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Abstract 

Like many discussions on the pros and cons of epistemic foundationalism, the debate 
between C.I. Lewis and H. Reichenbach dealt with three concerns: the existence of 
basic beliefs, their nature, and the way in which beliefs are related. In this paper we 
concentrate on the third matter, especially on Lewis’s assertion that a probability 
relation must depend on something that is certain, and Reichenbach’s claim that 
certainty is never needed. We note that Lewis’s assertion is prima facie ambiguous, 
but argue that this ambiguity is only apparent if probability theory is viewed within a 
modal logic. Although there are empirical situations where Reichenbach is right, and 
others where Lewis’s reasoning seems to be more appropriate, it will become clear 
that Reichenbach’s stance is the generic one. This follows simply from the fact that, if 
P(E|G) > 0 and P(E|¬G) > 0, then P(E) > 0. We conclude that this constitutes a threat 
to epistemic foundationalism.  
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1. Historical introduction 
 

Epistemic foundationalism is making a comeback. It has been close to death’s door 
ever since Wilfred Sellars’ assault in 1956, but now it is steadily reviving, gaining 
support even from its erstwhile enemies. Naturally, its face has changed. It is no longer 
that of the Cartesian rationalist or the Schlick-minded positivist, but it nevertheless sings 
the song of the given with conviction, and moreover in a variety of ways (see Pryor, 
2001, Triplett, 1990, for overviews.) 

This development within epistemology makes it the more interesting to re-examine a 
discussion that took place fifty years ago between Clarence Irving Lewis and Hans 
Reichenbach. The debate was carried out publicly, in journals and at conferences, as well 
as privately, in letters and in conversations. It reached its climax at the forty-eighth 
meeting of the Eastern Division of the American Philosophical Association at Bryn Mawr 
College, December 29, 1951. There Reichenbach and Lewis, joined by Nelson Goodman, 
read papers on ‘The Experiential Element in Knowledge’. These papers were 
subsequently published in the The Philosophical Review of April 1952. The debate itself 
came to a premature end with the sudden death of Reichenbach one year later, in April 
1953. Neither of the two had succeeded in convincing the other and the matter has 
remained unsettled to the present day. 

Like so many debates on the pros and cons of foundationalism, the debate between 
Lewis and Reichenbach deals with three questions: 

1. ‘Do basic beliefs exist?’ 

 1

mailto:D.Atkinson@rug.nl
mailto:Jeanne.Peijnenburg@rug.nl


2. ‘If yes, what is their nature?’ 
3. ‘How do non-basic beliefs depend on basic beliefs, or more generally: What are 

the mutual relations between beliefs?’ 
 

Contemporary discussions of foundationalism often focus on the first two questions 
(see for example Bonjour, 2004). To these questions Reichenbach answers that basic 
beliefs do not exist, whereas Lewis, being a representative of so-called ‘strong 
foundationalism’, does think there are basic beliefs, namely in the form of reports about 
what one sees, hears, smells, tastes or feels. In the present paper we are however 
exclusively interested in the answers to the third question. 

Both Lewis and Reichenbach claim that the significant relations between beliefs are 
probability relations, but they disagree as to the consequences and the meaning of this 
claim. How important this disagreement must have been to both appears from the twenty-
five letters that they exchanged between August 1930 and December 1951. Of the 
seventeen letters that were written between 1930 and 1939, eight are about the meaning 
of probability relations, and seven deal with attempts to get Reichenbach’s German book 
on probability theory translated into English. The eight letters that Lewis and 
Reichenbach moreover exchanged in 1951 are all about probability and the imminent 
meeting at Bryn Mawr.1 

Already in his Mind and the World Order of 1929, Lewis had claimed that statements 
of the form ‘x is probable’ only make sense if one assumes there to be a y that is certain 
(where x and y may be events, statements or beliefs). He writes for example: 
 

the immediate premises are, very likely, themselves only probable, and perhaps in 
turn based upon premises only probable. Unless this backward-leading chain comes 
to rest finally in certainty, no probability-judgment can be valid at all. (Lewis, 1929, 
pp. 328-329) 
 
On the basis of what Lewis writes in a letter of August 26, 1930, we can infer that 

Reichenbach had questioned this claim one month earlier (see Footnote 1). Obviously, 
Lewis was not convinced by Reichenbach’s remarks, for in his An Analysis of Knowledge 
and Valuation of 1946 he stresses the point again: 
 

