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Abstract

Reasoning over our knowledge bases and theories often requires non-deductive
inferences, especially – but by no means only – when commonsense reasoning
is the case, i.e. when practical agency is called for. This kind of reasoning
can be adequately formalized via the notion of supraclassical consequence, a
non-deductive consequence tightly associated with default and non-monotonic
reasoning and featuring centrally in abductive, inductive, and probabilistic log-
ical systems. In this paper, we analyze core concepts and problems of these
systems in the light of supraclassical consequence.
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1 Introduction

Although logic is primarily seen as the science of thinking and reasoning it has al-
ways been tightly associated with knowledge, providing it among other aspects with
adequate media for expression and analysis; to be sure, thinking and reasoning do
require knowledge bases – which can actually be theories if closed under logical conse-
quence – over which to operate (e.g., Augusto, 2020c). In the last decades of the 18th
century, the celebrated philosopher I. Kant saw no need for any changes in the field
of logic, seeing it as “a closed and completed body of doctrine” (Kant, 1787/1929).
G. Boole, G. Frege, and a few others would soon prove him wrong. In particular the
development of computer science in the second half of the 20th century and related
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artificial intelligence (AI) and cognitive modeling have brought and continue to bring
ever newer challenges that have to do with reasoning in a world characterized by in-
formation that is often vague, uncertain, conflicting, noisy, etc. In effect, as early as
in 1974, M. Minsky saw logical reasoning as “not flexible enough to serve as a basis for
thinking.” According to him, the inadequacy of logic to modeling human reasoning
was due to the overly strict requirement of consistency, the reliance on small sets of
axioms for representing ordinary knowledge, the abstract character of the rules of
inference, and the belief that all knowledge is accessible to deduction. In one way
or another, all these shortcomings of the “logistic approach” were connected to the
classical notion of logical consequence:

I do not mean to suggest that “thinking” can proceed very far with-
out something like “reasoning.” We certainly need (and use) something
like syllogistic deduction, but I expect mechanisms for doing such things
to emerge in any case from processes for “matching” and “instantiation”
required for other functions. Traditional formal logic is a technical tool
for discussing either everything that can be deduced from some data or
whether a certain consequence can be so deduced ; it cannot discuss at all
what ought to be deduced under ordinary circumstances. (Minsky, 1974)

Under “ordinary circumstances,” in 1991 Minsky meant the facts that our world is a
commonsense (rather than a rational) one and we are satisficers (rather than optimiz-
ers). Interestingly enough, Minsky (1991) reiterated the complaint with respect to the
strict requirements of consistency and provability, which made logic inappropriate for
the modeling of commonsense reasoning. This notion of logical consequence criticized
by him is deductive, monotonic consequence, in particular the classical one rooting in
Aristotelian logic; but this has been greatly“relaxed”or even ad-hocly removed for the
modeling of both non-deductive and non-classical – i.e. commonsense and heuristic –
reasoning, making it even possible to program computers to reason in these ways.

This has been so greatly due to the realization, from within the broadly conceived
field of cognitive science, that logic is not merely normative, but also (or perhaps
above all) descriptive. If we envisage human cognizers as practical reasoners, then we
need logics that are capable of describing (instances of) practical agency, and this to
a great extent means that we must be prepared to enlarge the properties of interest
from the viewpoint of logic to include relevance, analogy, and plausibility, inter alia
(see, e.g., Gabbay & Woods, 2003). This new logic (Gabbay & Woods, 2001) thus
requires modified notions of logical consequence, with the modifications reflecting the
properties that one wishes be preserved from a set of premises to a conclusion that is
believed to follow from them.

This kind of reasoning replaces the generality of classical deduction by specific
(empirical) facts and, most importantly, it typically rejects the rule of substitution,
which prescribes that if a formula ϕ is a theorem, then any of its substitution in-
stances σϕ is also a theorem. These aspects make it so that the operation of logical
consequence over a knowledge base or a theory often produces more consequences
compared to the classical consequence operation; for this reason, this is called supr-
aclassical consequence. Default and non-monotonic reasoning are supraclassical in
essence; abductive, inductive, and probabilistic inference are the core non-deductive
supraclassical inferences.
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2 From Classical Deduction to Supraclassicality

2.1 Logical Consequence

We begin with generalities with respect to an unspecified consequence operation ⋆.1

We do this for a propositional language L, and remark that the notions below gener-
alize to L∗ in a straightforward way provided that they are not defined with reference
to propositional variables.2 Structurality (cf. Def. 2.2 below), however, poses some
problems that are not without solution (see Wójcicki, 1988, p. 407).

Definition 1. We here take the view of a logical system L as a pair
(
L(∗),⋆

)
where

L(∗) is an object language and ⋆ ∈ Lµ
µ

is a consequence operation.

Definition 2. Let ⋆ be a consequence operation on a set of formulae F, F ⊆ L, Γ ⊆ F .

1. ⋆ (Γ ) denotes the set of all the consequences of Γ , i.e. the set of all the formulae
ϕ such that ϕ ∈⋆ (Γ ).

2. If furthermore for all substitutions σ it is the case that σ⋆ (Γ ) ⊆⋆ (σΓ ), then
⋆ is said to be structural .

3. ⋆ is finitary if it is the case that

⋆ (Γ ) =
⋃{

⋆
(
Γ

′
)
|Γ ′ is a finite subset of Γ

}
.

Otherwise, it is infinitary.

4. ⋆ is said to be standard if it is both finitary and structural.

5. The strongest consequence operation on L is the operation ⋆ such that ⋆ (Γ ) =
F = L. It is called the inconsistent or trivial consequence operation on F.

6. The weakest consequence operation on L is the operation ⋆ defined by ⋆ (Γ ) =
Γ . This is called the idle consequence operation on F.

1See Augusto (2020a) for a development; see Wójcicki (1988) for a comprehensive elaboration
on logical consequence from the viewpoint of mathematical logic. We assume familiarity with the
jargon of formal logic, in particular of formal semantics, and with its folklore.

2We shall consider a logical language whose formulae are built in the usual way (see Augusto,
2019, for details). This is essentially standard propositional logic with the usual operators collected
in set O = {¬,∧,∨,→,↔} and a set Vp = {p, q, r, s, t, ...} of propositional variables. We denote
this language by L and (objects of) its metalanguage will be easily identifiable by means of the
superscript µ. Sets of formulae of this language are denoted by FL, arbitrary sets of formulae in the
metalanguage Lµ are denoted by the Greek upper-case letters Γ and ∆, and arbitrary formulae in the
metalanguage are lower-case letters with or without subscripts at the end of the Greek alphabet, i.e.
Fµ
L = {ϕ, φ, χ, ψ, ω, ϕ1, ...}. We denote the standard extension to the first-order predicate language

(FOL) by L∗ and we shall often write L(∗) to denote indifferently the propositional language or
its first-order extension. We shall actually make a negligible use of L(∗), remaining mostly at the
metalanguage level, with the odd incursion into its meta-metalanguage Lµ

µ
.
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2.2 Inference and Deduction

Presenting it as a rule-based system is a fairly common way of specifying a logical
consequence operation ⋆. In turn, this provides us with the definition of an inference
system.

Definition 3. Given a language L(∗), a consequence operation ⋆ on FL(∗) is called an
inference operation on L(∗) if it satisfies ⋆1 and ⋆2 for every Γ ⊆ F ⊆ L(∗):

(⋆1) Γ ⊆⋆ (Γ ) Inclusion
(⋆2) ⋆ (⋆ (Γ )) = ⋆ (Γ ) Idempotency

An inference system on L(∗) is a pair
(
L(∗),⋆

)
where ⋆ is an inference operation on

L(∗).

Definition 4. Over a language L(∗):

1. an inference is a couple (Γ, ϕ) such that Γ ⊆ F ⊆ L(∗) and ϕ ∈ F . ϕ ∈ ⋆ (Γ )
just is another notation for representing an inference. Inferences of the form
(∅, ϕ) are said to be axiomatic and we have it that ϕ ∈ AX, where AX denotes
the set of axioms.

2. an inference rule ri ∈ RI on a set of formulae F is a mapping assigning to some
sequences ϕ1, ..., ϕn ∈ Γ of formulae (the premises) a formula ψ (the conclusion),
i.e. r : Γ −→ F where Γ ⊆ Fn for some n = 1, 2, .... We write r (ϕ1, ..., ϕn) = ψ
or, more frequently, in the argument form ϕ1, ..., ϕn/ψ.

3. a rule r is said to preserve a set of formulae Γ , and Γ is said to be closed under
r iff for all Γ ′ and for all formulae ϕ, if Γ ′ ⊆ Γ and r (Γ ′, ϕ), then ϕ ∈ Γ .

4. a subset F0 ⊆ F is said to be closed under a rule of inference r provided that
(ϕ1, ..., ϕn) ∈ Fn

0 ∩ Γ implies that r (ϕ1, ..., ϕn) ∈ F0.

5. a formula ϕ is provable from a set Γ by means of axioms in the set AX and/or
rules in the set RI iff there is a finite sequence of formulae ϕ1, ..., ϕn that is a
proof or a derivation of ϕ from Γ , i.e. there is a finite sequence ϕ1, ..., ϕn such
that

(a) ϕ1 ∈ (Γ ∪AX ∪RI);
(b) for every 1 < i ≤ n, either ϕi ∈ (Γ ∪AX ∪RI) or ϕi is the conclusion of

one of the rules of inference rj , j = 1, ..., k of which the premises are some
of the ϕ1, ..., ϕi−1;

(c) ϕn = ϕ.

An arbitrary ri is a rule of ⋆ iff for all Γ, ϕ we have it that r (Γ, ϕ) entails ϕ ∈⋆ (Γ ). It
is thus obvious that each operation ⋆ is uniquely determined by its rules of inference.
There are, however, two rules of inference that are very general and ubiquitous, to
wit, modus ponens

(MP)
ϕ, ϕ→ ψ

ψ

4 J. Knowl. Struct. Syst., 4:1
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and the rule of substitution

(SUB)
ϕ

σϕ
.

SUB asserts that if a formula ϕ is a theorem, then any of its substitution instances
σϕ is also a theorem.

Definition 5. Two consequence operations can be ordered according to their strength
(denoted by ≼): we say that ⋆1 ≼ ⋆2 (⋆2 is stronger than ⋆1) iff, for all Γ ,
⋆1 (Γ ) ⊆⋆2 (Γ ). In fact, the following conditions are equivalent:

1. ⋆1 ≼ ⋆2

2. Θ⋆2 ⊆ Θ⋆1

3. ⊩⋆1⊆ ⊩⋆2

Definition 6. If conditions 1-3 of Def. 5 hold, then we say that the logical system
with the consequence operation ⋆2 is an extension of the logical system with the
consequence operation ⋆1.

Definition 7. We say that ⋆ (Γ ) is a system of ⋆. ⋆ (∅) is the system of all logically
provable or valid sentences of ⋆. We call this system a logic and denote it generally
by L.

Theorem 8. A logical system is structurally complete iff each structural rule that
preserves ⋆ (∅) is a rule of ⋆.

A deductive system is a system of ⋆. In other words, a deductive system ⋆ (Γ ) is
the least theory of ⋆ containing Γ . More formally:

Definition 9. A deductive system S over a language L(∗) is the pair

S =
(
L(∗), (AX ∪RI)

)
.

Additionally, there can be a distinction between rules of derivation (RId) and
rules of theoremhood (RIϑ), that is, inference rules that can be applied to hypotheses
and those that can be applied only to generate theorems, respectively. We can then
define a deductive system over L(∗) as the triple

(
L(∗), RId,RIϑ

)
, where it is often

(but by no means necessarily) the case that RId ∩ RIϑ = ∅. This distinction might
come in handy when considering the axiomatization of a logical system.

Definition 10. Two sets of formulae Γ,∆ are (logically or inferentially) equivalent (un-
der ⋆), denoted by Γ ≡(⋆) ∆, iff ⋆ (Γ ) = ⋆ (∆). Two formulae ϕ, ψ are equivalent
iff their unit sets are equivalent.

2.3 Classical Consequence

2.3.1 The Classical Consequence Operation

Classical consequence was firstly elaborated on in Tarski (1930). We provide its core
properties.

J. Knowl. Struct. Syst., 4:1 5
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Definition 11. Let L be a propositional language and let Γ,∆ ⊆ F . An operation
⋆ ∈ Oµµ

defined on Γ,∆ is said to be a Tarskian, or classical consequence operation
if it is a mapping Cn : 2F −→ 2F satisfying the following conditions:

(C1) Γ ⊆ Cn (Γ ) Inclusion
(C2) Cn (Cn (Γ )) = Cn (Γ ) Idempotency
(C3) If Γ ⊆ ∆, then Cn (Γ ) ⊆ Cn (∆) Monotonicity

C2 is often replaced by C2*:

(C2*) Cn (Cn (Γ )) ⊆ Cn (Γ ) Closure

It can be easily verified that conditions C1-C3 amount to, for every Γ,∆ ∈ F :

(C0) Γ ⊆ Cn (Cn (Γ )) ⊆ Cn (Γ ) ⊆ Cn (Γ ∪∆)

In mathematical terms, the consequence operation Cn ∈ Oµ is a closure operation
defined on the power set of the set of formulae of a propositional language. Compare
conditions C1-3 with conditions c1-3 in the following definition:

Definition 12. Let A be a set. A mapping c : 2A −→ 2A is called a closure operator
or operation on A if the following properties are satisfied for all subsets X,Y ⊆ A:

(c1) X ⊆ c (X) Extensivity
(c2) c (X) = c (c (X)) Idempotency
(c3) If X ⊆ Y , then c (X) ⊆ c (Y ) Monotonicity

A subset c (X) ⊆ A is said to be closed (with respect to the operator c) and it is
called the closed set generated by X.

