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Abstract

We propose a proof representation format for human-oriented proofs at the assertion level with under-
specification. This work aims at providing a possible solution to challenging phenomena worked out in em-
pirical studies in the DIALOG project at Saarland University. A particular challenge in this project is to bridge
the gap between the human-oriented proof representation format with under-specification used in the proof
manager of the tutorial dialogue system and the calculus- and machine-oriented representation format of the
domain reasoner.
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1 Introduction

In this paper we propose a proof representation format for human-oriented proofs
at the assertion level with under-specification. This work aims at providing a pos-
sible solution to challenging phenomena worked out in empirical studies in the
DIALOG project at Saarland University. In these studies 24 students with varying
background were interacting with an intended tutorial natural language dialogue
system in a wizard-of-oz (WOz) study, where the dialogue system was mimicked
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by a human mathematician; the joint task was to construct proofs in naive set theory.
Neither the tutor system nor the subjects were constrained in this experiments with
respect to particular proof formats. The obtained corpus has now been analysed and
provides us with valuable insights in the notion and nature of proofs constructed by
humans in this field. Among the most prominent differences concerning specifi-
cation of proof fragments and references to them are the level of granularity of
these proofs, which is typically the application of theorems, axioms and lemmata,
and the aspect of under-specification, for example, missing references to premise
assertions, rule and instantiation specifications.

The term under-specification is borrowed from the field of computational lin-
guistics; it means that certain aspects in the semantic representation of a natural
language utterance are left uninterpreted, such that their proper treatment can be
deferred to later stages of processing in which more contextual information is avail-
able. The most prominent aspect for which under-specification has been used in
computational linguistics is scopus of quantifiers. Since this use differs from the
aspects relevant for our purposes, we refer to under-specification only for proof
representations when seen from the mathematical/logical perspective.

A particular challenge is to develop an appropriate proof representation format
since these human-constructed proofs need to be represented and maintained in the
tutorial dialogue system. A challenge for the interaction with the domain reasoner
(a theorem prover for naive set theory) is to bridge the gap between this human-
oriented proof representation format and the calculus- and machine-oriented rep-
resentation format of the domain reasoner, such that feedback on several relevant
aspects in the context can be produced by the domain reasoner for each proof step
uttered by the subjects.

The experiments conducted and the proof representation format proposed in
this paper are relevant not only for the tutorial systems community, but also for the
theorem proving community, especially in the following aspects:

• Human-Oriented Interactive Proof: Many research papers in the field of deduc-
tion systems refer to the notion of human-oriented proofs. From the psycho-
logical perspective, there is a limited degree of evidence how humans commu-
nicate in inference-rich discourse, such as proof descriptions, and where they
have difficulties. It has been shown that human capabilities in understanding de-
ductive syllogisms may differ significantly — understanding the most frequent
one, modus ponens, is much easier [12]. Therefore, it is required to present log-
ically redundant information for more complex reasoning tasks in conversation
with humans [22]. By and large, these insights favour the assertion level [11]
as the most appropriate level of granularity, unless complex reasoning patterns
are to be described. Moreover, humans typically exploit contextual expectations,
so that several details can be left implicit in descriptions [20]. From the per-
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spective of referring to proof fragments, this corresponds to under-specification.
However, rather few empirical data are available in form of corpora like ours, in
which proofs were constructed interactively by students and teachers. In order
to precise the notion of human-oriented interactive proof we propose to analyse
these corpora. In contrast, many scientist and system developers in the theo-
rem proving community still take for granted that sequent- or natural-deduction-
based proof representation formats are already a nearly optimal solution. The
aspect of under-specification in this context has hardly been addressed so far in
the literature. In fact, the corpus we collected indicates that neither the natural-
deduction nor the sequent calculus nor a pure rewriting-based approach are suf-
ficient here, whereas assertion-level proofs come closer. However, without being
able to address under-specification none of these formats are sufficiently suited
as a human-oriented proof format.

• User-Interfaces for Theorem Provers: The clarification of the notion of human-
oriented proofs is very relevant for the design of user-interfaces for theorem
provers. Our viewpoint coincides with [19], which investigates paper proofs
instead of interactively constructed proofs with under-specification, in the sense
that a clear separation between the optimally user-oriented proof representation
in the user interface and the usually machine-oriented proof representation in
the theorem prover appears increasingly important. The design and development
of most current user interfaces for theorem provers often starts from the exist-
ing functionalities of the concrete system and this approach typically strongly
constrains the achieved and achievable solution.

