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Periodicity of negation

Abstract

In the context of a distributive lattice we a) specify the sort of
mappings that could be generally called ‘negations’ and b) study their
behavior under iteration. We show that there are periodic and non-
periodic ones. Natural periodic negations exist with periods 2, 3 and
4 and pace 2, as well as natural non-periodic ones, arising from the
interaction of interior and quasi interior mappings with the pseudo-
complement. For any n and any even s < n, negations of period n
and pace s can also be constructed, but in a rather ad hoc and trivial
way.

1 Introduction

In this paper we are concerned with how the various kinds of negation behave
under iteration. The motivation comes, first, from the classical and linear
negation, which are involutions (=—¢ = ¢), second from the intuitionistic
one, which collapses at the third iteration (—-——¢ = —¢), and third from
certain less common negations, like the ‘cyclic negation’ of Post logic [9] (see
also [7] for a more up to date presentation), or the ‘chaotic negation’ of G.
Mar and P. Grim [8]. The n-valued cyclic negation — needs n truth values
tg < -+ < t,_1 and causes a cyclic rotation of this set in the sense that
—t; = tiy1, for © < m — 2, and —t,_; = to. — is obviously periodic with
"¢ = ¢. On the other hand the chaotic negation — assumes the interval
0, 1] as the set of truth values and = : [0, 1] — [0, 1] is the mapping such that
- =1 — |1 — 2x|. The iterates ="z, n € N, for certain x € [0, 1], behave
chaotically.

We shall see below that the modal intuitionistic (or modal classical) nega-
tion O— closes at the fourth step (namely, (O—)%¢ = (O=)%¢. On the other
hand, the bimodal intuitionistic (or classical) negation 0;0,— is in gen-
eral strongly non-periodic, namely, there can be ¢ such that (O;057)"¢ #
(O0,097)™¢, for all m # n.

But what is a negation after all? To start with, according to Gabbay [5],
the basic idea behind the definition of a negation connective A* is that a
formula B should deduce A* iff A and B together would lead to some “un-
desirable” conclusion. More precisely, assuming that we possess a deduction



relation -, and a class of undesirable formulas ©, then a connective A* is a
form of negation if for any formulas A, B,

(t) BF A* < Jy € O(B,AtFy)

(see [5] p. 99, definition D1). Variants of () are also studied in [5], but these
concern only the meaning of “A, B together imply something” -not the basic
ingredient of (T) which, to our view, is “ <= ".

In this paper we shall examine negation in terms of algebraic semantics
rather than in terms of syntax. That is, instead of formulas we shall consider a
distributive bottomed lattice A = (A, A, V, <, 1) whose ordering < captures
the deduction relation -, A captures “together” and L captures the “bad”
formulas ©. Then, according to Gabbay, a mapping f : A — A is a negation,
if the translation of (}) holds, i.e.,

B rry=1 <= y< fla)

However an f satisfying (I) is a very special operation, namely a pseudo-
complement. A stronger notion is that of a relative pseudo-complement. A
relative pseudo-complement in A is a binary operation x — y such that for
all x,y,z € A,

(£)zNhNx <y < z<z—uy.

Obviously (£) implies (), since f(z) = 2 — L is a pseudo-complement. A
lattice A with a relative pseudo-complement is met in the bibliography un-
der the following names: Relatively pseudo-complemented lattice, Brouwerian
lattice, pseudo-Boolean algebra, Heyting algebra. We shall use throughout the
name ‘Heyting algebra’ as it seems to have been established in the more re-
cent years. A lattice A is said to be complete if infinite joins and meets exist,
denoted \V X, A X, for every X C A. (Existence of either of them suffices for
completeness.) It is well-known (see e.g. [1], p. 128) that a complete lattice
A is a Heyting algebra iff the following infinite distributivity law holds in A:

(D) z A (Viyi) = Vilz Ays).

In this case the unique relative pseudo-complement is defined on A by setting
r—y=V{z:2Az <y} Let —4 denote the induced pseudo-complement
of A. We shall refer to it as the natural pseudo-complement of A. Every
topology (set of open sets of a topological space) is a Heyting algebra with
respect to N and U. Moreover it is complete and satisfies ID.