If anything is to be probable, then something must be certain. The data which 
themselves support a genuine probability, must themselves be certainties. (Lewis, 
1946, p.186)  

 
At the meeting in Bryn Mawr, Lewis is still of the same opinion: 
 
The supposition that the probability of anything whatever always depends on 
something else which is only probable itself, is flatly incompatible with the 
assignment of any probability at all. (Lewis, 1952, p.173)  

                                                 
1 There have certainly been more letters, now apparently lost, for on August 26, 1930, Lewis replies to a 
letter that Reichenbach sent him on July 29th of that year. The University of Pittsburgh, which keeps the 
Lewis-Reichenbach correspondence, has however only twenty-five letters, and we are most grateful to Mr. 
L. Lugar and Ms. B. Arden for sending us copies. 
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Reichenbach denies this view – in letters, in Chapter 8 of his Wahrscheinlichkeitslehre, 
and finally at the Bryn Mawr conference. For him, Lewis’s claim that probabilities 
presuppose certainties (cases where the probability value is one) is “just one of those 
fallacies in which probability theory is so rich” (Reichenbach, 1952, p.152). In an attempt 
to understand the root of the fallacy he writes: 
 

We argue: if events are merely probable, the statement about their probability must be 
certain, because ... Because of what? I think there is tacitly a conception involved 
according to which knowledge is to be identified with certainty, and probable 
knowledge appears tolerable only if it is embedded in a framework of certainty. This 
is a remnant of rationalism. (Reichenbach, 1952, p.152) 

 
Lewis, in turn, rejects the accusation of being an old fashioned rationalist and replies 

that, on the contrary, his position is an attempt to save empiricism from “a modernized 
coherence theory” like that of his opponent (Lewis, 1952, p.171, p.173). 

The interesting thing about this disagreement is that both protagonists have intuitions 
that are sound. As we will show, there are cases that support Reichenbach and there are 
also cases where Lewis’s position seems to be appropriate. This fact would surely have 
surprised both, for Lewis held that Reichenbach’s position was inconsistent, while 
Reichenbach believed that only trivial examples could be instances of Lewis’s claim. 

In the next section, we will indicate that Lewis’s position obscures an ambiguity that 
we will remove by using results of Halpern and of Meyer and van den Hoek. In Sect. 3 
we explain how Bertrand Russell supported Lewis, against Reichenbach, and how the 
latter exposed an error in Russell’s use of the probability calculus. In Sect. 4 we apply the 
corrected analysis to two empirical situations, relegating the general treatment to the 
Appendix. By proving that the unconditional probability P(E) is positive if two 
conditional probabilities, P(E|G) and P(E|¬G), are themselves positive, we demonstrate 
that Reichenbach’s position is the generic one, that of Lewis being a special case. 
 
 
2. Ambiguity in certainty 
 

Nowhere in the correspondence between Lewis and Reichenbach is there any 
discussion on how probability should be interpreted. This is strange, since Reichenbach 
was a founder of the frequency interpretation2, and Lewis, being a co-founder of modal 
logic, must have had subjectivistic proclivities. Even so, their major point of dissension is 
not at all tied to a specific interpretation: Lewis’s assertion and Reichenbach’s denial that 
probabilities require certainties can be equally expressed in an objective or a subjective 
language. For the purpose of this article, however, we shall generally express ourselves in 
subjectivistic terms. 

Lewis’s claim that probability judgements only make sense if they are finally rooted 
in certainties might look ambiguous at first sight. It could mean, for example, ‘The 
probability of x given y is 0.3, and moreover y is certain’. But it might also be construed 
                                                 
2 In 1915, long before Von Mises’ works appeared, Reichenbach introduced his own version of a frequency 
interpretation—cf. Reichenbach and Cohen 1978, Vol. II, p. 410. 
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as meaning that the sentence ‘p(x) = 0.3’ is certain and hence that p(p(x) = 0.3) = 1. 
Lewis phrases his claim mostly in terms of the second, but sometimes in terms of the first 
meaning. This might indicate that he suspected the two meanings to be equivalent, and 
thus the ambiguity to be only apparent. Lewis never proves the equivalence between the 
two meanings, but it is not difficult to construct a proof on his behalf. In the first place, if 
y is certain, then ‘p(x) = p(x|y) = 0.3’ is true, and thus p(p(x) = 0.3) = 1. In the other 
direction, the second-order probability assignment p(p(x) = 0.3) = 1 is equivalent to p(x) 
= 0.3, and hence to p(x|y) = 0.3 for any y such that p(y)=1. 