Definition 13. Let F be a set of formulae and Cn a unary operation defined on the
set 2F :

1. If C0 is satisfied by all Γ,∆ ∈ F , then Cn is a closure operation on F .

2. Γ ∈ ΘCn iff Γ = Cn (Γ ), i.e. Γ is a theory of Cn iff it is closed under Cn.

3. For each set Cq of consequences on L, the consequence

CnCq (Γ ) =
⋂
{Cn (Γ ) |Cn ∈ Cq}

is the greatest lower bound of Cq.

4. Let F be a family of sets. For each consequence operation Cn, ΘCn is a closure
system, i.e. for each F ⊆ ΘCn, ∩F ∈ ΘCn, with Cn (∅) and F as the least and
greatest elements thereof. The former is called the base theory and the latter
the trivial theory of Cn.

5. Let F = 2F . Then, F is a closure base for a consequence operation Cn iff for
each Γ ,

Cn (Γ ) =
⋂
{∆ ∈ F |Γ ⊆ ∆} .

Note that ΘCn is the greatest closure base for Cn.

6 J. Knowl. Struct. Syst., 4:1
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6. If ΘCn is a closure system, then the pair (F ,⊆) is a complete lattice s.t. for
every F ⊆ ΘCn,

(a) inf (F ) =
⋂

F ,

(b) sup (F ) = inf {Γ ∈ ΘCn |
⋃

F ⊆ Γ}.

With respect to Def. 13 above, we remark that any set of formulae closed under Cn is
a logical theory, henceforth abbreviated as theory and denoted here by Θ. In contrast
with this, we shall see a knowledge base as a set ∆ of propositions about the world
assumed to be true.

We next present some of the key results of Tarski (1930). These have to do with
consistency, completeness, and axiomatizability of logical systems.

Definition 14. Consistency: The set Γ ⊆ FL(∗) is consistent relative to Cn iff Cn (Γ ) ̸=
FL(∗) ; otherwise, Γ is said to be inconsistent.

This is equivalent to the classical definition of consistency according to which a
set Γ of formulae is consistent if no formula together with its negation both belong
to Cn (Γ ).

Definition 15. Completeness: A set of formulae Γ is complete if every consistent set
Π ⊇ Γ satisfies the condition Cn (Γ ) = Cn (Π).

Again, this is equivalent to the classical definition of completeness: a theory Θ of
classical logic is complete if, for every formula ϕ, we have it that either ϕ ∈ Cn (Θ)
or ¬ϕ ∈ Cn (Θ).

Definition 16. Axiomatizability: A set of sentences Γ is said to be finitely axiomati-
zable under Cn iff there is a finite set Γ ′ that is equivalent to Γ with respect to Cn.
Tarski’s criterion runs as follows: A system Γ of a finitary consequence operation Cn
is not finitely axiomatizable iff there exists a strictly increasing sequence of systems
of Cn

Γ0 ⊂ Γ1 ⊂ ... ⊂ Γn ⊂ ...

such that
Γ =

⋃
n∈ω

Γn

where ω denotes the set of all finite ordinals, which has cardinality ℵ0.

2.3.2 The Classical Consequence Relation

Given the natural association between operations and relations, with ⋆ there is asso-
ciated a consequence relation that can be said to be Tarskian or classical.3 In effect,
⋆ induces a consequence relation

(R⋆) (Γ, ϕ) ∈ R iff ϕ ∈⋆ (Γ )

3Given an operation O of degree n on a set A there is a naturally associated relation R of degree
n + 1 on A. For instance, to the operation of addition on the set R of the real numbers for which
x + y = z consisting of the pair ((x, y) , z) there is associated the relation consisting of the triple
(x, y, z), for x, y, z ∈ R.

J. Knowl. Struct. Syst., 4:1 7
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where (Γ, ϕ) ∈ R denotes that ϕ is a consequence of Γ , and R induces the consequence
operator

(⋆R) ⋆ (Γ ) = {ϕ ∈ FL(∗) | (Γ, ϕ) ∈ R} .
This association allows us to reformulate any of the results for the consequence

operation in terms of the consequence relation, and vice-versa.

Definition 17. A Tarskian, or classical consequence relation is a relation R ⊆ 2F × F
satisfying the following conditions:

(R1) If ϕ ∈ Γ , then(Γ, ϕ) ∈ R.
(R2) If (Γ, ϕ) ∈ R and Γ ⊆ ∆, then (∆,ϕ) ∈ R.
(R3) If (Γ, ϕ) ∈ R and (∆,ψ) ∈ R for every ψ ∈ Γ , then (∆,ϕ) ∈ R.

In truth, both the above ⋆ and R are elements of a meta-metalanguage; in the
metalanguage we shall represent the former as Cn, as is usual, and the latter as ⊢ or
|=, depending on whether we mean R in a proof-theoretical or in a model-theoretical
way, respectively. When we mean no emphasis on such distinction, we shall denote
a general (though not generalized !; see below) consequence relation by the symbol ⊩.
This symbol may actually also stand for adequateness, i.e. the coincidence of ⊢ and
|=, or for some hybridization.

Example 18. Although semantic tableaux (cf. Example 29) is basically a proof system
for propositional and predicate logics, its character is largely hybrid in the sense that
a tableaux construction is in fact a countermodel with respect to some semantics
(e.g., Gabbay, 2014). By countermodel it is understood that the proof procedure
is so with respect to the negation of the formula we wish to prove. In informal
terms, a countermodel corresponds here to a closed tree T whose branches are partial
descriptions of the model; a branch is said to close if both literals L and ¬L are in it
(i.e. if they are nodes of the same branch), and the tree itself is said to close if all its
branches close. This is thus a refutation proof procedure: if the tableaux T for ¬ϕ
closes, the falsity of ¬ϕ is considered refuted and the truth of ϕ is proven. This said,
this calculus can also be used to test directly for satisfiability, especially in the case
of finite sets of formulae: an open tableau is proof of satisfiability. This proof system
was invented by Beth (1955) and it was greatly simplified by Smullyan (1968) into
the variant known as analytic tableaux.

Moving from the meta-metalanguage to the metalanguage, we have the following
definition of the consequence relation:

Definition 19. From R⋆ and ⋆R, we have:

(⊩def ) Γ ⊩ ϕ iff ϕ ∈ Cn (Γ )

This allows for the redefinition of a logical system as follows:

Definition 20. Given the natural association between the consequence operation Cn
and the consequence relation ⊩, a logical system L can now be seen as a pair

(
L(∗),⊩

)
.

We next present the properties that are shared by both the syntactical and the
semantical consequence relations and that additionally hold for most logical systems.
As is usual, we abbreviate ∅ ⊩ ϕ as ⊩ ϕ, Γ ⊩ {ϕ} as Γ ⊩ ϕ, and ∆ ∪ {ϕ} ⊩ {ψ} as
∆,ϕ ⊩ ψ.

8 J. Knowl. Struct. Syst., 4:1
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Definition 21. The following properties define the classical consequence relation ⊩:

(⊩ 1) If ϕ ∈ Γ , then Γ ⊩ ϕ
(⊩ 2) If Γ ⊩ ϕ and Γ ⊆ ∆, then ∆ ⊩ ϕ
(⊩ 3) If Γ ⊩ ϕ and ∆ ⊩ ψ for every ψ ∈ Γ , then ∆ ⊩ ϕ
(⊩ 4) ϕ ⊩ ϕ
(⊩ 5) If ⊩ ϕ, then Γ ⊩ ϕ
(⊩ 6) If Γ ⊩ ϕ and ϕ ⊩ ψ, then Γ ⊩ ψ
(⊩ 7) If Γ ⊩ ϕ and ∆,ϕ ⊩ ψ, then Γ ∪∆ ⊩ ψ
(⊩ 8) If Γ ∪ {ϕ1, ..., ϕn} ⊩ ψ and Γ ⊩ ϕi for i = 1, ..., n, then Γ ⊩ ψ

Property ⊩ 1 just is the definition of the classical consequence relation and we
now rewrite R1-R3 and ⊩ 1-⊩ 4 as follows:

Definition 22. The consequence relation ⊩ is classical if it has the following properties
of reflexivity (R), monotonicity (M), and transitivity (T):

(R) ϕ ⊩ ϕ
(M) If Γ ⊩ ϕ, then Γ,∆ ⊩ ϕ
(T) If Γ ⊩ ϕ and Γ, ϕ ⊩ ψ, then Γ ⊩ ψ

Definition 23. A generalized consequence relation (GCR) on a set of formulae F ⊆ L(∗)

is a consequence relation ⊩⊆ 2F × 2F satisfying the following three conditions:

(R) ϕ ⊩ ϕ
(M*) If Γ ⊩ ∆, then Γ, Γ ′ ⊩ ∆,∆′

(T*) If Γ, ϕ ⊩ ∆ and Γ ⊩ ϕ,∆, then Γ ⊩ ∆

2.4 Classical Deduction, Compactness, and Structurality

Deduction is a fundamental aspect of a logical system if we are interested in preserving
truth (vs. falsity). Thus, we define it semantically, even if we use the symbol ⊩; of
course, we assume adequateness of the logical systems in consideration.

Definition 24. A consequence relation ⊩ is deductive if it is truth-preserving, i.e. if in
the valid argument Γ/ϕ the premises Γ are true, then the conclusion ϕ is necessarily
true.

This defines essentially deductive reasoning, namely in contrast to abductive and
inductive reasoning forms. This definition is conveniently made in semantical terms
– truth and, to a lesser extent, truth-preservation are somehow more intuitive notions
than proof –, but both the deduction and the deduction-detachment theorems (see
below) make the bridge between this and the syntactical component of deduction.

Classical logic is the standard logical system realizing deduction, and we speak
of deduction as classical deduction when in the context of deduction as realized in
classical logic. As it is, classical deduction is adequately expressed via the deduction
theorem and, even more strongly, the deduction-detachment theorem. We next discuss
these theorems, namely from the viewpoint of the so-called deductive systems.

A consequence relation ⊩ is said to satisfy the deduction theorem when the follow-
ing condition is verified:4

4We leave the proofs of theorems and propositions as exercises for the reader.

J. Knowl. Struct. Syst., 4:1 9
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Theorem 25. For Γ a (possibly empty) set of formulae and formulae ϕ, ψ we have it
that

(DT) If Γ, ϕ ⊩ ψ, then Γ ⊩ ϕ→ ψ.

DT just means that the formula on the right can be obtained, by successive appli-
cations of rules in a proof system, from axioms, Γ , and/or derived rules (syntactical
version), or that ϕ→ ψ is a tautology (semantical version).

Importantly, DT should be distinguished from the deduction-detachment theorem.

Theorem 26. For Γ a (possibly empty) set of formulae and formulae ϕ, ψ we have it
that

(DDT) Γ, ϕ ⊩ ψ iff Γ ⊩ ϕ→ ψ.

Obviously, DDT is satisfied iff both DT and MP are satisfied.
We now make more precise the earlier definition of deductive system in Def. 9:

Definition 27. A deductive system is a logical system in which the consequence op-
eration satisfies C1-C3 and, in addition, satisfies compactness, i.e. for a set Γ and a
finite subset Γ ′ thereof:

Cn (Γ ) ⊆
⋃
{Cn (Γ ′) |Γ ′ ⊆ Γ}

That is, a deductive system is a logical system in which the consequences of a set
Γ can be obtained from a finite subset of Γ .

In terms of the corresponding consequence relation, then ⊩ defines a deductive
system if, in addition to satisfying conditions R1-R3, it also satisfies, for some finite
Γ ′ ⊆ Γ ,

If Γ ⊩ ϕ, then Γ ′ ⊩ ϕ.

Armed with this definition of a deductive system, we can now define the important
notion of a deductive set.

Definition 28. A set of formulae F ⊆ L is deductive iff the following conditions are
satisfied:

(D1) F is closed under substitution.
(D2) For all ϕ ∈ F , (ϕ→ ϕ) ∈ F .
(D3) F is closed under the following rules of inference:

1. Rearrangement of the antecedent (RA): ϕ → p/ϕ′ → p, where ϕ, ϕ′ are any
formulae such that V p (ϕ) = V p (ϕ′) and the only connective appearing in both
ϕ and ϕ′ is ∧.5

2. Enlargement of the antecedent : p→ q/ (p ∧ r)→ q.

3. Composition: p1 → q1, p2 → q2/ (p1 ∧ p2)→ (q1 ∧ q2).

4. Transitivity : p→ q, q → r/p→ r.

5RA is a class of sequential rules rather than a single rule.

10 J. Knowl. Struct. Syst., 4:1
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5. MP.

6. Cancellation of a valid conjunct : p, (p ∧ q)→ r/q → r.

Structurality, or closure under substitution (cf. D1 and Def. 2.2 above), is a particu-
larly important property in that it means that the inference patterns in a given logical
system L are invariant with respect to substitutions in the language L. This property
actually distinguishes between two major classes of logical systems, to wit, classical vs.
supraclassical systems, and in particular deductive vs. non-deductive systems. More
generically, though, it distinguishes between purely formal logic, which considers only
logical form regardless of any facts, and logics that take individual (empirical) facts
into consideration. These latter logics allow for a formal modeling of commonsense
reasoning, as they are largely free from the strict constraints imposed by (classical)
deduction. Besides structurality, the reader will see that also D3 is essentially not
satisfied in the logics we shall focus on in Section 3 below.6

2.5 Two Classical Deduction Systems

For the sake of self-containment, we elaborate briefly on two classical deductive sys-
tems, also spoken of as proof systems or calculi, that will be required below in Section
3, to wit, Gentzen-style systems and the semantic/analytic tableaux system. These
systems are structurally complete, i.e. they preserve all the classical tautologies. We
introduce them in the order they will be required. With respect to the latter men-
tioned system, we remain at the propositional level; the reader is referred to Augusto
(2019) for the first-order predicate extension.

