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Abstract with “city-block” distance or thel; metric, whileintegral
. . . dimensions are associated with Euclidean distance dcthe
Generalizing a property from a set of objects to a new object - h diff . Iso h
is a fundamental problem faced by the human cognitive sys- Metric (Garner, 1974). T ese different metrics also have co
tem, and a long-standing topic of investigation in psychology. sequences beyond generalization behavior, influencing how

Classic analyses suggest that the probability with which peo- - hegple categorize objects varying along different dimemsi
ple generalize a property from one stimulus to another depends

on the distance between those stimuli in psychological space. (Handel & Imai, 1972) and whether people can selectively
This raises the question of how people identify an appropri- attend to each dimension (Garner & Felfoldy, 1970).

ate metric for determining the distance between novel stim- At

uli. In particular, how do people determine if two dimensions Aqalyses (.)f human generall;atlop have tended to tre.a't the
should be treated as separable, with distance measured alongMetric as a fixed property of stimuli. However, determining
each dltmenélor}_(ljndepgn?ently %aS I-n%net?-c)j gwtegr% the appropriate metric on a psychological space is an impor-
supporting Euclidean distance (as inlanmetric)? We bui ; ; :

on an existing Bayesian model of generalization to show that tantstep towards developlpg an approprl_ate represemfaino
learning a metric can be formalized as a problem of learning the properties of novel objects. If two dimensions are sepa-

a hypothesis space for generalization, and that both ideal and rable, then those dimensions form privileged axes for repre

human learners can learn appropriate hypothesis spaces for a ; ; ; ; . ;
novel domain by learning concepts expressed in that domain. senting locations in the psychological space, and it iseeasi

Keywords: generalization; categorization; Bayesian model- to learn Categories defined by rules that align with those axe

ing; similarity; integral and separable dimensions (Kruschke, 1993). This is qualitatively different from ante-
) gral representation, in which there are no natural axesfor r
Introduction resenting the space. Identifying whether dimensions shoul

Almost every two objects, events, or situations (or the senbe separable or integral is thus just as basic a step towards
sory data for thesame object at two different moments) that forming a representation for a novel domain as determining
we encounter are unique. Despite this fact, when people (arit€ number of dimensions, or the locations of each stimulus
animals) learn that one stimulus has a property, they reliin the resulting space.
ably and systematically believe certain other stimuli hinz In this paper, we consider how a learner could identify the
property and others do not (Shepard, 1987). For example, #ppropriate metric for representing a novel domain, compar
you learn a dark, large circle is gnarble, how likely is a  ing an ideal Bayesian learner with human judgments. The
dark, slightly smaller circle or a dark very small circle te b starting point for this investigation is an existing Bayesi
agnarble? This is the problem ofeneralization, which is ~ model of generalization, introduced by Shepard (1987) and
pervasive across cognitive science. It occurs in many formsxtended by Tenenbaum and Griffiths (2001). In this model,
from higher-level cognition (e.g., concept learning, Tene the property of interest is possessed by all stimuli within a
baum, 2000) to linguistics (e.g., word learning, Xu & Tenen-unknown region of psychological space, and the probabil-
baum, 2007) to perception (e.g., color categorization, &ay ity of generalizing to a new stimulus is computed by sum-
McDaniel, 1978). How should an ideal learner generalize aming over all candidate regions containing the new stimu-
property from a group of stimuli observed to have the prop-us and the previous stimuli observed to have some property,
erty to other stimuli? weighted by the posterior probability of that region. The di
One of the most celebrated theoretical results of cogniference between separable and integral dimensions emerges
tive psychology provides a deceptively simple answer te thi as the result of probabilistic inference with different bip-
guestion, indicating that we should generalize a propestyf ~ esis spaces of regions (Shepard, 1987, 1991; Davidenko &
one object to another object when the two objects are simiTenenbaum, 2001). The hypothesis spaces that produce gen-
lar, or equivalently, close in some psychological spacepsh eralization corresponding to separable and integral dimen
ard, 1987). However, this establishes a new problem: Howgions consist of axis-aligned and axis-indifferent regiam
should the distance between objects be measured? Mothe space, respectively (see Figure 1). Axis-aligned regio
formally, the problem is one of identifying metric on a  produce stronger generalization along the axes, while- axis
space, a basic challenge that also arises when using machiimglifferent regions produce generalization that depemdg o
learning methods that rely on computing distances, such a@n the Euclidean distance between stimuli.
nearest-neighbor classification (Xing, Ng, Jordan, & Rlisse  This analysis of separable and integral dimensions lays the
2002; Davis, Kulis, Jain, Sra, & Dhillon, 2007). Cognitive groundwork for our account of how people learn an appro-
psychologists have determined that people use two differerpriate metric for a novel space. Learning a metric thus be-
kinds of metrics when forming generalizations about multi-comes a matter of inferring an appropriate hypothesis space
dimensional stimuli: separable dimensions are associated on which to base generalization. We define a hierarchical



