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ABSTRACT

Some philosophers have claimed that it is meaningless or paradoxical to consider the probability of a
probability. Others have however argued that second-order probabilities do not pose any particular
problem. We side with the latter group. On condition that the relevant distinctions are taken into
account, second-order probabilities can be shown to be perfectly consistent.

May the same be said of an infinite hierarchy of higher-order probabilities? Is it consistent to

speak of a probability of a probability, and of a probability of a probability of a probability, and so

on, ad infinitum? We argue that it is, for it can be shown that there exists an infinite system of

probabilities that has a model. In particular, we define a regress of higher-order probabilities that

leads to a convergent series which determines an infinite-order probability value. We demonstrate the

consistency of the regress by constructing a model based on coin-making machines.

Keywords: model, higher-order probability, infinite regress.

1 Introduction

Let q0 be a proposition with a probability v0:

P 1(q0) = v0 , (1)

where P 1 stands for an ordinary unconditional probability of the first order, and where v0 is
some number between 0 and 1. We now might try to assert a second-order probability, P 2, to
the effect that the probability of q0, given (1), is v0:

P 2
(
q0|P 1(q0) = v0

)
= v0 . (2)

Is this coherent? Some have denied that it is. Bruno de Finetti famously claimed that second-
order probabilities are devoid of meaning, whereas David Miller has argued that they lead to
an absurdity (de Finetti 1977; Miller 1966). According to Miller, if we substitute P 1(¬q0) for
v0 in Eq.(2), we obtain

P 2
(
q0|P 1(q0) = P 1(¬q0)

)
= P 1(¬q0) ,

which is the same thing as
P 2
(
q0|P 1(q0) = 1

2
)
)

= P 1(¬q0) .

However, with v0 = 1
2
, we see that (2) yields P 2

(
q0|P 1(q0) = 1

2
) = 1

2
. Therefore P 1(¬q0) = 1

2
,

and thus P 1(q0) = 1
2
. So if Eq.(2) were unrestrictedly valid, we could prove that the probability

of an arbitrary proposition q0 is equal to one-half, which is absurd. This absurdity is known as
the Miller paradox.
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Brian Skyrms pointed out that the Miller paradox “rests on a simple de re–de dicto confu-
sion” (Skyrms 1980, 111). One and the same expression is used both referentially and attribu-
tively, so that a scalar or number (here v0) is wrongly put on a par with a random variable
(here P 1(¬q0)) that takes on a range of possible values (Howson and Urbach 1993, 399-400). So
long as we recognize this confusion and keep the two levels apart, the notion of a second-order
probability is harmless.

Another objection to higher-order probabilities can be discerned in de Finetti’s work. As is
well known, de Finetti holds that probability judgements are expressions of attitudes that lack
truth values. However, as Skyrms has pointed out, de Finetti’s work is less hostile to a theory
of higher order probabilities than might at first appear (Skyrms 1980, p. 113):

“For a given person and time there must be, after all, a proposition to the effect
that that person then has the degree of belief that he might evince by uttering a
certain probability attribution.

De Finetti grants as much:

The situation is different of course, if we are concerned not with the
assertion itself but with whether ‘someone holds or expresses such an
opinion or acts according to it,’ for this is a real event or proposition. (de
Finetti 1972: 189)

With this, de Finetti grants the existence of propositions on which a theory of higher
order personal probabilities can be built, but never follows up this possibility.” 1

It seems, then, that de Finetti was not opposed to higher-order personal probabilities in such
an uncompromising way as might at first sight seem to be the case.

Skyrms is not alone in having seen that second-order probabilities need not pose any par-
ticular problem. Several others recognized that, when the relevant distinctions are taken into
account, second-order probabilities can be shown to be formally consistent (Uchii 1973; Lewis
1980; Domotor 1981; Kyburg 1988; Gaifmann 1988). This is not to say that such probabilities
are mandatory. As Pearl has explained, second-order probabilities, although consistent, can be
dispensed with, for one can always express them by using a richer first-order probability space
(Pearl 1987).

These findings on second-order probabilities can be easily extended to probabilities of any
finite order. But what about a hierarchy of higher-order probabilities that is infinite? Is the
idea of a probability of a probability ad infinitum just as consistent as the idea of a probability
of a finite order? As far as we know, nobody has ever claimed that it is, let alone has anyone
given a proof of consistency. The reason is not difficult to find. A proof of consistency should
involve a demonstration that the infinite series is convergent, and it is not immediately clear
how that can be done.