For a discussion of the notion of human-oriented proofs it is reasonable to differ-
entiate between cleaned-up textbook proofs (which have been investigated in the
literature) and interactive dialogues on proofs, for instance, between students and
tutors, as in our setting. Thus, not only the tutoring systems community but also the
theorem proving community could strongly benefit from further data about human-
constructed proofs in a tutorial setting without assuming some a priori constraints
on proof styles and calculi.

In this paper we shall briefly sketch the DIALOG project and discuss the setting
of the empirical studies (Section 2) and present examples of the resulting corpus
data (Section 3). In the main part of the paper, relevant phenomena of the collected
corpus, such as under-specification, will be discussed (Section 4) and a prelimi-
nary proof representation format addressing these phenomena will be proposed and
some implications on the required capabilities and features for the theorem prover
to be used as domain reasoner in the DIALOG project will be discussed (Section 5).
Finally, we shall discuss related work and conclude the paper.
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2 Empirical Studies in the DIALOG Project

In the DIALOG project [17], we aim at a mathematical tutoring system that employs
an elaborate natural language dialogue component. To tutor mathematics, we need
a formally encoded mathematical theory including definitions and theorems along
with their proofs, means of classifying the student’s input in terms of the knowledge
of the domain, and a theory of tutoring that should make use of hints.

In this paper, we are primarily concerned with defining a data structure for the
proof that the user of the system is developing. The user is supposed to prove a
theorem by informing the system about every proof step he/she takes. Since the
communication between user and system is to be in natural language, it is impor-
tant to devise an interpretation component that is able to map the natural language
descriptions of the proof, such as the steps the user utters, into a formal representa-
tion of the proof under development.

As a first step toward the design of the system, we started with empirical in-
vestigations to pinpoint linguistic phenomena and relevant aspects of the domain
that need to be addressed. To this end, we followed the Wizard-of-Oz (WOz) ap-
proach [5], where the subjects in an experiment are told that they interact with a
computer system, but where the computer system is, either as a whole or in part,
simulated by a human expert, called the wizard. If the wizard is restricted in his/her
behaviour to follow certain algorithms, the data collected in the experiment reflect
the interaction between the subjects and the envisioned system. This allows for an
early evaluation of algorithms before they have been implemented. Moreover, the
data also allows for the analysis of the subjects’ behaviour in the interaction with
the envisioned system, even if the wizard has not been restricted in his behaviour.
Note that it is important that the subjects think that they interact with a computer
system, since it has been observed that humans interact differently with computers
than with other humans [10,6].

In our project, we plan for a series of experiments where the wizard will be first
increasingly restricted in his possibilities to comply with the specific algorithms of
the envisioned system and then gradually replaced by the implemented algorithms.
To that end, we developed a tool that allows for such a progressive refinement of
the experimental setup [8].

For the first stage, we decided to restrict ourselves to the domain of naive set
theory, which is a rather basic mathematical theory that directly builds upon logic
without making use of other complex theories. A major advantage of this theory is
that it is manageable to a reasonable extent by current automated theorem provers.
The investigation in more complex mathematical theories will be done in subse-
quent experiments.

In the first experiment, we asked the subjects to evaluate a tutoring system
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with natural language dialogue capabilities. To work with the system, the sub-
jects had to prove three theorems. The purpose of the first theorem, which stated
that K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪ (K(C)∩K(D)) (where K stands for
the complement of a set), was to make the subject familiar to the system’s interface.
The main part of the experiment consisted of two further more complex theorems
stating (a) A∩B ∈ P((A∪C)∩ (B∪C)) (where P stands for the power-set) and (b)
If A ⊆ K(B), then B ⊆ K(A), which were given to the subjects in varying order. For
every utterance of the subjects the wizard had to decide if the utterance corresponds
to a relevant and correct step of a proof of the theorem under consideration. If so,
he only had to acknowledge the step, otherwise a hinting algorithm was invoked
that decided what kind of hint should be produced by the system and the wizard
had to verbalise the hint. The experiment setup is presented in more detail in [4].
The details of the hinting algorithm can be found in [9].

In the next section, we shall show some example dialogues recorded during the
first experiment.

