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Abstract

We give a necessary and sufficient condition in order that a type-
shifting automorphism be constructed on a model of the Theory of
Simple Types (TST) by forcing. Namely it is proved that, if for every
n ≥ 1 there is a model of TST in the ground model M of ZFC that
contains an n-extendible coherent pair, then there is a generic exten-
sion M [G] of M that contains a model of TST with a type-shifting
automorphism, and hence M [G] contains a model of NF. The con-
verse holds trivially. It is also proved that there exist models of TST
containing 1-extendible coherent pairs.

Keywords. New Foundations, type-shifting automorphism, forcing, coherent
pair, n-extendible coherent pair.

1 Introduction and preliminaries

The major open problem of the theory NF (New Foundations) is its consis-
tency (relative to that of ZFC). Important reductions of the problem were
obtained by E. Specker (who reduced it to the consistency of TST+(Amb)),
and by V.N. Grishin (who reduced NF to its fragment NF4). In this paper
we use both of the aforementioned reductions and give a new one using the
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language of forcing. Actually the reduction emerged out from an attempt to
construct a type-shifting automorphism on a model of TST4 (the fragment
of the theory of types TST up to the fourth level) by forcing. The main im-
plication reads as follows: “If for each n ≥ 1 there is a model of TST in the
ground model M of ZFC that contains an n-extendible coherent pair, then
there is a generic extension M [G] of M that contains a model of TST with a
type-shifting automorphism, and hence M [G] contains a model of NF”. The
converse holds trivially: If M contains a model of NF, then it contains also a
model of TST having n-extendible coherent pairs, for every n ≥ 1. Coherent
pairs are, roughly, finite approximations of a type-shifting automorphism of
a model of TST4.

Section 1 contains preliminary material. Most of it is well-known, but
some facts, though elementary, seem to have been fixed here for the first time.
For example the definition 1.1 of level collapse of a model, and lemmas 1.2
and 1.6, which essentially allow one to restrict oneself to standard transitive
models of TST. Also lemma 1.9 is just an adaptation of a result of Grishin.

In section 2 we define the notion of n-extendible coherent pair and, by the
help of a certain extension of the theory TST, we prove the main theorem
2.8 (and its equivalent version theorem 2.9).

In section 3 we prove that there are models of TST containing 1-extendible
(i.e., just extendible) coherent pairs (theorem 3.6).

Section 4, finally, contains some comments on 2-extendible coherent pairs.

1.1 The theory of types and its models

Our metatheory will be ZFC. We often refer to it either as “external world”
or as “ground model”. ∈ is the membership relation of the ground model. N
is the set of natural numbers of the ground model.

The language LTST of the Theory of Simple Types (TST) consists of
the binary predicate symbol ε and countably many sorts (or types) Si(x),
i ∈ N. Usually we introduce typed variables xi, yj, etc., i, j ∈ N, where the
superscript indicates the type, and xi stands for Si(x). Formulas of LTST are
built from atomic formulas of the form xiεxi+1 and xi = yi, in the ordinary
way. The axioms of TST are the following schemes of comprehension and
extensionality:

(Co) (∃xi+1)(∀yi)(yiεxi+1 ⇔ φ(yi)), for every φ(yi) ∈ LTST possibly
with extra free variables.
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(Ex) (∀xi)(xiεyi+1 ⇔ xiεzi+1) ⇒ yi+1 = zi+1.

A model of TST is a sequence A = (A,A0, A1, . . . , R), such that A =⋃
i∈NAi, and each Ai interprets the variables of type i. R is a binary relation

on A, i.e., R ⊆ A2, that interprets ε. Since A =
⋃

i∈NAi, we may just write
A = (A0, A1, . . . , R) instead of A = (A, A0, A1, . . . , R). Note that the axioms
above say nothing as to whether the levels Ai of a model are disjoint or not,
or whether there are x, y belonging to the same level such that xRy. So R
may well be non-well-founded.

For every i ≥ 0 and x ∈ Ai+1 let

xR = {y ∈ Ai : yRx}.

A is said to be standard if R is ∈ (restricted to the sets of the model).
Equivalently A is standard if for every x ∈ Ai+1,

xR = x ∩ Ai.

A standard A is transitive if for every i, x ∈ Ai+1 ⇒ x ⊆ Ai, i.e., if for every
x ∈ Ai+1,

xR = x.

In such a case for all i, Ai+1 ⊆ P(Ai).
Standard transitive (henceforth s.t.) models of TST are the most nat-

ural and intuitively graspable ones. E.g. for every X 6= ∅, the sequence
(X,P(X),P2(X), . . . ,∈) is a s.t. model of TST. Such a model is called full
and is denoted by 〈〈X〉〉. If X is infinite 〈〈X〉〉 is uncountable. To find
a countable model we can take a countable elementary submodel of 〈〈X〉〉.
Such a model is standard but not transitive.

Definition 1.1 Given a model A = (A0, A1, . . . , R) of TST, define the map-
ping σ :

⋃
i Ai → V by induction on i as follows:

σ(a) = a for all a ∈ A0,
σ(x) = {σ(y) : y ∈ Ai & yRx} = {σ(y) : y ∈ xR}, for x ∈ Ai+1.

Let Bi = σ′′Ai
1 and B = (B0, B1, . . . ,∈). B is said to be the level collapse

of A and is denoted by lc(A).

1Given a mapping h : X → Y , h′′ denotes the induced mapping from P(X) to P(Y ),
where h′′x = {h(y) : y ∈ x} (T. Forster [1] uses the notation j‘h for h′′ ). If h is 1-1 or
onto, then so is h′′.
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Obviously lc(A) is a standard and transitive structure, defined indepen-
dently of whether R is well-founded or not2. In particular, if A is standard,
then for x ∈ Ai+1, σ(x) = {σ(y) : y ∈ x ∩ Ai}. Since A |= Ex, it is easy to
see that for every i, σ¹Ai is 1-1. But σ need not be 1-1 on the entire

⋃
i Ai.

For example, for each i there is an object x ∈ Ai such that xR = ∅. Then for
every such x, σ(x) = ∅.

Lemma 1.2 Let A |= TST. For every formula φ(xi1
1 , . . . , xin

n ) of LTST, with
free variables among xi1

1 , . . . , xin
n , and every sequence of objects a1, . . . , an

such that ak ∈ Aik ,

A |= φ(a1, . . . , an) ⇐⇒ lc(A) |= φ(σ(a1), . . . , σ(an)).

Proof. By induction on the length of φ. Consider the atomic formula
xiεyi+1. Then for every a ∈ Ai and every b ∈ Ai+1 we have, by the definition
of σ,

A |= aεb ⇐⇒ aRb ⇐⇒ σ(a) ∈ σ(b) ⇐⇒ lc(A) |= σ(a)εσ(b).

Similarly for the atomic formula xi = yi, and any a, b ∈ Ai we have

A |= a = b ⇐⇒ a = b ⇐⇒ lc(A) |= σ(a) = σ(b).

The other steps of the induction are routine. a

It follows from lemma 1.2 that for every modelA of TST, not only is lc(A)
a s.t. model of TST, but also A and lc(A) are “almost isomorphic”. In view
of this fact, and also of the lemma 1.6 below, talking about models of TST
can be practically restricted to talking about s.t. models only. So henceforth,
unless otherwise stated, a model of TST will be a s.t. one, and we shall write
simply A = (A0, A1, . . .) instead of A = (A0, A1, . . . ,∈). Moreover, in cases
where we write formulas of LTST semi-formally, we conflate ε with ∈.

Let A = (A0, A1, . . .) be a model of TST. A set X ⊆ Ai is said to be
definable in A if X = {x ∈ Ai : A |= φ(x)} for some formula φ(xi), possibly

2If the relation R of A is well-founded, then the usual “Mostowski collapse” π can
also be defined on A by induction on the R-rank of the elements of A. Namely π(x) =
{π(y) : yRx}. Then for every i and every x ∈ Ai and y ∈ Ai+1, xRy ⇐⇒ π(x) ∈ π(y).
However π may distort heavily A. For example if all elements of A0 are R-minimal, then
π′′A0 = {∅}. So this kind of collapse has no practical use.