Example 29. In a semantic/analytic tableau, one has proven that formulae ϕ1, ..., ϕn
logically entail ψ – and thus ψ is a logical consequence of ϕ1, ..., ϕn – when it is the
case that {ϕ1, ..., ϕn,¬ψ} is unsatisfiable. The rules to be applied are the expansion
and closure rules and they can best be expressed in the language of set theory as
follows:

(∧RE)
Γ ∪ {ϕ ∧ ψ}
Γ ∪ {ϕ, ψ}

(∨RE)
Γ ∪ {ϕ ∨ ψ}

Γ ∪ {ϕ} | Γ ∪ {ψ}

(")
Γ ∪ {L,¬L}

"
The expansion rules can be conveniently reduced to two; this is known as the αβ clas-
sification, summarized in the following tables (where evidently χ1, χ2 are subformulae
of χ):

α α1 α2 β β1 β2
ϕ ∧ ψ ϕ ψ ¬(ϕ ∧ ψ) ¬ϕ ¬ψ
¬(ϕ ∨ ψ) ¬ϕ ¬ψ ϕ ∨ ψ ϕ ψ
¬(ϕ→ ψ) ϕ ¬ψ ϕ→ ψ ¬ϕ ψ
¬¬ϕ ϕ ϕ

6D2 poses problems to relevance logic(s).
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There are thus in effect only two rules, A (for α) and B (for β):

(A)
α

α1

α2

(B)
β

β1 | β2
Intuitively, these two rules mean that if α is a conjunction of α1 and α2, then both
these two subformulae are logical consequences of α (rule A) and thus are nodes in
the one and same branch of the tree T (i.e., analytic tableau); if β is a disjunction of
β1 and β2, then the latter subformulae originate two different branches as a logical
consequence of β (rule B). Figure 1 shows an analytic tableau proof. Note the num-
bering of steps on the left and the application of the rules on the right of the steps.
Closure of a branch is indicated by ".

1. ¬ ((p→ q)→ (¬ (q ∧ r)→ ¬ (r ∧ p)))
2. p→ q α (1)
3. ¬ (¬ (q ∧ r)→ ¬ (r ∧ p)) α (1)
4. ¬ (q ∧ r) α (3)
5. ¬ (¬ (r ∧ p)) α (3)
6. r ∧ p α (5)
7. r α (6)
8. p α (6)

⧸ ⧹
9. ¬q β (4) 10. ¬r β (4)

⧸ ⧹ "
11. ¬p β (2) 12. q β (2)

" "

Figure 1: Theoremhood of (p → q) → (¬ (q ∧ r) → ¬ (r ∧ p)): An analytic tableau proof.

Example 30. Frege systems and extended Frege systems are subsumed under the
notion of Hilbert(-style) systems. These systems are axiom systems, i.e. their set of
rules of inference is often a singleton. Frege and Hilbert systems are distinct from
Gentzen(-style) systems in that the latter rely on no, or very few, axioms. These
proof systems are characterized by the fact that a proof is a sequence of sequents
(subsets of formulae rather than formulae), and each of the sequents is derivable from
earlier sequents in the sequence by means of rules of inference. A sequent s for subsets
Γ = {ϕ1, ..., ϕm} and ∆ = {ψ1, ..., ψn}, m and n are non-negative integers, is of the
form

(s) Γ ⇒ ∆
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where the symbol⇒ denotes “∆ follows from Γ”, and Γ (the antecedent) is equivalent
to ϕ1 ∧ ... ∧ ϕm and ∆ (the succedent or consequent) is equivalent to ψ1 ∨ ... ∨ ψn.
We focus here on Gentzen’s (1934-5) logical calculus LK.7 We have the important
fact of LK: A sequent (ϕ1, ..., ϕm) ⇒ (ψ1, ..., ψn) is provable in LK iff the sequent
(ϕ1 ∧ ... ∧ ϕm)⇒ (ψ1 ∨ ... ∨ ψn) is provable in it. This means that s is equivalent to:

(DER) ⇒ (ϕ1 ∧ ... ∧ ϕm)→ (ψ1 ∨ ... ∨ ψn)

This is in fact the definition of derivability, or proof-theoretical validity for conclusions
that are actually sets of formulae. An expression of the form “⇒ ϕ” denotes that ϕ is
a theorem. LK has a single axiom known as axiom of identity :

(Ax)
ϕ⇒ ϕ

In what follows, symbols occur as in Fµ
L(∗) with the following (novel) denotations:

Γ , △, Σ, and Π denote contexts, i.e. finite, possibly empty, sequences of formulae.
As usually, ϕ (t) denotes a formula ϕ where the occurrence of t is of interest, and
ϕxt,a denotes the formula obtained by replacing specified occurrences of x in ϕ (x) by
a term t or a parameter a. The rules of inference are either logical or structural,
and each comes in left and right versions. The former are basically rules for the use
of the connectives (but also of the quantifiers), reason why they are also known as
operational rules, whereas the latter rules impact on a logical system in ways that will
become clear below. We begin with the logical rules.

Logical rules of LK:

Left rules Right rules

(∧L1)
Γ,ϕ⇒∆

Γ,ϕ∧ψ⇒∆ (∧R) Γ⇒ϕ,∆ Σ⇒ψ,Π
Γ,Σ⇒ϕ∧ψ,∆,Π

(∧L2)
Γ,ψ⇒∆
Γ,ϕ∧ψ⇒∆

(∨L) Γ,ϕ⇒∆ Σ,ψ⇒Π
Γ,Σ,ϕ∨ψ⇒∆,Π (∨R1)

Γ⇒ϕ,∆
Γ⇒ϕ∨ψ,∆

(∨R2)
Γ⇒ψ,∆
Γ⇒ϕ∨ψ,∆

(→ L)
Γ⇒ϕ,∆ Σ,ψ⇒Π
Γ,Σ,ϕ→ψ⇒∆,Π (→ R)

Γ,ϕ⇒ψ,∆
Γ⇒ϕ→ψ,∆

(¬L) Γ⇒ϕ,∆
Γ,¬ϕ⇒∆ (¬R) Γ,ϕ⇒∆

Γ⇒¬ϕ,∆
(∀L)

Γ,ϕxt⇒∆
Γ,∀xϕ⇒∆ (∀R)

Γ⇒ϕxa,∆
Γ⇒∀xϕ,∆

(∃L)
Γ,ϕxa⇒∆
Γ,∃xϕ⇒∆ (∃R)

Γ⇒ϕxt ,∆
Γ⇒∃xϕ,∆

In the above rules ∀R and ∃L, the restrictions are that the parameter a must not be
a free variable in Γ and ∆, or it must not appear anywhere in the respective lower
sequents. We now present the structural rules; these are rules for weakening (W),
contraction (C), and permutation (P).

7This is often presented with formulae and sets of formulae of the object language. We chose to
remain in the metalanguage for L(∗).
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Structural rules of LK:

Left rules Right rules

(WL)
Γ⇒∆
Γ,ϕ⇒∆ (WR)

Γ⇒∆
Γ⇒ϕ,∆

(CL)
Γ,ϕ,ϕ⇒∆
Γ,ϕ⇒∆ (CR)

Γ⇒ϕ,ϕ,∆
Γ⇒ϕ,∆

(PL)
Γ1,ϕ,ψ,Γ2⇒∆
Γ1,ψ,ϕ,Γ2⇒∆ (PR)

Γ⇒∆1,ϕ,ψ,∆2

Γ⇒∆1,ψ,ϕ,∆2

There is a supplementary rule that is of fundamental interest to LK– and to logic in
general–, to wit, the cut rule:

(CUT)
Γ ⇒ ∆,ϕ ϕ,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π

Fig. 2 shows a LK proof of ∀x (A (x)→ B)→ ∃x (A (x)→ B). We make t = a. The
proof does not use CUT.

A (a)⇒ A (a) , B
Ax

A (a) , B ⇒ B
Ax

⇒ A (a) , A (a)→ B
(→R)

B ⇒ A (a)→ B
(→R)

⇒ A (a) ,∃xA (x)→ B
(∃R)

B ⇒ ∃xA (x)→ B
(∃R)

A (a)→ B ⇒ ∃xA (x)→ B
(→L)

∀xA (x)→ B ⇒ ∃xA (x)→ B
(∀L)

⇒ ∀x (A (x)→ B)→ ∃x (A (x)→ B)
(→R)

Figure 2: A LK proof of ⇒ ∀x (A (x) → B) → ∃x (A (x) → B).

2.6 Non-Deductive Reasoning: Non-Monotonic and Default Reason-
ing

A deductive system is a logical system, but not all logical systems are deductive
systems. The kind of inference that we are about to approach, roughly known as
defeasible reasoning, can be seen as either deductive or non-deductive; it can be de-
ductive because at play is often truth-preservation, and defeasible reasoning has a
mostly corrective character, but it can be non-truth-preserving in that the conclusion
may hold for most typical cases when the premises hold, but not for the case at hand.
In the latter case, it has an ampliative character. In any case, truth-preservation
and deductive closure are central preoccupations of defeasible reasoning. Also, non-
monotonicity, on which this kind of reasoning is fundamentally based, can actually
have a monotonic, deductive basis, and we thus decide for the essentially deductive
character of this kind of reasoning.

Crucially, non-monotonic consequence is classical consequence, as non-monotonic
consequence relations do not typically reject, but actually include, elements from the
latter. Indeed:
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Definition 31. Non-monotonic consequence is an extension of the classical conse-
quence, a property known as supraclassicality, expressed formally as

(SCL) If Γ ⊩ ϕ, then Γ ∥∼ ϕ

where ∥∼ denotes an unspecified non-monotonic consequence relation.8

Recall condition ⊩ 2 for the classical consequence relation:

(⊩ 2) If Γ ⊩ ϕ and Γ ⊆ ∆, then ∆ ⊩ ϕ

Recall also that this is related to condition M:

(M) If Γ ⊩ ϕ, then Γ,∆ ⊩ ϕ

Condition M basically states that adding new information to a knowledge base
does not change it. However, early on in the history of AI and cognitive modeling
(e.g., McCarthy, 1959; Minsky, 1961, 1974), it became evident that the monotonicity
condition for the classical consequence relation made classical logic inappropriate to
modeling human reasoning when dealing with everyday problems. In effect, we more
often than not reason with partial information about a situation, and in order to
deduce a class of immediate consequences wide enough to meet this partiality we
have to make use of commonsense. So as to carry out commonsense reasoning a
wide set of assumptions about “normalcy” in the world is required. But this set of
assumptions is not static: it is actually not only being made on the going, but it is
also being updated or revised in a principled way. Thus, the addition of new data
may invalidate some or all the assumptions that were made at an earlier stage in the
reasoning process.

Example 32. The“classical”example is that of Tweety the penguin: when first hearing
that Tweety is a bird, we infer that Tweety flies, as this is in agreement with our
knowledge base about birds (i.e. we know that most birds fly); however, we retract
this conclusion once we learn that Tweety is a penguin, because we know that these
birds do not fly.

This retraction is considered the main feature of defeasible inference, and non-
monotonicity is at the core of the consequence relation stipulated for a correct for-
malization of this kind of inference.

We obtain a non-monotonic logic by restricting condition ⊩ 2 in the following way:

Definition 33. Restricted monotonicity (RM) is defined via the condition:

If Γ ∥∼ ϕ and Γ ∥∼ ψ , then Γ, ϕ ∥∼ ψ

Note that this is also known as cautious monotonicity. The meaning of this con-
dition is as follows: if ϕ and ψ are expected to be true by Γ (the “if ... and” in the
condition above), then ψ is expected to be true if ϕ is assumed to be true.

8Specifications are made below in this Subsection and in Section 3.
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Example 34. A classical example of failure of RM is given in the following knowledge
base:

(1) Quaker(x ) ∥∼ Pacifist(x )

(2) Republican(x ) ∦∼ Pacifist(x )

Now, suppose x is simultaneously a Quaker and a Republican; we may choose to
revise (1) given (2), and we conclude that:

(3) Quaker(x ), Republican(x ) ∦∼ Pacifist(x )

The applications of defeasible logic thus suggest themselves, with medical diagnosis
and legal reasoning high on the list. In particular, defeasible reasoning is central
to the field known as belief revision, in which it is of fundamental importance to
determine what remains the same in a constantly changing world. This, known as
the frame problem (McCarthy & Hayes, 1969), together with the fact that we often
make inferences based solely on absence of information to the contrary, motivated
the elaboration of formalisms with new rules of inference capable of expressing non-
monotonic reasoning. Moreover, these rules were expected to be capable of handling
beliefs, rather than merely formulae, which somehow alters the meaning of truth-
preservation: rather than this, what is sought is a formalism for consistency between
all the facts about the world (expressible in first-order formulae) and what we believe
to be true about the world that is in fact sanctioned by such rules. Default rules, at
the core of default logic (Reiter, 1980), are such rules.

Definition 35. A default (rule) d is a rule of the form

(d) ϕ : Γ/ψ

expressing that if ϕ (the pre-requisite) is believed and each χ ∈ Γ can be consistently
believed (the justification), then ψ (the consequent) should be believed.

Example 36. An obvious example of the application of a default rule is

Bird(x ) : m Fly(x ) / Fly(x )

where “m ” is to be read as “it is consistent to assume.” If we do not have information
that Tweety is a pinguin, then it is consistent to assume that Tweety can fly, and we
therefore can conclude that Tweety does fly:

Bird(tweety) : m Fly(tweety) / Fly(tweety)

Note also that, given d, we only have to represent explicitly positive information
about the world, which considerably reduces an explicit knowledge base.

Definition 37. This is known as closed world assumption.

In effect, given any n-ary relation R and x1, ..., xn individuals, we can assume that
¬R (x1, ..., xn) whenever it is consistent to do so. This is sanctioned by a closed world
default :
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: m ¬R (x1, ..., xn) /¬R (x1, ..., xn) .

As is obvious, the consistency requirement is at the heart of a formalism for default
reasoning.