A more elaborate version of this proof can be obtained within the framework of 
modal logic, in particular of epistemic dynamic or KD logic.3 Joseph Y. Halpern has 
explained how modal logic can be used in relation to belief, in the language of probability 
theory (Halpern, 1991, theorem 4.1). Indeed, probability theory corresponds to the system 
KD45, which according to Halpern has been identified as “perhaps the most appropriate 
[logic] for belief, [providing] a complete axiomatization for reasoning about certainty” 
(Halpern, 1991, p. 1). As Meyer and van der Hoek have shown, in KD45 every formula is 
equivalent to a formula without nestings of modal operators (Meyer and van der Hoek, 
1995, Remark 1.7.6.4.2). The following two implications, generalizations of axioms 4 
and 5 from KD45, are valid for all events x and all probabilities α : 

 
p(x) = α  → p(p(x) = α ) = 1 
p(x) ≠ α  → p(p(x) ≠ α ) = 1 

 
Using these results, we can show that p(p(x) = 0.3) =1 is equivalent to p(x) = 0.3. From 
right to left this is simply an instantiation of the first implication. From left to right the 
detailed argument runs as follows: by using Kolmogorov’s axioms, we see easily that 
p(p(x) = 0.3) = 1 → p(p(x) ≠ 0.3) ≠ 1. Moreover, the instantiation of the second 
implication, p(x) ≠ 0.3 →  p(p(x) ≠ 0.3) = 1, implies p(p(x) ≠ 0.3) ≠ 1 → p(x) = 0.3 by 
contraposition. Thus p(p(x) = 0.3) = 1 → p(x) = 0.3.4  
 
 
3. Lewis, Reichenbach and Russell 
 

As Reichenbach remarks, and as Lewis acknowledges, a more detailed version of 
Lewis’s argument was spelled out by Bertrand Russell in his Human Knowledge of 1948. 
According to Russell, any merely probabilistic statement (let us say a statement with 
probability p < 1) must have a ground, i.e. it must be conditioned by a further statement. 
This further statement may be certain or it may itself be probabilistic. In the first case, we 
have arrived at a firm basis; in the latter case (if this further statement has probability 
q1<1), it must in turn be conditioned by a further statement, and if this too is probabilistic 
(let us say with probability q2<1), then it also must be conditioned, etc. Can this process 
go on for ever, never reaching firm ground? Russell’s answer is that it cannot. For the 

                                                 
3 We thank Barteld Kooi for pointing this out and for helping us to construct the extended proof. 
4 It may seem awkward to assign probabilities to assignments of probabilities, but from a logical point of 
view there is nothing untoward. 
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probability of the original statement in this case is given by the product pq1q2 ... ad 
infinitum. And since all the factors in the product are less than one, the outcome “may be 
expected to be zero” (Russell, 1948, p.434). In other words, if an uncertain statement is 
supported by an infinite sequence of further uncertain statements, the unconditional 
probability of the original statement has ineluctably dwindled away to nothing. 

Clearly, if Russell’s argument were valid, it would form a solid strut for Lewis’s 
position. But is it valid? The argument of Russell hinges on two assumptions. First, if a 
statement with probability p is conditioned by a statement with probability q1, then the 
probability of the original statement is given by the product pq1. Second, if the product 
consists of an infinite number of factors, all less than unity, then it converges to zero. 
Reichenbach, in his rebuttal of Russell’s argument, only discusses the first assumption. 
Before proceeding with Reichenbach’s reaction to this first assumption, let us say a few 
words about the second one. 

Contrary to what Russell intimates, it is not true that, if all factors are less than one, 
an infinite product would necessarily converge to zero; in symbols: ∀n: qn<1 does not 
imply ∏ 

n qn = 0. Such a product can be non-zero. A necessary – although by no means 
sufficient – condition for this to happen is that the factors qn tend to 1 as n tends to 
infinity. Of course, a mathematically erudite philosopher like Russell must have known  
that an infinite product of factors, all smaller than one, can converge to a number greater 
than zero.5 This may well have been his reason for writing that the outcome “may be 
expected to be zero”, rather than that it “must be zero”, which would have been incorrect. 
Why then does he deliberately give the mistaken impression that the product would be 
zero? We can only guess at the answer. Perhaps he thought these technical subtleties 
would be misplaced in such a book as Human Knowledge, aimed as it was at a non-
specialist market. Or perhaps he judged them to be simply irrelevant to the main point. 