3 An Example Dialogue

In the example sessions presented below the utterances of tutor (wizard) and subject
are labelled with Tn and Sn, respectively, where n is a consecutive numbering. 1

Example 3.1 (Subject 16) The proof constructed interactively by the student is a
forward proof starting from a well chosen instance of the deMorgan’s second law.
T1: Bitte zeigen Sie: K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪ (K(C)∩K(D))

[Please show: K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪ (K(C)∩K(D))]
S1: nach deMorgan-Regel-2 ist K((A∪B)∩ (C∪D)) = (K(A∪B)∪K(C∪D))

[by deMorgan-Rule-2 K((A∪B)∩ (C∪D)) = (K(A∪B)∪K(C∪D)) holds]
T2: Das ist richtig!

[This is correct!]
S2: K(A∪B) ist laut deMorgan-1 K(A)∩K(B)

[K(A∪B) is K(A)∩K(B) according to deMorgan-1]
T3: Das stimmt auch.

[That is also right.]
S3: und K(C∪D) ist ebenfalls laut deMorgan-1 K(C)∩K(D)

[and K(C∪D) is also K(C)∩K(D) according to deMorgan-1]
T4: Auch das stimmt.

[That also is right.]

1 The complete corpus is available at http://www.ags.uni-sb.de/~dialog/.
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S4: also folgt letztendlich: K((A ∪ B) ∩ (C ∪ D)) = (K(A) ∩ K(B)) ∪ (K(C) ∩
K(D)).
[hence follows finally: K((A ∪ B) ∩ (C ∪ D)) = (K(A) ∩ K(B)) ∪ (K(C) ∩
K(D)).]

T5: Das stimmt genau. Ich wiederhole noch einmal: Auf die linke Seite der Gle-
ichung kann ich zuerst die zweite und danach die erste deMorgan-Regel an-
wenden, so daß sich folgende Argumentationskette ergibt : K((A∪B)∩ (C∪
D)) = K(A∪B)∪K(C∪D) = (K(A)∩K(B))∪ (K(C)∩K(D)).
[This is absolutely correct. I repeat once more: On the left side of the equation
I can apply first the second and then the first deMorgan rule, such that we the
the following chain of argument: K((A∪B)∩ (C∪D)) = K(A∪B)∪K(C∪
D) = (K(A)∩K(B))∪ (K(C)∩K(D)).]

��

4 Under-Specification and the Nature of Interactive Proofs

The example from the previous section poses interesting challenges for the repre-
sentation and analysis of the consecutive proof steps. One particular challenge is
the aspect of under-specification, that is, the fact that many pieces of information
that are typically expected when constructing a proof interactively with a proof
assistant are omitted. This includes information such as

• whether a formula given by the student is a derived fact or a subgoal for some
previous goal. Sometimes this information can be derived or at least guessed
by linguistic analysis from the textual parts in the student answer. However, in
the experiments very often the student only inputted a formula without further
description and then nothing is known about that formula.

• missing references to assertions (e.g., premises) employed in a step (e.g., in S4)
• missing information about instantiations of universally quantified formulae (e.g.,

in S4)
• missing information about positions where manipulations take place (e.g., in S4)

In addition to under-specification, that is, incompleteness of proof step informa-
tion, further challenges can be identified. These comprise correctness of the proof
step, granularity of the proposed proof step, and relevance of the proof step. In a
tutorial setting all of these aspects need to be addressed when analysing whether
a proof step proposed by the student should be accepted by the system or not. In
particular, we propose that the uttered proof step is first represented as a hypo-
thetical step in an appropriate proof representation format (supporting hypothetical
and probably under-specified steps) such that the different analysis tasks can be
performed on this representation.
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We now discuss the four challenges in more detail.

Information Completeness: Information completeness refers to the question
whether an information provided in a students utterance is acceptable from (a)
a tutorial point of view and (b) from the perspective of the domain reasoners
capabilities to potentially substitute information parts that are required for con-
structing a formal proof but which are not given (i.e., whether the degree of
under-specification still allows the domain reasoner to potentially follow the ar-
gument). The former requires interaction with tutorial components of the sys-
tems while the latter requires mechanisms to address and resolve ambiguities.

Accuracy: A proof step (or a whole subproof) uttered by a student is accurate if
it can be verified as a correct inference. This is usually done with the domain
reasoner. In the context of our corpus this mainly boils down to verifying (a)
whether a fact is indeed inferable from the assertions in the context or (b) whether
a proof goal can indeed be refined to a subgoal using some assertions in the
context. In both cases the set of assertions may be under-specified and further
information as already discusses above (position, intantiations, etc.) may be
taken into account.

