {bi : i < β} is stationary in Pω1(N). So
there is a stationary set A ⊆ ω1 such that {ai : i ∈ A} ⊆ {bi : i < β}.

Claim 3.3. The cofinality of β is equal to ω1.

Proof. If cf(β) > ω1, then there is γ < β such that {ai : i ∈ A} ⊆ {bi : i < γ}, which
contradicts the minimality of β. Suppose that cf(β) = ω, and fix a cofinal function
f : ω → β. Then {bi : i < β} ∩Pω1(N) is equal to

⋃
n<ω({bi : i < f(n)} ∩Pω1(N)).

Since the club filter on Pω1(N) is countably complete, there is n < ω such that
{bi : i < f(n)} ∩ Pω1(N) is stationary in Pω1(N). Again this contradicts the
minimality of β. �

Fix a collection of sets {Xn : n < ω} which generates D. Since G : µ → µ is
a normal function, the cofinality of G(β) is equal to ω1. Applying the fact that ~f
is an ω1-better scale, let c ⊆ G(β) be a club subset of G(β) with order type ω1

satisfying: for all α in c, there is n < ω such that for all γ in c ∩ α and κ in Xn,
fγ(κ) < fα(κ). By intersecting c with the club G[β], we may assume without loss
of generality that c is contained in the range of G.
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By the normality ofG, G−1[c] is a club subset of β with order type ω1. Enumerate
G−1[c] in increasing order as 〈βi : i < ω1〉. Then the function i 7→ βi is a normal
cofinal function from ω1 to β.

For i < ω1 let hi = fG(βi). Then by the choice of c,

∀i < ω1 ∃n < ω ∀j < i ∀κ ∈ Xn hj(κ) < hi(κ).

Since A is stationary in ω1, fix a stationary set A1 ⊆ A and n1 < ω such that:

∀i ∈ A1 ∀j < i ∀κ ∈ Xn1 hj(κ) < hi(κ).

Then in particular:

Statement 3.4. For all j < i in A1 and for all κ in Xn1 , hj(κ) < hi(κ).

Since {ai : i ∈ A1} is a subset of {bj : j < β}, we can define g : A1 → β by
letting g(i) be an ordinal less than β such that ai = bg(i).

Claim 3.5. There is a club set C ⊆ ω1 such that for all i < j in C, if i is in A1

then βi ≤ g(i) < βj.

Proof. Let C1 be the set of α in ω1 such that for all i in α ∩ A1, g(i) < βα. It
follows easily from the fact the map α 7→ βα is increasing that C1 is a club set.

Assume for a contradiction that there does not exist a club C ⊆ C1 consisting
of i such that, if i is in A1, then βi ≤ g(i). Then there is a stationary set A′ ⊆ A1

such that g(i) < βi for all i in A′. If ν is any limit ordinal in A′, then g(ν) < βν =
supi<ν βi, so there is iν < ν such that g(ν) < βiν . By Fodor’s Lemma, there is
a stationary set A′′ ⊆ A′ and γ < ω1 such that for all ν in A′′, g(ν) < βγ . But
aν = bg(ν). So the set {aν : ν ∈ A′′} is a stationary subset of Pω1(N) contained in
{bi : i < βγ}, contradicting the minimality of β. �

Fix a club C as in Claim 3.5. We now thin out A1 ∩ C to A2. For each i in
A1∩C, let i∗ be the least ordinal in A1∩C above i. Given i in A1∩C, we know that
βi ≤ g(i) < βi∗ . Therefore g(i) + 1 ≤ βi∗ . So by property (II) in the construction
of T , we have:

χai = χbg(i) <D fG(g(i)+1) ≤D fG(βi∗ ) = hi∗ ,

and therefore
χai <D hi∗ .

Choose m(i) < ω so that for all κ in Xm(i), χai(κ) < hi∗(κ). Fix a stationary set
A2 ⊆ A1 ∩ C and n2 < ω such that for all i in A2, m(i) = n2. Then we have:

Statement 3.6. For all i in A2 and κ in Xn2 , χai(κ) < hi∗(κ).

Let X = Xn1 ∩Xn2 , which is in D. Since A2 is a stationary subset of ω1, let x
be a closed set of ordinals in A2 with order type ω + 1, and let ν = max(x). Since
the sequence 〈ai : i < ω1〉 is increasing and continuous, aν =

⋃
{ai : i ∈ x ∩ ν}.

Therefore for all κ in X,

sup(aν ∩ κ) = sup{sup(ai ∩ κ) : i ∈ x ∩ ν}.

In other words:

Statement 3.7. For all κ in X, χaν (κ) = sup{χai(κ) : i ∈ x ∩ ν}.
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Consider i in x ∩ ν. Then for all κ in X,

χai(κ) < hi∗(κ) < hν(κ).

The first inequality is by Statement 3.6, and the second inequality is by State-
ment 3.4, noting that i∗ < ν. So for all i in x ∩ ν and κ in X,

χai(κ) < hν(κ).

