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Abstract This paper summarises and gives an overview of the development of the
ΩMEGA system during the 12 years of funding by the SFB 378.

1 Motivation

The research objective of the ΩMEGA project has been to lay the foundation com-
plex, heterogenous, but well integrated assistance systems for mathematics, which
support the wide range of typical research, publication and knowledge management
activities of a working mathematician. Examples are computing (for instance alge-
braic and numeric problems), proving (lemmas or theorems) , solving (for instance
equations), modelling (by axiomatic definitions), verifying (typically a proof), struc-
turing (for instance the new theory and knowledge base), maintaining (the knowl-
edge base), searching (in a very large mathematical knowledge base), inventing
(your new theorems), paper writing, explaining and illustrating in natural language
and diagrams. Clearly, some of them require a high amount of human ingenuity
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while others do not and they are thus open to computer support with current AI and
Computer Science technology.

Our research is based in particular on the combination of techniques from several
subfields of AI including knowledge representation and reasoning, cognitive archi-
tectures and multi-agent systems, human computer interaction and user interfaces,
as well as machine learning, intelligent tutor systems and finally dialog systems with
natural language processing capabilities.

The central notion for the integration of these techniques is that of a resource and
the adaptation of the system to a wide range of resources. In fact, a mathematical
assistant system can be considered as a performance enhancing resource for human

users as well as a resource for other software systems using it. Furthermore, a user
friendly mathematical assistance system has to solve a given task within limited

time and space resources. While executing a task, let’s say, automatically planning
a proof for a theorem, the systems performance may significantly depend on further
knowledge resources such as proof methods, theorems and lemmas. Furthermore,
the assistant system may exploit specialised computing and reasoning resources,
for example, an external computer algebra system, an automated deduction system
or a model generator.

Considering a mathematical assistance system itself as a resource requires the
development of different interfaces—for a human user or for other software systems.
This in turn poses the problem how the system adapts itself to such conceptually
very different means of interaction.

The article is organised as follows: Section 2 presents proof representation and
proof search techniques that utilise knowledge and specialised computing resources.
We discuss the representation, authoring, access to and maintenance of knowledge
resources in Section 3 and specialised computing resources in Section 4. Section 5
develops the infrastructures and internal architecture that enables the assistance sys-
tem to adapt to the different means of interaction.

2 Resource-Adaptive Proof Search

This section presents the proof search techniques that exploit different resources
to prove a given conjecture. The proof procedures all work on a central, elaborate
proof object, which supports the simultaneous representation of the proof at different
levels of granularity and records also alternative proof attempts.

2.1 Human-oriented high-level Proofs

The central component of our computer-based proof construction in ΩMEGA is the
TASKLAYER. It is based on the CORE-calculus (Autexier, 2005) that supports proof
development directly at the assertion level (Huang, 1996), where proof steps are
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justified not only by basic logic inference rules but also by definitions, axioms, the-
orems or hypotheses (collectively called assertions).

Subgoals to be shown are stored within the TASKLAYER as tasks, which are
represented as Gentzen-style multi-conclusion sequents (Gentzen, 1969). In addi-
tion there are means to define multiple foci of attention on subformulas that are
maintained within the actual proof. Each task is reduced to a possibly empty set of
subtasks by one of the following proof construction steps: (1) the introduction of a
proof sketch (Wiedijk, 2004), (2) deep structural rules for weakening and decompo-
sition of subformulas, (3) the application of a lemma that can be postulated on the fly
(and proved later), (4) the substitution into meta-variables, and (5) the application
of an inference. Inferences are the basic reasoning steps of the TASKLAYER, and
comprise assertion applications, proof planning methods or calls to external special
systems such as a computer-algebra system, an automated deduction system or a
numerical calculation package (see (Dietrich, 2006; Autexier and Dietrich, 2006)
for more details about the TASKLAYER).

2.1.1 Inferences

Intuitively, an inference is a proof step with multiple premises and conclusions aug-
mented by (1) a possibly empty set of hypotheses for each premise, (2) a set of
application conditions that must be fulfilled upon inference application, (3) a set
of completion functions1 that compute the values of premises and conclusions from
values of other premises and conclusions, and (4) an expansion function that refines
the abstract inference step. Each premise and conclusion consists of a unique name
and a formula scheme. Note that we employ the term inference in its more general
psychological meaning: taken in that sense, an inference may turn out to be invalid
actually, in contrast to the formal logical notion of an inference rule.

Additional information needed in the application conditions or the completion
functions, such as, for instance, the position of a subterm or the instance of some
non-boolean meta-variable, can be specified by additional parameters to the infer-
ence.

Application conditions are predicates on the values of inference variables and
completion functions compute values for specific inference variables from values of
other inference variables.
An example of an inference is given in Fig. 1. The inference subst-m has two
premises p1,p2 with formula schemes F and U = V respectively, one conclusion
c with formula scheme G, and one parameter π. It represents the inference that if
we are given a formula F with subterm U at position π and the equation U = V ,
then we can infer the formula G which equals F except that U is replaced by V . The
completion functions are used to compute the concrete conclusion formula c, given
p1, p2, and π. They can also be used for the “backward” direction of the inference to
compute the formula p1, given c,p2, and π, or to compute the position π at which a

1 The completion functions replace the “outline functions” in previous work.
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p1 : F p2 : U = V

c : G
subst-m(π)

Appl. Cond.: (F|π = U∧G|π←V = F)∨(G|π = U∧F|π←V = G)

Completions: 〈c,compute-subst-m(p1,p2,π)〉
〈p1,compute-subst-m(p2,c,π)〉
〈π,compute-pos (p1,p2)〉
〈π,compute-pos (p2,c)〉

Fig. 1: Inference subst-m

replacement can be done. Note that there are two completion functions for comput-
ing π. Furthermore, for a given formula F for p1 and equation U = V for p2, there
are in general more than one possible value for π. Therefore, the completion func-
tions actually compute streams of values, each value giving rise to a new instance
of the inference.

Inferences can also encode the operational behaviour of domain specific asser-
tions. Consider for instance the domain of set theory and the definition of ⊆:

∀U,V .U⊆ V ⇔ (∀x.x ∈U⇒ x ∈ V)

That assertion gives rise to two inferences:

p :

[x ∈U]
.
.
.

x ∈ V

c : U⊆ V
Def-⊆

Appl. Cond.: x new for U and V

p1 : U⊆ V p2 : x ∈U

c : x ∈ V
Def-⊆

Appl. Cond.: x new for U and V

As a result, we obtain proofs where each inference step is justified by a mathe-
matical fact, such as a definition, a theorem or a lemma.