As early as 1738, David Hume objected to an infinite hierarchy of probabilities of probabil-
ities, on the grounds that it would tend to zero in the end:

“Having thus found in every probability . . . a new uncertainty . . . and having adjusted

these two together, we are oblig’d . . . to add a new doubt . . . . This is a doubt . . . of

which . . . we cannot avoid giving a decision. But this decision, . . . being founded only on

probability, must weaken still further our first evidence, and must itself be weaken’d by a

fourth doubt of the same kind, and so on in infinitum: till at last there remain nothing of

the original probability, however great we may suppose it to have been, and however small

the diminution by every new uncertainty.”2

1Skyrms 1980, 113-114.
2Hume 1740, Book I, Part IV, Section I. See also Lehrer 1981.
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Doubts about the consistency of an infinite regress of higher-order probabilities have also been
expressed in more recent times. Savage wrote that such an hierarchy is beset by “insurmountable
difficulties” and his worries were anticipated by Russell (Savage 1972, 58; Russell 1948, 385 ff).
Modern objections against infinite-order probabilities are however not always rooted in Humean
worries. For example, Nicholas Rescher claims that an infinite hierarchy of probabilities is
inconsistent, not because it goes to zero, but because it will forever remain indeterminate
(Rescher 2010, 36-37).

Against these objections, we shall argue in the present paper that an infinite hierarchy of
probabilities can indeed be consistent. The above-mentioned difficulty of finding a consistency
proof will be overcome in two stages. First we construct a structure for which the proof can be
given; we do this by making sure that this structure is subject to a Markov condition. Then we
demonstrate that this structure is a model of an abstract system of infinite-order probabilities;
in other words, it is a structure that makes all the sentences of the abstract system true. In
this way we show that one can calculate a definite probability value from an endless hierarchy
of probability statements. Pace Hume, this probability is in general not zero.

It should be noted that our purpose in this paper is not to give general conditions on
probability distributions over probability distributions ad infinitum. Spelling out the details of
those conditions would be very interesting; but we shall not attempt such an ambitious project
in the present paper. Rather we content ourselves with a simple Bernoulli distribution, and
with single events at each order.

This paper is set up as follows. We will start, in Section 2, by describing our model for a
regress of higher-order probabilities; the model in question consists in an infinite set of machines
that produce biased coins. In Section 3 we set up an abstract system of equations that produces
the same probabilities as those in the model of Section 2, thereby showing that this system is
consistent. We will abstain from any detailed discussion of how the abstract system should
be interpreted. As we see it, different interpretations are possible: in particular the first-order
probability might stand for a chance or for a credence, depending on the application one has in
mind, whereas the higher-order probabilities would typically be credences that reflect degrees
of uncertainty about the lower-order credences or chances. Of course, the higher the credences
are, the less realistic the interpretation of the system becomes. But here we are not so much
interested in practical matters; our focus is on the theoretical consistency of the system.

In Section 4 we specify a numerical example in which the various probabilities of the system
of Section 3 are explicitly calculated. Section 5 covers the case in which the probabilities are
not given as points (that is, as precise numbers), but are merely specified to lie within certain
intervals. In Section 6 we show how to modify the coin-making scenario to mimic the equations
of Section 5, thereby ensuring their consistency as well.

2 A model of infinite-order probability

In this section we describe a model for an infinite hierarchy of probability statements. The
probabilities in this model are objective, but that is not the essential point. What is essential
is that the structure to be described is a genuine model, which implies that two desiderata are
met. First, the model must be well-defined and free from contradictions. Second, it must map
into the infinite hierarchy of probabilities. As we will see, both desiderata can be satisfied by
making use of what Reichenbach called ‘screening off’, which is nowadays known as a Markov
condition. This condition allows us to give a proof of convergence for the model and thereby
for the abstract system of equations that we will set up in Section 3.

Suppose there are two machines which produce trick coins. Machine V0 makes coins each
of which has bias v0, by which we will mean that each has probability v0 of falling heads when
tossed; whereas machine W0 makes coins each of which has bias w0. In an initial experiment
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that serves as a calibration, an experimenter repeatedly tosses one coin from machine V0. We
define the propositions q0 and q1 as follows:

q0 is the proposition “this coin will fall heads”

q1 is the proposition “this coin comes from machine V0” .

What is the probability of q0, on the assumption that the coin comes from machine V0? We shall
use the symbol P1(q0) for the probability of a head in this calibration experiment; evidently it
is the conditional probability of q0, given q1:

P1(q0)
def
= P (q0|q1) = P

(
“this coin will land heads”|“this coin comes from machine V0”

)
.

Clearly P1(q0) = v0, for if the coin comes from machine V0, the probability of a head is indeed
v0, for that is the bias produced by machine V0. Note that P1 is not the same as P 1. The
former is a conditional probability, in this case the probability of q0 given q1; the latter is the
first order unconditional probability of q0.