However this may be, Russell’s first assumption is even more puzzling. As 
Reichenbach is quick to point out, it is simply not true that the probability in question is 
given by pq1. If a statement has probability p on condition that a second statement is true, 
but probability p' when that second statement is false, then the probability of the first 
statement is given by pq1 + p' (1 − q1), where q1 is the probability that the second 
statement is true. In modern notation, the unconditional probability that E occurs is  

 
P(E) = P(E|G1) P(G1) + P(E|¬G1) P(¬G1),   (1) 

 
where the unconditional probability that the ground, G1, occurs is q1 = P(G1). The  
conditional probabilities that E occurs when G1 respectively occurs and does not occur 
are p = P(E|G1) and p' = P(E|¬G1)6. If G1 itself is conditioned by the ground G2, and so 
                                                 
5 An example of such convergence is qn = 2-w, where w = 2-n, for which ∏ 

n qn = ½.  In general, given that   
0 < qn < 1, we may write ∏ 

n qn = exp [ − ∑n | log qn | ], the product and sum being from n = 1 to n = ∞ , so 
the convergence of the sum is the necessary and sufficient condition that the infinite product of the qn be 
non-zero. 
6 Jeffrey conditionalization (Jeffrey, 1965, Chap. 11) amounts to the use of Eq. (1), which is itself a 
consequence of the probability calculus, under changing subjective estimates for P(G1), in which the 
conditional probabilities P(E|G1) and P(E|¬G1) do not change. Jeffrey was primarily interested in the effect 
of changing subjective estimates for P(G1) on the basis of new information that replaces old information: 
we discuss Jeffrey’s position more fully in our “Probability all the way up (or no probability at all)”, 
forthcoming in Synthese. 
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on, the formula must be iterated, and this produces a much more complicated regression 
than the simple product that Russell had envisaged. There are correspondingly more 
elaborate ways of avoiding the conclusion that the unconditional probability of E must 
vanish if the chain of conditional probabilities is unending.7 

Lewis appears however not to be impressed by Reichenbach’s amendment to 
Russell’s simple product of probabilities. Apparently failing to see the relevance of the 
second term in Eq.(1), Lewis states flatly: 
 

I disbelieve that this will save his point. For that, I think he must prove that, where 
any regress of probability-values is involved, the progressively qualified fraction 
measuring the probability of the quaesitum will converge to some determinable value 
other than zero; and I question whether such a proof can be given (Lewis, 1952, 
p.172). 
 
In fact it is not difficult to meet Lewis’s challenge and prove indeed that a 

“progressively qualified fraction measuring the probability of the quaesitum” can  
converge to some value other than zero. In the next section we give a simple example of a 
“regress of probability-values” yielding a number that is not zero. The regression takes 
the form of a sum consisting in an infinite number of terms. In addition, we also 
formulate another example, one that is more in line with Lewis’s intuitions. Both 
examples are couched in the language of statistics. Readers associating this with an 
objective interpretation of probability can appeal to Miller’s Principle (Halpern, 1991, p. 
14), in the form usually called the Principal Principle, in order to make the connection 
between objective chance and the subjective interpretation to which we adhere in this 
paper. 
 
 
4. Two medical examples 
 

Let P(E) in Eq.(1) stand for the probability that a man will suffer from prostatic 
cancer, and α = P(E|G1) for the conditional probability that he will have the complaint, 
given that his father did so. Since not all prostatic cancer patients have fathers with a 
similar affliction, β = P(E|¬G1) is not zero. On the other hand, a man is more likely to 
contract prostatic cancer if his father had it than if he did not. Thus α > β  > 0, and 
empirical values of α and β  have been estimated from the study of large populations. We 
may rewrite Eq.(1) as  
 

P(E) = α P(G1) + β [1 − P(G1)] = β +[α −β ] P(G1) . 
 