Bayesian model that makes this inference from a set of obSeparable and Integral Dimensions

served concepts. We demonstrate that this model inferg-a cit psychological explorations of human similarity metrics of
block or Euclidean generalization metric when given axis-myltidimensional stimuli discovered two different ways in
aligned or axis-indifferent concepts, respectively, ahatt \yhich people use these dimensions: separable and integral
people infer a hypothesis space for generalization based q®&hepard, 1987). Separable dimensions can be interpreted i
the concepts they learn in a way that is consistent with thigjependently and form natural axes for representing a space,
ideal observer analysis. This extends previous results byhjle integral dimensions are difficult to perceive indepen
Goldstone (1994) who changed dimensions from being ingently. The dimensional structure of stimuli affects masy a
tegral to separable via repeated training of a single cdncep pects of human information processing, including the ease
The plan of the paper is as follows. The next section proyf categorizing objects into groups and perceived distance
vides the theoretical background for our approach, sunmnari petween objects (Garner, 1974). For example, Garner and
ing the basic generalization model, revisiting some of the | Fe|foldy (1970) found that categorization time was facili-
erature on separable and integral dimensions, and laying Ogted for objects with integral dimensions (e.g., satoragind
our approach to hypothesis space learning. We then preseniigntness of a color) into groups where the values of the di-
test of the predictions of this model with human learners. Fi nensions of the objects in each group are correlated (light a
nally, we conclude the paper with a discussion of our resultgjesaturated vs. dark and saturated). However, there veas int
and possible future directions. ference for objects categorized into groups of objects wher
Th ical E K the values of the dimensions are orthogonal (light and edtur
eoretical Framewor vs. dark and desaturated). Conversely, there were no major
Our theoretical framework builds directly on the Bayesiandifferences in categorization time for these types of aateg
generalization model introduced in Shepard (1987) andization structures when the dimensions were separable.
Tenenbaum and Griffiths (2001), so we begin by summariz- pimensional structure also affects the perceived disgnce
ing the key ideas behind this approach. We then show howetween objects (Shepard, 1991). The perceived distance
this approach produces separable and integral geneiatizat metric for objects with separable dimensions is the “city-
and how it can be extended to allow an ideal learner to infeplock” distance, also known as tte metric, with the dis-
an appropriate representation for novel stimuli. tance between two stimutj andx; beingd(xi,x;) = ¥ Xk —
The Bayesian Generalization Model Xj!(|, wherek ra}nges _over dimensions alxg is the valug of
stimulusx on dimensiork. The perceived distance metric for
Let X be the stimulus space artd be the hypothesis space, opjects with integral dimensions is the Euclidean distance
whereh € # is a hypothesis as to which objects have andgy, L, metric, withd(x,X;) = Zk(Xak—Xjk)z- The use of
do not have the property of interest (i.e., a hypothesis is ghese different distance metrics is consistent with tHexiht
set ofx € X). After observing that a set of stimuK = properties of separable and integral dimensions: citgiblo
{x1,....%},x € X, stimuli have some property, how should gistance sums the distance along each axis separatelyl for al
you update your belief in: (1) which property it is and (2) points in the space, while Euclidean distance is insemsitiv
which other stimuli have that property? Assuming that stim-yhether a point is located along an axis, and is thus invarian
uli are generated uniformly and independently under the tru changes in the axes used to represent the space. Recent ex-
hypothesis at random for the properyX|h) =i p(xi|n) = tensions of classic multidimensional scaling techniquesr b
[h|~" for a hypothesis containing all stimuli in the given set; ot these results, and provide a way to identify whether peo-
p(X|h) = 0 otherwise) and taking some prior over hypothe-pje seem to use separable or integral dimensions in their rep
sesp(h), the posterior probability that a hypothesiss the  resentation of a set of stimuli (Lee, 2008).
property than given stimuli share is In the Bayesian generalization model introduced in the pre-
p(h) [y (% [h) vious_ secti_on, the difference be_tween in'FegraI and separa-
p(h|X) = ,':1n — (1)  ble dimensions emerges from using two different hypothesis
Zrves PIN) MLy POGIY) spaces (Shepard, 1987). Using a hypothesis space in which
which is simply Bayes' rule. Using Equation 1, we can derive'©9i0ns are aligned with the axes results in behavior censis
the probability of generalizing fronX to some other stimu- tent with separable dimensions, while a hypothesis space in