We call a proof step correct if it is both accurate and information complete (cf. [21]
for details of a student answer categorisation).

Granularity: The level of granularity reflects the number of inference steps re-
quired to establish the asserted proof step. The assessment whether the level of
granularity is acceptable depends on expertise of the user: a proof step consid-
ered to be obvious by an expert mathematician can be a very challenging problem
for a novice and possibly requires dozens of intermediate steps to elaborate the
justification.

We call a proof step communicatively adequate if it is information complete with
respect to the tutorial model, accurate, and if its level of granularity size is accept-
able.

Relevance: It should be clear that the criterion of correctness as introduced can
only tell us whether the proposed proof step is logically valid but gives no in-
dication whatsoever on whether it is a right step to pursue to achieve a proof.
This criterion is about whether the proposed proof step is relevant to the current
proving context. There are several degrees to which the relevance of a proof step
can be judged:
• On a rough scale, a proof step is completely irrelevant if no proofs have to

make use of this proof step. At the other extreme, a proof step must be used
if every (known) proof of the theorem employs it. And, in between, there are
also proof steps that are used by some proofs but not by all proofs.
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• Another aspect addresses a preferred proof (e.g., if teaching a specific proving
strategy is part of the tutorial goal) and the current proof which the user and
the system are pursuing (i.e., the current proof step must fit into the context of
the proof under development).

• Of more advanced criteria, a proof step may also reveal the intention of the
proposer to try to follow some particular proving strategy, or to explore some
unknown parts of the problem, or just a creative move when trying to tackle the
problem. This is certainly beyond the capabilities of current theorem provers
and requires additional knowledge and heuristics. But it is certainly relevant in
the DIALOG project where the system could be equipped with some pedagog-
ical knowledge to allow students to discover problem solving techniques.
Relevance is an interesting and very challenging issue and more research is

needed here. We expect that domain specific reasoning techniques such as proof
planning may play an important role for the automation of relevance investiga-
tions. Traditional resolution or saturation based first-order reasoning systems,
in contrast, appear less useful in this context because of the gap between their
machine-oriented representations and search strategies to those used by the stu-
dents.

5 A Proof Representation Format with Under-Specification

The role of the proof representation format is to serve as an interface between the
linguistic analysis component in a tutor system and the so-called proof manager.
The first component analyses the student’s utterances and filters out, among other
things, those utterances that represent proof steps. The proof manager is concerned
with the reconstruction of the possible proof structure the student is performing and
checks the validity of the proof steps, which should ideally also provide information
that is missing in the student’s utterance, such as which facts have been used and
how they have been used.

The design of the intermediate proof representation format occurs in the field
of tension between how precisely the proof step utterances can be categorised by
linguistic means and what is minimally required to perform sensible proof recon-
struction and checking.

Although the proofs conducted in the WOz experiments have a poor proof struc-
ture, the proof representation format we introduce provides a richer structure in-
cluding goal refinement to multiple subgoals and case distinction. These richer
structure elements will be required for more complex theorems which will be ben-
eficial for the design of further experiments.

S. Autexier et al. / Electronic Notes in Theoretical Computer Science 93 (2004) 5–2312



5.1 Proof Language

We now define formally a language to represent both formal and informal proofs.

References
As pointed out previously, references in the students’ utterances to facts or sub-

goals are often under-specified or even absent. Often, the students use the name or
the formula of some fact or goal, or information on how they are used, for instance,
by specifying the subformula or subterm. Suppose we have grammars to define
non-terminals name, formula and occurrence. Then, we define

Names N ::= name | .

Formulae F ::= formula | .

Occurrences O ::= occurrence | .

where ‘.’ denotes under-specification. Then we define references as triples

References R ::= (N,F,O)

Proof Language
The analysis of the proofs from the experiments was guided by the question

“Which are the typical, linguistically categorisable proof steps the students per-
formed?” This leads to the following categories:

(i) Derivation of new facts with potentially under-specified references to the used
facts.

(ii) Introduction of a new subgoal by referring to the replaced goal.

(iii) Decomposition of complex goal formulae by introduction of new hypotheses.

(iv) Assignment of values to instantiable variables.

(v) Introduction of abbreviations for complex formulae or subterms.

(vi) Statement that the proof is finished.