Definition 38. A default theory is a pair (RD,WLD) where RD is a set of default
rules and WLD is a set of closed first-order formulae representing what is known to
be true of the world.

The crucial point in a default theory is that it is assumed that WLD is incomplete,
and the default rules extend the theory by acting as mappings from the incomplete
theory to a more complete theory, that is, an extension.

Definition 39. (Reiter, 1980) For any set of sentences F ⊆ L∗ of a closed default theory
Λ = (RD,WLD), ▽ (F ) is defined as the smallest set satisfying

1. WLD ⊆ ▽ (F ).

2. ▽ (F ) is closed under ⊩K, i.e. Cn (▽ (F )) = ▽ (F ).

3. If (ϕ : m χ1, ..., m χm/ψ) ∈ RD, and ϕ ∈ ▽ (F ) and ¬χ1, ...,¬χm /∈ F , then
ψ ∈ ▽ (F ).

Definition 40. We then say that a set E is an extension of the default theory Λ iff E
is a fixed point of ▽, i.e. ▽ (E) = E.

Some default theories have no extension, which makes it necessary to look for
restricted default theories for which extensions can be proved. In any case, extensions
are in fact the sets that contain the non-monotonic consequences, and we thus have
provided an example of how the failure of the monotonicity condition M for the
consequence relation can motivate a non-monotonic logic.

Besides supraclassicality and restricted monotonicity, as well as cut and consis-
tency, there are other desirable properties for a non-monotonic consequence relation.
In fact, note that any non-monotonic logic is expected to satisfy reflexivity, cut, and
monotonicity, i.e. it should be endowed with a paraclassical consequence relation.

Definition 41. A consequence relation is said to be paraclassical if it satisfies the
following conditions:

(R˜) If ϕ ∈ Γ , then Γ ∥∼ ϕ
(CUT˜) If Γ ∥∼ ϕ and Γ, ϕ ∥∼ ψ, then Γ ∥∼ ψ
(M˜) If Γ ∥∼ ϕ and Γ ⊆ ∆, then ∆ ∥∼ ϕ

Moreover, and reinforcing our decision to consider non-monotonic consequence
relations as classical deductive, we have it that:

Proposition 42. A consequence relation ∥∼ that is supraclassical, monotonic˜, and
closed under substitution is identical to the classical deductive consequence relation,
i.e. ∥∼= ⊩.
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Definition 43. In order to be able to add formulae to the set of premises without for
that changing the inference result we require a property that combines CUT∼ and
RM; this is the property known as cumulativity :

If Γ ∥∼ ϕ, then Γ ∥∼ ψ iff Γ, ϕ ∥∼ ψ.

Definition 44. Besides supraclassicality, the following properties characterize the rela-
tion between the classical consequence relation ⊩ and the non-monotonic consequence
relation ∥∼:

1. Subclassical cumulativity : If ∆ ⊆ Γ and ∆ ⊩ ϕ for every ϕ ∈ Γ and ∆ ∥∼ ψ,
then Γ ∥∼ ψ.

2. Consistency preservation: If Γ ∥∼ ϕ, then ∆ ⊩ ϕ.

3. Weak transitivity : If Γ ∥∼ ∆ ⊩ ϕ, then Γ ∥∼ ϕ.

4. Distribution: If Γ ∥∼ ϕ and ∆ ∥∼ ϕ, then ΘΓ ∩Θ∆ ∥∼ ϕ.

5. Left logical equivalence (LLeq∼): If ΘΓ = Θ∆, then Γ ∥∼ ϕ iff ∆ ∥∼ ϕ.

6. Right weakening (RW∼): If Γ ∥∼ ϕ and ϕ ⊩ ψ, then Γ ∥∼ ψ.

7. Left absorption: Γ ∥∼ ψ iff ∆ ⊩ ψ, when Γ ∥∼ ϕ for every ϕ ∈ ∆.

8. Right absorption: Γ ∥∼ ψ iff ∆ ∥∼ ψ, when Γ ⊩ ϕ for every ϕ ∈ ∆.

9. Adjunction : If Γ ∥∼ ϕ and Γ ∥∼ ψ, then Γ ∥∼ ϕ ∧ ψ.

10. Summation : If Γ, ϕ ∥∼ χ and Γ, ψ ∥∼ χ, then Γ, ϕ ∨ ψ ∥∼ χ.

11. DT∼: If Γ, ϕ ∥∼ ψ, then Γ ∥∼ ϕ→ ψ.

Combinations of the above produce further relational properties (e.g., left and right
absorption combine into full absorption). Makinson (2003) provides a comprehensive
elaboration on what he calls “bridges between classical and non-monotonic logic”
and, incidentally, the reader interested in “going non-monotonic” could profit from
Makinson (2005).

3 Supraclassical Consequence and Commonsense Reason-
ing

As seen above, although we can approach it from a purely proof-theoretical per-
spective, deduction is intuitively and typically thought of as truth-preservation. Non-
deductive logical consequence is characterized by inference that is not truth-preserving.
But this can be in two ways, at least.

Definition 45. Non-deductive inference:

� v. 1 – A consequence relation ⊩ is not truth-preserving (or non-deductive)
if there is a valid argument Γ/ϕ where the premises in Γ are true and the
conclusion ϕ may be false.
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� v. 2 – A consequence relation ⊩ is not truth-preserving (or non-deductive)
when the relation between the premises and the conclusion is not one of truth-
preservation, but rather of plausibility, strength, or probability.

Our interest falls on version 2. This can be the case when, for instance, ϕ appears to
be a plausible explanation for the premises in Γ , or when Γ appears to account for
the conclusion ϕ in some degree of strength or probability. This type of inference is
in fact what Minsky saw as commonsense reasoning (see Introduction): for instance,
the simple observation that the lawn is wet together with the knowledge that (i.e.
that we know of) no one has watered it motivates the non-deductive inference that
it must have rained as the best explanation. But the applications of such logical
consequence relations or operations are vast and surpass the realm of everyday life;
as a matter of fact, this kind of non-deductive reasoning has proved itself essential
for such diverse functions as natural language processing, program verification and
debugging, medical diagnosis, artificial vision, etc., all of which can be computerized.
For example, programs for medical diagnosis are often based on plausible explanations
for the symptoms shown by patients.

Commonsense reasoning requires the above kind of logical consequence because,
firstly, reality is such that it makes deductive inference useless in many circumstances.
For instance, patients with oily skin and spots can have acne, but they can – instead
or also – have folliculitis; in fact, acne may be considered a “special” case of the latter.
On the other hand, patients can have acne but no oily skin, and as a matter of fact,
no spots; the less typical acne sufferers may instead have furuncles and cysts.

The fact is that if we had very fine-grained ontologies, we would perhaps be able
to do with deductive reasoning most of the times. But we are satisficers – this is the
second aspect –,which means that large-grained ontologies work just fine for us. And
this is true of scientific ontologies, too: a medical doctor may diagnose a patient as
having folliculitis just because the hair follicles are inflamed and/or infected; but this
is not of much help by itself, for this folliculitis, indeed if it is so, may be of bacterial
(several bacteria), fungal (several fungi), etc., origin. On the other hand, testing for
all these possible causes would make medical consultation and treatment far more
expensive and time-consuming.

We summarize and expand on the above with respect to commonsense, or everyday,
inference:

1. Commonsense reasoning tries to make sense of observations, i.e. facts and
events, not all of which are fully or even just adequately accessible to the ob-
server (e.g., other people’s mental states; causes behind an effect);

2. In order to do so, we need knowledge bases, i.e. sets of propositions about the
world;

3. Knowledge bases are prone to a plethora of problems such as inconsistency,
vagueness, redundancy, ambiguity, lacunae, etc.;

4. The observations, together with the available knowledge bases, constitute sys-
tems of reasoning generally characterized by uncertainty;
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5. As satisficers, we want to keep the reasoning process simple, and tend to work
with as few premises as possible and to draw one single conclusion at a time.9

So, we are fully justified in carrying out a formal account of this kind of reasoning.
The question now is: Is this still consequence, in the logical sense of the term? Recall
that classical logical consequence can be extended by means of the supraclassicality
condition SCL (cf. Def. 31).

This actually means that there is a logical consequence operation Cn> s.t.

(SPR) Cn (Γ ) ⊆ Cn> (Γ )

or, more correctly,
(SPR∗) Cn (Γ ) ⪯ Cn> (Γ )

where Cn (Γ ) denotes the classical consequence operation on a set of formulae Γ , and
Cn> (Γ ) is a consequence operation on Γ that generates more consequences from Γ
than Cn (Γ ).

This might surprise the reader, given that Cn (Γ ) is defined as being a closure
operation on a set Γ , which entails that no more formulae are derivable or entail-
able from Cn (Γ ) than those already in Cn (Γ ) (recall condition C2*, or C2, for that
matter). How can a consequence operation be stronger (cf. Def. 5) than this? The
justification is simple and has to do with SUB: this rule does not hold for Cn>. That
is to say that a supraclassical consequence is in principle not structural (cf. Def.
2.2).10 As seen above, this entails non-monotonicity. More specifically, a supraclas-
sical consequence relation may be obtained by adding background assumptions, by
restricting the set of possible valuations, and/or by augmenting the set of rules. This
enables us to work with default assumptions, default valuations, and default rules.11

But supraclassicality is not non-monotonicity simpliciter, as a non-monotonic con-
sequence relation may generate more, as well as fewer, consequences than the classical
consequence relation. To begin with, recall that a non-monotonic consequence rela-
tion ∥∼ is “at heart” classical; put formally, it is paraclassical (cf. Def. 41), a feature
that allows for a plethora of relations – monotonic bridges, as Makinson (2005) puts
it – with classical logic, the first of which is precisely supraclassicality, or the property
that ∥∼ ⊆

(
2F × F

)
is an extension of ⊩ ⊆

(
2F × F

)
(cf. Def. 31), so that we have

⊩ ⊆ ∥∼

for a set of formulae F ⊆ L.12 It is precisely this generation of more consequences by
means of the relation ∥∼ (or the operation Cn∼) that we see as supraclassicality. For

9As a matter of fact, it is interesting to mention that while this kind of reasoning appears to
be effortless and very successful, deductive reasoning is difficult and error-prone, as some empirical
investigations into logical reasoning have shown. See, e.g., Stenning & van Lambalgen (2008).

10Structurality is not to be identified tout court with rule SUB, but the idea to be conveyed is that
substitution, whether as an inference rule or as a function, does not hold in principle for supraclassical
consequence. In other words, supraclassical consequence is not closed under substitution. In effect,
recall from Proposition 42 that a consequence relation ∥∼ (which will feature ubiquitously in this
Section) is identical to the classical consequence relation ⊩ if it is both supraclassical and closed
under substitution.

11See Makinson (2005) for a comprehensive discussion.
12We then say that a consequence relation (or operation) is paraclassical iff it is both a closure

relation (or operation) and supraclassical.
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instance, if we add a set of background assumptions A to a knowledge base ∆, then
we will have consequences of the form A∪∆ ∥∼ ϕ, or ∆ ⊩A ϕ, where it might be the
case that ∆ ⊮ ϕ. Also, if we restrict the valuation set W = {v0, v1, ..., vn−1} as W ′ ⊆
W , we may actually generate more logical consequences by considering individual
consequences for each and every valuation vali ∈ W ′ s.t. we have ∆ |=W ′ ψ where
otherwise we might have ∆ ⊭ ψ. The same result can be obtained by considering a set
of new, additional rules RI+ s.t. we have ∆ ⊢RI+ χ where otherwise we might have
∆ ⊬ χ. Let us denote the first case by Cn∼A, the consequence operation with relation
to (or modulo) the set A of background assumptions, and the second case as Cn∼W ′ ,
the consequence operation with relation to (or modulo) the set of restricted valuations
W ′; similarly, we write Cn∼RI+ to denote the consequence operation with relation to
(or modulo) the set of additional rules RI+. In any case, we have Cn (Γ ) ⊆ Cn∼A (Γ ),
Cn (Γ ) ⊆ Cn∼W ′ (Γ ), and Cn (Γ ) ⊆ Cn∼RI+ (Γ ). Then, supraclassicality is in fact
defined by the inequality:

(SPR∗∗) Cn (Γ ) ⪯ Cn∼ (Γ )

The logical consequences that we approach next are all supraclassical in one way
or another, largely so because the systems to be elaborated on have new rules, namely
non-deductive rules. We elaborate on logical consequence for abductive, inductive,
and probabilistic logics. In this process, we shall discuss some of the relations among
these non-deductive logics; for a more comprehensive treatment of these relations see,
e.g., Flach & Kakas (2000).

3.1 Abductive Consequence

Although abductive reasoning can be considered a kind of defeasible reasoning (Sec-
tion 3.3), the retraction of inferences is not its main feature. Besides, it is an amplia-
tive kind of reasoning, which means that DT does not necessarily hold in an abductive
logical system. In particular, DDT does not hold because we are now working with
an “inverted”MP rule.

Definition 46. Given an observation ω, we can infer that ϕ (is an explanation for ω)
according to the following abduction inference rule

(← R)
ω, ϕ→ ω

ϕ

where the material implication connective can be interpreted as“is a good explanation
for” or “is a cause for.”

Then, DT holds iff Γ ⊩ ϕ→ ω, but this in turn holds only if ← R holds, i.e.

Γ, ϕ ⊩ ω iff Γ ⊩ ϕ→ ω iff Γ, (ω, ϕ→ ω) /ϕ.

It should be obvious that we left the terrain of classicality and are now in the
domain of supraclassicality, not the least because ← R is not a rule of classical logic.

This type of reasoning is ampliative in the sense that, given a theory Θ (a set of
propositions about the world ∆, i.e. a database with facts, laws, etc.), once we select
ϕ as a good explanation for an observation ω, we can then incorporate it in our theory
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(knowledge base), and we end up with an extended theory Θ> (an enlarged knowledge
base ∆>, respectively). Thus, formalizing this kind of reasoning is essential for theory
and knowledge base updates, which might entail belief revision and default reasoning,
to name but a few applications.