lusy as the sum over the posterior probability of hypothesed?Nich regions are indifferent to the axes results in behav-
containingy ior consistent with integral dimensions. Figure 1 shows a

p(y|X) = z P(h|X) ) schematic Qf twp such hypothess spaces, rgstncted to rect
angular regions in two dimensions, together with the gdnera
ization gradient for a single exemplar concept in each space

h:iyeh

which constitutes a form offiypothesis averaging (Robert,
2007). The predictions of the model depends intimately on We calculated the generalization gradients by sampling from

i i i ifthe prior distribution over hypotheses for the axis-aligned and axis-
the nature of the hypotheses under consideration, with dIfit.rr:different hypothesis spaces, then weighting each hypothesis by the

ferent hypothesis spaces leading to different generaizat jixelihood given the single exempl&5. The gradients were evalu-
patterns. ated on a discretized:99 grid.



@ A (b) spacey, and P(#y) is the prior probability of hypothesis
iﬁﬁi spaceHm. The probability of concepts and current stimuli
L1 7

X under hypothesis spadd, is

Axis—alignedv(separable) Axis-indifferent (integral) P(C7X|Hn) = !_l Z P(h‘%n) |1P(X| h) (5)

A Separable Predictions Integral Predictions Ce(CUX) he X<

B g whereC plays the same role a§, but for the previously ob-

c c servec_i F:oncepts. .

D D Intuitively, the model can be thought as being composed of

E E m Bayesian generalization “submodels” (each with their own

. v hypothesis space). The model’s generalization judgmeats a
made by averaging over the generalizations made by the indi-

G G vidual submodels (given the current stimuKisweighted by

PII II{ how well the submodel explains the previously and currently

I 23 456 7 8 9 L 23 45 6 789 observed stimuli. Thus, the model “learns” to use hypothesi
spaces that explain the observed concepts well.

Figure 1: Hypothesis spaces and generalization gradigjts. ; ;
Axis-aligned (separable) and axis-indifferent (inteyray- Human Leaming of Hypothesis Spaces

pothesis spaces. (b) Resulting generalization gradiemts ¢ The model presented in the previous section predicts that a

each hypothesis space given a single exemplar of a concepfeamer should be able to infer whether dimensions are inte-
gral or separable for a novel domain after seeing some ex-

amples of concepts expressed in that domain. Preliminary
The generalization gradient resulting from the axis-a&@n support for this idea is provided by the results of Goldstone
hypothesis space given a single exemplar of a concept dg¢1994), who showed that teaching people a novel axis-aligne
creases with distance under a city-block metric, while ke g concept could affect generalization along that axis in liwth
dient resulting from the axis-indifferent hypothesis spde-  tegral and separable spaces. However, shifting a represen-
creases with Euclidean distance. Models using the appropriation all the way towards integral or separable dimensions
ate hypothesis spaces capture generalization judgmetits weyill require learning more than one concept. To test whether
for concept learning tasks using separable and integramim human learners behaved in this way, we conducted an exper-
sions for both single and multiple exemplars (Davidenko &iment in which we examined how the generalization judg-
Tenenbaum, 2001; Tenenbaum, 1999). ments that people produce depend on the concepts they have
. . learned. We used rectangles varying in width and height as
Learning a Hypothesis Space P e,