Furthermore, since linguistic analysis is not always able to uniquely categorise
a given utterance, we introduce a non-deterministic branching over possible proofs
(Or) to represent the different alternative interpretations. Finally, in order to obtain
a richer proof representation format suitable for more complex proofs, we extend
these identified steps in two ways: firstly, for the goal reduction we allow for more
than one subgoal. Secondly, we add case distinction. 2 This results in the proof

2 While these aspects are not not occurring in our corpus, it is clear that they generally play a role
in mathematics. The investigation whether our language designed here is still appropriate for further
corpora where these aspects do occur is further work. Generally we will have to face the question
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Step S ::= .

| Trivial

| Fact N : F from R∗;S

| Subgoals (N : F)+ for R by R∗
in S+

End

| Assume H∗
prove N : F (from R) in S End

| Assign (SUBST | ABBRV);S

| Or(S1 ‖ . . . ‖ Sn)

| Cases F+ : (Case N : F : S End)+ End

Hypotheses H ::= N : F | CONST : TYPE? | VAR : TYPE?

Substitutions SUBST ::= Let VAR := TERM

Abbreviations ABBRV ::= Let CONST := TERM

Constants CONST ::= const N

Variables VAR ::= var N

Types TYPE ::= . . .

Fig. 1. Proof representation language

language presented in Fig. 1.
In our language the proof step “.” indicates an unfinished (sub-)proof while

Trivial indicates that the (sub-)proof should be completed now, for instance there is
a formula that occurs both as a goal and a hypothesis. The step Fact N : F from R∗

indicates that a fact F has been derived from the current facts and has been as-
signed the name N. A proof step Subgoals (N : F)+ for R by R∗

in S+
End repre-

sents the fact that we introduced a list of subgoals (N : F)+ for some previous
goal R and the proofs in S+ are the subproofs for these subgoals. Note that the
facts used to perform that goal reduction may be indicated in R∗. The proof steps
Assume H∗

prove N : F (from R) in S End are used to decompose a goal R into the
new hypotheses H∗ and the new goal F of name N. The hypotheses can be either
named formulae N : F , or new constants and variables, possibly with some type.
The Or(S1 ‖ . . . ‖ Sn) describes a situation, where from the linguistic analysis there
are several possible interpretations resulting in different possible proofs. Resolving
this non-determinism by proof checking and eliminate impossible interpretation

with each new corpus whether our language needs to be adapted to new phenomena.
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S1: Fact . : K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪ (K(C)∩K(D))
from (deMorgan-Rule-2, ., .);

S2: Fact . : K(A∪B) = K(A)∩K(B) from (deMorgan-Rule-1, ., .);

S3: Fact . : K(C∪D) = K(C)∩K(D) from (deMorgan-Rule-1, ., .);

S4: Fact . : K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪ (K(C)∩K(D))
from (., ., .);

S4: Trivial

Fig. 2. The example proof in the representation language.

is one example of important feedback information to be returned to the linguistic
analyser. Finally, case distinctions can be introduced by the Cases construct, where
for each formula ϕ in F+ there is exactly one case n : ϕ.

Example 5.1 We illustrate the proof language by representing the complete proof
from Example 3.1 in Fig. 2. In the proof we indicate to which student utterance the
individual proof steps belong. ��

5.2 Proof Checking

In this section, we propose rules that allow us to check the obtained proofs by
checking each individual proof step. For each individual proof step we need to
know all visible hypotheses, denoted by Γ, and all previous goals, which is a list of
named formulae and is denoted by ∆. The proof checking rules are given in Fig. 3.
Note that we explicitly refrain from fixing a specific logic in these rules, as we
envision the possibility to use the same abstract proof format for proofs in different
domains. Thus, the proof checking system is parameterised over the calculus for the
specific logic. The connection to these calculi is established via the local lemmata
arising during proof checking.