Next, the experimenter is instructed to take many coins from both machines, and to mix
them thoroughly in a large pile. The numbers of coins that are to be added to the pile from
machines V0 and W0 are regulated by a second experiment, which is performed by a supervisor.
This second experiment is much like the first one, but it involves two new machines: V1,
which produces trick coins with bias v1, and W1, which produces trick coins with bias w1

(although machine W1 will play no role in this first iteration, it will be relevant for the second,
and subsequent iterations, as will become clear below). The supervisor extracts a coin from
machine V1; and he instructs the experimenter to make sure that the relative number of coins
that she takes from her machine V0 is equal to the probability that his coin from V1 falls heads
when tossed. That is to say, the number of coins that she must add to the pile from machine
V0 is equal to v1 multiplied by the total number of coins removed from machines V0 and W0.3

The experimenter takes one coin at random from her pile and she tosses it. Understanding
q0 now to refer to this coin, we can deduce the probability of q0 in the new situation. Indeed, if

q2 is the proposition “the coin of the supervisor comes from machine V1” ,

then we can ask what the probability is that the experimenter’s coin falls heads, given that q2 is
true. We use the symbol P2(q0) for this probability. It is equal to the conditional probability of
q0, given q2, which can be calculated from the following variation of the rule of total probability:4

P2(q0)
def
= P (q0|q2) = P (q0|q1 ∧ q2)P (q1|q2) + P (q0|¬q1 ∧ q2)P (¬q1|q2) . (3)

By definition, P (q0|q1 ∧ q2) is the probability that the experimenter’s coin will fall heads, on
condition that this coin has come from machine V0, and that the supervisor’s coin has come from
machine V1. Similarly P (q0|¬q1 ∧ q2) is the probability that the experimenter’s coin will fall
heads, on condition that this same coin has not come from machine V0, and that the supervisor’s
coin has come from machine V1.

3For the sake of this story, we limit v1 to be a rational number, so it makes sense to say that the number
of coins to be taken from V0 is equal to v1 times the total number taken from V0 and W0. Similarly, in the
subsequent discussion, the biases should all be considered to be rational numbers. Since the rationals are dense
in the reals, this is not an essential limitation.

4The proof of Eq.(3) goes as follows:

P (q0 ∧ q2) = P (q0 ∧ q1 ∧ q2) + P (q0 ∧ ¬q1 ∧ q2)

= P (q0|q1 ∧ q2)P (q1 ∧ q2) + P (q0|¬q1 ∧ q2)P (¬q1 ∧ q2) .

On dividing both sides of this equation by P (q2) we obtain (3).
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This series of experiments gives rise to a Markov chain. For the condition that the experi-
menter’s coin has come from machine V0 is already enough to ensure that the probability that
this coin will fall heads is v0; and that situation is not affected by the provenance of the super-
visor’s coin, so P (q0|q1 ∧ q2) = P (q0|q1) = v0. Likewise, the condition that the experimenter’s
coin has not come from machine V0 guarantees that it has come from machine W0, and therefore
ensures that the probability of a head is w0; again, that is not affected by the provenance of the
supervisor’s coin, so P (q0|¬q1 ∧ q2) = P (q0|¬q1) = w0. In Reichenbach’s locution, q1 is said to
screen off q0 from q2 (Reichenbach 1956, 159-167). The screening-off or Markov condition will
turn out to be an essential part of our model. For as we will see later, it is by virtue of this
condition that we can provide a proof of convergence. We thereby show that the model, as well
as the abstract system of which it is a model, are consistent, even if the abstract system does
not itself satisfy the Markov system.

The Markov condition enables us to simplify (3) as follows:

P2(q0)
def
= P (q0|q2) = P (q0|q1)P (q1|q2) + P (q0|¬q1)P (¬q1|q2)

= v0v1 + w0(1− v1) . (4)

We conclude that, if the experimenter repeats the procedure of tossing a coin from her pile
many times (with replacement and randomization), the resulting relative frequency of heads
would be approximately equal to P2(q0), as given by (4). The approximation would get better
and better as the number of tosses increases — more carefully: the probability that the relative
number of heads will differ by less than any assigned ε > 0 from v0v1 + w0(1 − v1) will tend
to unity as the number of tosses tends to infinity. However, one should not think that P2(q0)
is merely a correction of P1(q0). It is rather that they refer to two different experiments. In
the first experiment it was certain that the experimenter took a coin from machine V0, whereas
in the second experiment it was certain that the supervisor took a coin from machine V1: as
a consequence it was no longer sure that the experimenter took a coin that had come from
V0. Instead of being only a correction, P2(q0) is the result of a longer, and more sophisticated
experiment than is P1(q0) .

So much for the description of the model of the first iteration of the regress, constrained by
the condition that the supervisor’s coin comes from machine V1, that is by the veridicality of
q2. In the next iteration, the supervisor receives instructions from an AI (artificial intelligence)
that simulates the working of yet another duo of machines, V2 and W2, which produce simulated
coins with biases v2 and w2, respectively. The supervisor makes a large pile of coins from his
machines V1 and W1; and he adjusts the relative number of coins that he takes from V1 to be
equal to the probability that a simulated coin from V2 would fall heads when tossed. That is to
say, the number of coins that he must add to the pile from machine V1 is equal to v2 multiplied
by the total number of coins removed from machines V1 and W1.

Let

q3 be the proposition “this simulated coin comes from simulated machine V2” .