P(G1) is the probability that the father had prostatic cancer, and of course this probability 
can be in turn conditioned by the fact that his father did, or did not similarly suffer. Thus 
 
                                                 
7 Reichenbach 1952. Reichenbach stresses the same point in his letter to Russell, written in 1949 and 
published in Reichenbach and Cohen 1978, Volume II, pp. 405-411. Wesley Salmon, who was 
Reichenbach’s student at the time, remembers having been taken through Russell’s argument in 
Reichenbach’s class (Salmon, 1978, p. 73). 
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P(G1) = β +[α −β ] P(G2), 
 
where P(G2) is the probability that the man’s paternal grandfather contracted prostatic 
cancer. Evidently this “regress of probability-values”, to use Lewis’s words, can be 
continued ad infinitum, yielding 
 
 P(E) = β +[α − β ] [β + [α − β ][β + ...]] 
 = β +β [α − β ] + β [α − β ]2 + ... 
 = β ∑n [α − β ]n, 
 
the sum being from n = 0 to n = ∞. Since 0 < α −β  < 1, the geometric series is 
convergent, and its sum yields 
 
 P(E) = β / [1 −α +β ]. 
 
This is certainly non-zero, for example if α = 3/4 and β = 3/8, we compute P(E) = 3/5. We 
conclude that Lewis’s ‘disbelief’ is rather shallow. 

To summarize, the question ‘Can a probability statement make sense without 
presupposing a certainty?’ is answered by Lewis, with support from Russell, in the 
following way: ‘No, it cannot. For if it could, this would necessarily lead to an infinite 
product, and the probability would be zero.’ We have shown that Lewis’s answer is 
incorrect by giving an example in which the iteration produces an infinite sum of 
products that yields a probability different from zero. 

Nevertheless, there is a core of truth in Lewis’s intuition. For there is a scenario to 
which Lewis’s reasoning applies. Rather than the example given above, in which P(E) is 
equal to the sum of products of probabilities, consider cases in which P(E) is a single 
product of factors, each less than one. This scenario is perhaps somewhat exceptional, but 
it does show that an infinite iteration can lead to literally nothing, and hence must come 
to a stop in order to make sense. In such a case, one could reasonably claim that Lewis’s 
intuition is sound. 

An example in this class is furnished by a genetic condition that can only be inherited 
from a mother who carries the gene in question. It is believed that some mitochondrial 
disorders are of this kind. Suppose the conditional probability that a girl has the gene, 
given that her mother carries it, is p = P(E|G1). Then the unconditional probability that 
the child has the gene is P(E) = pP(G1), where P(G1) is the probability that the mother 
carries the gene. This follows from the fact that P(¬G1) = 0, i.e. it is impossible for the 
girl to have the gene if her mother does not. Also P(G1) = pP(G2), where P(G2), is the 
probability that the maternal grandmother carried the gene. Iterating this procedure, we 
find  

P(E) = pn P(Gn), 
 

where P(Gn) is the probability that the great-great-grandmother in the nth generation on 
the mother’s side carried the gene. Since pn goes to zero as n tends to infinity, we have 
here indeed a case of the sort for which Russell’s argument, and Lewis’s intuition, are 
relevant. The only way to prevent P(E) = 0 is to suppose that there exists an n such that 
the nth great-great-grandmother had the gene, not on the basis of a probability argument, 
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but for some reason implying the breakdown, in that generation, of the rule that the gene 
can only be inherited. Such a reason might be, for example, the occurrence of a mutation. 
Since P(E) is known to be non-zero, it must be true that the girl had a female ancestor 
who acquired the gene otherwise than through inheritance. This certainty of non-
inheritance in some generation may be taken to be an example of what Lewis had in mind 
when he claimed that a chain of probabilities must be supported by a certain ground. On 
the other hand, since there must have been a generation in which inheritance of the gene 
did not take place, presumably the probability of a woman’s having the gene in any 
generation, when her mother lacked it, must after all be nonzero. In this way, 
Reichenbach could expropriate this example too as grist to his mill. 

The situation in which P(E) is forced to be zero, unless there is a certain ground, can 
take place, but only if two very special requirements are fulfilled. First, for every n, the 
conditional probability that the ground, Gn , occurs if its ground, Gn+1, does not occur, 
must be zero. Second, the special cases given by ∀n: qn < 1 but ∏n qn ≠ 0 (see our 
discussion of Russell’s second assumption in the previous section) must be excluded. In 
all other cases, the contention of Reichenbach that no certain ground is needed to allow 
P(E) to be non-zero is correct. 