Since this inequality holds for all i in x ∩ ν, by Statement 3.7 we get that for all κ
in X,

χaν (κ) ≤ hν(κ).
Now aν = bg(ν), so for all κ in X,

χbg(ν)(κ) ≤ hν(κ).

By the property of C, βν ≤ g(ν), and by definition, hν = fG(βν). Hence hν ≤D
fG(g(ν)). Therefore

χbg(ν) ≤D fG(g(ν)).

On the other hand, by property (II) in the construction of T ,

fG(g(ν)) <D χbg(ν) .

These last two inequalities give a contradiction. �

In the rest of the section, we consider situations in which the hypotheses of
Theorem 3.2 hold.

Proposition 3.8. Let λ be a singular cardinal and µ a regular cardinal larger than
λ. Let a be a set of regular cardinals cofinal in λ with |a| < min(a). Suppose
there exists a filter D on a and a scale of length µ in

∏
a/D. Assume there exist

sequences
〈cα : α ∈ µ ∩ cof(ω1)〉, 〈Cβ : β ∈ µ ∩ cof(ω)〉

such that:
(1) for all α ∈ µ ∩ cof(ω1), cα is a club subset of α with order type ω1,
(2) for all β ∈ µ ∩ cof(ω), Cβ is a family of less than µ many closed countable

subsets of β,
(3) for all α ∈ µ ∩ cof(ω1), if β is a limit point of cα, then cα ∩ β is in Cβ.

Then there is an ω1-better scale in
∏

a/D of length µ.

A similar statement was shown to be true in the proof of Theorem 4.1 of [6],
using weak square �∗λ in the particular case when µ = λ+. Our argument is based
on their proof.

Proof. Let ~f = 〈fi : i < µ〉 be a scale in
∏

a/D. We define by induction a cofinal
subsequence ~g = 〈gi : i < µ〉 of ~f . Suppose 〈gi : i < β〉 is defined for some β < µ. If
β is not a limit ordinal of cofinality ω, then choose gβ from the set {fi : β ≤ i < µ}
so that gi ≤D gβ for all i < β.

Suppose β is a limit ordinal of cofinality ω. For each c in Cβ , define gc in
∏

a
by letting, for κ in a, gc(κ) = sup{gi(κ) : i ∈ c}. Note that gc(κ) ∈ κ, since κ is
regular and uncountable and c is countable. Since |Cβ | < µ, choose gβ in the set
{fi : β ≤ i < κ+} so that gc ≤D gβ for all c in Cβ , and gi ≤D gβ for all i < β. This
completes the construction of ~g.

To show ~g is an ω1-better scale in
∏

a/D, consider α in µ ∩ cof(ω1). Let d be
the club set of limit points of cα. Consider β in d. Since β is a limit point of cα,
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cα ∩ β is in Cβ . So by construction, g(cα∩β) ≤D gβ . Fix a set A in D such that for
all κ in A, g(cα∩β)(κ) ≤ gβ(κ). Then for all γ in d ∩ β and κ in A, γ is in cα ∩ β,
therefore gγ(κ) ≤ g(cα∩β)(κ) ≤ gβ(κ). �

When µ = κ+ is a successor cardinal, then the existence of the sequences de-
scribed in the last proposition follows from weak square �∗κ.

Definition 3.9. Let κ be an uncountable cardinal and ν ≤ κ+. A sequence 〈Cα :
α < κ+〉 is a �κ,ν-sequence if for all limit ordinals α < κ+:

(1) 1 ≤ |Cα| ≤ ν,
(2) for all c in Cα, c is a club subset of α, and if cf(α) < κ then o.t.(c) < κ,
(3) for all c in Cα, if β is a limit point of c, then c ∩ β is in Cβ.

We say that �κ,ν holds if there exists a �κ,ν-sequence.

We refer to a �κ,κ-sequence as a weak square sequence, or a �∗κ-sequence. We
say that �∗κ holds if there exists a �∗κ-sequence. If �∗κ holds, then there is a �∗κ-
sequence 〈Cα : α < κ+〉 such that for each limit ordinal α < κ+, there is a club c in
Cα with order type equal to cf(α); for a proof of this fact, see page 176 of [7]. Both
�κ (that is, �κ,1) and �∗κ are due to Jensen [10]. The definition of �κ,ν , where
1 < ν < κ, is due to Schimmerling [13].

Lemma 3.10. Let κ be an uncountable cardinal and suppose �∗κ holds. Then there
exist sequences

〈cα : α ∈ κ+ ∩ cof(ω1)〉, 〈Cβ : β ∈ κ+ ∩ cof(ω)〉
such that:

(1) for all α ∈ κ+ ∩ cof(ω1), cα is a club subset of α with order type ω1,
(2) for all β ∈ κ+∩cof(ω), Cβ is a family of less than κ+ many closed countable

subsets of β,
(3) for all α ∈ κ+ ∩ cof(ω1), if β is a limit point of cα, then cα ∩ β is in Cβ.