If q3 is true, then the probability of q2 is equal to v2, that is to say P (q2|q3) = v2. Again,
screening off is essential here: q2 screens off q1 from q3. So we may write

P (q1|q3) = P (q1|q2 ∧ q3)P (q2|q3) + P (q1|¬q2 ∧ q3)P (¬q2|q3)

= P (q1|q2)P (q2|q3) + P (q1|¬q2)P (¬q2|q3)

= v1v2 + w1(1− v2) . (5)

This value of P (q1|q3) is handed down to the experimenter, and she reruns her experiment, but
with P (q1|q3) in place of P (q1|q2). Since q1 screens off q0 from q3 (and from all the higher qn
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for that matter), we calculate

P3(q0)
def
= P (q0|q3) = P (q0|q1 ∧ q3)P (q1|q3) + P (q0|¬q1 ∧ q3)P (¬q1|q3)

= P (q0|q1)P (q1|q3) + P (q0|¬q1)P (¬q1|q3)

= v0P (q1|q3) + w0[1− P (q1|q3)] , (6)

in which we are to replace P (q1|q3) by v1v2 +w1(1−v2), in accordance with Eq.(5). This yields

P3(q0)
def
= P (q0|q3) = w0 + (v0 − w0)w1 + (v0 − w0)(v1 − w1)v2 . (7)

The relative frequency of heads that the experimenter would observe will be approximately
equal to P3(q0), as given by (7) — with the usual probabilistic proviso. The above constitutes a
model of the second iteration of the regress, constrained by the condition that the AI’s simulated
coin comes from the simulated machine V2, that is by the veridicality of q3.

This procedure must be repeated ad infinitum. A subprogram simulates the working of yet
another duo of virtual machines, V3 and W3, which simulate the production of coins with biases
v3 and w3, and so on. At the nth step of the iteration one finds

Pn(q0)
def
= P (q0|qn) = w0 + (v0 − w0)w1 + (v0 − w0)(v1 − w1)w2 . . .

+(v0 − w0)(v1 − w1) . . . (vn−3 − wn−3)wn−2

+(v0 − w0)(v1 − w1) . . . (vn−2 − wn−2)vn−1 . (8)

In the appendix it is shown that, under a weak condition on the conditional probabilities, the
sequence P1(q0), P2(q0), P3(q0) . . . converges to a limit, P∞(q0), that is well-defined.5 Moreover,
under the same condition the last term in (8), namely (v0−w0)(v1−w1) . . . (vn−2−wn−2)vn−1,
tends to zero as n tends to infinity, so finally

P∞(q0) = w0 + (v0 − w0)w1 + (v0 − w0)(v1 − w1)w2 . . . , (9)

the infinite series being convergent.6

In this way we have designed a set of experiments that is well-defined in the sense that it
could in principle be performed to any finite number of steps, where the successive results for
the probability that the experimenter throws a head get closer and closer to a limiting value
that can be calculated. To be precise, for any ε > 0, and for any set of conditional probabilities
that satisfies the weak condition given in the appendix, one can calculate an integer, N , such
that |PN (q0) − P∞(q0)| < ε, and one could actually carry out the experiments to determine
PN (q0). That is, one can get as close to the limit of the infinite regress of probabilities as one
likes.

5The Chapman-Kolmogorov theorem ensures convergence in the homogeneous case (in which all the vn are
equal to one another, and all the wn are equal to one another). However, we are interested in the more general
inhomogeneous situation, and for that we provide a special proof. For a good overview of Markov chains, see
Gardiner 1983.

6Since we do not exclude the possibility that wn could be greater than vn, for some, or all n, it follows that
the series (9) may not be one of positive terms only. One might therefore be worried that P∞(q0) could be
zero; and this would raise the specter of an ill-defined conditional probability. A sufficient (but not a necessary)
condition to rule out this possibility is by requiring that neither v0 nor w0 vanishes. For by analogous reasoning
to the above, we find

P∞(q1) = w1 + (v1 − w1)w2 + (v1 − w1)(v2 − w2)w3 . . .

from which it follows that P∞(q0) = w0 + (v0 − w0)P∞(q1), and therefore that P∞(q0) lies within the interval
between v0 and w0. By imposing the strict inequalities 0 < vn < 1 and 0 < wn < 1, for all n, we similarly ensure
that none of the unconditional probabilities, P∞(qn) or P∞(¬qn), are zero, and therefore that all conditional
probabilities are well-defined (this being a consistency requirement).
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3 Abstract system of infinite-order probability

In this section we will set up an abstract system of equations for the determination of probabil-
ities of infinite order, for which we will use the symbol P∞. We shall give the basic equations
governing the regress for P∞(q0), the infinite-order unconditional probability of q0. At first
sight, it might seem that the regress for P∞(q0) can never get off the ground. After all, one
needs P∞(q1) to calculate P∞(q0), but to calculate P∞(q1) one needs P∞(q2), and so on. Hence
the question arises as to the consistency of the final, infinite expression for P∞(q0). The answer
to this question was however anticipated in the specification of the coin-making machines of
the preceding section. In that model there was no infinitely postponed calculation. Instead
we defined a sequence of probabilities, P1(q0), P2(q0), P3(q0), and so on, each one involving
a finite number of steps; and it was shown that the sequence has a limit. We have seen that
the screening-off conditions were essential in this procedure, and the coin-making scenario was
tailor-made to guarantee this Markov constraint. The consistency of the abstract system will
be underwritten when we show that the formula for P∞(q0) precisely matches the final formula
for the limit, P∞(q0), in the model of the previous section.