4



with parameters. In view of the axiom (Co), X is definable in A iff X belongs
to (some level of) A. For example if f : Ai → Ai is a definable function, then
f ∈ Ai+3. Sets containing objects from various levels of A cannot belong to
A (being non-stratified objects). Nevertheless we can extend to them also
the property of definability, by considering certain stratified copies of them.
Such copies are constructed using the “shifting mapping” ı(x) = {x} and its
iterations. To be specific, a mapping f : Ai → Ai+1 is said to be definable
if the mapping g : ı′′Ai → Ai+1 such that g(ı(x)) = f(x) (i.e., g ◦ ı = f ) is
definable. E.g. ı itself is definable, since the identity id for which id ◦ ı = ı
is definable.

In every structure A = (A0, A1, . . .), each Ai+1 plays, roughly, the role of
the powerset of Ai. So although bijections f : Ai → Ai+1 always exist for
countable A, none of them can be definable in A, because otherwise Cantor’s
diagonal argument reappears.

Lemma 1.3 Let A = (A0, A1, . . .) be a model of TST. For every i, there is
no definable bijection f : Ai → Ai+1.

Proof. Suppose f : Ai → Ai+1 is a definable bijection. Then there is a
definable bijection g : ı′′Ai → Ai+1. By (Co) there is y ∈ Ai+1 such that
y = {x ∈ Ai : x /∈ g(ı(x))}. Hence there is c ∈ Ai such that g(ı(c)) = y.
Then for every x ∈ Ai,

x ∈ y ⇐⇒ x ∈ g(ı(c)) ⇐⇒ x /∈ g(ı(x)).

For x = c we have c ∈ g(ı(c)) ⇐⇒ c /∈ g(ı(c)), a contradiction. a

The discussion in subsequent sections involves the property of “finiteness”
of sets of a model A. Every model of TST has an internal notion of finiteness,
expressed by a formula Fin(xi+1) of LTST. This is defined in terms of the
operation S defined on each Ai+2 as follows (we drop the type superscripts
for readability and write ∈ instead of ε):

S(z) = {y : (∃y1 ∈ z)(∃x /∈ y1)(y = y1 ∪ {x})}.

Intuitively, S sends the class of all sets (of some level) with n elements, to
the class of sets (of the same level) with n + 1 elements. For example, if
z = {∅}, then S(z) is the class of singletons, and so on. Now a set is finite if
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it belongs to the intersection of all sets which contain ∅ and whenever they
include y, they include also S(y). Formally (dropping superscripts again)

Fin(x) ⇐⇒ ∀z[∅ ∈ z ∧ (∀y)(y ⊆ z ⇒ S(y) ⊆ z) ⇒ x ∈ z].

In contrast to Fin(x), we have also the external notion of finiteness (i.e.,
with respect to the ground model M), which we express by writing simply
“x is finite”. For every model A of TST and every x ∈ Ai+1, one can easily
see by induction on |x| that

x is finite ⇒ A |= Fin(x). (1)

The converse of (1) is false in general3. However there are models A
for which the converse of (1) is also true, e.g. the full models 〈〈X〉〉. Such
models, for which finiteness is absolute, are considered in section 3, where
they are called “regular”.

1.2 The system NF

The language LNF of NF consists of the predicate ε and untyped variables
x, y, . . .. A formula of LNF is called stratified if it results from a formula of
LTST if we erase all type superscripts from its variables. The axioms of NF
are stratified comprehension and extensionality:

(StCo) (∃x)(∀y)(yεx ⇔ φ(y)), for every stratified φ(y) ∈ LNF, possibly
with extra free variables.

(Ex) (∀x)(xεy ⇔ xεz) ⇒ y = z.

Given a model A = (A0, A1, . . .) of TST, let A+ = (A1, A2, . . .). A+ is
still a model of TST.

Given a formula φ ∈ LTST let φ+ denote the formula resulting from φ if
we raise the type of each variable of φ by one. If TST ` φ then TST ` φ+.
But the converse is false. The axiom scheme:

(Amb) φ ⇔ φ+, φ ∈ LTST,

is called Typical Ambiguity.

3See e.g. the model that Grishin constructs in [2], in which A0 is externally infinite
and yet A |= Fin(x) holds for every x ∈ Ai+1.
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Definition 1.4 Let A = (A0, A1, . . . , R) be a model of TST (not necessarily
s.t.) A type-shifting automorphism (or just an automorphism ) of A is a
sequence of mappings f = (f0, f1, . . .) such that:

(a) each fi is 1-1,
(b) dom(fi) = Ai,
(c) rng(fi) = Ai+1,
(d) xRy ⇐⇒ fi(x)Rfi+1(y) for every x ∈ Ai and y ∈ Ai+1.

We often denote this automorphism by A0
f0−→ A1

f1−→ A2
f2−→ · · ·

The following fundamental result of E. Specker relates TST, typical am-
biguity, and NF.

Theorem 1.5 (Specker [4])
The following are equivalent:
(i) NF is consistent.
(ii) There is a model A of TST possessing an automorphism f : A → A+.
(iii) There is a model A of TST such that A ≡ A+.
(iv) TST + Amb is consistent.

The difficult and most important implication is (iv)⇒ (ii). For a proof
see [4], or [1], p. 58.

Lemma 1.6 For every model A of TST, there exists an automorphism on
A iff there exists an automorphism on lc(A).

Proof. Let A = (A0, A1, . . . , R) be a model of TST and let

A0
f0−→ A1

f1−→ A2
f2−→ · · ·

be a an automorphism. Let lc(A) = (B0, B1, . . .) and let σ : A → lc(A) be
the level collapsing mapping. Put gi = σ ◦ fi ◦σ−1, for every i. Since σ is 1-1
on each level Ai, gi is well-defined. And clearly gi : Bi → Bi+1 is a bijection.
Moreover, in view of lemma 1.2, for every x ∈ Bi and every y ∈ Bi+1,

x ∈ y ⇐⇒ σ−1(x)Rσ−1(y) ⇐⇒ fiσ
−1(x)Rfi+1σ

−1(y) ⇐⇒

σfiσ
−1(x) ∈ σfi+1σ

−1(y) ⇐⇒ gi(x) ∈ gi+1(y).

Therefore
B0

g0−→ B1
g1−→ B2

g2−→ · · ·
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is an automorphism. The converse is similar. Given the automorphism
(g0, g1, . . .) of lc(A), it suffices to define fi = σ−1 ◦ gi ◦ σ. a

In view of lemma 1.6, theorem 1.5 remains true if we replace the word
“model” by “s.t. model” everywhere.

If A is s.t. and f : A → A+ is an a automorphism, then condition (d) of
definition 1.4 becomes

x ∈ y ⇐⇒ fi(x) ∈ fi+1(y)

for every x ∈ Ai and y ∈ Ai+1. Since fi are onto, this is equivalent to the
property that for every x ∈ Ai+1,

fi+1(x) = f ′′i x, (2)

i.e., that fi+1 = f ′′i .

1.3 Fragments of NF

For n > 0, a formula φ of LTST is an n-formula, if every variable of φ is
of type < n. Let TSTn be the subtheory of TST whose axioms are those
of TST restricted to n-formulas. A model of TSTn is an n-sequence A =
(A0, A1, . . . , An−1).

Similarly, a formula φ of LNF is n-stratified if it results from an n-formula
of TST by erasing the types from the variables. NFn is the subtheory of NF
in which the scheme of Stratified Comprehension is restricted to n-stratified
formulas.

An easy consequence of theorem 1.5 is the following.

Corollary 1.7 For every n, NFn is consistent iff there is a
model (A0, A1, . . . , An−1) of TSTn possessing an automorphism
f : (A0, A1 . . . , An−2) → (A1, A2 . . . , An−1).

Grishin [2] has shown that NF3 is consistent, and that NF is equivalent
to NF4.

Theorem 1.8 (Grishin) (a) NF3 is consistent.
(b) NF = NF4 = NF3 + ∃z z = {{{x}, y} : xεy}.
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The following result is an adaptation of an idea of Grishin’s (used in [2]
to prove 1.8 (a)), to the fragment NF4.