Proof. Fix a �∗κ-sequence 〈Dα : α < κ+〉 with the property that for every limit
ordinal α < κ+, there is a club in Dα with order type cf(α). Define 〈cα : α ∈
κ+ ∩ cof(ω1)〉 by choosing for each α in κ+ ∩ cof(ω1) a club set cα in Dα with order
type ω1. For each β in κ+ ∩ cof(ω), define Cβ as the collection of countable sets
in Dβ . Then properties (1) and (2) are immediate, and (3) follows from Definition
3.9(3). �

Corollary 3.11. Let λ be a singular cardinal with cofinality ω. Assume 2λ = λ+

and �∗λ holds. Then every stationary subset of Pω1(λ) contains a stationary subset
which does not reflect to any set of size ℵ1.

Proof. It suffices to verify the hypotheses of Theorem 3.2 in the case µ = λ+ = 2λ.
We know that the club filter on Pω1(λ) is (2λ)+-generated. By Theorem 3.1, fix a
set a of regular uncountable cardinals cofinal in λ with order type ω and a scale
~f = 〈fi : i < λ+〉 in

∏
a/D, where D is the cobounded filter on a. Since the order

type of a is ω, the cobounded filter on a is countably generated. By �∗λ, Lemma
3.10, and Proposition 3.8, there is an ω1-better scale of length λ+ in

∏
a/D. So all

the hypotheses of Theorem 3.2 are true. �

We remark that it was pointed out by Toshimichi Usuba that assuming the
weaker statement ADSλ in place of �∗λ in Corollary 3.11, one can prove that every
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stationary subset of Pω1(λ) contains a stationary subset which does not reflect to
any set of size ℵ1 which contains ℵ1 ([16]). (See Section 4 of [6] for the definition
of ADSλ.)

We can now prove the consistency of PFA with dense non-reflection in Pω1(λ),
where λ is a singular cardinal with cofinality ω. This will follow immediately from
Corollary 3.11 and a theorem of Magidor [12].

Theorem 3.12 (Magidor). Suppose PFA is consistent. Then PFA is consistent
with the statement that 2α = α+ for all α ≥ ω1 and �κ,ℵ2 holds for all κ ≥ ω2.

Corollary 3.13. Suppose PFA is consistent. Then PFA is consistent with the
statement that for every singular cardinal λ with cofinality ω, every stationary subset
of Pω1(λ) contains a stationary subset which does not reflect to any set of size ℵ1.

We end this section by describing circumstances in which Theorem 3.2 applies,
without assuming 2λ = λ+. First we need to review some facts from pcf theory
without proof.

Let a be a set of regular cardinals with |a|+ < min(a). For any cardinal κ, J<κ(a)
denotes the ideal consisting of sets b ⊆ a such that for any ultrafilter D on a with
b ∈ D, the cofinality of (

∏
a,≤D) is less than κ. Clearly J<κ1(a) ⊆ J<κ2(a) for

cardinals κ1 < κ2. If κ is a limit cardinal, then J<κ(a) is the union of the ideals
J<µ(a), where µ < κ is a cardinal; see page 211 of [5].

Recall that pcf(a) denotes the set of regular cardinals κ for which there exists
a filter D on a and a scale of length κ in

∏
a/D. The set pcf(a) always has a

maximum element; see 1.8 of [5].
Here are the facts from pcf theory we will use:

Fact 3.14. Let κ be a regular cardinal.
(1) κ is in pcf(a) iff J<κ+(a) \ J<κ(a) is non-empty.
(2) If b is in J<κ+(a) \J<κ(a), then there is a scale of length κ in

∏
a/D, where

D is the filter on a generated by the set b together with the dual filter of J<κ(a).

Fact 3.15. If a is an interval of regular cardinals, then so is pcf(a).

Fact 3.16. There exists a sequence 〈bκ : κ ∈ pcf(a)〉 of subsets of a such that for
each κ in pcf(a), J<κ+(a) is the ideal on a generated by J<κ(a) ∪ {bκ}.

Fact 3.17. Let λ be a singular cardinal with cofinality ω. Assume there is ω1 ≤ δ <
λ such that there are only countably many regular cardinals between δ and λ. Let
a = (δ, λ)∩Reg. Then max(pcf(a)) is equal to the cofinality of the partial ordering
([λ]ℵ0 ,⊆).

Fact 3.14 is proven as Lemma 1.4 and Corollary 4.4 of [5]. Facts 3.15 and 3.16
are proven as 2.2 and 7.9 of [5] respectively. Fact 3.17 is proven as Theorem 5.11
of [1].

The pcf conjecture is the statement that for any set of regular cardinals a with
|a| < min(a), pcf(a) has size |a|. It is not known whether the pcf conjecture is a
theorem of ZFC.