Let q1 be the proposition P 1(q0) = v0, which is Eq.(1) in Section 1. In the place of Eq.(2)
of Section 1 we write

P∞
(
q0|q1

)
= v0 . (10)

We write P∞, the infinite-order probability function, rather than P 2, because the whole infinite
regress stands behind the computation of the unconditional probability, P∞(q0), as we shall
shortly see. One cannot be sure whether q1 is true or not; P∞(q1) will in general lie somewhere
between 0 and 1. The rule of total probability yields

P∞(q0) = P∞(q0|q1)P∞(q1) + P∞(q0|¬q1)P∞(¬q1)

= v0P
∞(q1) + w0P

∞(¬q1)

= w0 + (v0 − w0)P∞(q1) , (11)

with use of Eq.(10), and where we have abbreviated the conditional probability P∞(q0|¬q1) by
the symbol w0.

To calculate P∞(q0) from Eq.(11), we evidently need, beside the conditional probabilities
v0 and w0, the unconditional probability P∞(q1). This is obtained by the analogous expression

P∞(q1) = P∞(q1|q2)P∞(q2) + P∞(q1|¬q2)P∞(¬q2)

= w1 + (v1 − w1)P∞(q2) , (12)

where q2 is the proposition P 1(q1) = v1, and P∞(q1|¬q2) has been designated by the symbol
w1.

Now substitute w1 + (v1 − w1)P∞(q2) for P∞(q1) in Eq.(11):

P∞(q0) = w0 + (v0 − w0)w1 + (v0 − w0)(v1 − w1)P∞(q2) . (13)

It should be clear now how to continue. At the nth step, namely

P∞(qn) = P∞(qn|qn+1)P∞(qn+1) + P∞(qn|¬qn+1)P∞(¬qn+1)

= wn + (vn − wn)P∞(qn+1) , (14)

we can eliminate P∞(qn) in favour of P∞(qn+1). The generalization of Eq.(13) may be written

P∞(q0) = ∆n + Γn P
∞(qn+1) , (15)
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where

Γn = (v0 − w0)(v1 − w1) . . . (vn − wn)

∆n = w0 + Γ0w1 + Γ1w2 + . . .+ Γn−1wn .

It is shown in the appendix that, if |vn − wn| tends less quickly to one than 1/n tends to
zero, then Γn tends to zero as n tends to infinity, with the result that Eq.(15) reduces to the
infinite series

P∞(q0) = ∆∞ = w0 + Γ0w1 + Γ1w2 + Γ2w3 . . . (16)

In the appendix it is also shown that this series is convergent, so that the infinite-order proba-
bility, P∞(q0), has been expressed as a function of the conditional probabilities alone. This is
precisely the same as the series (9) for the limit, P∞(q0), of the probabilities associated with
the coin-making machines of the previous section. The probability function P∞ is a function
of infinite order, in the sense that it involves an unending sequence of probabilities of probabil-
ities. The system of Section 2 provides a model of the equations of the present section, thereby
showing that the latter are consistent.

At this juncture, one question might be raised. Why could we not have set up the abstract
system of higher-order probabilities as a sequence of successive approximations, as we did for
the coins? The answer is that, in this section, we considered an abstract system, irrespective of
whether there is a Markov condition. This proved possible through the use of the unconditional
infinite-order probabilities, but the question of consistency was thereby left open. Precisely by
finding a model that has the Markov constraint built into its very structure were we able to
show the consistency of the abstract system. A model is after all a structure that makes all
sentences of a theory true: in our case this translates as a structure (the coin-making scenario
in Section 2) that validates all sentences of the abstract system (the equations in the present
section).

4 An example

In this section we will give a numerical example in order to explain how exactly the value of
P 1(q0) differs from the value of P∞(q0). The example serves to show that the equations of
Section 3 work out properly in one case: it illustrates, as it were, how one sentence of the
system is true, whereas the model in Section 2 amounted to a demonstration that all sentences
are true.

An explicit example of an infinite set of conditional probabilities that leads to a well-defined
P∞(q0) is the following:

vn = 1− 1
n+2

+ 1
n+3

wn = 1
n+3

, (17)

so that
vn − wn = 1− 1

n+2
= n+1

n+2
.