To illustrate the difference between a typical proof step from a textbook and
its formal counterpart in natural deduction consider the assertion step that derives
a1 ∈ V1 from U1 ⊂ V1 and a1 ∈U1. The corresponding natural deduction proof is:

∀U,V . U⊂ V ⇔∀x.x ∈U⇒ x ∈ V

∀V . U1 ⊂ V ⇔∀x ∈U1⇒ x ∈ V
∀E

U1 ⊂ V1⇔∀x.x ∈U1⇒ x ∈ V1
∀E

U1 ⊂ V1⇒∀x.x ∈U1⇒ x ∈ V1
⇔E

U1 ⊂ V1

∀x.x ∈U1⇒ x ∈ V1
⇒E

a1 ∈U1⇒ a1 ∈ V1
∀E

a1 ∈U1

a1 ∈ V1
⇒E
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Even though natural deduction proofs are far better readable than proofs in machine
oriented formalisms such as resolution, we see that they are at a level of detail we
hardly find in a proof of a typical mathematical textbook or in a research publication:
In the example above, a single assertion step corresponds to 6 steps in the natural
deduction calculus.

Similarly, the lemma ∀U,V ,W.(U⊆ V ∧V ⊆W)⇒ U⊆W stating the transi-
tivity of ⊆ can be represented by the inference:

p1 : U⊆ V p2 : V ⊆W

c : U⊆W
Trans-⊆ (1)

An eminent feature of the TASKLAYER is that inferences can be applied to sub-
formulas of a given task. Consider the task to prove that if f is an automorphism on
some group G, then the f-image of the Kernel of G is a subset of G.

A⊆ B⇒ f(A)⊆ f(B) ⊢ AutoMorphism(f,G)⇒ f(Ker(f,G))⊆G (2)

where we have the additional hypothesis, that if two arbitrary sets are in a subset
relation, then so are their images under f.

A deep application of the inference Trans-⊆ matching the conclusion with the
subformula f(Ker(f,G))⊆G and the first premise with the subformula f(A)⊆ f(B)

reduces the task in one step to

A⊆ B⇒ (f(A)⊆ f(B)) ⊢ AutoMorphism(f,G)⇒ (Ker(f,G)⊆ B∧ f(B)⊆G)

which can be proved immediately using the definitions of AutoMorphism and Ker.
This one step inference would not be possible unless we can use (1) to match the
subformula within the conclusion of the task (2).

2.1.2 Application Direction of an Inference

The problem is to find all possible ways to apply a given inference to some task,
i.e. to compute all possible instantiations of an inference. Typically, some of the
parameters as well as some of the formal arguments of the inference are already
instantiated. The formal arguments and the parameters of an inference will be col-
lectively called the arguments of an inference.

The process starts with a partial argument instantiation (PAI) and we have to find
values for the non-instantiated arguments of the inference. These arguments take
positions as values within the task or they have formulas as values.

Example 1. Consider the inference subst-m of Fig. 1 before, which we want to apply
to the task T : 2∗3 = 6⊢ 2∗3 < 7. Then pai1 = 〈∅, {c 7→ (10)},∅〉 is a partial argument
instantiation for the inference subst-m, where (10) denotes the position of 2 ∗ 3 < 7
in the task. As no completion function has been invoked so far, pai1 is initial. It
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is not complete as there is not enough information for the completion functions to
compute π given only c; thus p1,p2 can not be computed yet.

The extension of a partial argument instantiation consists of an assignment of
values to arguments of the inference that are not yet instantiated. There are two
possible choices: (1) either assign a task position to a formal argument or (2) to
assign a term to a formal argument.

The first kind of update involves searching for possible positions in the task
while respecting already introduced bindings. The second kind of update involves
no search for further instances in the task, as it uses the completion functions to
compute the missing values.

Thus we can separate the updating process into two phases: In the first phase we
update the positions by searching the task for appropriate instance of the formula
schemes and in the second phase we only use the completion functions to com-
pute the missing arguments. The general idea is to use as much derived knowledge
as possible and then decide whether this knowledge is sufficient for the inference
to be drawn. A partial argument instantiation pai is called complete, if it contains
sufficient information to compute all other values of arguments using completion
functions.

Example 2. If we add an instantiation for the argument p2 in pai1 we obtain pai2 =

〈∅, {p2 7→ (00),c 7→ (10)},∅〉, where (00) denotes the position of the formula 2∗3 =

6 in our task and pai2 is an extension of pai1. It is complete, as we can invoke the
completion functions to first obtain π and then to obtain p1.

The configuration of a complete partial argument instantiation describes an ap-

plication direction of the inference. All application directions can be determined by
analysing the completion functions of an inference. As an example consider infer-
ence Trans-⊆ (p. 5): The application of the inference on task (2) instantiates c with
f(Ker(f,G)) ⊆ G and p1 with f(A) ⊆ f(B), which is represented by the partial ar-
gument instantiation pai := 〈{p1 7→ f(A) ⊆ f(B)},∅, {c 7→ f(Ker(f,G)) ⊆ G}〉. The
configuration of pai1, that is the premises and conclusions that are instantiated and
those which not, classify this rule application as “backward”. The same rule with
both premises instantiated but not the conclusion is a “forward” rule.

2.1.3 Representation of Proof

The proof data structure is at the centre of such a system and its task is to maintain
the current status of the proof search so far and to represent it at different levels of
abstraction and granularity. The proof data structure (PDS) is based2 on the follow-
ing ideas:

2 It reflects our experience of more than a decade of development of the ΩMEGA sys-
tem (Cheikhrouhou and Sorge, 2000; Siekmann et al, 2002a,b, 2003; Autexier et al, 2006) as well
as ideas from the QUODLIBET system (Avenhaus et al, 2003).
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• Each conjectured lemma gets its own proof tree (actually a directed acyclic
graph), whose nodes are (sub-)goals to be shown.

• In this proof forest, each lemma can be applied in each proof tree as an inference;
either as a lemma in the usual sense, or as an induction hypothesis in a possibly
mutual induction process, see (Wirth, 2004).

• A lemma is a task to be proved reductively. A reduction step reduces a goal

to a conjunction of sub-goals with respect to a justification. This are the proof
construction steps of the TASKLAYER.

• Several reduction steps applied to the same goal result in alternative proof at-
tempts, which either represent different proof ideas or the same proof idea but at
a different level of abstraction or granularity (with more or less detail).

The PDS is essentially a directed acyclic graph (dag) whose nodes are labelled with
tasks. It has two sorts of links: justification hyper-links represent some relation of a
task node to its sub-task nodes, and hierarchical edges point from justifications to
other justifications which they refine.