Lemma 1.9 NF is consistent iff there is a model A = (A0, A1, . . .) of TST

and a pair of bijections A1
f1−→ A2

f2−→ A3 such that for all x, x1, x2 ∈ A1

and all y ∈ A2

x ∈ y ⇐⇒ f1(x) ∈ f2(y), (3)

x1 ⊆ x2 ⇐⇒ f1(x1) ⊆ f1(x2). (4)

Proof. If NF is consistent then, by 1.5, there is a model A = (A0, A1, . . .)
of TST with an automorphism f = (f0, f1, f2, . . .). Then clearly the pair
(f1, f2) satisfies (3) and (4).

Conversely, suppose there is a model A = (A0, A1, . . .) of TST and a pair

of bijections A1
f1−→ A2

f2−→ A3 satisfying (3) and (4). Then (A0, A1, A2, A3)
is a model of TST4. As Grishin observed in [2] (for the case of NF3 and
TST3, respectively), if we define f0 : A0 → A1 by setting

f0(a) = x ⇐⇒ f1({a}) = {x},
then f0 is a bijection because, by (4), f1 sends atoms to atoms. Moreover
(f0, f1, f2) is an automorphism from (A0, A1, A2) onto (A1, A2, A3). Indeed,
by the definition of f0 we have that for every a, f1({a}) = {f0(a)}. So for
every a ∈ A0 and x ∈ A1

f0(a) ∈ f1(x) ⇐⇒ {f0(a)} ⊆ f1(x) ⇐⇒ f1({a}) ⊆ f1(x).

Now by (4),

f1({a}) ⊆ f1(x) ⇐⇒ {a} ⊆ x ⇐⇒ a ∈ x.

Therefore combining the above equivalences we get

a ∈ x ⇐⇒ f0(a) ∈ f1(x).

The last equivalence and (3) show that (f0, f1, f2) is an automorphism
(A0, A1, A2, ) → (A1, A2, A3). By 1.7, this implies that there is a model
of NF4, and hence, by 1.8 (b), there is a model of NF. a

In the sequel, when a pair of bijections (f1, f2) satisfies conditions (3) and
(4) above, we shall say that f1 and f2 are ∈- and ⊆-isomorphisms.

9



2 Attacking the NF consistency problem with

forcing

Let A = (A0, A1, A2, A3) be a model of TST4 (or more generally a model
A = (A0, A1, A2, . . .) of TST). By lemma 1.9, in order to turn A into a
model of NF4, and hence of NF, it suffices to construct a pair of bijections

A1
f1−→ A2

f2−→ A3 satisfying conditions (3) and (4). Now it is natural to
attempt to construct (f1, f2) by forcing, i.e., via its finite (and not only finite)
parts.

The idea is the usual one: If we start with a model M of ZFC containing
A = (A0, A1, A2, A3), and we are able to find an appropriate set of forcing
conditions (P,≤) consisted of parts of the pair (f1, f2), then (f1, f2) will
emerge as a generic subset of P , and hence a model of NF will appear in the
extension M [G] of M .

However, the preceding idea comprises two main steps: (a) To define
an appropriate set of forcing conditions, and (b) to show that the generic
set does the job it was designed to, i.e., provides an automorphism for the
underlying model.

Concerning step (a), the forcing conditions are going to be not all, but
some (if any) of the finite approximations of the sought pair (f1, f2). So we
shall define first certain pairs of functions p = (p1, p2), that we shall call
“coherent pairs”. We do not yet call (p1, p2) “forcing conditions” because
they lack in general the key property that forcing conditions ought to have,
namely extendibility. So in section 2.1 we introduce coherent pairs. In fact
in order to speak about them formally a certain extension of the theory TST
and its language is needed.

Step (b) concerns the crucial property of extendibility of coherent pairs.
We deal with this in section 2.2. A pair p is extendible if for every element
t of the model, there is a pair q that extends p and captures t. Stronger
notions of n-extendibility, for n ≥ 1, and ω-extendibility are introduced. A
pair p is (n + 1)-extendible if for every element t, there is an n-extendible
pair q that extends p and captures t. p is ω-extendible, if it is n-extendible
for every n ≥ 1. The reduction of NF consistency problem stated in the
title, consists in replacing it with the problem of whether, for every n ≥ 1,
there is a model A of TST containing an n-extendible coherent pair. If this
is the case, then there is a model B of TST containing ω-extendible coherent
pairs. Then the set Pω of ω-extendible coherent pairs can be used as the set
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of forcing conditions, and any generic G ⊆ Pω provides a triple (f0, f1, f2)
of isomorphisms for the structure (B0, B1, B2, B3). (Actually G provides the
pair (f1, f2). f0 is trivially defined through f1.) So a model of NF4 (and
hence of NF) exists in the generic extension M [G] of the ground model M .

To summarize: If for every n ∈ N, n-extendible coherent pairs exist in a
model M of ZFC, then there is a model of NF in a generic extension M [G] of
M . The converse is also true rather trivially: If M contains a model of NF,
then it contains a model A of TST in which there are n-extendible coherent
pairs, for every n ≥ 1. This is briefly the content of the main theorem 2.8.

2.1 Coherent pairs

Throughout M will be a fixed countable s.t. model of ZFC and A =
(A0, A1, . . .) ∈ M will be a countable (in the sense of M) s.t. model of
TST. In view of lemma 1.9, in order for A to be turned into a model of NF,

it suffices that a pair of bijections A1
f1−→ A2

f2−→ A3 be constructed satis-
fying conditions (3) and (4). Then the parts4 of (f1, f2) should also satisfy
conditions (3) and (4). The parts of (f1, f2) will be called “coherent pairs”
and will be denoted p = (p1, p2). Thus, a coherent pair of A) is a pair of
functions p = (p1, p2), such that dom(p1) ⊆ A1, dom(p2) = rng(p2) ⊆ A2,
rng(p2) ⊆ A3, and for all x ∈ dom(p1) and y ∈ dom(p2)

x ∈ y ⇐⇒ p1(x) ∈ p2(y),

and for all x1, x2 ∈ dom(p1)

x1 ⊆ x2 ⇐⇒ p1(x1) ⊆ p1(x2).

However these conditions are not enough. For example, whenever x ∈ A1,
y ∈ A2 and f1(x) = y, then f ′′0 x = y, hence |x| = |y| and moreover |A0−x| =
|A1 − y| since f0 is a bijection. Similarly for y, z such that f2(y) = z. So we
need first the following definition:

Definition 2.1 Let V , W be sets such that |V | = |W |, and let X ⊆ P(V )
and Y ⊆ P(W ). We say that X and Y are similar and we write (X)V ∼

4We do not mean necessarily “finite parts”, although in many forcing constructions
one constructs a generic object from its finite parts, whenever this possible. Here, on the
contrary, finiteness would be an obstacle because, as we saw in section 1.1, this property
is not absolute for models of TST.
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(Y )W , or just X ∼ Y , if there is a bijection h : V → W such that Y =
{h′′x : x ∈ X}. Further, if g is a 1-1 mapping such that dom(g) ⊆ X
and rng(g) ⊆ Y , we say that X and Y are similar modulo g and we write
X ∼g Y , if there is a bijection h : V → W such that Y = {h′′x : x ∈ X} and
g ⊆ h.

For finite X,Y , an equivalent description of the relation X ∼ Y , can be
given as follows. Each finite set X ⊆ P(V ) generates a partition of V into
sets which are the atoms of the least Boolean algebra that contains X. Let
B(X) denote this Boolean algebra and let B0(X) denote the set of atoms of
B(X). Then the following holds.

Lemma 2.2 Let V , W be sets such that |V | = |W |, and let X ⊆ P(V ) and
Y ⊆ P(W ) be finite. The following are equivalent:

(a) X ∼ Y ,
(b) B0(X) ∼ B0(Y ),
(c) There is a bijection g : B0(X) → B0(Y ) such that |x| = |g(x)| for

every x ∈ B0(X). Of course this bijection can be extended to the whole B(X)
with the same property.