2 Defining negation

Let us look more closely at Gabbay’s defining equivalence (1). The direction
“«<" is equivalent to the condition

(N1)  x A f(zx) = L (disjointness).
For every ‘crisp’ logic (that is, except the fuzzy and paraconsistent ones) N1
is a standard requirement. However the implication “=" of (}) says that
f(z) is the greatest element disjoint from x, which is indeed a very special
condition. For instance (1) implies the following (see proposition 2.2 below):

(N2) z<y= f(y) < f(z) (order-inversion),

(N3) z < f*(z) (regularity),

(N4) 2z < f(y) =y < f(x) (strong order-inversion).

Lemma 2.1 N2+ N3 «<— N4.

Proof. Suppose N2 and N3 hold and let x < f(y). Then by N2, f?(y) <
f(z) and, by N3, y < f?(y) < f(z). Hence z < f(y) = y < f(z). Con-
versely, suppose N4 holds. Then f(z) < f(r) = z < f?(x), from which
we get N3. Using the latter, if z < y then z < f?(y) which, by N4, gives
f(y) < f(z). Thus N2 holds. .

Proposition 2.2 a) (f) = N1+ N2 + N3.
b) N1+ N2+ N3 % (1).

Proof. a) N1 and N3 are obvious consequences of (). Tosee N2, let z < y.
Since f(y) ANy = L, we get f(y) Ax = L. Thus (1) yields f(y) < f(z).

b) We shall specify A and f: A — A, such that (A, f) satisfies N1, N2,
N3 but not (1). Let (A,U,N, C, () be the lattice of open subsets of R (or any
locally compact metric space). Forevery X € A/ let X* ={z € R:d(z,X) <
e}, where d(z,y) is the standard metric of R, d(z, X) = inf{d(x,y) : y € X},
and ¢ is a fixed positive real. Intuitively X* is the set resulting from X
if we add the closed strip of width ¢ along its border. Clearly, X C X*,
X CY = X*CY*and X" is closed. Therefore setting f(X) = —-X*, fisa
mapping from A to A. Obviously XNf(X)=0and X CY = f(Y) C f(X),
i.e., N1 and N2 hold. Also (}) is false in (A, f) since clearly f(X) is not the
greatest element of A disjoint from X. Thus it suffices to show N3, that is,

X C X)) =—f(X) = ~{r:d(z, f(X)) L} = {2 : d(z, f(X)) > ¢},
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or

r€ X =d(z, f(X)) >e. (1)

Claim 1. For every x € X and every y € (X*), d(z,y) > ¢.

Proof. Let z € X and y € 9(X*). Clearly d(y,X) = ¢, and since
d(z,y) > d(X,y), d(x,y) > €. Assume d(z,y) = €. Since X is open, we can
find 2’ € X such that d(z',y) < d(x,y) = €. But this contradicts the fact
that d(y, X) = e. This proves the claim.

Claim 2. v € X &y € cd(f(X)) = d(z,y) > e.

Proof. Let x € X. If y € f(X), then, by the definition of f(X),
d(xz,y) > d(y,X) > ¢, and the claim holds. Suppose y € 9(f(X)). But
I(f(X)) = 0(—X*) = 0(X*). Then, by claim 1, d(z,y) > ¢.

Proof of (1). Let zy € X. For every y € f(X), d(y,X) > ¢, hence,
since d(zg,y) > d(y,X), d(zo,y) > . Thus d(zo, f(X)) > e. Assume
d(xg, f(X)) = e. By claim 2, there is no y € f(X) such that d(zg,y) =¢. So
for every n > 0, there must be a y,, € f(X) such that ¢ < d(xg,y,) < e+1/n.
Clearly we can take all y, to be, say, in the interval [zo — 1,20 + 1], so,
by compactness, there is a subsequence of (y;); converging to y*. Then
yT e cd(f(X)) and d(xg,y") = . Since however zo € X and y* € cl(f(X)),
by claim 2, d(zo,y*) > ¢, a contradiction. This proves that d(zo, f(X)) > ¢
as required. .

So, again, what is a negation? All we can say is that most negations share
N1 and N2. Most but not all. Post negation, for instance, referred to at the
beginning, is not order-inverting; Indeed as soon as there are at least three
truth values ty < t; < ty, we have ty < t; and yet —tg = t; < t5 = =t;. On
the other hand, the standard negation of fuzzy logic — : [0,1] — [0, 1], such
that =x = 1 — x, does not satisfy N1. (Recall that in the last case we refer
to the lattice [0, 1] with operations A = min, V = max and L = 0.)

In this paper we shall confine our attention to negations satisfying N1
and N2 as basic properties. N3, on the other hand, is a special property.