Lemma 3.18. Let a be a countable set of regular cardinals with ω1 < min(a) such
that pcf(a) is countable. Then for every κ in pcf(a), there is a countably generated
filter D on a and a scale of length κ in

∏
a/D.
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Proof. Note that for all κ in pcf(a), J<κ+(a) is countably generated. This can
be proven by an easy induction using the fact that pcf(a) is countable, together
with Fact 3.14(1) and Fact 3.16. Let κ be in pcf(a). Let Dκ be the dual filter
of J<κ+(a). Clearly Dκ is countably generated. By Fact 3.14(1), fix a set b in
J<κ+(a) \ J<κ(a). Then by Fact 3.14(2), there is a scale of length κ in

∏
a/D,

where D is the countably generated filter on a generated by the set b together with
Dκ. �

Corollary 3.19. Let λ be a singular strong limit cardinal of cofinality ω. Suppose
there is ω1 ≤ δ < λ such that there are only countably many regular cardinals
between δ and λ. Let a = (δ, λ) ∩ Reg. Assume pcf(a) is countable. Then 2λ = κ+

for some cardinal κ ≥ λ. Assume that �∗κ holds. Then every stationary subset of
Pω1(λ) has a stationary subset which does not reflect to any set of size ℵ1.

Proof. Since λ is a strong limit cardinal of cofinality ω, 2λ = λω and λω = cf([λ]ℵ0)·
2ω = cf([λ]ℵ0). Combining these facts with Fact 3.17, we get that 2λ = max(pcf(a)).
Now a is an interval of regular cardinals, so pcf(a) is as well by Fact 3.15. As pcf(a)
is countable, 2λ = max(pcf(a)) is less than λ+ω1 . Since there are no regular limit
cardinals between λ and λ+ω1 , 2λ = κ+ for some κ ≥ λ. By Lemma 3.18, there is a
countably generated filter D on a and a scale of length 2λ in

∏
a/D. So assuming

�∗κ holds, it follows from Lemma 3.10 and Proposition 3.8 that there is an ω1-better
scale of length 2λ in

∏
a/D. �

4. Adding Non-Reflecting Sets for a Singular Cardinal

Let λ be a singular cardinal with cofinality ω. By Section 1, we can add a non-
reflecting stationary subset of Pω1(λ), using for example conditions of size less than
ω2. But this poset will add many subsets of ω2, and so λ will not be a strong limit in
the extension. In this section we present a (λ+ 1)-strategically closed forcing poset
for adding a non-reflecting stationary subset of Pω1(λ). Using a suitable product
of this forcing, we obtain dense non-reflection in Pω1(λ) with a forcing poset which
does not add subsets to λ.

Fix a set a of regular cardinals larger than ω1 with order type ω which is cofinal
in λ. For functions f and g in

∏
a, we write g ≤∗ f to indicate g ≤D f , where D is

the cobounded filter on a, and similarly for g <∗ f . Recall that for a countable set
b ⊆ λ, χb is the function in

∏
a defined by letting χb(κ) = sup(b∩ κ) for all κ in a.

Define P as the set of pairs 〈X, f〉 satisfying:
• X ⊆ Pω1(λ),
• |X| ≤ λ,
• f is in

∏
a,

• for all a in X, χa <∗ f ,
• for any set N in [λ]ℵ1 , Pω1(N) ∩X is non-stationary in Pω1(N).

We let 〈Y, g〉 ≤ 〈X, f〉 if:
• X ⊆ Y ,
• f ≤∗ g,
• for all b in Y \X, f ≤∗ χb.

Note that P has size 2λ, and so is (2λ)+-c.c.

Proposition 4.1. The forcing poset P is (λ+ 1)-strategically closed.
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Proof. Since λ is singular, by an easy argument it suffices to show that P is ν-
strategically closed for all ν < λ. So let ν < λ be given. We describe a strategy for
Player II. At successor stages, Player II just repeats Player I’s last play. Suppose
δ < ν is a limit ordinal and a sequence of plays 〈〈Xi, fi〉 : 0 < i < δ〉 has been
determined. Define Xδ =

⋃
0<i<δXi. Define fδ by letting fδ(κ) = 0 if κ ∈ a ∩ ν,

and fδ(κ) = (sup0<i<δ fi(κ)) + 1 if κ is in a \ ν.
We claim that 〈Xδ, fδ〉 is a condition in P which is below 〈Xi, fi〉 for all 0 < i < δ.

Thus the game continues through all stages less than ν. We will prove that for any
N in [λ]ℵ1 , Pω1(N) ∩ Xδ is non-stationary in Pω1(N). The remaining properties
are easy to check.

Suppose for a contradictionN is in [λ]ℵ1 and Pω1(N)∩Xδ is stationary in Pω1(N).
Fix an increasing and continuous sequence 〈ai : i < ω1〉 of countable sets with union
equal to N . Then there is a stationary set A ⊆ ω1 such that {ai : i ∈ A} ⊆ Xδ.

Claim 4.2. The cofinality of δ is ω1.

The proof is similar to the proof of Claim 3.3.
Fix an increasing and continuous sequence 〈βi : i < ω1〉 cofinal in δ. Define

g : A→ ω1 by letting g(i) be the least ordinal such that ai is in Xβg(i) . Note that
g(i) is always a successor ordinal, since the map j 7→ βj is normal andXξ =

⋃
j<ξXj

for every limit ordinal ξ < δ.