Proof. (a)⇒(b): Let X ∼ Y , let X = {x1, . . . , xn}, let h : V → W be
a bijection such Y = {h′′x : x ∈ X}, and let h′′xk = yk, for k = 1, . . . , n.

Therefore Y = {y1, . . . yn}. The elements of B0(X) have the form
⋂n

k=1 x
σ(k)
k ,

where σ is a mapping σ : {1, . . . , n} → {0, 1} and x
σ(k)
k = xk if σ(k) = 1, while

x
σ(k)
k = xk = V − xk if σ(k) = 0. And similarly for B0(Y ). Then for every

atom
⋂n

k=1 x
σ(k)
k of B0(X) we clearly have h′′(

⋂n
k=1 x

σ(k)
k ) =

⋂n
k=1 h′′xσ(k)

k =⋂n
k=1 y

σ(k)
k , which is the corresponding atom of B0(Y ). Therefore X ∼ Y

implies B0(X) ∼ B0(Y ).
(b)⇒(a) is trivial.
(b)⇒(c): Let B0(X) ∼ B0(Y ), and let h : V → W be the bijection such

that B0(Y ) = {h′′x : x ∈ B0(X)}. If we set g(x) = h′′x for every x ∈ B0(X)
then g : B0(X) → B0(Y ) is a bijection such that |g(x)| = |x|.

(c)⇒(b): Let g : B0(X) → B0(Y ) be a bijection such that |g(x)| =
|x|. For every x ∈ B0(X) pick a bijection hx : x → g(x). If we set h =⋃

x∈B0(X) hx, h is a bijection between V and W (since the elements of B0(X)
form a partition of V ) such that B0(Y ) = {h′′(x) : x ∈ B0(X)} and hence
B0(X) ∼ B0(Y ). a

We are now in a position to define coherent pairs.
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Definition 2.3 Let A = (A0, A1, . . .) be a model TST. A coherent pair of
A is a pair p = (p1, p2) of 1-1 mappings with the following properties:

(1) dom(p1) ∈ A2, rng(p1) = dom(p2) ∈ A3, and rng(p2) ∈ A4. We set
u1 = dom(p1), u2 = rng(p1) = dom(p2) and u3 = rng(p2).

(2) p1, p2 are ∈-isomorphisms, i.e., for every x ∈ u1 and y ∈ u2,

x ∈ y ⇐⇒ p1(x) ∈ p2(y).

(3) u1 ∼ u2 and u2 ∼p1 u3, i.e., there are bijections g : A0 → A1 and
h : A1 → A2 such that u2 = {g′′x : x ∈ u1}, u3 = {h′′y : y ∈ u2} and p1 ⊆ h.

For simplicity we often say just “pair” instead of “coherent pair”. And
instead of p = (p1, p2) we often write more suggestively

u1
p1−→ u2

p2−→ u3.

Remark 2.4 1) Let

A0
f0−→ A1

f1−→ A2
f2−→ A3 · · ·

be an automorphism. It is easy to see that every restriction of f to a finite
subset of A1 is a coherent pair. Indeed, let u1 be a finite subset of A1, and let
p1 = f1¹u1, u2 = p′′1u1, p2 = f2¹u2 and u3 = p′′2u2. Consider the pair u1

p1−→
u2

p2−→ u3. Since fi+1 = f ′′i , we have u2 = f ′′1 u1 = {f1(x) : x ∈ u1} = {f ′′0 x :
x ∈ u1}, hence u1 ∼ u2. Also u3 = f ′′2 u2 = {f2(y) : y ∈ u2} = {f ′′1 y : y ∈ u2}
and moreover p1 ⊆ f1, therefore u2 ∼p1 u3.

2) Condition (3) of the above definition clearly implies that the mappings
p1, p2 can be extended to isomorphisms between the corresponding Boolean
algebras B(ui) generated by the sets ui. So without loss of generality in the
above definitions we could take ui to be finite Boolean algebras. (However the
converse is false. If ui are Boolean algebras such that u1

∼= u2 and u2
∼= u3,

then (3) need not be true.)

Notational convention. To facilitate reading, we shall henceforth fol-
low the following convention: The variable x (possibly with subscripts) will
range exclusively over the level A1 of A, the variable y will range exclusively
over A2 and the variable z will range exclusively over A3.

We define a partial ordering ≤ between pairs as follows: If p = (p1, p2),

and q = (q1, q2), p ≤ q iff p1 ⊇ q1 and p2 ⊇ q2. In particular, if u1
p1−→ u2

p2−→

13



u3, and v1
q1−→ v2

q2−→ v3 are two pairs and p ≤ q, then for every i = 1, 2, 3
ui ⊇ vi.

Example 1. The simplest example of a coherent pair is that in which
u1, u2, u3 are the trivial Boolean subalgebras of A1, A2, A3 respectively and
p1, p2 are the trivial isomorphisms between them. Namely let: u1 = {∅, A0},
u2 = {∅, A1}, u3 = {∅, A2}, pi(∅) = ∅, for i = 1, 2, p1(A0) = A1, and
p2(A1) = A2. So properties (1) and (2) of definition 2.3 are trivially satisfied.
Further, since A is countable, |A0| = |A1| = |A2| in the ground model.
Take any bijection g : A0 → A1. Then g′′A0 = A1 and g′′∅ = ∅, that is
u2 = {g′′x : x ∈ u1}. Hence u1 ∼ u2. To show that u2 ∼p1 u3, it suffices to
find a bijection h : A1 → A2 that extends p1, i.e., such that h(∅) = ∅ and
h(A0) = A1. But such a bijection obviously exists: Simply put h(∅) = ∅,
h(A0) = A1 and then extend it on A1 arbitrarily. a

Example 2. Let a ∈ A0, let g : A0 → A1 be a bijection and let h :
A1 → A2 be a bijection such that h(∅) = ∅, h(A0) = A1, h({a}) = {g(a)}
and h(A0 − {a}) = A1 − {g(a)}. Let also

u1 = {∅, A0, {a}, A0 − {a}},
u2 = {∅, A1, {g(a)}, A1 − {g(a)}},
u3 = {∅, A2, {hg(a)}, A2 − {hg(a)}},

Let p1 : u1 → u2 and p2 : u2 → u3 be the bijections that preserve the
orderings of the elements of ui as cited above. Then u1

p1−→ u2
p2−→ u3 is a

coherent pair. Indeed u2 = {g′′x : x ∈ u1}, u3 = {h′′y : y ∈ u2} and p1 ⊆ h.
Hence u1 ∼ u2 and u2 ∼p1 u3. Finally it is easy to check that p = (p1, p2) is
an ∈-automorphism. a

What kind of object is a coherent pair p = (p1, p2) with respect to the
model A? By definition u1 ∈ A2, u2 ∈ A3 and u3 ∈ A4. But p1, p2 need not
be coded in A, when they are infinite. Moreover, the property of coherence
requires the existence of bijections g : A0 → A1 or h : A1 → A2. By lemma
1.3, no bijection g : A0 → A1 or h : A1 → A2 can be definable in A (and
hence be coded by an object in A). Therefore g, h necessarily, and p1, p2

possibly, will be external objects for A, existing only for an observer in the
ground model M , so we can’t speak about them in LTST.

In order to be able to speak about coherent pairs formally, we need to
extend the language LTST by adding new untyped set variables, denoted by
lower case Greek letters α, β, . . ., intended to range over unstratified objects
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of models of TST. These unstratified objects will include infinite mappings
between distinct levels of A.

To motivate the definitions, given a model A = (A0, A1, . . .) of TST,
define (in the ground model M) the countable cumulative hierarchy over A0,
denoted by Vω(A0), as usual by:

V0(A0) = A0.
Vn+1(A0) = Vn(A0) ∪ P(Vn(A0)).
Vω(A0) =

⋃
n∈N Vn(A0).