Lemma 2.3 a) N1+ N2+ N3 imply that f(L) is the top element of the
lattice, in which case we write f(L) =T. Moreover, f(T)= L.

b) N1+ N2 imply that f(L) is the top element of the set f[A] and we
write f(L) = Ty. Then f(Ty) = L.



Proof. a) Since for every z, L < f(z), f*(z) < f(L), therefore, by
N3, z < f3(x) < f(L), i.e., f(L) = T is greatest. Further, since by N1
F(TYAT = L, necessarily f(T) = L.

b) For every x € A, L < z implies f(z) < f(L) = T;. Hence the first
claim. In particular, f(T;) < Ty, s0 L=TsA f(Ty) = f(Ty). —

Definition 2.4 Given any lattice A, a negation in A is any mapping f :
A — A satisfying N1 and N2. If f satisfies in addition N3, it is said to
be regular. f is a pseudo-complement if it satisfies (1) and a complement iff
in addition f?(z) = z for all x. The mapping f is said to be periodic, if
f™ = f" for some m # n. The global period of f is the least n for which
there is m < n such that f™ = f". In this case the number s = n — m is
said to be the global pace of f. Similarly we define local periodicity, local
period and local pace of f at a point z. The pair (n — s,n) for a periodic f
is the global index of f. If k,t is the period and the pace respectively of f
at z, (k —t,k) is the local index of f at x.

Lemma 2.5 For every reqular negation f, f3 = f.

Proof. By regularity f?(z) < x for every x € A. This implies on the one
hand f3(z) < f(z) replacing = by f(z), and on the other f3(x) > f(x), by
order-inversion. —|

Notice that a periodic f is periodic at each particular point, but the
converse is not true. The following contains some standard facts about peri-
odicity.

Lemma 2.6 Let f be any periodic (resp. periodic at x) mapping with index
(local index) (m,n) If k <1 and f¥ = f! (resp. f¥(z) = fY(z)), then n <1,
m <k, andn —m|l — k.

Proof. We show the global case, the local being similar. Let k < [ and
f¥ = f'. By the definition of n, n < I. If [ = n, clearly k < m (otherwise
f¥ = f™ which means that n is not the least collapsing iterate). So let
n < [ and the first claim holds. Suppose £k < m. Let s = n —m and
let p = max{a : | —as < n}. Then [ —ps < n <1 — (p—1)s), hence
k<m=n—s<l—ps<n. But f7° = fl = f* which again contradicts
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the fact that n is the period. So the second claim holds. Finally, assume
that [ — k is not a multiple of s = n — m. Define p as before and also let
g = max{a : k —as < n}. Then clearly s < k —¢gs # | — ps < n and
fl=ps = fF=45 Since s = k — ¢s and n = | — ps cannot be both true, this is
a contradiction. -

Lemma 2.7 Let (m,n) be the global index of f and (k,l) the local index at
x. Then k <m, [ <n, and |l — kln —m. Moreover the global pace s =n—m
1S even.

Proof. The relation between (k,l) and (m,n) follows immediately from
2.6. In particular, by 2.3, the index of L is always (0, 2), therefore 2|n — m,
hence s is even. -

Definition 2.8 Given a Heyting algebra A, x is said to be complemented
if there is y such that x Ay = L and x Vy = T. Such a y is said to be a
complement of x

It is well known that for a distributive pseudo-complemented A, every
x € A can have at most one complement, and this is —z. Moreover, A is a
Boolean algebra iff every x € A is complemented.

Proposition 2.9 Let A be a lattice as above. There can be no periodic
negation of index (0,n), for n > 2.

Proof. Let f have index (0,n). Observe first that f must be one-to-one,
because f(x) = f(y) implies f"(x) = f™(y), hence x = y. Second, we can
easily see that z < y < f(y) < f(z). One direction follows by order inversion
and the other by the periodicity. Further f must be a dual automorphism,
e, flt Ny) = f(x)V f(y) and f(xVy) = f(x) A f(y). Indeed, obviously
flxny) > f(z)V fly). So assume f(x Ay) > f(x)V f(y). Then, by the
preceding remarks, f2(z Ay) < f(f(z)V f(y)) < f*(z) A f?(y). That is,
f2(x Ny) < f2(z) A f3(y). Continuing this way, since n is even, we get
ffxANy) < ff(x) A f*(y), or x Ay < x Ay, a contradiction.