Despite the many decidability problems of abduction for all but the most trivial
problems (e.g., Bylander et al., 1991),13 it has been applied, with different degrees of
success, to fields (sometimes combined) such as diagnosis (e.g., Cox & Pietrzykowsky,
1987; de Kleer & Williams, 1987; de Kleer et al., 1992), human and robot perception
(e.g., Shanahan, 2005), natural language processing (e.g., Hobbs et al., 1993), and
plan recognition (e.g., Ng & Mooney, 1992).

The literature on abduction is vast, and we refer the reader to Gabbay & Woods
(2005) for a comprehensive elaboration on this subject from the viewpoint of appli-
cations. It is common practice to separate abductive approaches into set-based and
logical approaches, but we see no need to do this; on the contrary, we present an
abductive system that is a hybrid of both. For a survey of these two approaches, as
well as of a third, knowledge-based, approach, see Paul (1993).

Abduction is often, and following its coiner, C. S. Peirce, defined as the inference to
the best explanation. In this very general perspective, abduction can be approached
from two components, to wit, hypothesis assembly/selection and inference proper.
Virtually any logical language will do to formalize abduction, and we shall be using
L(∗); we remain at the propositional level for the sake of simplicity. Because hypothesis
assembly/selection is a fundamental part of abduction, we need to provide our logical
system with an abduction framework.

Definition 47. Given language L(∗),14 we say that there is an abduction problem when,
given a theory Θ ⊆ FL(∗) and an observation ω ∈ FL(∗) , it is the case that Θ ⊯ ω and
Θ ⊯ ¬ω. We denote this problem by the pair A? = (Θ,ω).

Note that – especially, but by no means only – in the case of scientific theories, it is
often the case that actually there is a set of observations that pose abduction problems.
In that case, we establish that A? = (Θ,Ω), where Ω is a set of observations.15

Definition 48. An abduction framework is a pair A =
(
A?,
←−
A
)
, where A? is an

abduction problem and
←−
A ⊆ V pL is a set of distinguished symbols (literals) from V pL

called abducibles. An arbitrary formula built solely with symbols from
←−
A belongs to

the set F←−
A

of abducible formulae.

We identify F←−
A

with
←−
A , for the sake of simplicity. In practical terms, abducibles

just are hypotheses.

Example 49. We shall be working with the following set Θlawn:

13Which should become apparent in the discussion below. In particular, the consistency condition
makes first-order abductive logic essentially undecidable. Propositional abductive logic is considered
intractable.

14We need a predicate language only to allow us to work with predicates, even if only 0-ary
predicates. Although not necessary, this increases readability.

15Recall that theories are sets of formulae closed under logical consequence. However, whatever
we say with respect to theories can be loosely extended to knowledge bases, and we will be working
with these whenever the notion of closure can be relaxed. Thus, we can denote a knowledge base by
Θ when a folk theory is meant.
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� water_on_lawn→lawn_is_wet

� no_water_on_lawn→lawn_is_dry

� water_on_lawn→lawn_is_green

� no_water_on_lawn→lawn_is_yellow

� I_didn’t_water_lawn

� there_was_no_tsunami

� tap_not_dripping

� is_rainy_season

Our set of abducibles is
←−
Awetlawn = {r, w, d, t}, where r stands for it_rained,

w for watered_lawn, d for dripping_tap, t for tsunami. Let also o stand for our
observation lawn_is_wet.

Note that we could work directly with the 0-ary predicates of Θ, but this would
make the whole formalization more cumbersome. We keep them for readability. As
usually, we shall be working mostly at the metalanguage level, and for that we denote

our observation by ω and an arbitrary element of
←−
A by ϕ, ψ, etc.

Given the observation o that the lawn is wet, any of the elements of
←−
Awetlawn is

a plausible hypothesis. If on waking up and opening the window one sees that the
lawn is wet, any of the hypotheses above is a candidate for an explanation for this
observation. One might first infer r, as it is indeed the most plausible explanation, as
well as the most parsimonious. However, on remembering that the lawn was watered
late in the evening the day before, one should now consider w, even if this is indeed less
parsimonious than r ; in fact, it could be the case that the lawn had dried overnight.
Hypothesis t really is the least plausible and least parsimonious of all, but it could be
a true explanation, and thus it cannot be discarded without further consideration.

As we can see, the whole process of inferring a proposition ϕ to explain the ob-
servation ω is a defeasible process. Moreover, it is a parsimonious process, as it could
well have been the case that the lawn had been watered and later on it rained, but
one will typically not infer – at least before giving the case some further consideration
– that both it rained and one watered the lawn.

It can also be the case that our set of abducibles does not contain a plausible
explanation for the observation at hand. We need to look for another set, and in
doing so we might end up with inconsistency if we do not eliminate (i.e. retract)
our previous set of abducibles. On the other hand, this new set may actually cause
the initial theory to change: we might have to reduce it or even enlarge it with the
new additions. All this shows that the consequence relation at play in abduction is
essentially non-monotonic.

All this also means that we have some set-theoretical work to do, namely with

respect to Ω and
←−
A . Recall that we are interested in the explanatory power of any

ϕ ∈
←−
A as far as ω ∈ Ω is concerned. In order for this explanatory power to be assured

we need a domain for hypothesis assembly.
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Definition 50. A domain for hypothesis assembly is a triple H =
(
Ω,
←−
A, e

)
where Ω is

the set of observations,
←−
A is the set of hypotheses, and e is a function e : 2

←−
A −→ 2Ω

s.t. eΩ

(←−
A
)

is the explanatory power of the elements of
←−
A with respect to the

observations in Ω. eΩ

(←−
A
)
is subject to the following conditions:

1. For any Ω′ ⊆ Ω and any
←−
A ′ ⊆

←−
A , eΩ′

(←−
A ′
)
is computable;

2. For
←−
A 1,
←−
A 2 ⊆

←−
A , if

←−
A 1 ⊆

←−
A 2, then eΩ

(←−
A 1

)
⊆ eΩ

(←−
A 2

)
;

3. If
←−
A 1,
←−
A 2 ⊆

←−
A , then eΩ

((←−
A 1

)
∪
(←−
A 2

))
= eΩ

(←−
A 1

)
∪ eΩ

(←−
A 2

)
; and

4. The function α :
←−
A → Ω defined for

←−
A ′ ⊆

←−
A and ϕ ∈

←−
A ′ s.t.

α (ϕ) =
{
ω ∈ Ω |ω ∈ eΩ

(←−
A ′
)
and ω /∈ eΩ

(←−
A ′ − {ϕ}

)}
is computable.

More intuitively, according to condition 1, we know exactly which observations are
explainable by which hypotheses; 2 is the monotonicity condition; 3 is a condition
stronger than the previous one and that has to do with the independence of hypothe-

ses, which allows us to generate eΩ

(←−
A 2

)
= eΩ

(←−
A 1 ∪ {ϕ}

)
once we know eΩ

(←−
A 1

)
;

and 4 is the condition of accountability, which guarantees that each hypothesis ϕ
accounts precisely for eΩ (ϕ) if we have α (ϕ) = eΩ (ϕ).

Given these conditions or assumptions, the triple H =
(
Ω,
←−
A, e

)
should then be

subjected to algorithmic procedures to determine the plausibility of the hypotheses
(the screening phase), the different hypotheses accounting for each ω ∈ Ω′ (the col-

lection phase), the uniqueness of each
←−
A ′ (the parsimony phase), and the essentiality

of each ϕ ∈
←−
A (the critique phase). Later on we shall see how this equates with

conditions on the consequence relation. These algorithms can be found in Allemang
et al. (1987).

As far as our abductive problem A?wetlawn goes, by respecting these conditions

and phases we should end up with
←−
A

′

wetlawn = {r}. Note that some of the facts in
Θlawn are irrelevant for the conclusion (e.g., water_on_lawn→lawn_is_green), but
that just is the nature of knowledge bases about the world, i.e. they often contain
irrelevant information for the problem at hand. Moreover, note that the last four facts

listed in our knowledge base helped us to eliminate the other elements of
←−
Awetlawn

and helped us to decide for r.

Definition 51. An abduction system is a pair A = (A, ∥∼), where A is an abductive
framework and ∥∼ is a non-monotonic consequence relation s.t., for a framework

A =
(
A?,
←−
A
)
and an observation ω ∈ Ω,

1. Θ,ϕ ∥∼ ω;
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2. Θ ∪ ϕ is consistent or satisfiable;

3. ϕ ∈
←−
A .

If Θ ∪ ϕ is a solution to an abductive problem A? = (Θ,ω), we denote it as A! =
((Θ,ϕ) , ω).

Clearly, A! has a corresponding ternary consequence relation (Θ,ϕ, ω). In fact,
it just is the consequence relation ∥∼. Given the above set-based conditions and
assumptions, we now know that ∥∼ is required to satisfy the following conditions:

Definition 52. Given an abduction system A = (A, ∥∼) as above where the negation
of ∥∼ is denoted by ∦∼, the following constraints are imposed on the abductive
consequence relation ∥∼ in Θ,ϕ ∥∼ ω:

1. Minimality : ϕ is a literal, or, if ϕ is a formula, then there is no formula ψ s.t.
Lit (ϕ) ⊂ Lit (ψ), where Lit (ϕ) is the set of literals of ϕ.

2. Consistency : Θ ∦∼ ¬ϕ, i.e. Θ,ϕ ∦∼ ⊥.

3. Explanatoriness: Θ ∦∼ ω and ϕ ∦∼ ω.

Suppose now that we have A! =
((
Θ,
←−
A ′
)
, ω
)
, i.e. we managed to reduce

←−
A to a

subset
←−
A ′ that is not a singleton. We can still proceed with an abductive inference,

but clearly this requires caution now, as we do not really know which of the ϕi ∈
←−
A ′

is the best explanation – if there is one, that is.

Definition 53. We say that a subset
←−
A ′ = {ϕ1 ∨ ... ∨ ϕn} is a cautious explanation of

an observation ω, denoted by
←−
Aω
∨, if there is a function ẽω : 2

←−
A −→ ω s.t.

1. Θ,
←−
Aω
∨ ∥∼ ω;

2. Θ ∪
←−
Aω
∨ is consistent or satisfiable;

3. For every abducible formula ϕ ∈
←−
Aω
∨, we have Θ,ϕ ∥∼ ω iff

←−
Aω
∨ = {ϕ};

4. If there is no ϕ ∈
←−
Aω
∨ s.t. condition 1 is satisfied, then

←−
Aω
∨ = ⊥.

Condition 4 above tells us that ẽω is a selection function. Note how this notion of
cautious explanation means a radical departure from classical deductive inference: we
know that in the argument Γ ⊩ ϕ the set Γ is actually a conjunction of formulae, so
that we have Γ ⊩ ϕ only if it is the case that (

∧n
i=1 ψi) ⊩ ϕ for all ψi ∈ Γ . If we add

another set to the premises, say ∆, then we must have it that, for all χi ∈ ∆:

Γ,∆ ⊩ ϕ ≡

[(
n∧

i=1

ψi ∈ Γ

)
∪

(
n∧

i=1

χi ∈ ∆

)]
⊩ ϕ

If we now appeal to DT, then we have:

If Γ,∆ ⊩ ϕ, then Γ ⊩ (χ1 ∧ ... ∧ χn)→ ϕ
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We cannot proceed like this here because we reached the situation where we are
working with a set of possible explanations precisely because we could not reduce
it any further; but we do not know if their conjunction is the explanation for the
observation(s) at hand. For instance, let us suppose that in the evening we had
watered the lawn, this had dried overnight, and then early in the morning, before
we woke up, it had started to rain; we see that the lawn is wet, and we might think
that the lawn is now wet because both we watered it and it rained; but in fact this
conjunction is false as an explanation. The conclusion is: DT fails here. Thus we
resort to disjunction as a means of “preserving” rule← R; in our particular abduction
problem, either the fact that we watered the lawn or the fact that it rained, or both,
is a solution, i.e.

o, (r ∨ w)→ o

r ∨ w
.

Compare with how preservationism (see Augusto, 2020a, 4.5.2), too, resorts to a simi-
lar strategy with the aim of obtaining consistent inferences with inconsistent supersets.
In any case, we can work with disjunctions of conjunctions of literals, what is known
as a DNF; by the equivalence of this with a CNF, we can actually “trick” abductive
inference to respect DT.16 On the one hand, it may be the case that we are actually
working with DNFs. For instance, suppose that, in our example, we wake up to see
that there was a minor tsunami and that it is raining; because we also had watered the
lawn in the previous evening, we have the disjunction of abducibles r∨ (w ∧ t), which
is obviously a DNF. Note, however, how this compromises the minimality condition.
On the other hand, this may actually be useful if we are working with an abductive
program, as DNFs and CNFs are often required for computerization.

Definition 54. Now let there be given the function ẽΩ : 2
←−
A −→ 2Ω . For observations

ωi ∈ Ω, i = 1, 2, ..., n, an abductive inference is called cautious if we have a cautious

explanation
←−
Aωi
∨ satisfying the following conditions:

1. If ⊩ ω1 ↔ ω2, then ⊩
(←−
Aω1
∨

)
↔
(←−
Aω2
∨

)
.

2.
←−
Aω1∧ω2
∨ =

(←−
Aω1
∨

)
∧
(←−
Aω2
∨

)
.

16A formula ϕ is said to be in a disjunctive normal form (DNF) iff ϕ has the form ϕ = ϕ1∨ ...∨ϕn,
n ≥ 1, where each of ϕ1, ..., ϕn is a conjunction of literals, i.e.

ϕ =
n∨

i=1

 m∧
j=1

Li,j

 .

A formula ϕ is said to be in a conjunctive normal form (CNF) iff ϕ has the form ϕ = ϕ1 ∧ ... ∧ ϕn,
n ≥ 1, where each of ϕ1, ..., ϕn is a disjunction of literals, i.e.