Since for every n, An+1 ⊆ P(An), it is easy to check by induction that
An ⊆ Vn(A0) for all n ∈ N. Let us call the elements of Vω(A0) complex, in
contrast to the elements of

⋃
n An which are the stratified ones. For example

a bijection between Ai and Ai+1 is a complex object.
Note that according to the above definition each stratified set is already

complex. So the relation of complex sets to stratified ones is similar to the
relation between classes and sets in the standard theory of classes. Each set
is a class but not the other way around. So as we speak of proper classes,
we shall speak here of proper complex sets. Also as the variable X in class
theory ranges over classes in general (including sets), while x ranges over sets
only, similarly here α ranges over complex sets in general (including stratified
ones), while xi ranges over stratified sets only.

Let LTSTc be the new language containing the variables α, besides xi.
The formulas of LTSTc are those of LTST plus formulas of the form αεβ,
xiεα, α = β. A formula of LTSTc is said to be stratified if it is a formula of
LTST.

Let TSTc be the theory in the language LTSTc with axioms5:

(I) Comprehension for stratified formulas. (This is just the corresponding
axiom (Co) of TST.)

(II) Every stratified set is complex:

∀xi∃α(xi = α).

5The theory TSTc, as we use it here, is only a temporary tool for the proof of the main
theorem, with no further significance. That is why we do not specify any particular kinds of
complex objects that could exist in the theory. I.e., we do not include any comprehension
scheme for complex objects. Perhaps a more specific and refined extension of TST, with
an interest in itself, might be considered and studied.
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(III) Elements of stratified sets are stratified:

∀α(αεxi+1 ⇒ ∃xi(xi = α)).

(IV) Extensionality:

∀γ(γεα ⇔ γεβ) ⇒ α = β.

In view of axioms (II) and (III), it is clear that (IV) extends the axiom
(Ex) of TST, so TSTc is an extension of the theory TST.

Standard models of TSTc have the form (A, C) = (A0, A1, . . . , C), where
Ai contain the stratified sets as usual, and C contains the proper complex
objects. Natural such models are e.g. those of the form

(X,P(X),P2(X), . . . , C),

where C = Vω(X)− ⋃
nPn(X)).

In TSTc, ordered pairs, relations, functions etc. are defined as usual.

Lemma 2.5 The property “α is a coherent pair”is definable in TSTc.

Proof. The property “α is a coherent pair” is the conjunction of the
following statements:

(1) α is a pair of objects (α1, α2) each of which is a 1-1 mapping, such
that for some x2

1, x3
2, x4

3, dom(α1) = x2
1, rng(α1) = dom(α2) = x3

2 and
rng(α2) = x4

3.
(2) α1 and α2 are ε- and ⊆-preserving mappings.
(3) There are bijections γ1 : A1 → A2 and γ2 : A2 → A3 which entail that

x2
1 ∼ x3

2 and x3
2 ∼α1 x4

3.
The statements “γ1 : A1 → A2 is a bijection” and “γ2 : A2 → A3 is a

bijection” are clearly expressible in LTSTc . a

2.2 Extendibility

Recall that if P is the set of finite 1-1 mappings from a set A into a set B,
ordered by (reverse) inclusion, and G is a generic subset of P , in order to
prove that f = ∪{p : p ∈ G} is a bijection between A and B, we need to show
that for every p ∈ P and every a ∈ A we can extend p to a condition q such
that a ∈ dom(q) and/or a ∈ rng(q). This is the extendibility property of P .
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Extendibility guarantees that the sets of conditions q such that a ∈ dom(q)
or a ∈ rng(g) are all dense in P , and hence meet G. For the P of the example
just mentioned the property holds trivially. However for the set of coherent
pairs extendibility is not a simple matter to hold. As follows from Example
3 below, a lot of coherent pairs are not extendible.

Definition 2.6 Let p = u1
p1−→ u2

p2−→ u3 be a pair. We say that p is
everywhere extendible or just extendible if for every t ∈ A1 ∪ A2 ∪ A3, there
is a pair v1

q1−→ v2
q2−→ v3 such that q ≤ p and t ∈ v1 ∪ v2 ∪ v3. When such a

pair q = (q1, q2) exists, we say for simplicity that q captures t.

Definition 2.7 Let p = u1
p1−→ u2

p2−→ u3 be a pair. p is said to be 1-
extendible if it is extendible. p is said to be (n + 1)-extendible if for every
t ∈ A1 ∪ A2 ∪ A3 there is a pair q = (q1, q2) such that q captures t, q ≤ p
and q is n-extendible. p is said to be ω-extendible if it is n-extendible for all
n ≥ 1.

An easy induction shows that if (p1, p2) is n-extendible and m < n, then
(p1, p2) is m-extendible.

Example 3. Consider the coherent pair of Example 2, where
u1 = {∅, A0, {a}, A0 − {a}},
u2 = {∅, A1, {g(a)}, A1 − {g(a)}},
u3 = {∅, A2, {hg(a)}, A2 − {hg(a)}}.
If we choose the bijections g, h so that |g(a)| 6= |hg(a)|, then we can

easily see that the pair (p1, p2) is not extendible. Indeed, first note that
hg(a) /∈ u2. For if hg(a) ∈ u2, then, because of the coherence, g(a) ∈ u1

and p1(g(a)) = hg(a), hence |g(a)| = |hg(a)|, a contradiction. Therefore
hg(a) /∈ u2. By extendibility, there must be a pair q = (q1, q2) such that
q ≤ p and q captures hg(a). But hg(a) is the unique element of an element
of u3, namely {hg(a)}. Therefore, in order for q to be coherent, it must
contain the corresponding unique element g(a) of {g(a)} of u2 and moreover
q1(g(a)) = hg(a). But then also we must have |g(a)| = |hg(a)|, which is not
the case. Thus p is not extendible. a

Theorem 2.8 (Main Theorem) Let M be a countable model of ZFC in
which for every n ∈ N, there is a s.t. model A of TST that contains an
n-extendible coherent pair. Then there is a generic extension M [G] of M
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that contains a model of NF. Conversely, if M contains a model of NF, then
in M there is a s.t. model A of TST that contains an n-extendible pair, for
every n ≥ 1.

Proof. Let us show first the converse. Let M contain a model of NF.
Then M contains also a model A = (A0, A1, A2, . . . , R) of TST with an
automorphism

A0
f0−→ A1

f1−→ A2
f2−→ A3 · · ·

By lemma 1.6 we may assume that A is s.t. As we saw in remark 2.4 (1), if
u1 ⊆ A1 is finite, and we set p1 = f1¹u1, u2 = p′′1u1, p2 = f2¹u2 and u3 = p′′2u2,
then

p = u1
p1−→ u2

p2−→ u3

is a coherent pair. Moreover p is n-extendible for every n ≥ 1 (that is,
ω-extendible). This can be shown inductively for all such restrictions p of
f . Indeed, obviously all such restrictions p are extendible, i.e., 1-extendible.
Suppose all such p are n-extendible and pick some specific p. If t ∈ A1∪A2∪
A2, then we can choose a part q of f which extends p and captures t. Since
by assumption q is n-extendible, p is (n + 1)-extendible.

We come to the converse. Let M be a countable model of ZFC such that
for every n ∈ N, there is a s.t. model A of TST in M that contains an
n-extendible coherent pair. We turn to the language of TSTc. By lemma
2.5, the property “α is a coherent pair” is definable in TSTc. Let θ0(α) be
the formula that defines it. It is easy to see by induction on n, that for
every n ≥ 1 there is a formula θn(α) of LTSTc expressing the fact that “α
is an n-extendible coherent pair”. Recall that a coherent pair is of the form
p = u1

p1−→ u2
p2−→ u3 with ui ∈ Ai+1, i.e., ui is of type i + 1. So using typed

variables in the place of ui and untyped variables in the place of pi and p, a
coherent pair is more formally written as α = x2

1
α1−→ x3

2
α2−→ x4

3.
Now suppose that θn(α) is defined for n ≥ 0, where,

α = x2
1

α1−→ x3
2

α2−→ x4
3.