Claim. For every complemented element x € A, f(x) = —z and f(—x) =
z, hence f?(z) = z.

Proof. 1f x is a complemented element, then by the previous comments,
f@)N f(—z) =L and f(z)V f(—z) =T, ie., f(z) and f(—x) are comple-
ments of each other, or



(*) =f(z) = f(=x).

Now f(x) < —z, hence —f(x) > x. Therefore, in view of (*), f(—z) > x.
Since also f(—x) < z, we get f(—z) = x and f(x) = —z. This proves the
claim.

By assumption there is at least one element = € A, such that x, f(x),...,
" tare all distinct and n > 4. Then f(zV f(z)) = f(x)Af3(x) = L = f(T).
Since f is one-to-one, x V f(x) = T. Therefore = is complemented with
complement f(x). It follows from the claim that f2(x) = x, which contradicts
our assumption. .

The following result shows that negations of any global index (m, n), with
n —m even and 0 < m are possible. A set X C A is said to be an antichain
if for any distinct x,y € X, x L y and y £ x.

Proposition 2.10 Let A be a Heyting algebra containing antichains of length
n. Then for every 2 < m < n such that n —m is even, there is a negation in
A of index (m,n). If A contains n pairwise disjoint elements, then the same
holds for every m with 0 < m <n, n —m even.

Proof. By the hypothesis we can choose an antichain C' = {co,...,c,_1}
of cardinality n. Set f(c¢;) = ¢;q1 for every 0 <i <n —2and f(c,—1) = .
It is easy to see that the index of ¢, for K < m is (m — k,n — k), while for
m < k <n—1 the index of ¢ is (0,n — m).

Set f(L) =T and f(T)= L. Next for every z € A, let C;, = {¢; € C':
r<¢gr UC, =0, weset f(x) = L. If Cp # 0, we set f(x) =V f(C,).
Observe that if C, # (), there is no ¢; such that ¢; < x; otherwise we would
have ¢; < x < ¢;, which is impossible by the fact that C'is an antichain.

Now if C, =0, f(x) = L, so the index of z is (1,3). If C, is a singleton,
say Cp = {¢;}, then f(z) = f(¢;) hence f"(z) = f"(c;) = f"(ci) = f™(2),
i.e., the index of x is (m,n). But if |C,| > 2, and C, # {¢n-1,¢n-1}, then,
because of the antichain condition, \ f(C,) £ ¢; for any ¢;, hence f(x) =T
and f2(x) = L, thus the index of z is (2,4).

Let z,y € A. Then clearly x < y = C, C C,. Therefore, if C, = 0,
then Cy, = 0 too and f(z) = f(y) = L, hence f(y) < f(z). If C, # 0 and
Cy, =0, then f(y) = L < f(z) =V f(Cy). If C; # 0 and C, # 0, then
C, C C, clearly implies \/ f(C,) <V f(Cy), i.e., f(y) < f(z). Therefore f is
order-inverting.
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Concerning N1, if f(z) = L the property holds trivially. Otherwise,
x < ANCpand f(z) =V f(C,). By distributivity and the fact that f(c;)A¢; =
1 for all ¢; € C, we easily see that (AC,) A (V f(C,) = L. Hence also
c AV f(C)=L,0orxzA f(x)= L.

Finally, since the local indexes of the elements are (0,2), (1,3) or (2,4),
and (m — k,n — k) for k < m, it follows that the global index is (m,n). By
2.7, m > 2.

If in the above construction the elements of C' are pairwise disjoint, then
we easily check that there are no elements of local index (2,4). These ele-
ments were the only reason to require m > 2. So m can be taken to be just
> 0. -

In contrast to the preceding result, not allowing global indexes of the
form (0,n), n > 2, there exist negations allowing elements to have local
index (0,n), even for odd n.

Proposition 2.11 In a Heyting algebra, for everyn > 0, there are negations
with local index (0,n) at some point.