Claim 4.3. There is a club C ⊆ ω1 such that for all i < j in C, if i is in A then
i < g(i) < j.

The proof is similar to the proof of Claim 3.5.
Fix a club C as in Claim 4.3. We thin out A ∩ C to A1. Consider i in A ∩ C.

Let i∗ be the least ordinal in A ∩ C above i. Then βi < βg(i) < βi∗ . Since ai is in
Xβg(i) , by the definition of P we have that χai <

∗ fβg(i) ≤∗ fβi∗ . So there is κ(i)
in a such that that for all κ in a \ κ(i), χai(κ) < fβi∗ (κ). Since a is countable and
A ∩C is stationary, we can fix a stationary set A1 ⊆ A ∩C and κ1 in a so that for
all i in A1, κ(i) = κ1. Then for all i in A1 and κ in a \ κ1, χai(κ) < fβi∗ (κ).

By the stationarity of A1, let x be a closed subset of A1 with order type ω+1, and
let ν = max(x). As 〈ai : i < ω1〉 is increasing and continuous, aν =

⋃
{ai : i ∈ x∩ν}.

It follows that for all κ in a, χaν (κ) = sup{χai(κ) : i ∈ x ∩ ν}.
Consider κ in a which is larger than κ1 and ν. Then for all i in x ∩ ν, i∗ <

ν, so χai(κ) < fβi∗ (κ) ≤ sup0<j<βν fj(κ). Since this is true for all i in x ∩ ν,
χaν (κ) ≤ sup0<j<βν fj(κ). By the definition of fβν , sup0<j<βν fj(κ) < fβν (κ). So
χaν <

∗ fβν . On the other hand, since g(ν) > ν, aν is in Xβg(ν) \ Xβν . By the
definition of the ordering on P we have fβν ≤∗ χaν , which is a contradiction. �

Let Ṫ be a P-name for the set
⋃
{X : ∃f 〈X, f〉 ∈ Ġ}.

We claim that for any stationary set S ⊆ Pω1(λ), P forces Ṫ ∩ Š is stationary.
For suppose p is in P and p forces Ḟ : [λ]<ω → λ is a function. Since Ḟ is a name
for a subset of the ground model of size λ and P is (λ+1)-strategically closed, there
is q ≤ p and F : [λ]<ω → λ such that q forces Ḟ = F̌ . Let q = 〈X, f〉. Since S is
stationary, we can choose a in S such that a is closed under F and f ≤∗ χa. Fix g
in

∏
a such that f <∗ g and χa <

∗ g. Then 〈X ∪ {a}, g〉 is a condition in P which
is below q and forces a is in Ṫ ∩ Š and is closed under Ḟ .

Finally, we show P forces Ṫ does not reflect to any set of size ℵ1. Suppose for
a contradiction p is in P and Ṅ is a P-name such that p forces Ṅ is in [λ]ℵ1 and
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Pω1(Ṅ) ∩ Ṫ is stationary. Since P is (λ+ 1)-strategically closed, there is q ≤ p and
N in [λ]ℵ1 such that q forces Ṅ = Ň . Let q = 〈X, f〉. Define g in

∏
a by letting

g(κ) = (max{f(κ), sup(N ∩ κ)}) + 1 for κ in a. Let r = 〈X, g〉. Clearly r is a
condition and r ≤ q. We claim that r forces Pω1(N)∩ Ṫ = Pω1(N)∩X, which is a
contradiction since Pω1(N)∩X is non-stationary. If not, then there is 〈Y, h〉 ≤ 〈X, g〉
and y in Y \X which is in Pω1(N). By the definition of the ordering on P, g ≤∗ χy.
But for all κ in a, since y ⊆ N we have χy(κ) = sup(y ∩ κ) ≤ sup(N ∩ κ) < g(κ).
So χy <∗ g, which is a contradiction.

As in Section 1, we can obtain a model satisfying dense non-reflection in Pω1(λ)
using a product forcing of the above poset. Assume 2λ = λ+. Define Q as the
product forcing consisting of partial functions p : λ++ → P with domain of size less
than λ+, ordered in the usual way. Since P is (λ+ 1)-strategically closed, it is easy
to show that Q is (λ+1)-strategically closed by using Player II’s strategy separately
on each coordinate. Since 2λ = λ+, P has size λ+, and a straightforward ∆-system
argument shows that Q is λ++-c.c. For all α < λ++, Q can be factored as Qα×Qα

as in Section 1. The fact that Q is λ++-c.c. implies that any stationary subset of
Pω1(λ) in V Q appears in V Qα for some α < λ++. Thus the same argument as given
in Section 1 shows that Q forces dense non-reflection in Pω1(λ).

5. Global Dense Non-Reflection

In this final section we prove the following theorem.