‘Telescoping’ occurs, and we find

Γn = 1
2
× 2

3
× . . .× n

n+1
× n+1

n+2
= 1

n+2

Γn−1wn = 1
n+1
× 1

n+3
= 1

2
( 1
n+1
− 1

n+3
)

∆n = 1
3

+ 1
2
( 1
2
− 1

4
) + 1

2
( 1
3
− 1

5
) + . . . 1

2
( 1
n+1
− 1

n+3
)

= 1
3

+ 1
2

(
1
2

+ 1
3
− 1

n+2
− 1

n+3

)
,

so Eq.(15) becomes

P∞(q0) = 1
3

+ 1
2

(
1
2

+ 1
3
− 1

n+2
− 1

n+3

)
+ 1

n+2
P∞(qn+1) . (18)
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On letting n tend to infinity we are left with

P∞(q0) = 1
3

+ 1
2

( 1
2

+ 1
3
) = 3

4
. (19)

This is to be compared with

P 1(q0) = v0 = 1− 1
2

+ 1
3

= 5
6
. (20)

Thus the infinite-order probability of q0, as given by (16), is perfectly well-defined, and it is
different from the first-order probability.

5 Imprecise first-order probabilities

In the foregoing sections it was assumed that the first-order unconditional probabilities were
precise numbers, resulting from conditional probabilities that were likewise precise. More re-
alistically, however, these first-order probabilities might well be specified imprecisely as merely
lying within some specified intervals (cf. Pearl 1988). After all, it might be objected that a pre-
cise specification of the conditional probabilities would be a travesty of what reasonably could
be expected. For precise conditional probabilities lead to precisely determined unconditional
probabilities; and such precision seems alien to the probabilistic enterprise.

In order to meet this objection we will replace the points of the previous sections by intervals.
More particularly, we will change the point definitions of the qn along the following lines.
Suppose again that q0 is some proposition, the truth value of which is in doubt; but now let

q1 be the proposition P 1(q0) ∈ [v0 − ε0, v0 + ε0]

q2 be the proposition P 1(q1) ∈ [v1 − ε1, v1 + ε1]

q3 be the proposition P 1(q2) ∈ [v2 − ε2, v2 + ε2] ,

and so on. The restrictions εn < vn < 1−εn are imposed, thus guaranteeing that all the P 1(qn)
lie strictly within the unit interval. The task is once more to determine P∞(q0). In the first
instance we think that q0 has a certain probability lying between v0 − ε0 and v0 + ε0; and as
before we update our estimate according to the rule of total probability:

P∞(q0) = P∞(q0|q1)P∞(q1) + P∞(q0|¬q1)P∞(¬q1) .

In full this would read

P∞(q0) = P∞(q0|P 1(q0) ∈ [v0 − ε0, v0 + ε0])P∞(P 1(q0) ∈ [v0 − ε0, v0 + ε0])

+P∞(q0|P 1(q0) /∈ [v0 − ε0, v0 + ε0])P∞(P 1(q0) /∈ [v0 − ε0, v0 + ε0]) .

In the new situation

P∞(q0|q1) = P∞(q0|P 1(q0) ∈ [v0 − ε0, v0 + ε0]) = v0 + η0ε0 ,

where η0 is some undetermined number between −1 and +1.
Similar considerations apply for further steps in the regress, the nth one being

P∞(qn) = (vn + ηnεn)P∞(qn+1) + wnP
∞(¬qn+1) , (21)

where, as before, we write wn for the conditional probability P∞(qn|¬qn+1). For fixed values
of the vn, ηn, εn and wn, and on condition that both |vn + εn − wn| and |vn − εn − wn| tend
less quickly to one than 1/n tends to zero, the iterative relation (21) can be solved to yield a
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well-defined solution for P∞(q0). The two extreme values within which P∞(q0) must lie are
obtained by allowing all the ηn to vary independently between −1 and +1.

To get a feeling for how this works, consider the uniform situation7 in which the vn, εn and
wn are the same for all n, so we may drop the suffix on these variables (but not on ηn, which is
random). For any fixed ηn ∈ [−1, 1], a convergent series like Eq.(16), but with v+ ηnε in place
of vn, yields the following well-defined value for the infinite-order probability:

P∞(q0) = w
[
1+(v−w+η0ε)+(v−w+η0ε)(v−w+η1ε)+(v−w+η0ε)(v−w+η1ε)(v−w+η2ε)+. . .

]
If 0 ≤ v − w + ε < 1, we find that this probability must satisfy

P∞(q0) ≤ w
[
1 + (v − w + ε) + (v − w + ε)(v − w + ε) + . . .

]
=

w

1− v + w − ε
. (22)

If 0 ≤ v − w − ε < 1, we have further

P∞(q0) ≥ w
[
1 + (v − w − ε) + (v − w − ε)(v − w − ε) + . . .