Proof. Let cg,cq, ... cn—1 be pairwise disjoint. Define f as follows. f(c¢;) =
Ciyq for i <mn —1and f(c,_1) = ¢o. If x £ ¢; for every i, we set f(x) = L.
if v = L we set f(z) = T. Otherwise there is a unique ¢; such that x < ¢;.
Then we set f(x) = f(¢;). As in the previous proposition, it is easy to check
that: 1) The index of every ¢; is (0,n). 2) For L # x < y;, the index of x is
(I,n+1). 3) The indexes of L and T is (0,2). 4) For T # x £ ¢;, the index

is (1,3).
The global pace s of f is the l.c.m. of the local paces of the elements, i.e.,
s =lem(2,n). Thus the global index of f is (1,s+ 1). -

Observe that whenever we have a point with local index (m,m + s), we
have also a point with index (0, s), i.e., a fixed point for the mapping f*. It
is well-known that if a continuous real mapping f : I — I, where [ is an
interval [a, b], has a point of index (0, s), for odd s, then f has points of index
(0, k) for every even k, as well as for every odd k > s. Especially for s = 3, f
is chaotic. This follows from the nice theorem of A.N. Sarkovski (see e.g [2]
or [6]). The theorem reveals the tremendous difference between the periods
(=paces) 2 and 3.



Although our setting is quite remote from that of analysis, we can still
see the great difference between even and odd pace. In proposition 2.10 we
constructed negations of any pace, but for most x € A, the orbit of x contains
L. This makes the situation a bit trivial. If we require the orbit of z, and
also the orbits of —x, — —z, f(—x), etc., not to contain L, then we can show
that, if f periodic at z, the pace is even.

Definition 2.12 Given a negation f: A — A, let {—, f}* be the the set of
mappings which is a word of the alphabet {—, f}. The set
Ny ={z:(3he{- f}")(h(z)=1)}

is said to be the nucleus of f.

Lemma 2.13 Let A be a Heyting algebra and let f be any negation on A.
Then for every x & Ny and every k € N, (a) f**(x) Az # L and (b) f***1(x)
and x are incomparable.

Proof. Let x|y mean “z,y are incomparable”. Fix some z ¢ Ny, ie.,
for all h € {—, f}*, h(z) # L. Clearly, for every such h, h(xz) ¢ Ns. We
prove (a) and (b) by simultaneous induction on k. Let k& = 0. Then (a)
follows from the fact that  # L. If (b) is not true, then either x < f(z) or
f(z) < . In the first case x < f(z) < —x, whence x = L and in the second
case f(x) <z and f(z) < —=x, hence f(z) < L. Thus the claim follows from
the fact that x, f(x) # L. Therefore it suffices to assume:

() (Y2 & Np)(F4() A £ 1), and (bg) (V2 & Np)(f(2)]),
and to prove:

(1) (Vo & Np)(f72(x) Aw # L), and (bras) (Vo & Np)(f273(2)|2).

Proof of (aj+1). Assume that (az;1) is false, that is, for some = ¢ Ny,
[**2(z) Ax = L. Then f**2(x) < —z. On the other hand f(z) < —x
implies f2(z) > f(—x), whence, applying the order-preserving f%, we get
AR (2) > A (—g). Thus fA4(a) < fA92(0) < o, fe., f44 () <
—x, which, since —z ¢ N; contradicts (by).

Proof of (by41). Assume (bgyq) is false. Then for some x ¢ Ny either
x < f2k+3(x) or f2k+3(l’) < z.

Case 1. Let o < f#3(2). f(x) < —z again implies (applying f2++2)
3 (x) < f2R+2(—x). Therefore z < f22(—z). But f2**2(—a)Af# 1 (—z) =
1, hence z A f2**1(—x) = L, or f?**}(—x) < —x, which contradicts (by)
because —z ¢ Ny.
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Case 2. Let f2**3(x) < x. Since f(z) Az = L, the preceding inequality
implies f2*%(z) A f(z) = L, or f**2(f(x)) A f(x) = L, Since f(z) ¢ Ny,
this contradicts (ajy1)- -

Lemma 2.14 Let f be a negation and x ¢ Ny.

a) If f*(z) = fi(x), then |k — 1| is even.

b) Let f*(z) = f**5(x). Then the setY = {f*(z), fF 1 (x),..., fFrs1(x)}
is an antichain (provided its elements are all distinct).