Then θn+1(α) is defined to be the formula:

3∧

i=1

[∀zi∃y2
1y

3
2y

4
3∃β1β2∃β(β = y2

1

β1−→ y3
2

β2−→ y4
3 & θn(β) & β ≤ α & ziεyi+1

i )].
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It is easy to check that θn+1(α) expresses the fact that α is an (n + 1)-
extendible coherent pair. Moreover, by induction we easily check that for
m < n, every n-extendible coherent pair is m-extendible, therefore

m < n & θn(α) ⇒ θm(α). (5)

Consider the theory

T = TSTc + {θn(b) : n ∈ N}

in the language LTSTc(b) with a new constant b. By our assumption, for
every n ∈ N, TSTc + θn(b) has a model, so by (5) and compactness T has a
model. Let (A, C) be a countable model of T in M . Already (A, C) contains
an ω-extendible element (the interpretation of the constant b in (A, C)).
Let (B, D) ∈ M be a saturated model such that (A, C) ¹ (B, D). (As to
the kind of saturation, ω-saturation and even recursive saturation suffices.)
(B, D) |= T , so (B, D) also contains ω-extendible pairs. Let Pω be the set of
ω-extendible coherent pairs of (B, D). Clearly Pω ∈ M and we use (Pω,≤)
as a set of forcing conditions in M .

Claim 1: Let B = (B0, B1, B2, . . .). If p ∈ Pω and t ∈ B1 ∪ B2 ∪ B3, then
there is a q ∈ Pω such that q ≤ p and q captures t.

Proof. By assumption, p is ω-extendible, i.e., n-extendible for every n ≥ 1.
Therefore, given t ∈ B1 ∪ B2 ∪ B3 for each n, there is an n-extendible pair
qn such that qn ≤ p and qn captures t. Consider the type

s(α) = {α ≤ p & α captures t & θn(α) : n ∈ N}

in the language LTSTc . Then s(α) is finitely satisfiable in (B, D) (moreover
s(α) is a recursive type, if one wants to use recursive saturation). Therefore
it is satisfiable in (B, D), and hence there is a q ∈ Pω such that q ≤ p and q
captures t. This proves Claim 1.

Claim 2. Let G be a generic subset of Pω. Then G defines a pair of

bijections B1
f1−→ B2

f2−→ B3 that satisfies conditions (3) and (4).

Proof. Obviously if f1 =
⋃{p1 : p ∈ G} and f2 =

⋃{p2 : p ∈ G}, then
(f1, f2) is a pair of ∈- and ⊆-preserving mappings. So it suffices to see that
dom(f1) = B1, dom(f2) = rng(f1) = B2 and rng(f2) = B3. But this follows
immediately from Claim 1 (and genericity). This proves Claim 2.
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Now in the generic extension M [G] of M , B is still a model of TST, since
the sentences “B |= φ”, for φ ∈ LTST, are ∆0 (since B ∈ M) and hence
absolute between M and M [G]. Therefore in M [G], B is a model of TST,
whose part (B1, B2, B3), by Claim 2, has a pair of bijections (f1, f2) satisfying
(3) and (4). Thus, by lemma 1.9, B yields a model of NF in M [G]. a

After theorem 2.8, the first task is to find models of TST containing
extendible (i.e., 1-extendible) pairs. The most natural candidate pair to be
extendible would be the pair of Example 1. Given the model A, let us denote
it by oA, i.e.,

oA := 21
o1−→ 22

o2−→ 23,

where 2i denotes the trivial Boolean subalgebra of Ai, i = 1, 2, 3, and o1, o2

are the mappings such that oi(∅) = ∅ and oi(Ai−1) = Ai. So the question
becomes: Are there A such that oA is extendible in A? Of course crucial
for the extendibility of oA will be the properties of the underlying model A.
We shall show in the next section that for A satisfying some rather mild
conditions, oA is 1-extendible. Moreover, the main theorem above can be
equivalently formulated as follows:

Theorem 2.9 (Main Theorem) Let M be a countable model of ZFC in
which for every n ∈ N, there is a s.t. model A of TST such that oA is n-
extendible. Then there is a generic extension M [G] of M that contains a
model of NF. Conversely, if M contains a model of NF, then there is a s.t.
model A ∈ M such that oA is n-extendible, for every n ≥ 1.

3 Existence of 1-extendible pairs

The property of 1-extendibility (or just extendibility) of a pair (p1, p2) in
A splits into three subproperties, namely Ai-extendibility, for i = 1, 2, 3.
Specifically p = (p1, p2) is said to be Ai-extendible, for i = 1, 2, 3, if for every
t ∈ Ai there is a pair q = (q1, q2) such that q ≤ p and q captures t. So

p is extendible ⇐⇒
3∧

i=1

(p is Ai-extendible). (6)

Recall from section 1.1 that Fin(x) denotes the property of internal finite-
ness, while “x is finite” means that x is finite in the ground model.
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Definition 3.1 A model A of TST is called regular if for every x ∈ A,

x is finite ⇐⇒ A |= Fin(x). (7)

Another property we shall need concerning the model A is the property
of “richness” used already by Grishin in [2]. (T. Forster [1], p. 60, calls the
property “saturation in the sense of Grishin”. Since saturation has several
other meanings, we prefer a more neutral name.)

Definition 3.2 The Boolean algebra Ai+1 is said to be rich if for every
infinite (with respect to the ground model) x ∈ Ai+1, there is a x1 ∈ Ai+1

such that x1 ⊆ x and both x1 and x − x1 are infinite. The structure A is
said to be rich if every level Ai+1, for i ≥ 0, is rich.

If A is regular, then the property of richness is definable in A. Moreover
the following holds:

Lemma 3.3 Let 〈〈X〉〉 be a full model of TST and let A be the level collapse
of an elementary submodel of 〈〈X〉〉. Then A is (a) regular and (b) rich.

Proof. Let B ¹ 〈〈X〉〉 and let A = lc(B). Let σ : B → A be the level
collapsing function.

(a) Let Ak be the levels of A and Bk the levels of B. Let x ∈ Ai+1. We
have to show that “x is finite” ⇐⇒ A |= Fin(x).

By (1) of section 1.1, “x is finite” ⇒ A |= Fin(x) is always true.
So suppose A |= Fin(x). Let x = σ(y), for some y ∈ Bi+1. Now Fin(·)

is a formula of LTST, so by lemma 1.2,

A |= Fin(x) ⇐⇒ lc(B) |= Fin(σ(y)) ⇐⇒ B |= Fin(y).

Consequently, since B ¹ 〈〈X〉〉, 〈〈X〉〉 |= Fin(y). The latter clearly implies
that “y is finite”. Now B is standard and σ(y) = {σ(u) : u ∈ y ∩ Bi}.
Therefore x = σ(y) is finite, since y ∩Bi is so.

(b) In view of regularity and the absoluteness of the property “x is finite”,
the property of richness is expressed by the sentence of LTST (written without
type indicators):

φ : ∀x[¬Fin(x) ⇒ ∃x1x2(¬Fin(x1)∧¬Fin(x2)∧ x = x1 ∪ x2 ∧ x1 ∩ x2 = ∅)].
Since obviously 〈〈X〉〉 |= φ, it follows that B |= φ and, by 1.2, A |= φ. a
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3.1 A1- and A2-extendibility

For every x ∈ A1 (resp. y ∈ A2, z ∈ A3) we shall write for convenience −x
(resp. −y, −z) instead of A0 − x (resp. A1 − y, A2 − z).

Lemma 3.4 Let A be a countable rich model of TST. Then the pair oA is
A1- and A2-extendible in A.

Proof. We have oA = 21
o1−→ 22

o2−→ 23, where 21 = {∅, A0}, 22 = {∅, A1},
23 = {∅, A2}, and oi(∅) = ∅, for i = 1, 2, o1(A0) = A1, o2(A1) = A2.

A1-Extendibility:
Pick first any x0 ∈ A1, hence x0 ⊆ A0. We have to find y0 ⊆ A2 and

z0 ⊆ A3 such that, if
v1 = {A0, ∅, x0,−x0},
v2 = {A0, ∅, y0,−y0},
v3 = {A0, ∅, z0,−z0},

and if q1 : v1 → v2, q2 : v2 → v3 are the bijections that preserve the orderings
of the elements of vi as cited above, then (q1, q2) is a coherent pair.