our set of stimuli, and participants learned 20 concepts tha
The Bayesian generalization framework naturally exteods tyyere either aligned with or orthogonal to these dimensions
learning an appropriate hypothesis space by introducieg th(rectangles with the same aspect ratio or area). The key pre-
hypothesis space itself as a higher-level random variable igjction was that participants observing axis-aligned epts
a hierarchical Bayesian model. Given an enumerable set Qfhould show a generalization gradient consistent withya cit
hypothesis spacef = {7,..., 7}, the probability that  pjock metric, whereas participants observing concepts-ind
an ideal observer generalizes to a new stimylgs/en a set  ferent to these axes should show a generalization gradient
of stimuli X have a property and a set of previously observed;gnsistent with a Euclidean metric. This prediction result
concepts” (where each concept itself is a set of stimuli) s from the different hypothesis spaces the two groups of@arti
ipants should infer are appropriate for these domains.

Stimuli and Methods

The stimuli for this experiment were rectangles where ttee tw

where the first term .is the probability o_f_generalizing_fro(m manipulated dimensions were the width and height (ranging
toy under hypothesis ;paﬂén (as specmed by. Equaﬂon 2) from 13 to 115 pixels in increments of approximately 25 pix-
and the second term is the posterior probability of hypothe-

: . ) els). The stimulus set is shown in Figure 2. We chose rectan-
Sis space/iy given the previous concepisand the observed les because it is easy to think of concepts on our two manip-
stimuli of the current concept of interest. This posteriatp 9 y P b

ability can be comouted by applving Baves’ rule ulated dimensions (same width or height) and the diagonals
y P Y applying Bay of the dimensions (same aspect ratio or area). Previously,

P(C, X| Hon)P(Hn) Krantz and Tversky (1975) found people weakly favor using
P(Hn| C, X) = - P(C.X ) (4)  areaand aspect ratio as separable dimensions (the diagonal
¥ m=1P(C, X|Hm)P(Fm) : .
of separable dimension space). However, people can use any
whereP(C, X|Hm) is the probability of observing a set of con- of the four potential dimensions for generalization depend
ceptsC and the currently observed stimuli under hypothesisng on the context rectangles are in. This natural flexipilit

M
PYX,C) = 3 PYIZn X)P(ZalCX)  (3)
m=1
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Figure 3: The 20 concepts for each training condition. Each
H o o o =] = T — e — concept is the collection of objects on a straight line on the

grid. The separable concepts are axis aligned and the afitegr
concepts are indifferent to axes.

1 2 3 4 5 6 7 8 9

Figure 2: Stimuli used in our experiment (not to scale).  CONcepts consisting of single objectB, B3, ES,H2,H8}
were tested) over the totab99 set of objects.

makes rectangles an ideal candidate for training partitipa Results

to represent rectangles using different dimensional stras. Figure 4 shows averaged results for single exemplar gener-
There were two phases to the experiment: training and tesjization for the test phase in the two conditions. The gngl
For the training phase, there were two between-subjects coyemplar concept results were re-aligned 5} and then
ditions: theseparable condition = 15), in which people  4yeraged over the five concepts per participant and over par-
observed axis-aligned concepts, and thiegral condition ticipants. We then took the difference between the general-
(n= 18y in which people observed axis-indifferent concepts.ization gradients for the two conditions, and compared them
The test phase was the same for all participants. The COVgfith the difference between the generalization gradierds p
story for the experiment was: duced by the Bayesian model. The integral group generalizes
On a small island in the Pacific Ocean, scientists found the an- More on the diagonals and less on the axes than the separable

cient ruins of a small civilization. While excavating the ruins, ~ 9roup as predicted if the integral and separable groups used
they discovered objects on the doors of particular houses. They Euclidean and C'_ty'bl‘)Ck distance metrics respectlve!y.
believe that the objects carry information about the people in 10 test quantitatively that the two groups learn integral

the houses. Some of the objects the scientists found had names @nd separable dimensions, we found that the integral train-
written under them. ing group generalized significantly more often on diago-

o . ) nals than axes (averaging ovf,D,F,G} x {3,4,6,7} vs.
Stimuli were then presented as objects with names, and pegs ps 5, G5, t(32) = 3.23 p < 0.005). Within the separa-
ple guessed what other objects would share the same nameg|e group, the generalization judgments on the axes were sig