Theorem 5.1. Suppose PFA holds. Then there is a class-sized ω2–strategically
closed partial order P preserving ZFC + PFA and forcing GCH above ω and dense
non-reflection in Pω1(λ) for every cardinal λ ≥ ω2 such that λ is either regular or
of countable cofinality. Furthermore, P preserves cofinalities if GCH above ω holds
in the ground model.

We will sketch two proofs of Theorem 5.1. Before starting it will be convenient
to fix some pieces of notation. Suppose P is a partial order and Ẋ is a P–name for
a subset of some ordinal α. We will say that Ẋ is a nice P–name for a subset of α
in case it consists of pairs of the form 〈p, ξ̌〉, with p ∈ P and ξ̌ the canonical name
for an ordinal ξ ∈ α.

When dealing with set–forcing, the following slightly nonstandard notion of two–
step iteration will simplify the parts of the proof of Theorem 5.1 in which we need
to compute cardinalities of partial orders: Suppose P is a poset. If Q̇0 is a P–name
for a poset, then it is clear that, for some ordinal α, the two–step iteration P ∗ Q̇0

(in the standard sense) is isomorphic to one of the form P ∗ Q̇ in which Q̇ is forced
to consist of subsets of α. And furthermore, it is clear that this second iteration
has a dense suborder consisting of pairs 〈p, q̇〉 such that q̇ is a nice P–name for a
subset of α. When Q̇ is a P–name for a collection of subsets of a minimal ordinal
α, we will define the two–step iteration P ∗ Q̇ as the suborder of the corresponding
two–step iteration I, taken in the standard sense, consisting precisely of the pairs
〈p, q̇〉 ∈ I such that q̇ is a nice P–name for a subset of α. The above remark shows
that we do not lose any generality by doing so. Hence, we may and will identify
every two–step iteration in the standard sense with an iteration (in the new sense)
of the form P ∗ Q̇ for which there is a minimal α such that Q̇ is forced to consist
of subsets of α.
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The proof of Theorem 5.1 will involve reverse Easton iterations. By such an
iteration we mean any forcing iteration in which direct limits are taken at all regular
cardinals and inverse limits are taken everywhere else. In other words, a reverse
Easton iteration is a forcing iteration of the form 〈Pξ : ξ ∈ Ω〉, allowing Ω to be
either an ordinal or Ord, based on a sequence 〈Q̇ξ : ξ ∈ Ω〉 of names such that
each Q̇ξ is a Pξ–name for a poset, and such that sup(supp(p) ∩ ξ) < ξ whenever
ξ ∈ Ω is a regular cardinal, ξ0 ∈ Ω, and p is a condition in Pξ0 .4 Every class
forcing P preserves all of the ZFC axioms except possibly for the Power Set Axiom
and the Axiom scheme of Replacement. In the case that P is the direct limit of
a reverse Easton iteration as above with the additional property that for every λ
there is some ξ such that the tail forcing P/G is forced to be λ–distributive in V [G]
for each Pξ–generic filter G, then P preserves these remaining axioms as well (see
Section 2.2 of [9]).

The following easy general fact will be useful.

Lemma 5.2. Let α be a regular cardinal, let Ω be Ord or a member of it, let
ξ0 ∈ Ω, and let 〈Pξ : ξ ≤ Ω〉 be a forcing iteration, based on a sequence 〈Q̇ξ :
ξ ∈ Ω〉 of names such that, for every ξ ∈ [ξ0, Ω), Q̇ξ is < α–strategically closed
in V Pξ . Suppose that Pξ0 has the α–chain condition. Suppose in addition that
{supp(q)\ξ0 : q ∈ PΩ} is closed under unions of ⊆–increasing sequences of length
less than α.

Then, PΩ/G is < α–strategically closed in V [G] for every Pξ0–generic filter G
over V .

Let us assume PFA. By first forcing with an ω2–directed closed forcing P0 if
necessary we may assume that GCH holds above ω. P0 is the direct limit of a
reverse Easton iteration as above in which, at each step ξ, we force with trivial
forcing (that is, with {∅}) unless ξ is an infinite V –cardinal above ω1, in which case
Q̇ξ is, in V Pξ , the forcing for adding a subset of ξ by initial segments.

If ξ ≥ ω2 is a V –cardinal and G is Pξ–generic over V , then Pξ+1/G forces
|P (γ)V [G]| ≤ ξ for every γ < ξ. And, if in addition ξ is such that |Pξ+ | ≤ ξ
(which will happen whenever ξ is a strong limit), then P0/G′ is easily seen to be
ξ+–directed closed in V [G′] for every Pξ+–generic G′. It follows that P0 preserves
ZFC and forces GCH above ω.

By a theorem from [11], any ω2-directed closed forcing poset preserves PFA.
Clearly P0 is ω2–directed closed. If Ṙ is a P0–name for a proper poset and Ḋi (for
i < ω1) are names for dense subsets of Ṙ, then there is some ξ large enough so that
all of these names are in fact Pξ–names, such that each Ḋi is a Pξ–name for a dense
subset of Ṙ and such that, in addition, Ṙ is a Pξ–name for a proper poset. This is
true because properness is a local condition (in other words, a poset P is proper if
and only if P is proper in H(θ) for any large enough θ with P ∈ H(θ)), and for every
θ there is a ξ0 such that forcing with P0/Ġξ0 over V Pξ0 leaves H(θ) unchanged.
But Pξ is an ω2–directed closed poset and PFA holds in V , which implies that in
V Pξ , and therefore in V P

0
, there is a filter of Ṙ intersecting each Ḋi.