This definition allows for alternative justifications and alternative hierarchical
edges. In particular, several outgoing justifications of a node n, which are not con-
nected by hierarchical edges, are OR-alternatives. That is, to prove a node n, only
the targets of one of these justifications have to be solved. Hence they represent al-
ternative ways to tackle the same problem n. This describes the horizontal structure
of a proof. Note further that we can share refinements: for instance, two abstract
justifications may be refined by one and the same justification at lower levels.

Hierarchical edges are used to construct the vertical structure of a proof. This
mechanism supports both recursive expansion and abstraction of proofs. For in-
stance, in Fig. 2a, the edge from j2 to j1 indicates that j2 refines j1. The hierarchical
edges distinguish between upper layer proof steps and their refinements at a more
granular layer.

n1

j1 subproblems

j2 subproblems

j3 subproblems

j4 subproblems

j5 subproblems

h

h

h

(a) PDS-node with all outgoing partially hierar-
chically ordered justifications, and j1,j4 in the
set of alternatives. Justifications are depicted as
boxes.

n1

j1 subproblems

j4 subproblems

(b) PDS-node in the PDS-view obtained for
the selected set of alternatives j1,j4.

Fig. 2: An example PDS and one of its PDS-views
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A proof may be first conceived at a high level of abstraction and then expanded

to a finer level of granularity. Vice versa, abstraction means the process of suc-
cessively contracting fine-grained proof steps to more abstract proof steps. Fur-
thermore, the PDS generally supports alternative and mutually incomparable re-
finements of one and the same upper layer proof step. This horizontal structuring
mechanism—together with the possibility to represent OR-alternatives at the ver-
tical level—provides very rich and powerful means to represent and maintain the
proof attempts during the search for the final proof. In fact, such multidimensional
proof attempts may easily become too complex for a human user, but since the user
does not have to work simultaneously on different granularities of a proof, elaborate
functionalities to access only selected parts of a PDS are helpful. They are required,
for instance, for user-oriented presentation of a PDS, in which the user should be
able to focus only on those parts of the PDS he is currently working with. At any
time, the user can choose to see more details of some proof step or, on the contrary,
he may want to see a coarse structure when he is lost in details and cannot see the
wood for trees.

One such functionality is a PDS-view that extracts from a given PDS only a hor-
izontal structure of the represented proof attempts, but with all its OR-alternatives.
As an example consider the PDS fragments in Fig. 2.
The node n1 in the fragment on the left has two alternative proof attempts with
different granularities. The fragment on the right gives a PDS-view which results
from selection of a certain granularity for each alternative proof attempt, respec-
tively. The set of alternatives may be selected by the user to define the granularity
on which he currently wants to inspect the proof. The resulting PDS-view is a slice
plane through the hierarchical PDS and is—from a technical point of view—also a
PDS, but without hierarchies, that is without hierarchical edges.

2.2 Searching for a Proof

In the following we shall look at our main mechanisms for actually finding a proof
and we distinguish two basic modes, knowledge based, i.e. deliberative proof search
and reactive proof search.

2.2.1 Knowledge-based Proof Search

ΩMEGA’s main focus is on knowledge-based proof planning (Bundy, 1988, 1991;
Melis and Siekmann, 1999a; Melis et al, 2007), where proofs are not conceived in
terms of low-level calculus rules, but at a less detailed granularity, that is at a more
abstract level, that highlights the main ideas and de-emphasises minor logical or
mathematical manipulations of formulas. The motivation is to reduce the combi-
natorial explosion of the search space in classical automated theorem proving by
providing means for a more global search control. Indeed, the search space in proof
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planning tends to be orders of magnitude smaller than at the level of calculus rules
(Bundy, 2002; Melis and Siekmann, 1999b). Furthermore, a purely logical proof
more often than not obscures its main mathematical ideas.

Knowledge-based proof planning is a paradigm in automated theorem proving,
which swings the motivational pendulum back to the AI origins in that it employs
and further develops many AI principles and techniques such as hierarchical plan-
ning, knowledge representation in frames and control rules, constraint solving, tac-
tical theorem proving, and meta-level reasoning.

It differs from traditional search based techniques not least in its level of granu-
larity: The proof of a theorem is planned at an abstract level where an outline of the
proof is found first. This outline, that is, the abstract proof plan, can be recursively
expanded to construct a proof within a logical calculus provided the expansion of
the proof plan does not fail.

The building blocks of a proof plan are the plan operators, called methods which
represent mathematical techniques familiar to a working mathematician. Another
important feature is the separation of the knowledge of when to apply a certain
technique from the technique itself, which is explicitly stored in control rules. Con-
trol rules cannot only reason about the current goals and assumptions, but also about
the whole proof attempt so far.

Methods and control rules can employ external systems (for instance, a method
may call one of the computer algebra systems) and make use of the knowledge
in these systems. ΩMEGA’s multi-strategy proof planner MULTI (Melis and Meier,
2000; Meier and Melis, 2005; Melis et al, 2007) searches for a plan using the ac-
quired methods and strategies guided by the control knowledge in the control rules.
In general, proof planning provides a natural basis for the integration of computa-
tional systems for both guiding the automated proof construction and performing
proof steps.

Knowledge-based proof planning was successfully applied in many mathemati-
cal domains, including the domain of limit theorems (Melis and Siekmann, 1999a),
which was proposed by Woody Bledsoe (Bledsoe, 1990) as a challenge to auto-
mated reasoning systems. The general-purpose planner makes use of the mathemat-
ical domain knowledge for ǫ-δ-proofs and of the guidance provided by declaratively
represented control rules, which correspond to mathematical intuition about how to
prove a theorem in a given situation. Knowledge based proof planning has also been
applied to residue-classes problems (Meier et al, 2002b), and to plan “irrationality
of j
√

l”-conjectures for arbitrary natural numbers j and l (Siekmann et al, 2003).

Methods, Control Rules, and Strategies

Methods were originally invented by Alan Bundy (Bundy, 1988) as tactics aug-
mented with preconditions and effects, called premises and conclusions, respec-
tively. A method represents a large inference of the conclusion from the premises
based on the body of the tactic. The advantage of specifying the effects of a tactic
are twofold: (i) the attached tactic need not be executed during the search, (ii) the
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specification of the tactic may contain additional constraints or control knowledge
to restrict the search.

Knowledge-based proof planning expands on these ideas by focusing on en-
coding domain or problem-specific mathematical methods as proof-planning meth-
ods and additionally supports the explicit representation of control knowledge and
strategic knowledge. For instance, consider the methods hom1-1 in Fig. 3.