First, because of the richness of A, we can choose y0 ∈ A2 such that
(i) |y0| = |x0| and | − y0| = | − x0|.

This guarantees that v1 ∼ v2. Then, we need a z0 ∈ A3 such that
(ii) |z0| = |y0| and | − z0| = | − y0|

and moreover
(a) ∅ ∈ y0 ⇐⇒ ∅ ∈ z0,
(b) A0 ∈ y0 ⇐⇒ A1 ∈ z0,
(c) x0 ∈ y0 ⇐⇒ y0 ∈ z0,
(d) −x0 ∈ y0 ⇐⇒ −y0 ∈ z0.
The above conditions (i), (ii) and (a)-(d) suffice for (q1, q2) to be a co-

herent pair. Indeed, because of (a)-(d), (q1, q2) is an ∈-automorphism. It
remains to show that v2 ∼q1 v3. For that it suffices to construct a bijection
h : A1 → A2 such that h′′y0 = z0, h′′ − y0 = −z0, and h(∅) = ∅, h(A1) = A2,
h(x0) = y0 and h(−x0) = −y0. But this is obviously possible because of (ii)
and (a)-(d).

Now, the existence of a z0 ∈ A3 such that (ii) and (a)-(d) hold follows
easily from the fact that A is rich. We just find z0 so that (ii) holds and in
addition z0 skips or contains each of the four elements ∅, A1, y0,−y0, accord-
ingly when y0 does so with respect to the corresponding element of v1.

A2-Extendibility:
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Let y0 ∈ A2, i.e, y0 ⊆ A1. Using the richness of A, we can choose a set
x0 ∈ A1 such that |x0| = |y0| and | − x0| = | − y0|. Now we are as in the first
step of A1-extendibility. We continue and find z0 precisely as we did there.
a

3.2 A3-Extendibility

The case of A3-extendibility of oA is harder.

Lemma 3.5 Let 〈〈D〉〉 be a full model of TST (with infinite D) and let
A = lc(B) for some countable B ¹ 〈〈D〉〉. Then the pair oA is A3-extendible
in A.

Proof. Given z0 ∈ A3 we have to show that there are x ∈ A1 and
y ∈ A2 such that the following conditions, isolated above, in the case of
A1-extendibility, hold simultaneously:

(i) |y| = |x| and | − y| = | − x|,
(ii) |z0| = |y| and | − z0| = | − y|,
(a) ∅ ∈ y ⇐⇒ ∅ ∈ z0,
(b) A0 ∈ y ⇐⇒ A1 ∈ z0,
(c) x ∈ y ⇐⇒ y ∈ z0,
(d) −x ∈ y ⇐⇒ −y ∈ z0.

For x ∈ A1, y ∈ A2, z ∈ A3 let us write Sim(x, y) if |x| = |y| and |−x| =
| − y|, and similarly for Sim(y, z). We shall first argue by contradiction,
assuming that oA is not extendible at z0, and hence there are no x ∈ A1 and
y ∈ A2 such that (i), (ii) and (a)-(d) hold simultaneously. Then the following
is true:

(∀x ∈ A1)(∀y ∈ A2)[Sim(x, y) & Sim(y, z0) ⇒ (∅ ∈ y 6⇔ ∅ ∈ z0)∨ (8)

(A0 ∈ y 6⇔ A1 ∈ z0)∨
(x ∈ y 6⇔ y ∈ z0)∨

(−x ∈ y 6⇔ −y ∈ z0)].

Now since z0 is given, one of the following is the case:
∅ ∈ z0 & A1 ∈ z0,
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∅ /∈ z0 & A1 ∈ z0,
∅ ∈ z0 & A1 /∈ z0,
∅ /∈ z0 & A1 /∈ z0.

Without serious loss of generality (as will be evident below), we shall assume
that ∅ ∈ z0 and A1 ∈ z0, or {∅, A1} ⊆ z0. Then we have to search for
y ∈ A2 such that {∅, A0} ⊆ y. In view of this restriction (8) transforms to
the following:

(∀x ∈ A1)(∀y ∈ A2)[Sim(x, y) & Sim(y, z0) & {∅, A0} ⊆ y ⇒ (9)

(x ∈ y 6⇔ y ∈ z0)∨
(−x ∈ y 6⇔ −y ∈ z0)].

Case 1. Suppose that z0 is finite. Pick some y0 ∈ A2 such that
Sim(y0, z0), {∅, A0} ⊆ y0 and y0 /∈ z0 and −y0 /∈ z0. Since z0 is finite
this choice of y0 is obviously possible. Then it follows from (9) that for every
x such that Sim(x, y0), it must be x ∈ y0 or −x ∈ y0. But clearly there are
infinitely many such x, so y0 must be infinite, contrary to the assumption
that |y0| = |z0|=finite.

Case 2. Suppose that z0 is cofinite. Pick a x0 ∈ A1 such that Sim(x0, z0).
Let

Y = {y ∈ A2 : Sim(y, z0) ∧ {∅, A0} ⊆ y ∧ x0 ∈ y ∧ −x0 ∈ y}.

Then it follows from (9) that ∀y ∈ Y (y /∈ z0 ∨ −y /∈ z0). That is, ∀y ∈
Y (y ∈ −z0 ∨ −y ∈ −z0). But Y is infinite, while −z0 is finite. This is a
contradiction.

Case 3. Suppose finally that z0 and −z0 are infinite. Since z0 and −z0

are countable this amounts to |z0| = | − z0|. Let us call such sets “uniform”.
Let Au

1 = {x ∈ A1 : |x| = | − x|} and Au
2 = {y ∈ A2 : |y| = | − y|} be the

sets of “uniform” sets in A1 and A2 respectively. Since A = π′′A′ ¹ 〈〈D〉〉,
by lemma 3.3, A is regular. So “x is infinite” ⇐⇒ A |= ¬Fin(x). By
countability and regularity,

|x| = | − x| ⇐⇒ x is infinite ∧ −x is infinite ⇐⇒

A |= ¬Fin(x) ∧ ¬Fin(−x).
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Therefore the sets Au
1 and Au

2 are definable inA. Moreover, since |z0| = |−z0|,
the condition Sim(x, y) ∧ Sim(y, z0) in the formula (9) is equivalent to
x ∈ Au

1 ∧ y ∈ Au
2 . So (9) is written more simply

(∀x ∈ Au
1)(∀y ∈ Au

2)[{∅, A0} ⊆ y ⇒ (10)

(x ∈ y 6⇔ y ∈ z0)∨
(−x ∈ y 6⇔ −y ∈ z0)].

But if x ∈ Au
1 , then −x ∈ Au

1 , so (10) implies also

(∀x ∈ Au
1)(∀y ∈ Au

2)[{∅, A0} ⊆ y ⇒ (11)

(−x ∈ y 6⇔ y ∈ z0)∨
(x ∈ y 6⇔ −y ∈ z0)].

Taking the conjunction of (10) and (11) and applying some logic calculus
we get the following:

(∀x ∈ Au
1)(∀y ∈ Au

2)[{∅, A0} ⊆ y ⇒ (12)

(x ∈ y ⇔ y /∈ z0) ∧ (−x ∈ y ⇔ y /∈ z0)∨
(x ∈ y ⇔ y /∈ z0) ∧ (x ∈ y ⇔ −y /∈ z0)∨

(−x ∈ y ⇔ −y /∈ z0) ∧ (−x ∈ y ⇔ y /∈ z0)∨
(−x ∈ y ⇔ −y /∈ z0) ∧ (x ∈ y ⇔ −y /∈ z0)].

By logic again (12) is written

(∀x ∈ Au
1)(∀y ∈ Au

2)[{∅, A0} ⊆ y ⇒ (13)

(x ∈ y ⇔ −x ∈ y ⇔ y /∈ z0)∨
(y /∈ z0 ⇔ x ∈ y ⇔ −y /∈ z0)∨

(−y /∈ z0 ⇔ −x ∈ y ⇔ y /∈ z0)∨
(−x ∈ y ⇔ −y /∈ z0 ⇔ x ∈ y)].

