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“If you can’t explain your mathematics

to a machine it is an illusion to think

you can explain it to a student.”

– N. G. de Bruijn†

N. G. de Bruijn, now professor emeritus of the Eindhoven University of Technology,

was a pioneer in the field of interactive theorem proving. From 1967 to the end of the

1970’s, his work on the Automath system introduced the architecture that is common to

most of today’s proof assistants, and much of the basic technology. But de Bruijn was a

mathematician first and foremost, as evidenced by the many mathematical notions and

results that bear his name, among them de Bruijn sequences, de Bruin graphs, the de

Bruijn-Newman constant, and the de Bruijn-Erdös theorem. The quotation above is thus

interesting not because it reflects on his expertise in formal verification, but, rather, his

convictions as a working mathematician.

But what could he have meant? Although he spoke of “explaining” mathematics to a

machine, it does not seem likely that he meant to presuppose that a machine is capa-

ble of understanding in any robust sense; and even less likely that he would have held

that the ability to check the details of a formal proof is constitutive of mathematical

understanding. To be sure, the ability to read a proof and ascertain its correctness is

an important part of understanding it, but it is certainly not the only part. And it is

by no means obvious that checking ordinary mathematical proofs has anything to do

with matching patterns and checking rules in a formal symbolic calculus. Nor would de

Bruijn have failed to notice that “explaining” mathematics to a machine is very different

from explaining it to a student. It is no more obvious that formalizing mathematics to

be checked by a computer has anything to do with explaining a piece of mathematics to

a fellow human being.

So what was de Bruijn getting at? The quotation invites us to reflect on the nature of

† from “Memories of the Automath Project,” an invited lecture at the Mathematical Knowledge Man-
agement Symposium, Heriot-Watt University, Edinburgh, Scotland, 2003.
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formal mathematics, and its relationship to informal mathematics. In doing so, we come

to realize that the very practice of formalization requires a deeper reflection on the log-

ical and linguistic mechanisms that govern the representation of informal mathematical

knowledge, and the way that such knowledge is organized as a structured collection of

interconnected notions. Indeed, formalization is valuable because it forces us to think

about mathematical knowledge in this way.

Mathematics is a precise discipline, but mathematical rigor is not the same as logical

formality. When one tries to translate a mathematical argument to a format suited for

automated processing, one realizes that there is a tangible mismatch between a text-

book presentation and what is actually required by the machine. Ordinary mathematics

is simply too informal for the logical and algebraic procedures that contemporary au-

tomated reasoning has to offer. At a linguistic level, ordinary mathematical discourse

systematically overloads symbols and abuses notations in ways that make mechanical

interpretation difficult. Subtle contextual cues are needed to resolve the ambiguities that

are intrinsic to mathematical vernacular, requiring not just knowledge of the notation

and conventions at play but, moreover, an understanding of the relevant mathematical

discipline.

The situation is similar at the level of proofs. The difficulty in formal verification

does not lie solely in the sheer number of formal logical steps needed to justify a single

textbook inference. The problem is, rather, that ordinary mathematical proofs rely on

patterns of reasoning—say, combinatorial, geometric, or diagrammatic—that are often

difficult to analyze and explain in terms of formal logical inferences. Once again, the

need to do so—that is, the process of figuring out how familiar patterns of mathematical

inference can be expressed in formal terms—can provide valuable insights into the nature

of the mathematics, and the nature of mathematical thought itself.

In short, the mismatch between the human activity known as “mathematics” and

mechanical representations thereof is interesting in and of itself. Formalizing a piece of

mathematical reasoning is like looking at it through a magnifying glass, trying to discover

the complex patterns and mechanisms that lie beneath the surface. It is not just a matter

of foundational reduction, that is, trying to reduce mathematical reasoning to a small

number of basic principles and rules. Just the opposite: it is the holistic—one might

say, phenomenological—goal of understanding how different components of mathematics

are represented, how they fit together, how we interact with these representations, and

how they shape our mathematical experience. Twentieth century foundational research

suggests that mathematical inference can be reduced to formal inference, in principle;

but understanding how this can be done in practice requires a reflective attentiveness

to our everyday mathematical experiences. Such a philosophical rejection of the logistic

bias is reflected in de Bruijn’s comments on the architectural design of Automath:

“Don’t put logic into the system; let the user start his book with it. Don’t put induction

and recursion in the system; consider it as book material, even when that might be slightly

clumsier.”

The differences between foundational reduction and formal verification become evident,

for example, in the treatment of definitions and lemmas. From the point of view of
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axiomatic deduction, what is important about definitions and lemmas is simply that they

can be eliminated: definitions can be expanded, and auxiliary lemmas can be replaced

by their proofs, in such a way that inferential validity is preserved. This obscures the

reason that definitions and lemmas are useful in the first place, namely, in structuring

our knowledge and helping us to think and reason more efficiently. In contrast, formal

verification focuses on precisely these features. In carrying out a formalization, we come

to better understand the reasons that mathematical notions emerge and force themselves

upon our attention. Ultimately, what we seek is an understanding of mathematical proof

that can pave the way to a better qualitative investigation of mathematics, one that can

help us understand what makes concepts fruitful, theories powerful, and proofs elegant or

insightful. We are currently far from this goal, but obtaining better formal representations

of mathematical knowledge is an important first step.

With the advent of interactive proof assistants, we are now beginning to develop sub-

stantial corpora of machine-readable mathematics. We take the fact that these corpora

provide enough information for a machine to verify their correctness to be an indication

that something of the relevant content of the mathematics has been captured. But one

may wonder whether we have actually captured too much, in embedding our informal

mathematical vernacular in the idiosyncrasies that are typical of foundational dialects.

The substantial lack of interoperability between proof assistants, and the difficulties we

face in translating information between the different foundational representations, seem

to corroborate this concern.

The translation from high-level mathematics to a low-level foundational language is

often compared to compilation from a high-level programming language to assembly lan-

guage. Whereas high-level programming languages provide platform-independent ways of

describing an algorithm, an assembly language is tied to a particular choice of processor.

But extensive research on compilers has resulted in consolidated and highly modular ar-

chitectural design, with clear interfaces and well-defined intermediate languages. Indeed,

the introduction of platform-independent intermediate representations, which serve to

improve portability and to reduce the cost of maintenance, represents one of the field’s

major breakthroughs. When it comes to the formalization of mathematics, we do not

have anything comparable. This is all the more surprising given that so much of the time

invested in formal verification comes in a preliminary phase in which one analyzes the

given piece of mathematics and begins to transform it into something more suitable for

formal encoding. That is, the result of this preliminary phase is a semi-formal version, in

which one has rendered the concepts more precise, carefully mapped out the structure of

the development, and begun to outline the details. All this typically takes place before

one has written a single line of low-level “code.” The fact that such a presentation is

largely independent of the underlying formal axiomatic system suggests that it might be

possible to develop more expressive languages with this same character. Indeed, the task

of designing intermediate languages that are capable of expressing formal features of the

mathematics while remaining independent of an axiomatic framework seems to be one

of the main challenges to formal verification today.

The papers in this special issue can be viewed, narrowly, as describing various contri-

butions to the corpus of formally verified mathematics, the technology that supports such
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verification, and the theory that supports the technology. But let us not lose sight of the

big picture: by clarifying what is needed to render ordinary mathematics in formal terms,

such work constitutes an important contribution to our understanding of mathematics

itself, much in the spirit of de Bruijn’s words.