P1 : ∀Y Φ P2 : ∀x P(x)⇔Ψ P3 : P(C)

C : P(F(C))
hom1-1(Φ1,Φ2)

Appl. Cond.: −

Completions: 〈Φ1← termrploccs(X,Φ,C)〉
〈Φ2← termrploccs(X,Φ,F(C))〉

Expansion: P5 : Φ2

Fig. 3: Method hom1-1

It encodes a planning operator that uses premises P1,P2,P3 to prove the subgoal
C. P1,P2, and C are annotated with control information stating in this case that they
must be instantiated. Informally, the method describes the following proof situation:
If f is a given function, p a defined predicate and the goal is to prove p(f(c)), then
show p(c) and use this to show p(f(c)). Note that P5 is an open goal that does not
occur in the specification and therefore does not directly enter the planning process.
The later expansion process will insert p5 as additional goal in the planning state
and then call the planner to close it. To postpone the proof of a goal is an essential
feature of methods and provides a means to structure the search space.

Control rules represent mathematical knowledge about how to proceed in the
proof planning process. They can influence the planner’s behaviour at choice points
(such as deciding which goal to tackle next or which method to apply next) by
preferring members of the corresponding list of alternatives (for instance, the list of
possible goals or the list of possible methods). This way promising search paths are
preferred and the search space can be pruned. An example of a control rule is shown
in Fig. 4.

(control-rule prove-inequality

(kind methods)

(IF (and (goal-matches (REL A B))

(in REL {<,>,<=,>=})))

(THEN (prefer (TELLCS-B TELLCS-F, ASKCS-B, SIMPLIFY-B,

SIMPLIFY-F, SOLVE*-B, COMPLEX-ESTIMATE-B,

FACTORIALESTIMATE-B, SET-FOCUS-B))))

Fig. 4: Control Rule prove-inequality
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Its IF-part checks whether the current goal is an inequality. If this is the case, it
prefers the methods stated after the keyword prefer of the rule in the specified
order. The general idea of this control rule is that a constraint should be simplified
until it can be handled by the constraint solver, which collects constraints in goals
and assumptions through the methods TELLCS-B and TELLCS-F.

Strategies encapsulate fixed sets of methods and control rules and, thus, tackle a
problem by some mathematical standard that happens to be typical for this problem.
The reasoning as to which strategy to employ for a given problem is an explicit
choice point in MULTI. In particular the MULTI system can backtrack from a chosen
strategy and commence search with different strategies. An example of a strategy is
shown in Fig. 5.

(strategy SolveInequality

(condition inequality-task)

(algorithm PPlanner)

(methods COMPLEXESTIMATE-B, TELLCS-B, TELLCS-F, SOLVE*-B ...)

(crules prove-inequality, eager-instantiage ...)

(termination no-inequalities)

)

Fig. 5: Strategy SolveInequality

It is applicable for tasks whose formulas are inequalities or whose formulas can
be reduced to inequalities. It comprises methods such as COMPLEXESTIMATE-B
and TELLCS-B. It consists of control rules such as prove-inequality. The
strategy terminates, if there are no further tasks containing inequalities.

Detailed discussions of ΩMEGA’s method and control rule language can be found
in (Meier, 2004; Meier et al, 2002a). A detailed introduction to proof planning with
multiple strategies is given in (Melis and Meier, 2000; Meier and Melis, 2005) and
more recently in (Melis et al, 2007).

2.2.2 Reactive Proof Search

The Ω-ANTS-system was originally developed to support interactive theorem prov-
ing (Benzmüller and Sorge, 1998). Later it was extended to a fully automated the-
orem prover (Benzmüller and Sorge, 2000; Sorge, 2001) and incorporated into the
ΩMEGA-system. The basic idea is to encapsulate each inference into an agent, called
an inference ant. All ants watch out for their applicability thus generating, in each
proof situation, a ranked list of bids for their application. In this process, all infer-
ences are uniformly viewed wrt. their arguments, that is, their premises, conclusions
as well as other parameters. An inference is applicable if we have found a complete
partial argument instantiation and the task of the Ω-ANTS system is to incremen-
tally find complete partial argument instantiations. This starts with an empty partial
argument instantiation and searches for instantiations for the missing arguments.
This search is performed by separate, concurrent processes (software agents) which
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compute and report bids for possible instantiations. In other words, each inference
ant is realised as a cooperating society of argument ants.

The Ω-ANTS architecture

The architecture consists of two layers. At the bottom layer, bids of possible instan-
tiations of the arguments of individual inference are computed by argument ants.
Each inference gets its own dedicated blackboard and one or several argument ants
for each of its arguments. The role of each argument ant is to compute possible in-
stantiations for its designated argument of the inference, and, if successful to record
these as bids on the blackboard for this inference. The computations are carried out
within the given proof context and by exploiting bids already present on the infer-
ence’s blackboard, that is, argument instantiations computed by other argument ants
working for the same rule. On the upper layer, the bids from the bottom layer that
are applicable in the current proof state are accumulated and heuristically ranked by
another process. The most promising bid on the upper layer is then applied to the
central proof object and the data on the blackboards is cleared for the next round of
computations.

Ω-ANTS employs resource-bounded reasoning to guide the search and provides
facilities to define and modify the processes at runtime (Benzmüller and Sorge,
1999). This enables the controlled integration (for instance, by specifying time-
outs) of full-fledged external reasoning systems such as automated theorem provers,
computer algebra systems, or model generators into the architecture. The use of the
external systems is modelled by inferences, usually one for each system. Their cor-
responding computations are encapsulated into one of the argument ants connected
to this inference. For example, consider an inference encapsulating the application
of an ATP:

p : Ψ

c : Φ
ATP

Appl. Cond.: Φ =⊤
Completions: 〈Ψ←ATP(Φ)〉

The inference contains an completion function that computes the value for its
premise given a conclusion argument, that is, an open goal. This completion func-
tion is turned into an argument ant for the premise argument. Once an open goal
is placed on the blackboard, this argument ant picks it up and applies the prover
to it in a concurrent process. While the prover runs, other argument ants for other
inferences may run in parallel and try to enable their application. Once the prover
found a proof or a partial-proof, it is again written onto the blackboard and subse-
quently inserted into the proof object if the inference is applied. The semantics of
the connections to external reasoners is currently hand-coded, but an ontology could
be fruitfully employed like the one suggested in (Sutcliffe et al, 2004).
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The advantage of this setup is that it enables proof construction by a collab-
orative effort of diverse reasoning systems. Moreover, the architecture provides a
simple and general mechanism for integrating new reasoners into the system inde-
pendently of other systems already present. Adding a new reasoning system to the
architecture requires only to model it as an inference and to provide the argument
ants and the inference ant for it. These ants then communicate with the blackboard
by reading and writing subproblems to and from it, as well as writing proofs back
to the blackboard in a standardised format.