Proof checking individual proof steps may give rise to a local lemma that needs
to be verified to establish the validity of this step. Most proof step kinds give rise
to a specific kind of lemma, such as Γ =⇒Triv ∆ for Trivial proof steps, where
Γ and ∆ are as above. For each kind K of lemma Γ =⇒K ∆ we allow to have a
specific strategy to establish this kind of lemma. 3 Note that the strategies need to

3 Our notion of strategy here is rather general and probably we should rather speak of a strategic
reasoner that is parameterised over some tutorial knowledge. This tutorial knowledge controls and
restricts the search space of the strategic reasoner. In the DIALOG project we employ the proof
planner of the ΩMEGA system which can be controlled by domain specific strategic information
(e.g., control rules). Generally, however, any kind of reasoner that is controllable by some domain
specific information generally qualifies as a candidate; however, see the discussion in Section 5.4.
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P : Γ =⇒Triv ∆
Γ〈Trivial〉∆ Trivial

Γ[Si]∆
Γ〈Or(S1 ‖ . . . ‖ Sn)〉∆

Or

P(R∗) : Γ =⇒Fact F,∆ Γ,N : F [S]∆
Γ〈Fact N : F from R∗;S〉∆ Fact

P(R,R∗) : Γ,(F1 ∧ . . .∧Fk) =⇒Subgoal ∆ Γ[S1]N1 : F1,∆ . . . Γ[Sk]Nk : Fk,∆
Γ〈Subgoals N1 : F1, . . . ,Nk : Fk for R by R∗ in S1 | . . . | Sk End〉∆

Subgoals

P(R) : Γ,F =⇒Focus ∆ P′(R) : Γ =⇒Hyp (H1 ∧ . . .∧Hn),∆, Γ,H1 ∧ . . .∧Hn[S]N : F,∆
Γ〈Assume H1, . . . ,Hn prove N : F (from R) in S End〉∆ Assume

var x : τ ∈ Γ Γ =⇒Type t : τ P : Γ =⇒Subst x = t,∆ Γ, . : x = t[S]∆
Γ〈Assign var x := t;S〉∆

Assign-Subst

Γ =⇒Type t : τ c �∈ Γ∪∆ Γ, . : const c : τ, . : c = t[S]∆
Γ〈Assign const c := t;S〉∆

Assign-Abbrv

P : Γ =⇒Case F1 ∨ . . .∨Fn,∆ Γ,N1 : F1[S1]∆ . . . Γ,Nn : Fn[Sn]∆
Γ〈Cases F1, . . . ,Fn : Case N1 : F1 : S1 End . . .Case Nn : Fn : Sn End End〉∆ Case

Fig. 3. Proof Checking Rules

implement a decision procedure that checks if the conditions for communicative
adequacy are fulfilled. The individual kinds of lemma are:

Triv: These lemmata arise when the student states that the (sub-)proof is trivially
proved.

Fact: These lemmata ensure the validity of derived facts.

Subgoal: These lemmata ensure the validity of goal reductions.

Focus and Hyp: These two kinds of lemma arise when the student decomposes a
complex goal formula and states the additional assumptions and the new subgoal.
The Focus-lemmata ensure that indeed the formula F is a subgoal contained in
the complex goal, while the Hyp-lemmata ensure that the indicated hypothe-
ses are indeed valid hypotheses for that subgoal. Note that encoding these as
lemmata gives the student more flexibility, since the indicated hypotheses and
subgoals need not be exact subformulae of the goal formula, but can already be
consequences of these, which is checked by the corresponding strategies.

Type: Types for terms need to be derived and depending on the underlying type
system, this can be a non-trivial task, especially when instantiations for polymor-
phic types have to be found. Thus, we add type-inference as extra Type-lemmata.

Case: Case distinction requires to establish the validity of the disjunction locally
with respect to the actual context. These proof obligations are represented by
Case-lemmata.
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Subst: These lemmata ensure the admissibility of a substitution.

To prove the lemmata we not only require that some proof can be found, but
rather we must be provided with a proof object. Such a proof must use the ref-
erences possibly given by the student, indicated for instance by P(R∗) in the Fact

rule, since we are not only interested in the new fact being a valid derivation, but
also that the student indicated the right references. If we fail to find such a proof
but find another proof then we can give the tutor component the feedback that the
fact is actually valid, but the student provided some inaccurate details. Any further
fact or goal from Γ and ∆ used in the proof and not indicated by the student are
hints that enable the completion of under-specified information.

Example 5.2 We illustrate the proof checking rules by applying them to the proof
presented in Example 5.1. Assume DM1 and DM2 are the formulae of the deMor-
gan laws 1 and 2 respectively. Thus, our initial hypotheses list is

ΓI := deMorgan-Rule-1 : DM1,deMorgan-Rule-2 : DM2,

const A,B,C,D : Set,const ∪,∩ : Set×Set → Set,

const K : Set → Set

and the initial goal list is

∆I := theorem : K((A∪B)∩ (C∪D)) =

(K(A)∩K(B))∪ (K(C)∩K(D)).