The two examples that we have described above really do occur in the empirical 
world. That makes them more appealing than the examples in much of Reichenbach’s 
writing, for these are seldom more than purely mathematical possibilities. More 
importantly, the example of the men suffering from prostatic cancer helps us to 
appreciate what the essential point in Reichenbach’s rectification of Russell’s error is 
(although it is not clear whether Reichenbach himself thought of the matter in this way). 
For if neither P(E|G1) nor P(E|¬G1) is zero, then P(E) cannot be zero either, whatever the 
value of P(G1) is. This follows directly from Eq.(1), for either P(G1) vanishes, or it does 
not. If P(G1) = 0, then P(¬G1) = 1, and therefore P(E) = P(E|¬G1) > 0. If P(G1) ≠ 0 , then 
P(E) ≥ P(E|G1) P(G1) > 0. Hence P(E) ≠ 0 is a necessary consequence of the non-
vanishing of P(E|G1) and P(E|¬G1), and no regress of probabilities is needed to reach this 
conclusion. More generally, if P(E|¬G1) is zero, a regress must be started, but it will stop 
as soon as a further ground is found for which the probabilities conditioned by both the 
occurrence and the absence of its ground are non-zero. Details are given in the Appendix.  

It is enough to know that two conditional probabilities are non-zero, in order to be 
able to conclude that the corresponding unconditional probability is non-zero too. Hence 
the point is not so much that Reichenbach’s infinite iteration converges to a non-zero 
number, whereas Russell’s usually converges to zero, although both statements are true. 
The real hub around which the argument rotates is the fact that something can be said 
about an unconditional probability (in this case that it is non-zero) on the basis of 
conditional probabilities alone. 
 
5.  Conclusions 
 

In his major epistemological work, written during his stay in Istanbul, Reichenbach 
found an apt metaphor to summarize his probabilistic world view:  
 

All we have is an elastic net of probability relations, floating in open space. 
(Reichenbach, 1938, p.192) 
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Lewis, using a somewhat different image, comments upon Reichenbach’s view with 

evident relish: 
 

...the probabilistic conception strikes me as supposing that if enough probabilities can 
be got to lean against one another they can all be made to stand up. I suggest that, on 
the contrary, unless some of them can stand up alone, they will all fall flat. (Lewis, 
1952, p.173) 

 
We have shown that the controversy is more readily bridgeable than these quotations 
might seem to suggest. For whether or not a sequence of probability judgements about 
probability judgements tends to zero depends on the case. Sometimes an infinite number 
of (conditional) probabilities would not lead to disaster; but sometimes the structure can 
only be prevented from falling flat if one probability can stand up alone. However, we 
have also shown that, if P(E|G1) > 0 and P(E|¬G1) > 0 then P(E) > 0, and this makes 
Reichenbach’s position the more generic one.  

We believe this finding to be a source of difficulty for those who have recently sought 
to reanimate epistemic foundationalism. As Richard Fumerton notes in his entry on 
foundationalism in the Stanford Encyclopedia for Philosophy, echoing ideas of J.S. Mill, 
there is a real sense in which one does not significantly extend one’s knowledge by 
working towards conclusions that are implicitly contained in the premises. “To advance 
beyond foundations”, Fumerton remarks, “we will inevitably need to employ non-
deductive reasoning and ... that will ultimately require us to have noninferential (direct) 
knowledge of propositions describing probability connections between evidence and 
conclusions.” Fumerton even goes so far as to write that one might have a priori 
knowledge of such probability connections, although he admits, tongue in cheek, that the 
view is not overly popular (Fumerton, 2005). 

It is of course true that knowledge typically grows by employing non-deductive forms 
of reasoning. However this does not mean that ultimately we must have noninferential 
knowledge of probability connections. The view that probabilistic reasoning requires 
direct knowledge of probability statements reflects precisely Lewis’s standpoint; and 
intuitively attractive though it may be, it leads to serious difficulties, as we have seen. 
These difficulties need not drive everyone immediately into Hans Reichenbach’s stable, 
but they do seem to threaten some of epistemic foundationalism’s new breeds. 
 