ϕ =

n∧
i=1

 m∨
j=1

Li,j

 .

For ϕ in CNF we have ¬
∧n

i=1

(∨n
j=1 Li,j

)
≡

∨n
i=1

(∧n
j=1 ¬Li,j

)
and for ϕ in DNF we have

¬
∨n

i=1

(∧n
j=1 ¬Li,j

)
≡

∧n
i=1

(∨n
j=1 ¬Li,j

)
, i.e. every CNF (DNF) formula has an equivalent DNF

(CNF, respectively) formula.
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3.
(←−
Aω1
∨

)
∨
(←−
Aω2
∨

)
⊩
←−
Aω1∨ω2
∨ .

How can we guarantee that
←−
Aω
∨ is indeed the best explanation for ω? Simply by

generalizing the conditions above on the abductive consequence relation to sets that
work as cautious explanations:

Definition 55. Given an abduction system A = (A, ∥∼) and a selection function

ẽω : 2
←−
A −→ ω =

←−
Aω
∨ as above, the following constraints are imposed on the abductive

consequence relation ∥∼ in Θ,
←−
Aω
∨ ∥∼ ω:

1. Minimality :
←−
Aω
∨ is the minimal elementary explanation for ω, i.e.

(a) there is no
←−
Bω
∨ s.t.

←−
Bω
∨ ⊆
←−
Aω
∨ and

←−
Aω
∨ ⊩
←−
Bω
∨ (Θ∪

←−
Aω
∨ ⊩
←−
Bω
∨) implies that

←−
Bω
∨ ⊩
←−
Aω
∨ (Θ ∪

←−
Bω
∨ ⊩
←−
Aω
∨, respectively), and

(b) there are no literals ϕ, ψ ∈
←−
Aω
∨ s.t. ϕ = ψ.

2. Consistency : Θ ∦∼ ¬
(←−
Aω
∨

)
, i.e. Θ,

←−
Aω
∨ ∦∼ ⊥; in particular, for an arbitrary

ϕi ∈
←−
Aω
∨, Θ,ϕi ∦∼ ⊥.

3. Explanatoriness: Θ ∦∼ ω and
←−
Aω
∨ ∦∼ ω.

Definition 56. Let now the setME (ω) be the set of minimal elementary explanations
of ω. Then, the explanation closure of ω is the disjunction explanation given by∨

←−
A∈ME(ω)

←−
A =

←−
Aω
∨.

In this way, the cautious explanation of ω, given by the function ẽω, assures us
that we have the most parsimonious (or the minimal) explanation for our observation.
That is to say that among the selected explanations one or more will be the best
explanation(s). This is how assured we can be of our inference process. But then that
is what disjunctive closure gives us.

Definition 57. The disjunctive closure of a set A, denoted by A∨, is defined as

A∨ = A ∪ {(ϕ1 ∨ ... ∨ ϕn) |ϕi ∈ A} .

Above, we made no commitment to whether the abductive consequence relation
∥∼ is defined syntactically or semantically. As seen above (cf. Example 18), one way
to provide a logic with a proof system that is at the same time somehow a semantics
is by means of semantic or analytic tableaux. In the case of abduction, this might
actually be the ideal procedure, as it is not a trivial task to provide an abductive
logic with a semantics (or with a proof system, for that matter). Aliseda (2006)
has proposed a semantic tableaux proof system for abductive logic. The rules and
interpretation are exactly the same as above (cf. Example 29), with the following
additional interpretation:

J. Knowl. Struct. Syst., 4:1 27



Original Research Supraclassical Consequence Luis M. AUGUSTO

Definition 58. Let TΘ be a tableau for a theory Θ. A proof of Θ ⊢ ω is a closed
tableau for Θ ∪ {¬ω}, where ω is the fact to be explained.

Suppose now that the tableau TΘ does not close for ω. Then, abduction is con-
cretized in the tableau by adding new formulae to the open branches until the tableau
is eventually closed; in particular, ω may be derivable by means of a minimal exten-
sion of Θ, i.e. the set of abducibles (which must be in the vocabulary of Θ). Aliseda
(2006) considers then three conditions for a formula ϕ to fulfill this task:

Definition 59. Given a theory Θ, a fact to be explained ω, and an abducible ϕ, ϕ is
an explanation of ω if:

1. TΘ∪{¬ω}∪{ϕ} is closed. We have Θ,ϕ | ∼ ω. (Plain abduction)

2. Plain abduction + TΘ∪{ϕ} is open. We have Θ ∤∼ ϕ. (Consistent abduction)

3. Plain abduction + TΘ∪{¬ω} is open and T{ϕ}∪{¬ω} is open. Respectively, we
have Θ ∤∼ ω and ϕ ∤∼ ω. (Explanatory abduction)

We apply here the syntactical version of the consequence relation ∥∼ as defined above,
as it is compatible with Aliseda’s approach. Obviously, the objective is to find algo-
rithms to provide us with a ϕ that closes a | ∼-consequence between a theory Θ
and an observation ω. Aliseda (2006) does provide such algorithms; Aliseda (2007)
defends her choice of a tableaux approach to abduction with the claim that in order
to “operate a logical system,” inference is not enough: a search strategy (a heuristics)
is required. According to her, her Extended Semantic Tableaux approach fulfills this
requirement.

3.2 Inductive Consequence

Suppose that in our theory Θlawn we have it_rains→lawn_is_wet as an additional
fact (cf. Example 49), representable in terms of propositional variables as r → l. We
wake up to see that it is raining, and we infer that the lawn is wet. We appear to be
epistemically justified in doing so, as knowledge bases are often composed of repeated
observations for which no counterexamples have been observed – though they may
well exist, or they are known to exist but the reasoners do not share that knowledge.
Also, we appear to infer deductively, as we have an argument of the form

r → l, r

l

which is of course the form of MP. But in fact DT does not hold, for, suppose that
the lawn was covered with a waterproof canvas; then it would not be wet, despite
the fact that it is raining. As a matter of fact, we cannot even apply MP, because
verification of empirical data makes rule SUB inapplicable. We are now in the domain
of supraclassicality.

Suppose now that, still armed with our theory Θlawn, on waking up we verify that
the lawn is wet, i.e. l holds. We can consult our theory, and by doing so we select
r as a plausible explanation for l. We are not only entitled to do so by our theory,
we actually save up a lot of time in thinking of other plausible hypotheses. But
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we are also no longer in the domain of abduction. Recall that this is an ampliative
kind of reasoning in the sense that at the end of the reasoning process we have the
augmented theory Θ>

lawn. If r → l is already contained in our theory, then at the end
of the reasoning process our theory will be unchanged in cardinality.

But this does not mean that it remains exactly the same theory, because now the
plausibility of r → l is so to say strengthened. Every time we verify this conditional
to be true, we increase its “strength” in terms of plausibility, even though we cannot
here speak of truth-preservation. We are in the realm of induction.

Abduction and induction are related in many ways, not the least of which is that
induction can be seen as a special case of abduction, in the sense that it is a special
form of inference to the best explanation. This is a rather philosophical question
(e.g., Harman, 1965), but a formal approach can actually support this view. On the
other hand, in the field of inductive logic programming, abduction, together with
justification, is seen as a component of induction (e.g., Muggleton & de Raedt, 1994).
Also, inductive logic is commonly associated with conditional probability (call this
Bayesian approaches), but here we consider this aspect to belong more properly to
probabilistic logic (see next Subsection).

The literature on induction is, if not larger, older than that for abduction, as
induction has been studied since at least Aristotle first called it epagoge.17 Besides
the literature cited below, we also refer the reader to Gabbay et al. (2011) for a
comprehensive treatment of this topic.

Induction is typically introduced to the lay reader with an example with ravens.

Example 60. The raven example for an instance of inductive logical reasoning:

raven 1 is black

raven 2 is black
...
raven n is black

(1) all ravens are black

(2) raven n+1 is black

Note that there are two possible conclusions given the same set of premises: (1)
is known as generalization, while (2) is called prediction. As a matter of fact, we
can combine both types of conclusion in a single argument (see below). A look at
the arguments above shows that induction, too, is a form of ampliative reasoning,
but now in the sense that the conclusion contains information that goes beyond the
information provided by the premises. In the example above, conclusion 1 states that
if a (sufficiently large) sample of As are all found to be Bs, then it is reasonable to
infer that all As are Bs; in conclusion 2, from a (sufficiently large) sample of observed
As as being Bs, we have the prediction that the next observed A will also be a B.
What the premises do is: they give us a degree of likelihood, or strength, to our
conclusions.

Definition 61. An argument of the form

ϕ1 ∧ ... ∧ ϕn
φ

17Tellingly, he contrasted it with syllogismos.

J. Knowl. Struct. Syst., 4:1 29



Original Research Supraclassical Consequence Luis M. AUGUSTO

is said to be inductive if

1. ϕ1 = ϕi = ϕn ≈ φ,

2. (
∧n

i=1 ϕi) ≻φ

(∧n−1
i=1 ϕi

)
≻φ ... ≻φ (ϕ1 ∧ ϕ2) ≻φ (ϕ1) ≻φ ∅, where ⪰φ denotes

a binary relation (a partial order) of strength with respect to φ, and

3. ∅ ⊯ φ.

Condition 1 states that φ is approximately the same (denoted by the symbol ≈) as all
the basically identical ϕi;

18 indeed, a conclusion of type 1 generalizes ϕ universally,
and a conclusion of type 2 generalizes ϕn to ϕn+1. Condition 2 states that the higher
the number of similar premises ϕi, the stronger the inference relation is between the
ϕi and φ; this is so to the point where there are no tautologies or theorems in this
inductive framework, as condition 3 states.

Whereas now most authors would invoke probability to account for conditions 1-3,
we leave that for probability logic proper and invoke instead the concept of limit.19

Definition 62. The strength of support (or confirmation) of a set of premises Γ =
{ϕ1, ..., ϕn} where ϕ1 = ϕi = ϕn with respect to a conclusion φ ≈ ϕi in an argument
of the inductive form above is a function of the limit of the ϕi ∈ Γ , i.e.

(LIM∞⊩ )

(
lim

n→∞

n∧
i=1

ϕi

)
∪ {φ} ⊩ ⊤.

An argument satisfying LIM∞⊩ is said to be inductively strong. Otherwise, it is said
to be inductively weak, according to the condition

(
LIM0

⊩

) (
lim
n→0

n∧
i=1

ϕi

)
∪ {φ} is inconsistent.

We are here evidently at the metalogical level. Intuitively, LIM∞⊩ states that as
the number (the conjunction) of the premises approaches infinity, the stronger the
consistency (or satisfiability) relation between the premises and the conclusion is. On
the contrary, according to LIM0

⊩, as the number of premises approaches zero, the
strength of this relation vanishes, and the inconsistency (or unsatisfiability) increases.

This can be interpreted as a mathematical answer to Hume’s Problem (of Induc-
tion). David Hume (1748/1999) famously claimed that we are not justified to believe
that the sun will rise tomorrow on the grounds that it has done so until today. Ac-
cording to him, this is just a psychological (survival) strategy based on association
and habit. The problem with this is, according to Hume, that we believe the future
to be identical with the past, a belief we are perhaps not justified in holding. This
is supposed, among other things, to have made induction inadequate as a scientific

18This latter identity is better expressed in FOL: the premises of the raven argument are all identi-
cal in the sense that they all express formally the existential proposition ∃x (Raven (x) ∧Black (x)).

19Clearly, this concept is compatible with a probability viewpoint of inductive logic, but here we
keep them separate. See Paris & Vencovská (2015) for one such viewpoint in a comprehensive mono-
graph. See Woods (2002) for a critical exposition of a probability calculus in relation to inductive
logic.
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methodology, as it is often the case in a scientific context that we believe a conclusion
to be confirmed or justified by the repeated verifications expressed in the premises.
The philosophical discussion on this problem is prolific, but we consider that the LIM
conditions do, if not solve the problem, strongly reduce its impact.

In any case, what LIM∞⊩ gives us is that φ remains a hypothesis, not the least
because enumeration up to infinity is simply not feasible. To illustrate this, it is
possible indeed that the sun will not rise tomorrow, but the number of instances
in which the sun rose every next day is now so large that we are very much sure
(though not absolutely so) that it will do so tomorrow, and this is sureness enough
to make us plan for tomorrow. To be sure, there might be a huge volcano eruption
tonight that will cause the sun rays not to be able to penetrate earth’s atmosphere
tomorrow because of an impenetrable smoke and ash cloud, but this does not count
as the sun not rising; this has to do with the rotation of the earth and its position
with relation to the sun. In turn, LIM0

⊩ provides us with a means not to attempt
an inductive inference, that is, not to hypothesize φ from an insufficient number of
premises ϕi ≈ φ.

We can now make the LIM conditions more precise from the viewpoint of inductive
inference in the following way:

Proposition 63. Let ∥∼ denote an inductive consequence relation20 and let the symbol
∦∼ denote the negation of the relation. Then, we have the conditions:

(
LIM∞∥∼

) (
lim
n→∞

n∧
i=1

ϕi

)
∥∼ φ

and

(
LIM0

∥∼

) (
lim
n→0

n∧
i=1

ϕi

)
∦∼ φ

The LIM∥∼ conditions guarantee the non-deductive character of inductive logical
systems in the sense that, say, an inductive proof system could be believed to“emulate”
(or aspire to do so) a deductive proof system.

Recall that φ is a possible hypothesis iff LIM∞∥∼ holds. In what follows, we simplify
the set of premises (the evidence) ϕi as ϕ, which is justified by the similarity of the ϕi;
we are also justified in this because we aim at a general characterization of inductive
consequence relations. We follow here Flach (2000) closely. We shall be working with
the language L and the formulae ϕ, φ, χ ∈ Fµ

L (we shall omit the superscript µ).