For sake of readability we do not present the complete derivation, but only the
lemmata arising during proof checking. For the first Fact-statement we obtain the
Fact-lemma

P1((deMorgan-Rule-2, ., .)) : ΓI

=⇒Fact . : K((A∪B)∩ (C∪D)) =

(K(A)∩K(B))∪ (K(C)∩K(D)),∆I

(1)

Let F1 be K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪ (K(C)∩K(D)). Then for the
second Fact-step we obtain the Fact-lemma

P2((deMorgan-Rule-1, ., .)) : ΓI, . : F1

=⇒Fact . : K(A∪B) = K(A)∩K(B),∆I

(2)
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Analogously we obtain for the third Fact-proof step the lemma

P3((deMorgan-Rule-1, ., .)) : ΓI, . : F1,

. : K(A∪B) = K(A)∩K(B)

=⇒Fact . : K(C∪D) = K(C)∩K(D),∆I

(3)

For the last Fact-proof step we then obtain

P4 : ΓI, . : F1, . : K(A∪B) = K(A)∩K(B),

. : K(C∪D) = K(C)∩K(D)

=⇒Fact . : K((A∪B)∩ (C∪D)) =

(K(A)∩K(B))∪ (K(C)∩K(D)),∆I

(4)

And finally for the Trivial-proof step we obtain the Triv-lemma

P5 : ΓI, . : F1, . : K(A∪B) = K(A)∩K(B),

. : K(C∪D) = K(C)∩K(D),

. : K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪ (K(C)∩K(D))

=⇒Triv ∆I

(5)

��

Soundness and Completeness
The proof checking rules defined for the proof representation language are

mostly based on a cut rule for the underlying logic. More specifically, the rules
Fact, Subgoals, Assume, Assign-Subst and Cases are all based on the cut rule. Note
that doing so for Assign-Subst the necessary admissibility check for that substitu-
tion is also deferred to the underlying calculus. The rule Triv is simply a call to
the underlying calculus, while the rule Assign-Abbrv is a straightforward context
checking rule. Thus, the proof checking rules are sound relative to the soundness
of the underlying calculus. Due to the presence of the rule for Trivial statements,
the calculus is complete in theory if the underlying logic has a complete calcu-
lus. However, this theoretical observation is only of limited interest in our context,
since we envision the use of specific strategies to establish the respective lemmata.
Thereby it certainly is not the case that these strategies are complete in the log-
ical sense. A more worthwhile question is whether the set of strategies used for
each individual kind of lemma implements a complete strategy. Or, formulating
the question slightly differently, what are sufficient conditions to be fulfilled by
each individual strategy in order to obtain a complete strategy? The answer to this
question remains a challenging research problem.
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5.3 Interaction between Proof Manager and Dialogue Manager

From Dialogue Manager to Proof Manager
The dialogue manager has different information to communicate to the proof

manager: First, it communicates the actual proof or individual proof steps by indi-
cating possibly to which branch they belong. Secondly, exploiting some user model
containing information about the strengths of the student for individual tasks, it can
select the appropriate strategies to prove the different kinds of lemmata. For in-
stance, if we have a weak student, then to prove Triv-lemmata Γ =⇒Triv ∆ it may
select a strategy that only checks whether some of the goal formulae in ∆ occurs in
Γ. If the student is stronger, then it may use a slightly stronger strategy, such as for
instance the finishing strategy from [1].

From Proof Manager to Dialogue Manager
The proof manager works on an actual, possibly partial proof and is configured

with a set of strategies to use for the individual arising lemmata. The attempts to
prove a lemma may have different results:

• If the respective strategy fails to prove the lemma, then the proof manager returns
the information about which step could not be proved to the dialogue manager.

• If the strategy proves the lemma and finds a proof object containing all refer-
ences indicated by the student, then it informs the tutor about the validity of the
student’s proof step, and possibly returns facts also required in the proof and not
indicated by the student.

• If the strategy proves the lemma, but fails to find a proof object containing all the
references indicated by the student, for instance only the references R1, . . . ,Rk,
it returns the information that although the proof step is valid, it is unclear why
one should use R1, . . . ,Rk. Furthermore, it also informs the tutor about other facts
used in the proof and not stated by the student.

Finally, the proof checking algorithm may be able to rule out some impossible
alternatives given in an Or-proof step. This information can be returned to the
dialogue manager in order to sharpen the linguistic analysis.