Communication as a Bottleneck

A main disadvantage of our generic architecture is the communication overhead,
since the results from the external systems have to be translated back and forth
between their respective syntax and the language of the central proof object. Ω-
ANTS has initially been rather inefficient: the case studies reported in (Benzmüller
et al, 1999b) show that the larger part of the proof effort is sometimes spent on
communication rather than on the actual proof search.

In order to overcome this problem, we devised a new method for the cooper-
ation between two integrated systems via a single inference rule, first presented
in (Benzmüller et al, 2005). This effectively cuts out the need to communicate via
the central proof object.

However, direct bilateral integration of two reasoning system is difficult if both
systems do not share representation formalisms that are sufficiently similar: im-
plementing a dedicated inference for the combination of two particular reasoning
systems is more cumbersome than simply integrating each system and its results
into Ω-ANTS’ central architecture. See (Benzmüller et al, 2007) for a detailed case
study, which evaluates this approach for the cooperation between the higher-order
resolution prover LEΩ (Benzmüller and Kohlhase, 1998) and a first-order theorem
prover. The general idea is that LEΩ sends the subset of its clauses that do not con-
tain any ‘real’ higher-order literals to a first-order theorem prover.

3 Knowledge as a Resource

There is a need to organise the different knowledge forms and determine which
knowledge is available for which problem. Furthermore, there is a need to avoid
redundant information for knowledge maintenance reasons. In the ΩMEGA system
we use development graphs (Hutter, 2000; Autexier and Hutter, 2005) as a general
mechanism to maintain inferences, strategies and control rules in the system (see
Section 3.1). In Section 3.2 we describe how this knowledge can be formalised and
included into the development graph. In Section 3.3 we present how inferences can
be automatically synthesised from axioms and lemmas maintained in the develop-
ment graph. Based on inferences, we describe how the knowledge for the planner
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can be automatically synthesised from inferences (Section 3.4) and Section 3.5 de-
scribes the mechanism to automatically generate a set of argument agents out of the
inference descriptions.

3.1 Managing Mathematical Knowledge

The knowledge of the ΩMEGA system is organised in theories that are built up hi-
erarchically by importing knowledge from lower theories via theory morphisms to
upper layers. These theories and morphisms are organised respectively as nodes
and edges of development graphs as implemented in the MAYA system (Autexier
and Hutter, 2005) which is the central component of the ΩMEGA system that main-
tains information about the status of conjectures (unknown, proved, disproved, or
in-progress) and controls which knowledge is available for which conjecture. MAYA

supports the evolution of mathematical theories by a sophisticated mechanism for
the management of change. Its main feature is to maintain the proofs already done
when changing or augmenting the theories.

Each theory in the development graph contains standard information like the
signature of its mathematical concepts and their formalisation with axioms, lem-
mas and theorems. The development graph stores other kinds of knowledge as well,
such as specific inferences, strategies, control rules and information that links the
symbols with their defining axioms as well as symbol orderings.

Each knowledge item is attached to a specific theory. To make it actually visible
in all theories that are built on that theory, the development graph allows to specify
how morphisms affect the knowledge item.

For each open lemma in a specific theory, the development-graph provides all
knowledge items that can potentially be used for the lemma. It is up to the proof
procedure to select the relevant parts and possibly transform them into a specific
representation for the proof procedure.

3.2 Formalising Mathematical Knowledge

To accommodate a variety of input forms, the ΩMEGA system uses the OM-
DOC (Kohlhase, 2006) document format as a uniform interface for structured theo-
ries.

The OMDOC standard is an XML-language for Open Mathematical Documents,
which includes structured theories modelled on development graphs and a proof rep-
resentation formalism that is modelled on ΩMEGA’s proof datastructure PDS (Au-
texier and Sacerdoti-Coen, 2006).

Structured theories are not the only knowledge forms we use: Inferences can be
automatically synthesised from assertions (Section 3.3) and the required planner
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methods and agents can in turn be synthesised from inferences (Sections 3.4 and
3.5).

The development and encoding of proof methods by hand is a laborious and
therefore we studied automatic learning techniques for this problem in collaboration
with colleagues from the LEARNΩMATIC project (Jamnik et al, 2003).

When a number of proofs use a similar reasoning pattern, this pattern should be
captured by a new method in proof planning and the LEARNΩMATIC system can
now learn new methods automatically from a number of well chosen (positive) ex-
amples. Automated learning of proof methods is particularly interesting since theo-
rems and their proofs exist typically in abundance,3 while the extraction of methods
from these examples is a major bottleneck of the proof planning methodology. The
evaluation of the LEARNΩMATIC system showed that approach this leads to meth-
ods that make proofs shorter, reduces search and enables the roof planner to prove
theorems that they could not before (Jamnik et al, 2003).

3.3 From Assertions to Inferences

How can we compute a set of inferences for arbitrary assertions? The intuitive idea
is as follows; given the definition of ⊆:

∀U,V .U⊆ V ⇔ (∀x.x ∈U⇒ x ∈ V)

Reading the equivalence as two implications, this assertion results in the two infer-
ences:

p :

[X ∈U]
.
.
.

X ∈ V

c : U⊆ V
Def-⊆

Appl. Cond.: X new for U and V

p1 : U⊆ V p2 : X ∈U

c : X ∈ V
Def-⊆

Appl. Cond.: X new for U and V

where U, V , and X are meta-variables.
Another example is the definition of the limit of a function

∀f,a, l.
∀ǫ.ǫ > 0⇒∃δ.δ > 0⇒∀x.(0 <| x−a | ∧ | x−a |< δ)⇒| f(x)− l |< ǫ

⇒ lima f = l

(3)

which can be turned into the inference

3 For example, the testbed we developed for proof planning theorems about residue classes consists
of more than 70000 theorems.
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[ǫ > 0,D > 0,0 <| x−A |, | x−A |< D]
.
.
.

P :| F(x)−L |< ǫ

C : lim
A

F = L

Application Condition: EV(ǫ, {F,A,L})∧EV(x, {F,A,L,D})

Parameters: ǫ,x

(4)

where F,A,L,D are meta-variables, ǫ and x are parameters. EV(x, {F,A,L,D}) is
the application condition requiring that the parameter x should not occur in the
instances of {F,A,L,D} (i.e., x is an Eigenvariable wrt. the instances of F,A,L, and
D).

The technique to obtain such inferences automatically from assertions (Autex-
ier and Dietrich, 2006) follows the introduction and elimination rules of a natural
deduction (ND) calculus (Gentzen, 1969). Given a formula, in a first phase the ND
elimination rules are exhaustively applied to that formula collecting the Eigenvari-

able conditions as we go. This results in a set of inference descriptions with Eigen-

variable conditions. In a second phase the premises of the inference descriptions are
simplified by exhaustively applying ND introduction rules to the premises as well as
to possible hypotheses obtained for the premises in that phase. The collected Eigen-

variable conditions are of the form “y new wrt. S”, where y is the Eigenvariable
and S is a list of constants and meta-variables in which y must not occur (including
the symbols in the meta-variable substitutions). Checking these conditions by using
the predicate EV(y,S) we compute inferences of the form

[H1]
.
.
.