Proof. a) Let k < land | = k+s. Then f*(z) = f*(z), or for y = f*(x),
y = f*(y). Since z ¢ Ny, clearly y ¢ N;. By lemma 2.13 (b), for s odd y
and f*(y) should be incomparable. Therefore s must be even.

b) Note that f*(z) = f*"*(x) implies f*i(x) = frtits(x) = fhritis(y),
for every i,j. By 2.13 (b), all elements of ¥ which are an odd number of
steps apart are incomparable. So it suffices to show that this also the case for
elements of Y which are an even number of steps apart. Two such elements
are of the form f*(x) and f&T+2i(x), for suitable 4,j. Suppose they are
comparable. Then either f¥i(x) < fEF+2(x) or fF+i(z) > fFHF2(g).
Assume the first. f5(z) < fFT42(z) implies f*2% (x) < fH4 (7)), and
continuing this way we shall get f5¢(z) < fEHt2i(z) < fFi+259(z). But
fErr2si(p) = fEH(z), hence f*i(x) < f*i(x), a contradiction. The case
e (z) > R (7) is similar. =

Remark. Are there negations without periodic points except | and T7?
Note that for every negation f, the mappings f*" are order-preserving, hence,
if A is complete, by Tarski’s Fixed point Theorem (see [1]), for every x such
that x < f?"(z) there is a point a > x such that f*"(a) = a. However the
proof of this theorem does not guarantee neither that a # L, T nor that 2n
is the least k such that f*(a) = a.

3 Negations induced by interiors
Definition 3.1 A mapping i : A — A in the lattice A is said to be an
interior operator on A (or just an interior ), if (a) i(z Ay) = i(z) Ni(y), (b)

i(r) < x, and (c) 2 = 4. i is a quasi interior if (a) and (b) hold; and is a
weak interior if (b) holds and i is order preserving.

11



The dual definitions of a closure, quasi closure and weak closure ¢ : A —
A read in the obvious way with the preceding conditions replaced with: (a)
c(zVy)=c(z)Vcly), (b)  <c(x) and (c) ¢ = c.

It follows easily that every quasi interior ¢ (quasi closure c) is order-
preserving, therefore every quasi interior (closure) is a weak interior (closure)
but not vice-versa.

Notice that the classes of quasi and weak interiors (closures) are closed
under composition. We often write fg instead of f o g and iz, cx instead of

i(x), c(z).

Proposition 3.2 Let f be be a reqular negation. For every interiori (closure
c) the mapping g = if (resp. g = fc) is a negation such that g* = g*. That
18, g has period at most 4.

Moreover there are i, f,c as above such that if and fc have period 4.

Proof. That ¢f and fc are negations is obvious. We show the claim for
g = if the other being similar. We have ifxr < fx, hence fifr > f?x. By
assumption f?z > x, therefore fifx > z. This implies ififz > ix, and
setting iz for x, ¢*(ix) = ifif(iz) > i*x = iz. Therefore the restriction g,
of g to i[A] is regular, hence as in 2.5, we see that g3 = g;. Thus

g'(x) = ¢ (if () = g (ifr) = gu(ifx) = g(ifz) = g°(x).

Further we give examples of f and 7 such that ¢f is of period exactly 4
(in fact f will be a complement). Let ¢ be the interior operator in R with
respect to the usual metric and let —X be the complement in the Boolean
algebra P(R). Consider the mapping g(X) = i — X. Clearly ¢ satisfies the
conditions of (b) above, so g* = g*>. We show that ¢ # g, i.e., for some
X CR, ¢3(X) # g(X). Let

X ={0} U (1,2]. Then:

—X = (—00,0) U (0,1] U (2, 00).

g(X)=1i—X = (—00,0)U(0,1) U (2, 00).

—g(X) = {0} U[1,2]

g*(X) =i—g(X) = (1,2).

_QQ(X) = (_007 1] U [27 OO)

F(X) =i — $2(X) = (—00,1) U (2,00) # g(X).

—g}(X) = 1,2,
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g1 (X) =i—g*(X) = (1,2) = g*(X).
Note that if f is a complement, ¢ an interior and set ¢ = fif, then fc=1if,
so the above example provides also a closure ¢ with the required property. -

A Heyting algebra A endowed with an interior i is a topological Heyting
algebra (tHA). Recall that the logical analogue of 7 is a necessity operator 0.
Augmenting the language of Intuitionistic Propositional Logic (IPL) with O,
let IML (for Intuitionistic Modal Logic) consist of the usual axioms of IPL
plus the modal axioms O¢ — ¢, O(¢ — ¢) — (O¢ — Ovy)) and O¢ — OO,
and the rules Modus Ponens and Necessitation. It is well-known (see e.g.
[4]) that tHA’s form sound and complete algebraic semantics for IML. Due
to this correspondence, 3.2 yields immediately the following.