]
=

w

1− v + w + ε
. (23)

So, under the restriction ε ≤ v − w < 1− ε , we find

w

1− v + w + ε
≤ P∞(q0) ≤ w

1− v + w − ε
. (24)

In this way a constraint on the conditional probabilities has led to a constraint on the infinite-
order probability, P∞(q0). If the above restriction is not satisfied, and in the more general,
nonuniform case that the vn, εn and wn are not the same for all n, the calculation of the bounds
on P∞(q0) is more laborious, but it can still be carried out.

We propose in the following section to extend our model of the coin-making machines to cover
this case of imprecisely specified conditional probabilities, the purpose being to demonstrate
the consistency of the equations of this section.

6 A model for imprecise first-order probabilities

Suppose once more that there are two machines, each of which produces trick coins. Machine
V0 now makes coins that have variable bias, in such a way that any bias between v0 − ε0 and
v0 + ε0 may be produced. Machine W0 still makes coins each of which has bias w0, where
however w0 does not lie in the interval [v0 − ε0, v0 + ε0]. Our experimenter takes many coins
from each machine, as before, and mixes them. She picks one coin at random from the heap
and tosses it. As before, q0 and q1 are formally defined as in Section 2:

q0 is the proposition “this coin will land heads”

q1 is the proposition “this coin comes from machine V0” ;

but, since machine V0 has now different properties,

P
(
“this coin will land heads”|“this coin comes from machine V0”

)
will now be equivalent to P1(q0)

def
= P

(
q0|P (q0) ∈ [v0 − ε0, v0 + ε0]

)
= v0 + η0ε0, with η0 an

undetermined number in the interval [−1, 1].
It should be clear enough now how to proceed in the construction of a model that matches

the equations of the previous section. Our experimenter receives her instructions about the

7In the Markov chain language, this would be called a homogeneous chain — see footnote 4.
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relative numbers of coins to take from machines V0 and W0 from her supervisor on the basis of
a coin that he takes from machine V1. This leads to

P2(q0)
def
= P (q0|q2) = (v0 + η0ε0)P (q1|q2) + w0P (¬q1|q2) ,

where q2 is once more the proposition

q2 is the proposition “the coin of the supervisor comes from machine V1” ;

and where again use has been made of the fact that q1 screens off q0 from q2.
The AI prints out relative numbers of coins for the supervisor from simulated machines that

produce biases between v2− ε2 and v2 + ε2, and w2, respectively, and so on and so forth. As in
the previous section, the whole regress has to be repeated many times: each run corresponds
to the same values of vn, wn and εn, but the stochastic variables ηn will be different for each
run. The extreme values correspond to the lower and upper bounds on the values of Pn(q0)
that would be obtained by our experimenter, were she to repeat the whole set of experiments
many times (with the same values of vn, εn and wn, but not ηn, over which she has no control).

We have thereby shown the consistency of the equations of Section 5, since the machines
that we have just described exactly mimic them.

7 Conclusion

Although several philosophers have argued that second-order probabilities are consistent, serious
doubts have been raised concerning probabilities of infinite order. At first sight it would seem
that the idea of a probability of a probability, ad infinitum, is simply incoherent — not merely
from a practical, but also from a theoretical point of view. The reason for this pessimism is not
difficult to discern. For how could such an infinite-order probability ever get off the ground?
We need a proof of convergence in order to show that an infinite sequence of probabilities of
probabilities is consistent: in the absence of such a proof, scepticism is warranted.

In the present paper we have tackled this difficulty by clearing two hurdles. First we have
described a scenario in which, thanks to the Markov condition, convergence could be demon-
strated. Second we showed that this scenario is a genuine model for an abstract system of
infinite-order probabilities, in the sense that it is a structure that makes the sentences of this
system true. The abstract system itself does not need to satisfy a Markov condition, it is
enough that the model, which does satisfy the condition, reproduces the final expression for the
infinite-order probability.

The demonstrations that we have given apply in the first place to the standard situation in
which the probabilities in question are given as specific numbers. However, we also sketched
how to extend these demonstrations to the case in which the probabilities are only specified to
lie in certain intervals.
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Appendix

Suppose that vn ∈ (0, 1) and wn ∈ (0, 1), for all integers n, and further suppose that for some
number A > 1, and some integer N > A,

1− |vn − wn| ≥
A

n
(25)
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for all n > N . So either |vn − wn| remains less than some number less than one, or it tends to
one, but less quickly than 1

n tends to zero, as n tends to infinity. We may rewrite (25) in the
form

|vn − wn| ≤ 1− A

n
. (26)

This constraint is very weak: it only excludes cases of what we call quasi-bi-implication.8

In terms of the quantities

Γn = (v0 − w0)(v1 − w1) . . . (vn − wn)

∆n = w0 + Γ0w1 + Γ1w2 . . .+ Γn−1wn ,

we shall prove

(i) Γ∞ =

∞∏
n=0

(vn − wn) = 0 ,

(ii) ∆∞ =

∞∑
n=0

Γn−1wn <∞ ,

with the understanding that Γ−1 is to be set equal to 1.