P1 . . .

[Hn]
.
.
.

Pn

C
Parameters (y1, . . . ,yn)

Application Condition: EV(y1,S1)∧ . . .∧EV(ym,Sm)

for every assertion.

3.4 From Inferences to Planner Methods

Inferences are either operational representations of domain axioms, lemmas and
theorems or user-defined, domain or problem specific mathematical methods. This
may even include specialised computing and reasoning systems. Now, inferences
can be applied in many ways (see Section 2.1.2), but not all of them contribute to
the goal of the current proof plan. Rather, efficient (and controlled) search is only
possible if we chose an appropriate subset of the many application directions. For
example, suppose the current task is to show A ⊂ B,x ∈ B⇒ x ∈ A ⊢ A = B and
we are given the inference
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P1 : A⊂ B P2 : B⊂A

C : A = B

originating from the assertion A = B⇔ A ⊂ B∧B ⊂ A. Suppose further that the
proof plan requires to unfold the definitions in the goal first and then to use logi-
cal arguments to finish the proof. With respect to the first steps in the proof plan,
only those application directions of this inference make sense, in which the con-
clusion C is instantiated, i.e. the following four partial argument instantiations:
{P1,P2,C}, {P1,C}, {P2,C}, {C}. A convenient way to select the “right” subset is to
specify implicitly the subset {ad ∈ AD|ad |= Φ} of the application directions AD

by a property Φ, such that the application direction ad of interest satisfies it. In other
words, Φ determines exactly those application directions which are compatible with
the current meta level goal or the current mathematical technique.

In our example, we could specify the subset of interest by requiring that the
partial argument instantiations are backward, where “backward” means that all con-
clusions of the inference are instantiated (here C). Another, equally appropriate way
would be to characterise the subset of interest as those which reduce the target term
with respect to a term ordering.

An inference augmented with the information about the application direction is
called a planning method. However, given a set of planning methods there is no
control information which ranks the inferences, i.e., which controls the choice in
case several methods are applicable. This is done by the control rules (see Section
2.2.1) that are also maintained in the development graph and provided manually or
are part of strategy descriptions.

3.5 From Inferences to Agents

Given an inference, we may wish to synthesise a society of agents as ants in Ω-
ANTS in addition to proof planning methods. The problem is that such a society is
“fragile” in the sense that removing one agent can result in a non-operational unit
that cannot produce useful suggestions or any suggestions at all. Hence we must
choose a sufficiently large set of agents such that for each agent there is another
agent which produces partial argument instantiations required by the agent. But each
agent allocates valuable resources (space and runtime). Thus creating all possible
agents would deteriorate the system performance, as it would take too much time to
compute any suggestion at all.

Our solution is to generate a so-called agent creation graph, whose nodes are
equivalence classes on partial argument instantiations, and whose edges are all pos-
sible partial argument instantiation updates. A society of agents induces a subgraph
of the agent creation graph by restricting the edges corresponding to the society
of agents. Reachability of a node from the equivalence class of the empty partial
argument instantiation in the induced subgraph means that partial argument instan-
tiations for this equivalence class can be generated by the society of agents. The
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problem of generating an efficient society of agents such that all equivalence classes
are reachable is then a single source shortest path problem, where we assign posi-
tive weights to the edges in the graph. This problem can then be solved by known
algorithms (Dijkstra, 1959).

A comparison in (Dietrich, 2006) of some automatically generated units of ar-
gument agents with manually specified argument agents shows that they are almost
identical. For details about the algorithm see (Dietrich, 2006; Autexier and Dietrich,
2006).

4 Specialised Computing and Reasoning Resources

Mathematical theorem proving requires a great variety of skills, hence it is desirable
to have several systems with complementary capabilities, to orchestrate their use,
and to integrate their results.

The situation is comparable to, say, a travel booking system that must com-
bine different information sources, such as the search engines, price computation
schemes, and the travel information in distributed (very) large databases, in order to
answer a booking request. The information sources are distributed over the Internet
and the access to such specialised travel information sources has to be planned, the
results have to be combined and, finally there must be a consistency check of the
time constraints.

In (Zimmer, 2008; Zimmer and Autexier, 2006) this methodology was trans-
ferred and applied to mathematical problem solving. The MATHSERV system plans
the combination of several mathematical information sources (such as mathemati-
cal databases), computer algebra systems (CASs), and reasoning processes such as
automated theorem provers (ATPs), constraint solvers (CSs) or model generation
systems (MGs).

The MATHSERV system is based on the MATHWEB-SB network of mathemati-
cal services (Franke and Kohlhase, 1999; Zimmer and Kohlhase, 2002), which was
the first approach for an open and modern software environment that enables modu-
larisation, distribution and networking of mathematical services. This provided the
infrastructure for building a society of software agents that render mathematical
services by either encapsulating legacy deduction software or other functionalities.
The software agents deliver their services via a common mathematical software bus
in which a central broker agent provides routing and authentication information.
Once the connection to a reasoning system has been established by the broker, the
requesting client has to access the reasoning system directly via its API. The soft-
ware bus and its associated reasoning systems were used not only within the field of
automated theorem proving, but also for the semantic analysis of natural language
(disambiguating syntactical constraints), verification tasks (proving a verification
condition), and others, which resulted sometimes in several thousand theorems per
day to be proven routinely for these external users.
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The MATHSERV system extends the MATHWEB-SB’s client-server architecture
by semantic brokering of mathematical services and advanced problem solving ca-
pabilities to orchestrate the access to the reasoning systems. The key aspects of the
MATHSERV framework are:

Problem-Oriented Interface: a more abstract communication level for MATHWEB-
SB, such that general mathematical problem descriptions can be sent to MATH-
SERV which in turn returns a solution to that problem. Essentially, we moved
from the service oriented interface of MATHWEB-SB to a problem oriented in-
terface for MATHSERV.

Advanced Problem Solving Capabilities: Typically, a given problem cannot be
solved by a single service but only by a combination of several services. In
order to support the automatic selection and combination of existing services,
the key idea is as follows: an ontology is used for the qualitative description of
MATHWEB-SB services and these descriptions are then used as AI planning op-

erators, in analogy to the proof planning approach. MATHSERV uses planning
techniques (Carbonell et al, 1992; Erol et al, 1994) to automatically generate
a plan that describes how existing services must be combined to solve a given
mathematical problem.