5.4 Consequences for the Strategies (Strategic Reasoners)

In our context the search behaviour of strategic reasoners should be externally con-
trollable by tutorial knowledge. Moreover, strategic reasoners need to be able to
return proof objects, or at least information about used facts in some subproof.
Furthermore, we are not interested in finding some proof, but rather in finding dif-
ferent possible proofs in the (restricted) search space. Strategies that create proofs
coming close to the level of the arguments of the students are more useful in our
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context than those creating low-level machine-oriented proofs. This is particularly
important for investigating relevance of a proof step.

6 Related Work

The proof representation language presented in this paper is inspired by the work of
Abel and colleagues [1]; the aim of their assertion-level proof language is to support
the teaching of constructive first-order proofs. However, both proof representation
languages differ in various aspects due to differences in their application objectives:
While our objective is to reconstruct a proof description from unrestricted natural
language tutorial dialogues, Abel and colleagues were concerned with providing
a proof representation language directly used by the students to write the proofs.
Furthermore, our aim is to define a proof representation that is as far as possible
independent of some specific logic while Abel and colleagues’ proof representation
was designed for first-order constructive logic only. These differences are reflected
in two major aspects between both proof representations and both proof checking
systems:

Under-Specification: In [1] any used fact that is required for the derivation of
new facts needs to be indicated by the student, while this information is typi-
cally missing or incomplete in our application scenario. Hence, our rule for the
derivation of facts does not necessarily require this information, and we have to
encode this step as a subgoal, where in the worst case any information about how
to prove it is missing. In Abel and colleagues’ approach respective information
on used facts is mandatory and exploited to define a fixed specific strategy for
checking the application step.

Adaptation: Our proof checking system is explicitly parameterised over the dif-
ferent strategies in order to support the adaptation of the proof manager to some
specific logic on the one hand and to the student’s skills on the other hand. Abel
and colleagues’ proof checking algorithm is fixed for some logic and cannot be
adapted to, for example, the student’s skills. In a tutorial setting like ours, how-
ever, the ability of a framework to adapt to the student’s skills and the chosen
tutorial goals is crucial.

As further related work, Weak Type Theory as employed in the MathLang
project [14] is to be mentioned. The MathLang framework is based on de Bruijn’s
Mathematical Vernacular (MV) [7] but imposes fewer logical constraints. Several
other proof languages aiming for better human-oriented support in interactive proof
construction have been developed and we mention some of them: the declarative
proof language of MIZAR 4 , the island proof sketches in OMEGA [18], the Math-

4 www.mizar.org
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ematical Proof Language of Barendregt [3], and Isabelle’s ISAR language [16].
However, so far none of these approaches explicitly addresses the phenomena of
under-specification and user adaptation as discussed above.

7 Conclusion

In the DIALOG project we investigate tutorial natural language dialogue on mathe-
matical proofs. In this setting under-specification, respectively information (in)com-
pleteness, which is a well known problem in natural language analysis, is passed on
to the domain reasoning component. In addition, the problem is interwoven with
tutorial aspects. Further challenges in the project that are interrelated with tutorial
aspects and domain reasoning concern the acceptable step size, the accuracy, and
the relevance of uttered proof steps. These challenging problems seem not to be
addressed in the literature and are not sufficiently solved yet.

In this paper we presented a first important step toward their solution by in-
troducing a proof representation language and proof checking system for under-
specified interactive proofs motivated by the phenomena in our corpus. In this
framework local lemmata are generated during the checking of the content of an ut-
terance (a proof step in our scenario). These lemmata reflect the implicit reasoning
part underlying the content of the utterance and the proof situation is transformed in
a successor state. The lemmata are tackled by domain-specific strategies guided by
tutorial aspects in order to clarify whether a proof state transformation is acceptable
or not.

We are currently implementing the described approach in a demonstrator sys-
tem in order to show its feasibility.

We plan to investigate and realise specific strategies based on the proof plan-
ning paradigm and also to further investigate the ’proof step relevance’ challenge.
We also plan to investigate the coverage and appropriateness of our language with
respect to further corpora we plan to collect by experiments in other, more complex,
mathematical domains.

When we are interested in the design of a tutoring system, we not only have
to efficiently prove valid proof steps but also to efficiently disprove invalid proof
steps. Therefore we consider it worthwhile to integrate techniques to disprove false
conjectures, such as those presented in [2], into the various strategies.
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