Definition 64. Given language L, an inductive consequence relation is a relation ∥∼⊆
FL × FL (or ∥∼⊆ 2FL × FL ).21 Given formulae ϕ, φ ∈ FL, the closure of ∥∼ is a
function ∥∼ : 2FL × FL s.t. ∥∼ϕ = {φ |ϕ ∥∼ φ} is the closure of ϕ under ∥∼.

Recall that ∥∼ϕ enjoys the SCL condition, in which case it has to be distinguished

from classical closure (see above). In any case, ∥∼ϕ is subject to restrictions:

20It should now be obvious why an inductive consequence relation is non-monotonic. As above,
∥∼ denotes a non-differentiated consequence relation in terms of proof- and model-theory.

21This is for the sake of simplicity, i.e. we want to work with one possible hypothesis, rather than
with multiple hypotheses.
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Definition 65. Let ∥∼ϕ be the closure of ϕ under ∥∼; we say that ∥∼′
is (at least) as

restrictive as ∥∼ if ∥∼′
ϕ ⊆ ∥∼ϕ and it is more restrictive than ∥∼ if ∥∼′

ϕ ⊊ ∥∼ϕ . A
set of rules RI ′ is said to be (at least) as restrictive as a set of rules RI if for every
∥∼ satisfying RI there is a unique least restrictive ∥∼′

satisfying RI ′ s.t. ∥∼′
is as

restrictive as ∥∼; then we say that ∥∼′
is the RI ′-restriction of ∥∼.

Definition 66. The following are the properties of a general proof-theoretical inductive
consequence relation | ∼:

1. Consistency :

(⊢) ϕ | ∼ φ
⊬ φ→ ¬ϕ

2. Left reflexivity :

(LR)
ϕ | ∼ φ
ϕ | ∼ ϕ

3. Right reflexivity :

(RR)
ϕ | ∼ φ
φ | ∼ φ

4. Left equivalence:

(LEq)
⊢ ϕ↔ φ, ϕ | ∼ χ

φ | ∼ χ

5. Right equivalence:

(REq)
⊢ φ↔ χ, ϕ | ∼ φ

ϕ | ∼ χ

6. Verification (χ denotes a prediction):

(VER)
⊢ (ϕ ∧ φ)→ χ, ϕ | ∼ φ

ϕ ∧ χ | ∼ φ

7. Falsification (χ denotes a prediction):

(FALSF)
⊢ (ϕ ∧ φ)→ χ, ϕ | ∼ φ

ϕ ∧ ¬χ ∤∼ φ

8. Right extension (χ denotes a prediction):

(RExt)
⊢ (ϕ ∧ φ)→ χ, ϕ | ∼ φ

ϕ | ∼ φ ∧ χ

Intuitively, property or rule 1 assures us that the possible hypothesis φ is not incon-
sistent with the evidence ϕ. Given property 1, we have it that a formula is consistent
in an inductive argument either as a hypothesis or as evidence; ϕ | ∼ ϕ (property 2)
indicates that ϕ is consistent with the theory of the reasoning agent, and φ | ∼ φ
(property 3) denotes the consistency of the hypothesis with itself, in both cases iff φ
is consistent with ϕ. Properties 4 and 5 state that the logical form of evidence and
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hypothesis is irrelevant. Property 6 states that if the prediction χ is actually observed
to hold, then φ remains a possible hypothesis; otherwise, if χ is verified not to hold,
then φ is considered to have been refuted (property 7). Finally, property 8 allows us
to add any prediction to the possible hypothesis (rather than to the evidence).

In abductive logic, we are interested in explanatory consequence relations, whereas
in inductive logic our interest falls on confirmatory consequence relations.

Definition 67. Let φ be a hypothesis for evidence ϕ. We denote by ϕ | ∼ φ the con-
sequence relation between ϕ and φ s.t. ϕ confirms φ. This confirmatory consequence
relation satisfies the following conditions (or follows the following rules) iff (a) ϕ is
consistent and, if there is more than one hypothesis, φi are consistent, and (b) the
properties of a general inductive consequence relation are satisfied:

1. Admissible entailment :

(AE)
⊢ ϕ→ φ, ϕ | ∼ ϕ

ϕ | ∼ φ

2. Confirmatory reflexivity :

(CR)
ϕ | ∼ ϕ, ϕ ∤∼ ¬φ

φ | ∼ φ

3. (Inductive) Right weakening :

(iRW)
⊢ φ→ χ, ϕ | ∼ φ

ϕ | ∼ χ

4. Right ∧:

(R∧) ϕ | ∼ φ, ϕ | ∼ χ
ϕ | ∼ φ ∧ χ

5. Predictive right weakening :

(PRW)
⊢ (ϕ ∧ φ)→ χ, ϕ | ∼ φ

ϕ | ∼ χ

6. Right consistency :

(R ⊢) ϕ | ∼ φ
ϕ ∤∼ ¬φ

7. Left logical equivalence:

(LLEq)
⊢ ϕ↔ χ, ϕ | ∼ φ

χ | ∼ φ

We provide a brief explanation for the conditions/rules above. Condition 1 expresses
the fact that consistent evidence confirms any of its consequences.

Condition 2 states that a hypothesis that is consistent with the evidence confirms
itself. It appears also evident that if a hypothesis is confirmed by the evidence, then
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any hypothesis entailed by this hypothesis is also confirmed by the evidence (condition
3).

Condition 4 is evident, too: if evidence ϕ confirms hypotheses φ and χ, then it
confirms the set {φ, χ} = (φ ∧ χ).

Condition 5 is equivalent to a combination of conditions 3 and 8 in Def. 66; in
effect, PRW implies right weakening, since ⊢ φ→ χ implies ⊢ (ϕ ∧ φ)→ χ, and given
that this implies ⊢ (ϕ ∧ φ)→ (φ ∧ χ), PRW also implies right extension. Then, given
a confirmatory argument, PRW states that any prediction is confirmed by the same
evidence.

Condition 6 expresses the obvious fact that if φ belongs to the set of hypotheses
confirmed by the evidence ϕ, then ¬φ is not a member of this set.

Finally, condition 7 tells us that if evidence ϕ confirms hypothesis φ, then any
evidence χ logically equivalent to ϕ also confirms hypothesis φ.

These conditions or rules were largely – but more or less loosely – based on
Hempel’s (1945) adequacy conditions that any definition of (inductive) confirmation
should satisfy. Although Hempel’s adequacy conditions are established with the sci-
entific method in mind, they are interesting to our study because they are actually
conceived from the viewpoint of logical consequence. We thus leave them here for
the comparison with the above conditions.22 It is easy to see how these conditions
can extrapolate the scientific method taken in a stricter sense and be applied to
other contexts where inductive confirmation is a concern, once we make sure that
Hempel’s notion of consequence fits, or can be made to fit, our logical definition of
consequence.23

Definition 68. (Hempel, 1945) Any adequate definition of confirmation must insure
the fulfillment of the following conditions:

1. Entailment condition: Any sentence that is entailed by the evidence24 is con-
firmed by it.

2. Consequence condition: If the evidence confirms every one of a set of sentences
K,25 then it also confirms any sentence which is a logical consequence of K.

(a) Special consequence condition: If the evidence confirms a hypothesis h,
then it also confirms any consequence of h.

(b) Equivalence condition: If the evidence confirms a hypothesis h, then it also
confirms any hypothesis that is logically equivalent with h.

3. Consistency condition: Every logically consistent evidence is logically equivalent
with the set of all the hypotheses which it confirms.

(a) Unless the evidence is self-contradictory, it does not confirm any hypothesis
with which it is not logically compatible.

22See Flach (2000).
23This caveat is relevant, because Hempel distinguishes the formal from the experimental sciences

in that the former require no empirical test (in principle!). However, recall that in inductive logic we
are in the domain of supraclassicality, which admits of empirical components in a way that deductive
logic does not (cf. rule SUB).

24An observation report, in the original jargon. As seen above, by “evidence” we mean a set of
sentences whose members are ϕi = ϕj for i ̸= j.

25Originally, a class of sentences.
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(b) Unless the evidence is self-contradictory, it does not confirm any hypotheses
which contradict each other.

Hempel (1945) complemented the above conditions with satisfaction, disconfirmation,
and neutrality criteria.

Definition 69. Hempel (1945):

1. Satisfaction criterion of confirmation: evidence b

(a) directly confirms a hypothesis h if b entails the development of h for the
class of objects that are mentioned in b.26

(b) confirms a hypothesis h if h is entailed by a set of sentences each of which
is directly confirmed by b.

2. Disconfirmation criterion: evidence b disconfirms a hypothesis h if it confirms
the negation of h.

3. Neutrality criterion: evidence b is neutral with respect to a hypothesis h if b
neither confirms nor disconfirms h.

The above conditions for an inductive confirmatory logical consequence relation (Def.s
66-7) actually provide us with a Gentzen-like proof system for inductive logic that we
shall call CS. The logical rules are those of LK and all the above can be seen as the
structural rules that together with these constitute the proof system CS.

In order to prove the soundness of CS Flach (2000) elaborated on a confirma-
tory semantics. In terms of a semantics for the confirmatory inductive consequence
relation, it makes sense to consider a hypothesis to be confirmed iff it is true in all
models of some given semantics. This is the starting point of the confirmatory seman-
tics proposed by Flach (2000), of which we provide the main points (in an adapted
notation).

Definition 70. Given a set of formulae FL ⊆ L, ϕ, φ ∈ FL, a confirmatory structure is
a triple C = (S, | · |, ∥·∥), where S is a set of semantic objects, and | · |, ∥·∥ : FL −→ 2S

are functions s.t. |ϕ| denotes the set of regular models constructed from the premises
ϕ and ∥φ∥ denotes the models for the conclusion (the hypothesis). C defines a closed
confirmatory consequence relation | ≈ as ϕ| ≈ φ iff

1. |ϕ| ≠ ∅, and

2. |ϕ| ⊆ ∥φ∥.

Definition 71. A confirmatory structure C is said to be simple if it satisfies:

1. Reflexivity

26By the development of hypothesis h for a finite class of individuals C, Hempel (1945, p. 109)
provides the following explanation: “the development of h for C states what h would assert if
there existed exclusively those objects which are elements of C. Thus, e.g., the development of the
hypothesis h1 = ∀x (P (x) ∨Q (x)) for the class {a, b} is (P (a) ∨Q (a)) ∧ (P (b) ∨Q (b)).” Hempel
(1945, p. 109) gives further examples.
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2. iRW

3. R∧

4. |ϕ| ⊆ ∥ϕ∥

5. ∥ϕ ∧ φ∥ = ∥ϕ∥ ∩ ∥φ∥

6. ∥¬ϕ∥ = S − ∥ϕ∥

7. ∥ϕ∥ = S iff |= ϕ

Simple confirmatory structures are axiomatizable by the proof system CS. Details of
the rules of inference are as follows:

1. The rules of CS are PRW, R∧, and R⊢.

2. The derived rules of CS include iRW, RExt, LR, AE, and ⊢.27

A simple confirmatory consequence relation ∥∼ is sound if it satisfies the rules of
inference of CS. We now turn to the confirmatory semantics, in order to prove the
completeness of the simple confirmatory consequence relation | ≈.

Definition 72. Let | ≈ be a confirmatory consequence relation for a confirmatory
structure C = (U, | · |, ∥·∥), where U is the set of models of FL in consideration. A
model M ∈ U is said to be normal for ϕ, denoted by M̂ϕ, iff for all φ ∈ FL s.t.
ϕ | ≈ φ we have |=M φ.

Proposition 73. Suppose that the consequence relation | ≈ satisfies iRW and R∧. Let
ϕ be an admissible formula. Then, all normal models for ϕ satisfy φ iff ϕ | ≈ φ .

Definition 74. Given C, we can now make the following further definitions with respect
to the confirmatory consequence relation | ≈ for arbitrary ϕ:

1. |ϕ| =

{ {
M∈ U | M̂ϕ

}
if ϕ is admissible

∅ otherwise
;

2. ∥φ∥ = {M ∈ U | |=M φ}.

Theorem 75. A consequence relation | ≈ is simple confirmatory iff it satisfies the rules
of CS.

See Flach (2000) for the relevant proofs. The strong assumptions of the confirmatory
semantics above (i.e. the evidence is subject to completeness assumptions) are not
always satisfiable, reason why one may need to work with a weaker notion of confir-
mation, in which a confirmed hypothesis is required to be true only in some of the
regular models.

Definition 76. Let C be a confirmatory structure as above. We say that C defines an
open confirmatory consequence relation ϕ | ≈ φ iff (|ϕ| ∩ ∥φ∥) ̸= ∅.

27Rules LLEq and CR pose additional restrictions on C, to wit, and respectively, (i) if |= ϕ ↔ φ,
then |ϕ| = |φ|, and (ii) if ∥φ∥ ̸= ∅, then |φ| ̸= ∅.
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This openness can be radicalized by an identity between | · | and ∥·∥, which entails
dropping the condition that regular models be models of the premises:

Definition 77. A simple confirmatory structure C⋄ = (S, ∥·∥ , ∥·∥) is called a classical
confirmatory structure. A consequence relation | ≈⋄ is said to be weak confirmatory
iff it is the open confirmatory consequence relation defined by C⋄.

Flach (2000) then presents a proof system for | ≈⋄, which we shall call C⋄S.

Definition 78. A weak confirmatory consequence relation | ≈⋄ satisfies the rules of
C⋄S, to wit, ⊢, PRW, and the following two further rules:

1. Predictive convergence:28

(PC)
⊢ (ϕ ∧ χ)→ φ, ϕ | ∼ χ

φ | ∼ χ

2. Disjunctive rationality :

(DR)
ϕ ∨ χ | ∼ φ, χ ∤∼ φ

ϕ | ∼ φ

Finally, Flach (2000) also provides an account of explanatory consequence relations in
the context of inductive logic. Our treatment of these relations was carried out above
in the Subsection dedicated to abduction.