We used external systems in the search for a proof in two ways within ΩMEGA:
to provide a solution to a subproblem, or to give hints for the control of the search.
In the first case, the call of a reasoning system is modelled as an inference rule
and the output of the incorporated reasoning system is translated and inserted as a
subproof into the PDS. This back-translation is necessary for interfacing systems
that operate at different levels of granularity, and also for a human-oriented display
and inspection of a partial proof. In the other case, where the external system is used
to compute values that may be used to guide the search process, the system can be
called by a completion function or from within control rules.

The following external systems were integrated and used in the ΩMEGA system
over the years:

Computer Algebra Systems (CAS) provide symbolic computation, which can be
used to compute hints to guide the proof search (such as witnesses for existential
variables), or, second, to perform some complex algebraic computation such as
to normalise or simplify terms. In the latter case the symbolic computation is di-
rectly translated into proof steps in ΩMEGA. CASs are integrated via the transfor-
mation and translation module SAPPER (Sorge, 2000). Currently, ΩMEGA uses
the systems MAPLE (Char et al, 1992) and GAP (Schönert et al, 1995).

Automated Deduction Systems (ATP) are used to solve subgoals, currently the
first-order provers BLIKSEM (de Nivelle, 1999), EQP (McCune, 1997), OTTER

(McCune, 1994), PROTEIN (Baumgartner and Furbach, 1994), SPASS (Weiden-
bach et al, 1999), WALDMEISTER (Hillenbrand et al, 1999), the higher-order
systems TPS (Andrews et al, 1996), and LEΩ (Benzmüller and Kohlhase, 1998;
Benzmüller, 1999), and VAMPIRE (Riazanov and Voronkov, 2001). The first-
order ATPs were connected via TRAMP (Meier, 2000), which is a proof transfor-
mation system that transforms resolution-style proofs into assertion-level ND-
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proofs which were then integrated into ΩMEGA’s PDS. The TPS system gener-
ates ND-proofs directly, which could then be further processed and checked with
little transformational effort (Benzmüller et al, 1999a).

Model Generators (MG) provide either witnesses for free (existential) variables,
or counter-models, which show that some subgoal is not a theorem. ΩMEGA used
the model generators SATCHMO (Manthey and Bry, 1988) and SEM (Zhang and
Zhang, 1995).

Constraint Solver (CS) construct mathematical objects with theory-specific prop-
erties as witnesses for free (existential) variables. Moreover, a constraint solver
can reduce the proof search by checking for inconsistencies of constraints.
ΩMEGA employed CoSIE (Melis et al, 2000; Zimmer and Melis, 2004), a con-
straint solver for inequalities and equations over the field of real numbers.

Automated Theory Formation systems (ATF) explore mathematical theories and
search for new properties. The HR system is an ATF system in the spirit of
Doug Lenat’s AM, which conjectures mathematical theories given empirical
data (Colton, 2002). ΩMEGA used the HR system to provide instances for meta-
variables that satisfy some required properties. The MATHSAID system proves
and identifies theorems (lemmas, corollaries, etc.) from a given set of axioms
and definitions (McCasland et al, 2006). MATHSAID was used by ΩMEGA to
derive interesting lemmas for given mathematical theories which would enable
the ATPs to prove theorems they could not prove without these lemmas.

5 ΩMEGA as an adaptive Resource

If a mathematical assistance system is to be used as a resource by other systems as
well as by users with different skills and backgrounds we have to redesign the archi-
tecture of the system to make it adaptive. We present the research and development
for the interaction with a human-users in Section 5.1 and discuss the interaction with
other software systems in Section 5.2.

5.1 Adaptation to Users with different Skills

The OMEGA research group early addressed the interaction between proof assistant
system and human user. In a first stage we developed an elaborate graphical user
interface LΩUI (Siekmann et al, 1999) (see Fig. 6a).

The three inter-connected windows present the shape of the central proof tree
(left), information about the nodes in the tree (upper right), and the pretty printing
of the complete formula of a selected node (lower right). There is also support to
switch between different levels of granularity at which a proof can be presented and
it is also possible to browse through mathematical theories in an HTML-like viewer.
These functionalities were targeted towards a user, who has no knowledge about the
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(a) The linked proof window views (b) The natural language presenta-
tion of proofs with P.rex

Fig. 6: LΩUI: The first Graphical User Interface of the mathematical assistant ΩMEGA

actual implementation and the programming language, but who is familiar with the
main concepts of formal logic, natural deduction proofs, proof planning methods
and tactics.

Also in the early 1980s, members of the group began to research the presenta-
tion of proofs in a text-book style form (see Fig. 6b), which does not pre-suppose
skills in formal logic from the user. The translation of resolution proofs into natural
deduction and the subsequent restructuring techniques for an improved presentation
were early results (Lingenfelder, 1989, 1990). Based on these developments Xi-
arong Huang developed the PROVERB system (Huang, 1996), a landmark at its time,
which translated these ND-proofs into well-structured natural language texts. Today
we use the P.rex-system (Fiedler, 1999, 2001a,b), which is based on PROVERB, but
presents the proof in a user-adaptive style, i.e. the mode of presentation and ab-
straction is relative to the skills of the user. The quality of the proof presentation
generated by the P.rex-system is still a corner-stone in the area of proof presentation
and the overall development in this field within the last three decades is the subject
of the forthcoming textbook (Siekmann et al, to appear).

More recent work on human interaction with the system followed a different
approach to make it more acceptable to the mathematical community. The mathe-
matical assistance system must be integrated with the software that the users already
employ, like standard text processing systems (such as LATEX) for the preparation of
documents. TEXMACS (van der Hoeven, 2001) is a scientific text-editor that provides
professional type-setting and supports authoring with powerful macro definition fa-
cilities like those in LATEX, but the user works on the final document (“What you see
is what you get”, WYSIWYG). As a first step we integrated the ΩMEGA system into
TEXMACS using the generic mediator PLATΩ (Wagner et al, 2006). In this setting the



22 Serge Autexier, Christoph Benzmüller, Dominik Dietrich, Jörg Siekmann

formal content of a document is amenable to machine processing, without imposing
any restrictions on how the document is structured and which language is used in the
document. The PLATΩ system (Wagner, 2006) developed in the DFG-project VER-
IMATHDOC transforms the representation of the formal content of a document into
the representation used in a proof assistance system and maintains the consistency
between the two representations throughout potential changes.

In turn, the ΩMEGA system provides its support now transparently within the
text-editor TEXMACS. Fig. 7 shows typical example documents on the screen:

(a) (b)

Fig. 7: The user perspective of the support offered by ΩMEGA inside the text-editor TEXMACS via
PLATΩ.