Proof of (i):
From inequality (26) we see that

− log |vn − wn| ≥ − log

(
1− A

n

)
=
A

n
+

1

2

(
A

n

)2

+
1

3

(
A

n

)3

+ . . . >
A

n
, (27)

for all n > N > A. Therefore, for any integer M greater than N ,

− log

M∏
n=N

|vn − wn| = −
M∑

n=N

log |vn − wn|

> A

M∑
n=N

1

n
,

where (27) was used to obtain the last line. Since the last sum tends to +∞ as M tends to
infinity, it follows that log

∏∞
n=N |vn − wn| = −∞, and hence that

∏∞
n=N |vn − wn| = 0. This

implies that Γ∞ =
∏∞

n=0(vn − wn) = 0. Note that the restriction A > 1 is not needed for this
part of the proof.

Proof of (ii):
We shall show that the series ∆∞ is absolutely convergent, i.e., that the series

∑∞
n=0 |Γn−1wn|

is convergent. Since |wn| ≤ 1, it follows that
∑∞

n=0 |Γn−1wn| ≤
∑∞

n=0 |Γn−1| , so it will suffice to
show that the last series is convergent. The ratio of successive terms in this last series satisfies

|Γn|
|Γn−1|

= |vn − wn| ≤ 1− A

n
,

for all n > N > A > 1, so, by Raabe’s test9,
∑∞

n=0 |Γn−1| is convergent, thereby demonstrating
the absolute convergence of

∑∞
n=0 Γn−1wn, that is the finitude of ∆∞.

8If |vn − wn| were equal to 1, then we would have either vn = 1 and wn = 0, or vn = 0 and wn = 1. In the
former case the relation between qn and qn+1 in Eq.(14) would be one of bi-implication; in the latter case the
relation between qn and ¬qn+1 would be one of bi-implication. The constraint (26) excludes situations in which
the relation between qn and qn+1 approaches that of bi-implication very rapidly as n tends to infinity.

9See Hyslop 1954, 48.

12



References

De Finetti, Bruno. 1977. Probabilities of Probabilities: A Real Problem or a Misunderstand-
ing? In: A. Aykac and C. Brumet (eds), New Developments in the Application of Bayesian
Methods. Amsterdam: North Holland, 1–10.

Domotor, Zoltan. 1981. Higher Order Probabilities. Philosophical Studies 40, 31–46.

Gaifmann, Haim. 1988. A Theory of Higher Order Probabilities. In: B. Skyrms and W.L.
Harper (eds.), Causation, Chance and Credence. London: Kluwer, 191–219.

Gardiner, Crispin. 1983. Handbook of Stochastic Methods : For Physics, Chemistry and the
Natural Sciences. Berlin: Springer Series in Synergetics ; vol. 13.

Hyslop, James M. 1942/1954. Infinite Series. Edinburgh: Oliver and Boyd. Fifth edition.

Hume, David. 1738/1961. A Treatise of Human Nature, Volume 1. London: J.M. Dent.

Kyburg, Henry E. 1988. Higher Order Probabilities and Intervals. International Journal of
Approximate Reasoning 2, 195–209.

Lehrer, K., 1981. The Evaluation of Method: A Hierarchy of Probabilities among Probabili-
ties. Grazer Philosophische Studien 12-13, 131–141.

Lewis, D., 1980. A Subjectivist’s Guide to Objective Chance. In: R.C. Jeffrey (ed.), Studies
in Inductive Logic and Probability. Vol. 2. Berkeley: University of California Press, 263–293.

Miller, David. 1966. A Paradox of Information. British Journal for the Philosophy of Science
17, 59–61.

Pearl, Judea. 1987. Do We Need Higher Order Probabilities and, If So, What do They Mean?
Proceedings AAAI Workshop on Uncertainty in AI, Seattle, Washington, 170–179.

Pearl, Judea. 1988. On Probability Intervals. International Journal of Aproximate Reasoning
2, 211–216.

Ramsey, Frank P. 1926. Truth and Probability. In Foundations : essays in philosophy, logic,
mathematics and economics. Ed. D.H. Mellor. London: Routledge and Kegan Paul, 1978,
58-100.

Reichenbach, Hans. 1956. The Direction of Time. Berkeley: University of California Press.

Rescher, Nicholas. 2010. Infinite Regress. The Theory and History of Varieties of Change.
New Brunswick, NJ: Transaction.

Russell, Bertrand. 1948/1966. Human Knowledge. Its Scope and Limits. London: George
Allen and Unwin.

Savage, Leonard J. 1954/1972 The Foundations of Statistics. New York: Dover. Second
revised edition.

Skyrms, Brian. 1980. Higher Order Degrees of Belief. In D.H. Mellor (ed.), Prospects for
Pragmatism: Essays in Memory of F.P. Ramsey. Cambridge: Cambridge University Press,
109–137.

Uchii, Soshichi. 1973. Higher Order Probabilities and Coherence. Philosophy of Science 40,
no. 3, 373–381.

13