3.3 Probabilistic Consequence

As seen above, if we are dealing with uncertainty, then the deduction theorem (DT) is
bound to be of no (much) use to us in a formal approach to reasoning. In the so-called
probability logics,29 DT may fail, because we are now interested in the probability
that, given ϕ ⊩ ψ (or Γ ⊩ ∆), it is the case that ⊩ ϕ→ ψ (or ⊩ Γ → ∆, respectively).
For example, let ϕ stand for “Patient has acne” and ψ for “Patient has spots”. Clearly,
ϕ

f
∼ ψ holds, as ψ ∈ Cn∼ ({ϕ}), but this neither allows us to deduce that ϕ → ψ,

nor does it give us a degree of certainty with respect to ⊩ ϕ→ ψ. Indeed, the patient
with acne may instead have deep-buried cysts.

This involves in fact the notion of conditional probability (see below), namely in
the sense that the conditional connective requires or is amenable to a probabilistic
interpretation (e.g., Adams, 1975). From this viewpoint, the introduction of proba-
bilities for sentences generalizes deductive logic (see Carnap, 1950), but it may simply
be seen as a degree of implication (or confirmation), in which case we are in fact in
the field of inductive logic.

28Note that this is a combination of VER and the rule for convergence CON, which expresses
a monotonicity property for induction, i.e. the fact that rejecting a hypothesis is not a defeasible
process, but must be based solely on the evidence:

(CON)
⊢ ϕ→ φ, ϕ | ∼ χ

φ | ∼ χ

PC is thus a strengthening of convergence in the sense that φ can be any set of predictions.
29We carry out here a treatment of probability logic highly circumscribed to the notion of con-

sequence; more comprehensive treatments are to be found in, e.g., Roeper & Leblanc (1999) and
Hailperin (1996).
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Definition 79. A probability function Pr : F → [0, 1] is said to satisfy the classi-
cal probability axioms30 on a set of sentences F ⊆ L iff Pr satisfies the following
conditions for ϕ, ψ ∈ F :

1. Pr (ϕ) ≥ 0.

2. If ⊩ ϕ, then Pr (ϕ) = 1.

3. If ⊩ ¬ (ϕ ∧ ψ), then Pr (ϕ ∨ ψ) = Pr (ϕ) + Pr (ψ).

The above definition has two immediate consequences:
The first is well known from probability theory:

Pr (¬ϕ) = 1− Pr (ϕ)

The second consequence is important from the viewpoint of the Lindenbaum-
Tarski algebras:

Pr (ϕ) = Pr (ψ) if ⊩ ϕ↔ ψ

Conditions 2 and 3 above are parasitic on deductive logic: condition 2 uses the
notion of tautology and condition 3 that of logical incompatibility. In effect, Def. 79.2
above can be reformulated as:

Theorem 80. ⊩ ϕ iff Pr (ϕ) = 1.

Given this, if we define 0 as falsity and stipulate the remaining truth values vi for
0 < i < 1, then probability logic can be seen as reducing to a many-valued logic. (See
Augusto, 2020b.)

5.3.4. A probability function Pr : F → [0, 1] is a conditional probability if, when-
ever Pr (ψ) > 0,

Pr (ϕ|ψ) := Pr (ϕ ∧ ψ)
Pr (ψ)

or, whenever Pr (∆) > 0,

Pr (Γ |∆) :=
Pr (Γ ∧∆)

Pr (∆)

where both Γ and ∆ can be singletons.

30Recall the Kolmogorov axioms for a probability space (U,F , P r) where U is the universal set,
F is a σ-field on U, and A,B ∈ F :

1. Pr (A) ≥ 0. (Non-negativity)

2. Pr (U) = 1. (Normalization)

3. Pr (A ∪B) = Pr (A) + Pr (B) if A ∩B = ∅. (Finite additivity)

See Woods (2002) for a basic logical probability calculus. We remark that the Kolmogorov axioms are
so for a probability measure defined on a Boolean set algebra; thus, their application in propositional
logic poses no problems. Moreover, their extension to FOL can be carried out by resorting to
Lindenbaum-Tarski algebras and first-order models thereof.
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Note that Pr does not necessarily entail a semantical interpretation: the interval
[0, 1] just is the interval of the probabilities that can be assigned to a formula or a
set of formulae. This does not require that a truth-value assignment be expanded
to the truth-value set [0, 1], i.e. valPr : F −→ [0, 1]. In effect, we can envisage a
probabilistic consequence relation as a purely quantitative relation in which at play
is merely probability-preservation (vs. truth-preservation). However, if we choose to
extend the semantics of L(∗) by considering the interval [0, 1] as our new truth-value
set, then we are extending classical logic.

Be it as it may, Pr just did not come out of the blue, and we have to specify
where it belongs, i.e. to the proof-theoretical or to the model-theoretical components
of L(∗). This motivates complications that can be eschewed if we opt to remain at
the metalogical level, i.e. if we work with a consequence relation ⊩x , where x is
a probability. In this case, a metalogical expression such as Γ ⊩x ϕ is read as “Γ
partially entails ϕ to degree x.” The “rule” for partial entailment is formulated as
follows.

Definition 81. We say that a set of formulae Γ = {ψ1, ..., ψn} partially entails a
formula ϕ to degree x if the following rule is satisfied:

(PEnt) Γ ⊩x ϕ iff Pr

(
ϕ|

n∧
i=1

ψi

)
= x

We say that Γ entails ϕ if x = 1. If Γ = ∅, we speak of unconditional probability.

It is easy to see that partial entailment makes of a probabilistic logic a deduc-
tive logic, and a monotonic one, for that matter. Evidently, PEnt is basically not
acceptable in relevance logic, as not all the ψi ∈ Γ may be relevant for the condi-
tional probability of ϕ given Γ (see Augusto, 2020a, 4.5.1). Moreover, PEnt poses the
problem of the uniqueness of the probability function depending only on Γ and ϕ,
i.e. a distinguished probability function Pr′ such that Γ ⊩x ϕ iff Pr′ (ϕ|Γ ) = x and
x is a degree of confirmation; it appears, however, that no such function can in fact
be unique, especially so in the case of FOL and of infinite sets. At play is here what
for many makes of probabilistic logics either minor logics or non-logics simpliciter, to
wit, the introduction of factual – i.e. empirical – considerations so as to be able to
attempt to determine the uniqueness of x in terms of degree of confirmation. The
problem is aggravated if one sees the degree of confirmation as the de-facto degree of
consequence, as is expressed by PEnt (e.g., Roeper & Leblanc, 1999). In any case,
we are here already in the domain of inductive logic, and it is not certain when the
transition from deductive logic did in fact occur.31

One can drop the uniqueness requirement by, instead, conceiving of a probabilistic
consequence relation defined as

Γ ⊩A ϕ iff A =
{
x |x = Pr

(
ϕ|
∧
Γ
)}

but this generalized partial entailment is weaker than PEnt in that, are Γ and ϕ
logically unrelated, then A = [0, 1], and the entailment relation ⊩A is trivial. Clearly,

31For an elaboration on the problems of partial entailment and some remedying proposals thereto,
see, e.g., Williamson (2002).
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restrictions have to be set upon A, the set of probability functions, but this again
takes us to the realm of the empirical – notoriously so if Γ is, say, a knowledge base.

Hawthorne and Makinson (Hawthorne, 2014; Hawthorne & Makinson, 2007) have
come up with a family of rules for consequence relations – the family O – by “revis-
ing” the notion of partial entailment with a threshold associated to the consequence
relation. Given any probability function Pr defined on sentences of a propositional
language, Pr satisfies conditions 1-3 above, they define a probabilistic consequence
relation for 0 < t ≤ 1 by the following rule:

Definition 82. The pair (Pr, t) generates a probabilistic consequence relation ∥∼Pr,t

according to the rule:

ϕ ∥∼Pr,t x iff

{
Pr (ϕ) = 0

Pr (x|ϕ) ≥ t

Definition 83. The family O of rules for consequence relations is defined as follows:

(O1) ϕ | ∼ ϕ Reflexivity
(O2) If ϕ | ∼ x and x ⊢ y, then ϕ | ∼ y Right weakening
(O3) If ϕ | ∼ x and ϕ ⊣⊢ ψ, then ψ | ∼ x Left classical

equivalence
(O4) If ϕ | ∼ x ∧ y, then ϕ ∧ x | ∼ y Very cautious

monotonicity
(O5) If ϕ ∧ ψ | ∼ x and ϕ ∧ ¬ψ | ∼ x, then ϕ | ∼ x Weak ∨
(O6) If ϕ | ∼ x and ϕ ∧ ¬y | ∼ y, then ϕ | ∼ x ∧ y Weak ∧

The main limitations of this family of rules for consequence relations are that
they are solely for consequence relations that are in Horn rule form, i.e. in the form
“If ϕ1 | ∼ x1, ..., ϕn | ∼ xn, then ψ | ∼ y” for a finite number of premise conditions
ϕn | ∼ xn, and the family O does not appear to make for a sound set of rules. In
any case, probability logic is plagued with issues to do with spatial and temporal
complexity, and is basically undecidable.

To finish our short approach to probabilistic consequence relations, we wanted to
show that the transition from a propositional to a first-order system is not necessarily
over-complicated, despite the essentially undecidable nature of the latter. Moreover,
we wanted to give an example of a model-theoretical probabilistic consequence relation
– mostly because a purely proof-theoretically based probabilistic consequence relation
is hard to come by.

The probabilistic logic ε-logic, where ε is a fixed error parameter (Terwijn, 2005;
Kuyper & Terwijn, 2013), satisfies both wishes. In particular, it is an inductive
probabilistic logic, though the parameter ε is conceived as ε-truth, and thus points to
a deductive preservation of truth: in fact, the focus here is on probabilistic truth.

We shall be working with the language L∗ with, if necessary, the equality symbol
added.

Definition 84. LetM be a classical first-order model for L∗ and let D be a probability
measure onM. Given ε ∈ [0, 1], we inductively define the relation |=(M,D),ε (we omit
the subscript (M,D) henceforth) as follows:
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1. For every atomic formula ϕ,

|=ε ϕ if |=M ϕ.

2. For ∧,∨ it holds that

(a)

|=ε ϕ ∧ ψ if |=ε ϕ and |=ε ψ;

(b)

|=ε ϕ ∨ ψ if |=ε ϕ or |=ε ψ.

3. For ∃ it holds that

|=ε ∃xϕ (x)

if there exists an a ∈M such that |=ε ϕ (a).

4. For ∀ it holds that

|=ε ∀xϕ (x) if Pr [a ∈M| |=ε ϕ (a)] ≥ 1− ε.

5. For ¬ it holds that

(a) for atomic ϕ, |=ε ¬ϕ if ⊭ε ϕ;

(b) |=ε ¬ (ϕ ∧ ψ) if |=ε ¬ϕ ∨ ¬ψ, and
(c) |=ε ¬ (ϕ ∨ ψ) if |=ε ¬ϕ ∧ ¬ψ;
(d) |=ε ¬¬ϕ if |=ε ϕ;

(e) |=ε ¬ (ϕ→ ψ) if |=ε ϕ ∧ ¬ψ;
(f) |=ε ¬∃xϕ (x) if |=ε ∀x¬ϕ (x);
(g) |=ε ¬∀xϕ (x) if |=ε ∃x¬ϕ (x).

6. For → it holds that

|=ε ϕ→ ψ if |=ε ¬ϕ ∨ ψ.

As is evident, the approach is thoroughly classical except for the universal quantifier.
In effect, we cannot even call it “universal,” as now the consequence relation |=ε ϕ (a)
defined in terms of ∀ means that for many/most a ∈M, where “many/most” depends
on ε, it holds that |=ε ϕ (a). This is believed to solve the undecidability of sentences
with the universal quantifier given a finite amount of information. Importantly, be-
cause both |=ε ∃xϕ (x) and, given this interpretation of the “universal” quantifier,
|=ε ∀x¬ϕ (x) may hold simultaneously, this is a probabilistic paraconsistent logic.32

This necessarily motivates a non-classical definition of satisfiability and validity:

32Paraconsistency is the view that one can work, from the logical point of view, with information
characterized by inconsistency and contradiction in a non-trivial way. More formally: a logic is said
to be paraconsistent iff it is not the case that for all formulae ϕ, ψ we have ϕ,¬ϕ ⊩ ψ (v. 1 ) or iff it
is the case that for formulae ϕ, ψ we have ⊩ ϕ and ⊩ ¬ϕ, but not ⊩ ψ (v. 2 ). Note that these are in
fact definitions of the paraconsistent consequence relation as a non-explosive consequence relation.
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Definition 85. A formula ϕ (x1, ..., xn) is ε-satisfiable if there are an ε-model (M,D)
and a1, ..., an ∈M such that |=(M,D),ε ϕ. We write |=ε ϕ when ϕ is an ε-tautology or is
ε-valid, i.e. when |=ε ϕ (a1, ..., an) holds for all ε-models (M,D) and all a1, ..., an ∈M.

In the ε-logic, the modelM and the probability distribution tango to provide the
desirable property that every set is measurable:

Proposition 86. For an ε-model (M,D), it holds that

1. For all formulae ϕ (x1, ..., xn) and all a1, ..., an−1 ∈M, the set

{an ∈M| |=ε ϕ (a1, ..., an)}

is D-measurable.

2. All n-ary relations, including equality, are Dn-measurable and all n-ary func-
tions are measurable as mappings (Mn,Dn) −→ (M,D), where Dn denotes the
n-fold product measure. All constants are D-measurable.

Finally,

Proposition 87. The set {a1, ..., an ∈Mn | |=ε ϕ (a1, ..., an)} is Dn-measurable.

All this accounts for the (desired) algorithmic, finitist character of proofs in ε-logic,
though the computational complexity is basically very hard. (See Kuyper, 2014, for
a more comprehensive elaboration on both further requirements for proofs and the
issue of complexity in ε-logic.)
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