Now each of the first and fourth disjuncts of (13) implies (x ∈ y ⇔ −x ∈
y), while each of the second and third implies (y ∈ z0 ⇔ −y ∈ z0). So (13)
yields
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(∀x ∈ Au
1)(∀y ∈ Au

2)[{∅, A0} ⊆ y ⇒ (14)

(x ∈ y ⇔ −x ∈ y)∨
(y ∈ z0 ⇔ −y ∈ z0)].

(14) is equivalently written as follows:

(∀y ∈ Au
2)[{∅, A0} ⊆ y ⇒ (∀x ∈ Au

1)(x ∈ y ⇔ −x ∈ y)∨ (15)

(y ∈ z0 ⇔ −y ∈ z0)].

In order to simplify (15), we give a definition. Given sets z1, z2 ∈ A3, let
us call z1 closed with respect to z2, if

∀y ∈ z2(y ∈ z1 ⇐⇒ −y ∈ z1).

Let us denote this property by C(z1; z2). Obviously C(z1, z2) is a formula of
LTST. Similarly is defined the property C(y1; y2) for y1, y2 ∈ A2. Note that
the subformula (∀x ∈ Au

1)(x ∈ y ⇔ −x ∈ y) of (15) says that y is closed
w.r.t. Au

1 , i.e., C(y; Au
1). So (15) is written as follows:

(∀y ∈ Au
2)[{∅, A0} ⊆ y ∧ ¬C(y; Au

1) ⇒ (y ∈ z0 ⇔ −y ∈ z0)]. (16)

Let
X = {y ∈ Au

2 : {∅, A0} ⊆ y ∧ ¬C(y; Au
1)}.

Clearly X is definable in A and X ∈ A3. Moreover (16) is written

(∀y ∈ X)(y ∈ z0 ⇔ −y ∈ z0)], (17)

or, equivalently, “z0 is closed with respect to X”, i.e.

C(z0; X). (18)

Now since (8)⇒(18), if z0 is not closed with respect to X, i.e., if
¬C(z0; X), then (8) is false, and hence oA is extendible at z0. So it remains
to show extendibility when C(z0; X) is true.

Suppose C(z0; X). We have to show that

(∃x ∈ Au
1)(∃y ∈ Au

2)[{∅, A0} ⊆ y ∧ (19)
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(x ∈ y ⇔ y ∈ z0)∧
(−x ∈ y ⇔ −y ∈ z0)].

In view of the definition of X it suffices to show that

(∃y ∈ X)(∃x ∈ Au
1)(y ∈ z0 ∧ x ∈ y ∧ −x ∈ y) (20)

or
(∃y ∈ X)(∃x ∈ Au

1)(y /∈ z0 ∧ x /∈ y ∧ −x /∈ y). (21)

Indeed if x0, y0 satisfy (20), then −y0 ∈ z0 holds also because z0 is closed
with respect to X, hence

(x0 ∈ y0 ⇔ y0 ∈ z0) ∧ (−x0 ∈ y0 ⇔ −y0 ∈ z0)

is true. Moreover {∅, A0} ⊆ y0, because y0 ∈ X. Therefore x0, y0 satisfy
(19). Similarly if x0, y0 satisfy (21), then by closeness again −y0 /∈ z0, hence

(x0 ∈ y0 ⇔ y0 ∈ z0) ∧ (−x0 ∈ y0 ⇔ −y0 ∈ z0)

is true. Therefore (19) holds again.

Claim. (20)∨(21) is true.

Proof. It suffices to show that the negation of (20)∨(21) leads to a con-
tradiction. The negation of (20)∨(21) is the conjunction of

(∀y ∈ X)(∀x ∈ Au
1)(y /∈ z0 ∨ x /∈ y ∨ −x /∈ y) (22)

and
(∀y ∈ X)(∀x ∈ Au

1)(y ∈ z0 ∨ x ∈ y ∨ −x ∈ y). (23)

We can rewrite (22) and (23) as follows:

(∀y ∈ X ∩ z0)(∀x ∈ Au
1)(x ∈ y ⇒ −x /∈ y) (24)

and
(∀y ∈ X ∩ −z0)(∀x ∈ Au

1)(x /∈ y ⇒ −x ∈ y). (25)

(24) and (25) say that z0 partitions X into a part X∩z0 consisting of “consis-
tent” y only (i.e., not containing both x and−x for any x), and a part X∩−z0

consisting of “complete” y only, (i.e., containing at least one of the x and −x
for every x). But this is false, since X must contain also y which are neither
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consistent nor complete. To show this, we make use of the assumption that
A is the level collapse of an elementary submodel of a full model. Actually
this is the only point in the proof where we use this strong hypothesis. (For
all other purposes, regularity and richness suffice.) Indeed let A = lc(B),
for a countable B ¹ 〈〈D〉〉. In 〈〈D〉〉, the corresponding set X contains sets
that are neither consistent nor complete. Namely in 〈〈D〉〉, using possibly
the choice axiom of the ground model, we can find a y∗ ∈ P2(D) such that
(a) {∅, D} ⊆ y∗, (b) |y∗| = | − y∗|, (c) ∃x1(x1 ∈ y∗ ∧−x1 /∈ y∗) (non-closed),
(d) ∃x2(x2 ∈ y∗∧−x2 ∈ y∗) (non-consistent) and (e) ∃x3(x3 /∈ y∗∧−x3 /∈ y∗)
(non-complete). Since A = lc(B) and B is countable, by lemma 1.2 there is
a y in A with properties (a)-(e) above. Therefore (24) and (25) lead to a
contradiction. This contradiction shows that (22)∧(23) is false, and hence
(20)∨(21) is true. This completes the proof of the Claim.

Thus oA extends at z0 in all cases, and this completes the proof of the
lemma. a

By lemma 3.3, the level collapse of an elementary submodel of a full model
is rich. So from lemmas 3.4 and 3.5 we derive immediately the following:

Theorem 3.6 Let 〈〈D〉〉 be a full model of TST (with infinite D) and let A
be the level collapse of a countable elementary submodel of 〈〈D〉〉. Then the
pair oA is extendible in A.

4 2-Extendibility.

What about 2- (or higher) extendible coherent pairs? Again the simplest
question is: Is there a model A of TST such that oA is 2-extendible?

2-extendibility (as well as n-extendibility in general) splits again to Ai-2-
extendibility, for i = 1, 2, 3. Given A, oA is A1-2-extendible if

(∀x ∈ A1)(∃q)(q ≤ oA ∧ x ∈ dom(q1) ∧ q is extendible).

The last formula when decompressed becomes:

ψ1: {∀x ∈ A1 ∃y ∈ A2 ∃z ∈ A3 such that, if v1 = {∅, A0, x,−x},
v2 = {∅, A1, y,−y}, v3 = {∅, A2, z,−z}, then the pair v1

q1−→ v2
q2−→ v3,

where q1 and q2 are the mappings which preserve the orderings of v1, v2, v3

as exhibited above, is not only a coherent pair but also an extendible one.}
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For A2-2- and A3-2-extendibility of oA the formulation is similar, except
of the string of initial quantifiers. That is, A2-2-extendibility is written:

ψ2: {∀y ∈ A2 ∃x ∈ A1 ∃z ∈ A3 such that, if v1 = {∅, A0, x,−x}, v2 =

{∅, A1, y,−y}, v3 = {∅, A2, z,−z}, then v1
q1−→ v2

q2−→ v3 is an extendible
pair.}

And A3-2-extendibility is written:

ψ3: {∀z ∈ A3 ∃x ∈ A1 ∃y ∈ A2 such that, if v1 = {∅, A0, x,−x}, v2 =

{∅, A1, y,−y}, v3 = {∅, A2, z,−z}, then v1
q1−→ v2

q2−→ v3 is an extendible
pair.}

Thus 2-extendibility of oA amounts to the truth of the formula ψ1∧ψ2∧ψ3.
At first sight it looks overwhelmingly involved, but if we find conditions
deciding when an arbitrary pair v1

q1−→ v2
q2−→ v3 is extendible, things may

become easier.
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