Corollary 3.3 IML proves (O—)1¢ < (O-)2¢ for every ¢, while (O-)3¢ «
O=¢ is not provable for m < 3.

Proof. By proposition 3.2, the interpretation of (O-)%¢ « (O-)2¢ is true
in every (A, 1), hence, by completeness, the formula is provable. On the other
hand the interpretation of (d—=)3¢ « O=-¢ is false in some algebra, so, by
soundness, the equivalence in question is unprovable. .

This result is not new. K. Dosen [3] and J. Font [4] have shown that in the
system IML above there are only 31 non (provably) equivalent modalities,
i.e., strings of words s; -+ s,, with s; € {—,0}.

Given an interior i, call modality any function f € {—,i}*, ie., f is a
word of the alphabet {—,7}. It is natural to ask which of the modalities are
negations, and, if periodic, of what index.

Lemma 3.4 Let A be as before, © be an interior in A and h : A — A be
a modality with respect to © and —. If h is a negation then h is one of the
following: —, i— and — —i—. These are periodic with indexes (1,3), (2,4)
and (2,4) respectively.

Proof. Note that — regular, hence (=) = —. Consequently, by 3.2,
(i—)* = (i—)% Let g = — —i—. Since g contains three —’s, g is order-
inverting. On the other hand, 1 —x < —x, hence —i —x > — —x > x. Hence
gr < — —i—x < —x. Thus ¢ is a negation. Moreover ¢°> = — — i — i—,
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@F=——i—i—i—andg'=——i—i—i—i——=——i—i— = g? (by the
periodicity of i—). Hence g is of period 4. Note that ig =i — —i— is also a
negation. However ig = ¢—. Indeed, sincey < ——y,i—o < ——1—x < —x,
whence i —x <1 — —1 —x <1 — x, Therefore 1 —x =1 — —i — x for every z.

We show that there are no other negations formed from — and 7. Let h be
such a negation. Since h is order-inverting, it must contain an odd number

of —’s, say 2k + 1.

a) For k = 0, all possible words are —, i—, —i, @ — ¢, of which only the
first two are negations and these are contained in our list.

b) For k = 1, the possible words are — —i—, i — —i—, i — —i — 1, —i — —,
1—t——, =i — =i, —0——0, =t — 04—, 4 —1— 10—, =1 —1—0,1—1—1%—1.

It is tedious to check that from these only the first two are negations which
also belong to our list (the second being equal to i—).

c¢) For k = 2 (five —’s), if the word contains i — —i— or i —i — i — i—, it
collapses to one with fewer —’s, since 1 — —i— =1— and i —1—1—i— = i— as
we saw above. So the only non-reducing words of this type are — —i —7— —,
—1—1—1%—— and — — ¢ — ¢ — —i. But none of these is a negation.

d) For k > 2, clearly the word contains some of the patterns i — —i—,
1 —1—1—1—, so it eventually collapses to one of the previous cases. Thus
all the possible negations are captured in steps a)-c). o

Can we characterize all negations of a Heyting algebra in terms of quasi
or weak interior operators and the pseudo-complement? The next result says
that this is true for Boolean algebras but not for Heyting ones.

Lemma 3.5 Let A be a lattice with pseudo-complement —. For every nega-
tion f in A, there is a weak interior i such that i— < f < —, henceif = i—.

If A is Boolean, f =i—.

Proof. Let f be a negation. Then fox < —x. Set iz = x A f — x. Then
tx < x. Further, let x <y. Then f—x < f—y,hencex Af—z <yAf—y,
or i(xz) <i(y). It follows that i is a weak interior. Also from — —x > x we
get f— —x < fx, therefore t —ox = f — —x < fo < —x. Thusi— < f < —
and applying i to the latter, i— = if. If Ais Boolean,i—z = f——z = fuz.,
ie.,i—=f. -
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4 Non-periodic negations

Strangely enough, Proposition 3.2 does not generalize to n > 4. Period 4
and pace 2 seem to be the highest barriers for ‘naturally defined’ periodic
negations. Higher periods and paces can be obtained by the method of
proposition 2.10.

The only reasonable way to generalize 3.2 seems to be by combining two or
more interior operators (modalities), e.g. considering the negation g = ij—,
where i, j are interiors. But 7o j is no longer an interior; it is a quasi interior,
as already pointed out in the last section (even if — is a complement). But
when ¢ is a quasi interior, the mapping g = ¢— is in general non-periodic.
More strongly, it can can be non-periodic at a point. In this section we give
an example of such a negation.