The 20 concepts shown to the training groups are shown ijficantly greater than the diagonal$34) = 2.66, p < 0.05);
Figure 3 (each concept is a straight line picking out severahowever, the integral group did not differentiate between
points, corresponding to stimuli). The concepts for the tWochanges on the axes and the diagon&(80f = 0.43 p =
conditions were chosen such that each condition saw eaq§]43)_ Interestingly, both groups of participants treateel th
object an equal number of times, there were two to four obngsitive diagonalf 3,F 4, G3,G4,C6,C7,D6, D7) differently
jects in each concept, and the concepts spanned the spaceyRdn the negative diagonaC3,C4,D3,D4,F6,F7,G6,G7)
objects. The 20 concepts were presented to participants in@(34) = 2.58,p < 0.05 for separable ant30) = 2.63,p <
random order as examples of objects that were called differe o5 for integral).  This replicates Krantz and Tversky
nonsense names randomly chosen from a standardized Ii§&975):3 finding that people tend to generalize rectangles
While the objects in each concept were on the screen, partichased on constant aspect ratio. This is not surprising as con
pants were asked whether or not they thought every object igtant aspect ratio is an important invariance of an object’s
{A.C,E,G,1} x{1,3,5,7,9} shown individually below the  proiection on the retina as it changes in depth (keeping the
objects in the concept could be called that name. viewpoint orientation constant) due to perspective piigjec

The test phase of the experiment was identical to the firstpaimer, 1999).
phase except participants’ generalizations were tested fo frinally, we calculated a mixed effect-22 ANOVA that

2The different number of participants in each group was due tocOrrobrates the conclusions of our other statistical tefits
the computer crashing mid-experiment. identified a main effect of generalizing on the diagonalks. t
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Figure 4: Predictions of the difference between the two Beyemodels formed by model averaging given the separable an
integral concepts, and difference between the human deratien results from the two conditions. The results arespnted

as bubble plots where the size of the bubble represents trealef generalization. Solid and open bubbles represesitiyeo
and negative values respectively. Each single exemplaregimesults were re-aligned Eb and then averaged over the five
concepts per participant and over participants. Notice th@ndifferences on the axes aligned with the given stimutity are
negative and the differences on the diagonals are positive.

axes F(1,32) = 44.258 p < 0.001) and an interaction be- further test this account of separable and integral dinogissi
tween generalizing on the diagonal vs. the axes and the traiby exploring if after training participants show other cens

ing group €(1,32) = 10.453 p < 0.005). This suggests that quences of having separable or integral dimensions, such as
in the future we should include a hypothesis space into ouclassification and attentional effects. Additionallysthiould
hierarchy that includes regions varying on the axes and thaddress a potential confound that the training affects the a

positive diagonal (but not the negative diagonal). tention participants pay to each dimension. Fortunately, o
] ] larger conclusion that people use the concepts they ara give
Discussion to learn the appropriate hypothesis space for a domain holds

Generalization is an essential problem that basicallyyeverregardless of the potential confound (as this conclusiagis
cognitive system needs to solve in virtually every domain.nostic to the exact mechanism affecting generalization).
Previous analyses of the generalization problem (Shepard,
1987; Tenenbaum & Giriffiths, 2001) indicated how an ideal One attractive aspect of this analysis (over using a differ-
learner should act assuming that an appropriate representant solution, like model selection) is that it provides a way
tion of the stimuli and hypothesis space for generalization to explain why the empirical literature suggests that irdeg
is known. However, how people arrive at a representatiority has been found to be a fuzzy rather than a binary dis-
and hypothesis space has been left as an open question. #sction (Garner, 1974). Such fuzzy boundaries emerge as a
it seems unlikely that people would be born with the appro-consequence of Bayesian inference when there is uncgrtaint
priate representation and hypothesis space for all pesgdsl  to which hypothesis space is appropriate for generalizatio
mains, people need to be able to infer this information fromWe would predict that the “integrality” of natural dimens#®
their observations of the properties of stimuli. Usingthety  are a consequence of how real world objects are categorized
lem of learning a metric as an example, our analysis showalong those dimensions. For example, the reason why the
how an ideal learner would go about inferring such hypoth-saturation and brightness of a color are integral is because
esis spaces, and our experimental results suggest thdepeopur environment we do not make distinctions between col-
do so in a way that is consistent with this model. ors at different saturations and brightnesses. “Light'egre