It may be worth mentioning that the use of reverse Easton supports is not
relevant for the task of preserving ZFC and PFA. In fact, the direct limit P0 of the

4Where supp(p), the support of p, is the set of all ξ < ξ0 such that p � ξ does not force (in Pξ)
that p(ξ) is the weakest condition in Q̇ξ.
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iteration obtained if we use full supports in the above definition of P0 would do as
well.5 The main use of reverse Easton supports is in ensuring, in a GCH–context,
that the relevant posets have the relevant chain condition. This is exemplified in
the constructions we are going to consider next.

We are left with the task of showing, under the assumption that GCH holds above
ω and that PFA holds, that there is a class forcing P as in the conclusion of The-
orem 5.1 which moreover preserves cofinalities. We will give two constructions of
such a P. In what follows, for a regular cardinal ξ, we let Q(ξ) denote the product
forcing from Section 1 for forcing dense non-reflection in Pω1(ξ) using conditions of
size less than ξ.

First construction. Let R be the class of all regular cardinals ξ ≥ ω2. For the
first construction we build a reverse Easton iteration 〈Pξ : ξ ∈ Ord〉, based on a
sequence 〈Q̇ξ : ξ ∈ Ord〉 of names, such that each Q̇ξ is forced to be trivial forcing
unless it is true in V Pξ that ξ is a regular cardinal above ω1 and that 2ζ = ζ+ for
all ζ with ω1 ≤ ζ ≤ ξ.

In that case, if it is not the case in V Pξ that ξ is the successor of a singular
cardinal λ of countable cofinality, then Q̇ξ is forced to be Q(ξ).

In the other case, if it holds in V Pξ that ξ = λ+ and λ is a singular cardinal of
countable cofinality, then Q̇ξ is forced to be the two–step iteration a(λ)∗(Q(ξ)×Q),
where a(λ) is the atomic forcing that picks an ω–sequence a cofinal in λ consisting
of regular cardinals in (ω1, λ),6 and where Q is as in Section 4 for λ and a.7

Lemma 5.3. For each regular cardinal ξ ≥ ω2, Pξ has size at most ξ.

Proof. This can be proved by induction on ξ using GCH above ω. The result
when ξ is inaccessible is straightforward as in that case Pξ is the direct limit of
〈Pξ′ : ξ′ < ξ〉.

If ξ = ξ+
0 for ξ0 a singular cardinal and ot(R∩ξ0) = ξ ≤ ξ0, then Pξ is (isomorphic

to) Pξ0 , and |Pξ0 | is then the cardinality of a collection of 2|ξ| = |ξ|+–many sets of
the form X(

⋃
ξ′<ξ0

Pξ′) for some X ⊆ ξ. It follows that |Pξ| = |Pξ0 | ≤ ξ+
0 = ξ since⋃

ξ′<ξ0
Pξ′ has size at most sup(R∩ ξ0) = ξ0 by induction hypothesis.

Finally, if ξ = ξ+
0 for ξ0 regular, then Pξ is isomorphic to Pξ0∗Q̇ξ0 , with |Pξ0 | ≤ ξ0

by induction hypothesis and such that Q̇ξ0 is forced to be either the empty set or
a subcollection of {X(Pξ0(Pω1(ξ0))) : X ∈ ((ξℵ0

0 )+)<ξ0} or of the same cardinality
as a subcollection of the product of {X(Pξ0(Pω1(ξ0))) : X ∈ ((ξℵ0

0 )+)<ξ0} and
{X(Pλ+(Pω1(λ)) × ωλ) : X ∈ (λ++)λ} for some λ < ξ0. But in these two cases,
ξ<ξ00 = ξ0 holds in V Pξ0 . It follows, in either case, that there is a certain set X
of size ξ+

0 such that every nice Pξ0–name for a condition in Q̇ξ0 can be coded as
a function from Pξ0 into X . Hence, by |Pξ0 | ≤ ξ0 and (ξ+

0 )ξ0 = ξ+
0 we have that

|Pξ| = |Pξ0 ∗ Q̇ξ0 | = ξ+
0 = ξ by our definition of two–step iteration. �

5But P0 might collapse more cardinals than P0.
6That is, conditions in a(λ) are sequences a as above, and any two distinct conditions are

incompatible.
7We will see that P preserves all regular cardinals as well as GCH above ω, but defining the

iteration this way makes it clear at the present point that each Q̇ξ is in fact well–defined and

makes it easy to find simple inductive proofs of the relevant facts about the iteration.
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Note that, by Lemma 5.2, P is <ω2–strategically closed. In particular, it pre-
serves ω1 and ω2. Also, since Pξ, for ξ ∈ R, has size at most ξ and forces that Q̇ξ
has the ξ+-chain condition (by Propositions 1.11 and by the remarks at the end
of Section 4) and each component Q̇ζ on the tail is forced to be <ζ–strategically
closed (by Proposition 1.10 and again by the end of Section 4), we get the following
result by Lemma 5.2.