In the lattice P(N) consider the mappings

jX)={reX:z+leX}and h(X)=j—X.

It is easy to see that j is a quasi interior. Let also C' : N — N be the
predecessor mapping of N, i.e., C(z) =z — 1, if z > 0 and C(0) = 0. Given
X and z € X, z is said to be isolated in X if x — 1 (when it exists) and x + 1
do not belong to X.

Lemma 4.1 a) If 0 is not isolated in X, then C'(X) C h*(X).
b) If —X does not contain isolated elements, then h*(X) C C(X).

Proof. a) Let 0 be non-isolated in X. Then either 0 ¢ X, or 0 € X and
1 € X. We have to show that z € X = C(z) € h*(X). Let x = 0 and
r € X. By the non-isolation of 0, 1 € X. We verify that C'(0) =0 € h?(X).
Notice that by j — X € —X we get —j — X D X for every X. So 0,1 € X
implies 0,1 € —j — X. Thus by the definition of j, 0 € j — j — X = h%*(X).

Let now z € X and x # 0. We shall show that C(z) € h*(X).

Case 1. x —1€ X. Then z — 1,z € —j — X, and by the definition of j,
r—1€j—j—X="hn*X), or C(x) € h*(X).

Case2. x—1¢ X. Thenz—1€ —X. Sincex ¢ =X, x—1¢ j— X, hence
r—1€—j—X. Soagain x — 1,2 € —j — X, and as before C(z) € h?*(X).

b) Let X be as stated and let x € h*(X). We must show that x € C'(X),
orx+1€ X. Nowz € j—j— X impliesx +1 € —j — X. To reach a
contradiction, assume x + 1 ¢ X. Then z + 1 € —X, and by assumption,
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either r € — X, or v +2 € —X. Assume the first. Then z,2 4+ 1 € —X,
hence x € j — X. But this contradicts the fact that z € —j — X. Assume
r+2¢€ —-X. Thenz+1,r+2 € —X, hence x +1 € j — X. But also
r+1¢€ —j— X, a contradiction. This proves the claim and the lemma -

Proposition 4.2 a) There is X C N such that h above is non-periodic at
X, i.e., W"(X) # h"™(X) for all m # n.

b) For every n > 0 there is X C N such that h is periodic at X with local
index (2n — 2,2n).

Proof. a) Consider a partition of N into disjoint intervals Iy, Jy, & > 1,
such that:

Dh<h<lb<- - <p<Jg<---

ii) |Ix| = k, while |Ji| = 2 for all k£ > 1.
Thus, I; = {0}, J; = [1,2], I = [3,4], Jo = [4,5], [; = [6,7,8] etc. Let
X = Ukzllk- Then —X = Ukzljk and h(X) = ] - X = Ukzljllc, where
J. = Jp — {max J;}. By lemma 4.1, for every k > 0, h?*(X) is either C*(X)
or C*(X) — {0}, and h?**}(X) is either C*(h(X)) or C*(h(X)) —{0}. Since
C pushes X leftward, and X is a union of intervals of increasing length, for
every m there is k such that C*(X) contains only intervals of length > m.
Similarly the sets C*(h(X)) contain bigger and bigger gaps between their
elements. So the reader can easily verify that for no m < n, h™(X) = h"(X).

b) For n = 1, just take X = ). Then h*(()) = (). For n =2 let X = {0}.
Then h*(X) = 0, h*(X) = N, and h*(X) = 0 = h*(X). For n > 2 let
again X = [0,n — 2|. Since neither 0 is isolated in X, nor —X contains
isolated elements, by lemma 4.1, h*(X) = C(X) = [0,n — 3]. Inductively
h2(-=2)(X) = [0,n— k], hence h2"=2(X) = {0} and h?"(X) = h*({0}) =0 =
h%({0}) = h?"2(X). Therefore for every n > 2, h is of period 2n and pace
2at X =1[0,n—2]. .

Remark. The quasi interior j used in the preceding example is the com-
position of two interiors i,, i, defined in P(N) as follows:

io(X)=X"U{z e X 2+1c X}, i(X)=X"U{z e X? o +1€ X},

where X and X°¢ are the subsets of X of even and odd elements, respec-
tively. Then j = i,0i, = i, 04,. The topology generated by i, (or i.) is called
the ‘Hjalmar Ekdal topology’ (see [11], p.78).
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