To our knowledge, our results provide the first behavioralis a typical color word; however, “saturated” green is an es-
evidence that people can learn whether stimuli should be reteric word, reserved only for artists, designers, andgyerc
resented with separable or integral dimensions. Our esultual psychologists. In fact, Goldstone (1994) and Burns and
also provide compelling support for the idea that the dif-Shepp (1988) found that these dimensions are separable in
ference between separable and integral dimensions can Ipeople who regularly distinguish between the two (color ex-
thought of as the result of different hypothesis spacesdar g perts and participants trained to distinguish betweervtiog, t
eralization, building on (Shepard, 1987, 1991; Davidenko &which implies that they have concepts aligned with the axes
Tenenbaum, 2001). In future work, it would be interesting toof brightness and saturation.



Another important implication of our results is that humansDavis, J. V., Kulis, B., Jain, P., Sra, S., & Dhillon, I. S. Q.
learn the metric appropriate for generalization in a partic  Information-theoretic metric learning. IRroceedings of
lar domain from the concepts they observe. It would be in- the 24th International Conference on Machine Learning.
teresting to compare how metric learning algorithms devel- Corvallis, OR.
oped in machine learning (e.g., Xing et al., 2002; Davis etGarner, W. R. (1974).The Processing of Information and
al., 2007) compare to human metric learning on this task, Sructure. Maryland: Erlbaum.
and after learning other types of concepts. This could pav&arner, W. R., & Felfoldy, G. L. (1970). Integrality of stimu
the way towards new machine learning algorithms that auto- lus dimensions in various types of information processing.
matically infer dimensions intuitive to people from a given Cognitive Psychology, 1, 225-241.
set of concepts. Dimensionality reduction techniques likeGoldstone, R. (1994). Influences of categorization on fgerce
multi-dimensional scaling and principal component analys tual discrimination.Journal of Experimental Psychology:
are some of the most widely used tools for scientific dataanal General, 2(123), 178-200.
ysis, but only produce the equivalent of integral dimension Handel, S., & Imai, S. (1972). The free classification of
An algorithm that determines whether a space is better rep- analyzable and unanalyzable stimulPerception & Psy-
resented by separable or integral dimensions, and produceschophysics, 12, 108-116.
interpretable separable dimensions, would be a valuable aday, P., & McDaniel, C. K. (1978). The linguistic signifi-
dition to any data analysis toolkit. cance of the meanings of basic color terrhanguage, 54,

Though Bayesian models have become very popular 610-646. o
and successful at explaining different cognitive phenamenKrantz, D. H., & Tversky, A. (1975). Similarity of rect-
(Chater, Tenenbaum, & Yuille, 2006), the hypothesis spaces angles: An analysis of subjective dimensiordsurnal of
used in the models are handpicked by the modeler and usu-Mathematical Psychology, 12, 4-34. _ _
ally specific to the particular investigated phenomenoris Th Kruschke, J. K. (1993). Human category learning: Implica-
leaves open the question of how people choose the hypothe-tions for backpropagation modelSonnection Science, 5,
ses for a set of observed stimuli. Our framework presents °- o )
an answer to this problem — a hypothesis space is used fé€e, M. D. (2008). Three case studies in the Bayesian analy-
a set of observed stimuli depending on how well it explains SIS of cognitive modelsPsychonomic Bulletin and Review,
the observed stimuli and its prior probability. We provide 15(1), 1-15. . ) .
behavioral evidence for our framework in the case study of’almer, S. E. (1999)Msion Science. Cambridge, MA: MIT
learning whether or not two dimensions should be separable Press.
or integral. Futhermore, this introduces an interestingveq  Robert, C. P. (2007).The Bayesian choice: A Decision-
alence between learning the structure of dimensions used to theoretic Motivation. New York: Springer.
represent stimuli and the set of candidate hypotheses for geShepard, R. N. (1987). Towards a universal law of generaliza

eralization, which we plan to investigate in future resharc tion for psychological scienceience, 237, 1317-1323.
Shepard, R. N. (1991). Integrality versus separabilitytiofis
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