Lemma 5.4. For each infinite cardinal ξ ≥ ω1, Pξ+ has the ξ+–chain condition
and P factors as Pξ+ ∗ Ṗ∗, with Ṗ∗ a Pξ+–name for an < ξ+–strategically closed
forcing.

By an inductive argument using Lemma 5.4 it follows that P preserves the
regularity of all ξ ∈ R.

As to the preservation of ZFC by P, we only need to care about Replacement
and the Power Set Axiom. But the preservation of these axioms follows also from
Lemma 5.4 and the general facts in Section 2.2 of [9].

Using once more Lemmas 5.3 and 5.4 one can prove that P preserves GCH at
uncountable regular cardinals. This implies that every singular cardinal λ remains
strong limit after forcing with P and hence (2λ)V

P
= (λcf(λ))V

P
= (λcf(λ))V = λ+

again by the relevant distributivity of the tail forcings. Hence, P preserves GCH
above ω.

Also, from the results in Section 1 we know that dense non-reflection in Pω1(λ)
holds in V Pλ+ for every regular λ ≥ ω2, which implies the same conclusion in V P

for every such λ by Lemma 5.4. And, for λ is a singular cardinal of countable
cofinality, we know by Section 4 that dense non-reflection in Pω1(λ) holds in V Pλ+ .
The reason why this is true is that the product Q̇λ is forcing–equivalent in V Pλ to
the two–step iteration Q(λ)∗ Q̃λ, where Q̃λ is the two–step iteration a(λ)∗Q, from
the definition of the iteration 〈Pξ : ξ ∈ Ord〉, as defined in (V Pξ)Q(λ).8 Again
by Lemma 5.4, we get then that dense non-reflection in Pω1(λ) holds in the final
extension.

The preservation of PFA is similar to the proof that P0 preserves PFA, using
also the proof of the results in Section 2. Given a proper poset Ṙ ∈ V P and dense
subsets Ḋi of Ṙ for i < ω1, also in V P , we can find a high enough ξ such that the
above names are in fact Pξ–names, such that all Ḋi are, in V Pξ , dense subsets of
Ṙ, and such that Ṙ is, in V Pξ , a proper poset. Now we can define a Pξ ∗ Ṙ–name Ṡ
for a poset analogous to the name Ṡ in the proof of Theorem 2.1. The correspond-
ing version of Proposition 2.2 holds for this choice of Pξ ∗ Ṙ ∗ Ṡ by essentially the
same proof, using the fact that all Q̇ζ are forced to be ω1–closed (by Corollary 1.5
and by the proof of Proposition 4.1). Using this one can show, by essentially the
same arguments as in the proof of Theorem 2.1, that in V Pξ there is a filter of Ṙ
intersecting all Ḋi, but then of course the same is true in V P .

Second construction. For the second construction we start forcing, over our
ground model V of PFA and GCH above ω, with Magidor’s partial order – let us
call it M – for getting �κ,ℵ2 for all κ ≥ ω1 while preserving PFA ([12]). M is the
direct limit of a reverse Easton iteration 〈Pξ : ξ ∈ Ord〉 on which nothing happens
unless ξ is a successor cardinal κ+ for κ ≥ ω1. In that case we force at stage ξ of the

8This is true by the fact that Q(λ) is λ+–distributive in V Pλ .
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iteration with the natural forcing for adding a �κ,ℵ2–sequence by initial segments.
Arguments as in the first construction show that M preserves ZFC, GCH above ω
and cofinalities, and that it forces �κ,ℵ2 for all cardinals κ ≥ ω1. Magidor [12]
proved that M preserves PFA.

Let V1 be the extension of V by M. Now we build a reverse Easton iteration
〈P̃ξ : ξ ∈ Ord〉, based on a sequence 〈Q̇ξ : ξ ∈ Ord〉 of names for posets. The
definition of this sequence is like the definition of the sequence of names making
up the iteration 〈Pξ : ξ ∈ Ord〉 in the first construction, except that now we only
force with Q(ξ) when ξ ≥ ω2 is a regular cardinal in V P̃ξ . In other words, we do
not take any steps now to force dense non-reflection in Pω1(λ) when λ is a singular
cardinal of countable cofinality.

By the same arguments as in the first construction we can prove that the direct
limit P of this iteration preserves ZFC, GCH above ω, cofinalities and PFA, and
that it forces dense non-reflection in Pω1(λ) for all regular λ ≥ ω2.

Finally, when λ is a singular cardinal of countable cofinality, dense non-reflection
holds in Pω1(λ) in V P1 by Corollary 3.11 because �λ,ℵ2 obviously holds in this ex-
tension.
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