 
Appendix 
 
In this appendix, we treat the general case in which the probability of the occurrence of 
an event is conditioned by a ground, whose occurrence is in turn conditioned by a further 
ground, and so on ad infinitum. For notational convenience, we replace E in Eq.(1) by G0, 
and rewrite that equation in the form 
 
     P(G0) = P(G0|G1) P(G1) + P(G0|¬G1) [1 −  P(G1)] 

= P(G0|¬G1) + P(G0||G1) P(G1) ,    (2) 
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where we have introduced the notation 
 

P (A||B) ≡ P(A|B) −  P(A| ¬B) 
 

a quantity that R.C. Jeffrey, following a suggestion of Carnap, has dubbed the ‘relevance’ 
of B to A (Jeffrey 1965, 170, 181).The idea is that G1 is a ground for the occurrence of 
G0, so that normally P(G0|G1) > P(G0|¬G1) ; in words, G0 is more likely to occur if G1 has 
occurred than if it has not. Note that P(G0|G1) = P(G0|¬G1) is not strictly excluded, but 
this is the limit in which the probability for the occurrence of G0 is not affected by the 
presence or absence of G1. In this case one would hardly call G1 a ground for G0 at all. 
For technical reasons we do not wish to exclude this limiting case; but we can exclude 
P(G0|G1) < P(G0|¬G1) on purely conventional grounds: if we thought that G1 was a 
ground for G0, but found that P(G0|¬G1) is greater than P(G0|G1), we were simply 
mistaken, for properly speaking ¬G1 is a ground for G0, and not G1, so all we need to do 
is to rename ¬G1 as G1, and G1 as ¬G1. Accordingly, we can always arrange that 
 

P(G0||G1) ≡ P(G0|G1) −  P(G0|¬G1) ≥ 0,   (3) 
 
by suitable nomenclature of G1 and ¬G1. 

Suppose now that G2 is a ground for G1, so that  
 

P(G1) =  P(G1|¬G2) + P(G1||G2) P(G2)    (4) 
 
Inserting this into Eq.(2), we obtain the iterated form 
 

P(G0) = P(G0|¬G1) + P(G0||G1) P(G1|¬G2) + P(G0||G1) P(G1||G2) P(G2), 
 
and of course a formula similar to Eq.(4) can be used for P(G2), if G3 is a ground for G2, 
and so on for any number of steps. After N iterations, the formula reads 
 

P(G0) = ∑N
n=0 Qn  P(Gn|¬Gn+1) + QN+1 P(GN+1) ,   (5) 

 
where Q0 = 1 and 
 

Qn = ∏ 
n−1

 m=0  P(Gm || Gm+1) 
 

for n ≥ 1, as can be readily shown by mathematical induction. 
If P(Gn|¬Gn+1) = 0 for n = 0,1,2, ... , N, then P(Gn||Gn+1) = P(Gn|Gn+1) for the same 

values of n , and so Eq.(5) reduces to 
 

P(G0) =  P(G0 |G1) P(G1 |G2) ... P(GN |GN+1) P(GN+1),    (6) 
 
the extreme situation that we may charitably assume Russell (and perhaps also Lewis) to 
have had in mind. Here the probability of the occurrence of G0 is simply the product of 
the conditional probabilities of successive grounds. This product can fail to be zero in one 
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of two ways: either the product can have a finite number of terms, the final probability, 
P(GN+1) =1, neither having nor needing to have a ground, or the product might have an 
infinite number of terms, but the infinite product might converge to a non-zero value, as 
in the example that we cited in Footnote 5 (although this escape route is perhaps rather 
academic).  

However, the generic situation is that in which P(Gn|¬Gn+1) is not zero for some n, 
and Reichenbach was quite right to insist that the straightforward product of conditional 
probabilities, Eq.(6), is usually incorrect. Suppose first of all that P(G0|¬G1) ≠ 0. Then 
from the second line of Eq.(2), and the constraint (3), we have P(G0) ≥ P(G0|¬G1) > 0. In 
this case, P(G0) has been shown to be non-zero, without any iteration at all. More 
generally, if P(Gn|¬Gn+1) = 0, for n = 0,1,2, ... , N − 1, but P(GN |¬GN+1) > 0, we see from 
Eq.(5) that  

 
P(G0) ≥  QN  P(GN|¬GN+1) = P(G0 |G1) P(G1 |G2) ... P(GN− 1 |GN) P(GN|¬GN+1) . 

 
This product of a finite number of positive terms is non-zero, and no infinite regress need 
be hazarded to come to this conclusion. 
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