Fig. 7a shows how the author can formalise mathematics: Based on the formal
representation obtained by PLATΩ, the ΩMEGA system provides its support context-
sensitively as a menu inside the text-editor. Fig. 7b shows such a menu generated
by the system, that displays the different assertions which can be applied in the
actual proof situation. The proof parts generated by ΩMEGA are patched into the
document using natural language patterns. Current work is concerned with adapting
the proof presentation techniques as used in P.rex to this setting. More details about
that integration and the PLATΩ system can be found in (Wagner, 2006; Wagner et al,
2006).

All of this required the following changes in the architecture of the system: First,
we need a clean interface with the text-editor TEXMACS. The role of this interface
is to establish and maintain the correspondence of the objects in the document and
their counter-parts within ΩMEGA. Based on the development graph, the definitions,
axioms, and theorems in a TEXMACS document are grouped into theories and they
have a one-to-one correspondence to the development graph structure. The notion of
a “PDS view” (Section 2.1.3) is the key prerequisite to consistently link the proof in
the document with the respective part of the much more elaborate proof representa-
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tion PDS in ΩMEGA: Each manually written proof step in the document is modelled
as a proof sketch in the PDS, which has to be verified later-on.

Furthermore, the author of a document usually writes many different proofs for
different theorems in different theories before the document is finished. This cor-
responds to multiple, parallel proof attempts in ΩMEGA: the development graph
maintains the multiple ongoing proof attempts and determines which assertions in
the document are visible for which proof attempt.

Having that infrastructure in place was the key to turn the ΩMEGA system into a
server, that can provide mathematical assistance services for multiple documents in
parallel sessions.

A second issue is that the author changes his document usually many times.
Hence the proof assistance system has to be able to deal efficiently with non-
monotonic changes not only inside a theory but also within the proofs. For instance,
deleting an axiom from a theory should result in pruning or at least invalidating
proof steps in all proofs that relied on that axiom. Furthermore, if by such an action
a proof of some theorem is invalidated, then all other proof steps that used this the-
orem must be flagged and invalidated in turn. The immediate “solution”, i.e. to au-
tomatically re-execute all proof procedures, is not an option in this setting: it would
be too slow and short response times are an issue when the author of the document
has to wait when “simply” deleting an axiom. Furthermore, re-executing the proof
procedures may generate different proofs: since the proofs within ΩMEGA have to
be synchronised with the proofs in the text-editor, this may result in drastic invasive
(fully automatic) rearrangements of the document. Such a system behaviour would
most certainly jeopardise the acceptance of the system.

For these reasons we integrated a sophisticated and fine granular truth-maintenan-
ce system, which tracks all dependencies between elements of a theory and their use
in other theories and proofs (see (Autexier et al, 2008) for details).

5.2 Adaptation to different Software Systems

Just as ΩMEGA is used now as a subsystem within TEXMACS it could be used by
other software systems such as a program verification tool or a software devel-
opment platform. Yet another application area we are currently working on is the
integration of ΩMEGA into ACTIVEMATH, an e-learning system for mathemat-
ics (E. Melis, 2004).

More specifically, the DIALOG project (Benzmüller et al, 2003) studies natural
language-based tutorial dialogs when teaching how to prove a theorem. Within a
tutorial dialogue, the student has to prove a theorem interactively with the system.
The system provides feedback to the student’s input, corrects faulty steps and aids
the student in finding a solution, with the overall goal to convey specific concepts
and techniques of a given mathematical domain.

Due to the flexible and unpredictable nature of a tutorial dialogue it is neces-
sary to dynamically process and analyse the informal input to the system, including
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linguistic analysis of the informal input to the system, evaluation of utterances in
terms of soundness, granularity and relevance, and ambiguity resolution at all lev-
els of processing. ΩMEGA is used to (i) represent the mathematical theory within
which the proof exercise is carried out, i.e. the definitions, axioms, and theorems of
the mathematical domain, (ii) to represent the ongoing proof attempts of the student,
in particular the management of ambiguous proof states resulting from underspec-
ified or ambiguous proof attempts, (iii) to maintain the mathematical knowledge
the student is allowed to use and to react to changes of this knowledge, and (iv)
to reconstruct intermediate steps necessary to verify a step entered by the student,
thereby resolving ambiguity and underspecification.

The main problem in such a setting is the high-level and informal nature of hu-
man proofs: a classical automated deduction system is of little help here and these
developments are only possible now, because of the high-level proof representation
and proof planning techniques.

5.2.1 Checking the Correctness

The proof steps entered by the student are statements the system has to analyse with
respect to its correctness. A proof step ideally introduces new hypotheses and/or
new subgoals along with some justification how they have been obtained. If this
information is complete and correct, the verification amounts to a simple check.
However, in a tutorial setting, this is not the typical situation. The more likely and,
from our point of view, more interesting case is that the statement is incomplete
or faulty. Note that an incomplete proof step is not necessarily faulty: when writing
proofs, humans typically omit information considered unimportant or trivial. Simply
noting that a proof step is false or just incomplete is not a useful hint for the student,
so we need a more detailed analysis. If no justification is given, but the hypotheses
and subgoals can be correctly derived, the missing justification has to be computed.
Conversely, if there is a justification, but the hypothesis or subgoal are missing, the
missing parts should be returned by the system. If one of them is false, the system
should return a corrected one.

In the sequel we show some typical phenomena extracted from a corpus of tu-
torial dialogues collected in the Wizard-of-Oz experiments between students and
experienced math teachers (Benzmüller et al, 2006). Fig. 8 shows excerpts from
collected dialogues, where the tutor’s statements are marked with a capital T and
the student’s utterances with a capital S.

Underspecification: The proof step entered by the student is often not fully spec-
ified and information may be missing. Utterance S1 in Fig. 8 is an example of
this underspecification which appear throughout the corpus. The proof step in S1

includes the application of set extensionality, but the rule is not stated explicitly.
Also the student does not say which of the two subgoals introduced by set exten-
sionality he is now proving, nor does he specify that there is a second subgoal.
Further, the number of steps needed to reach this proof state is not given. Part of
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T: Please prove (R◦S)−1 = S−1 ◦R−1

S1: let (x,y)∈ (R◦S)
−1

T2: correct
S3: hence (y,x)∈ (S◦R)

T4: incorrect

S1a: we consider the subgoals
(R◦S)

−1 ⊂ S−1 ◦R−1

and (R◦S)
−1⊃ S−1 ◦R−1

S1b: first, we consider the
subgoal (R◦S)

−1 ⊂ S−1 ◦R−1

Fig. 8: left: Example dialog between a tutor (T) and a student (S). right: Two alternative ways of
how the student started to solve the exercise

the task of analysing such steps is to instantiate the missing information so that
the formal proof object is complete.

Incomplete Information: In addition to issues of underspecification, there may
be crucial information missing for the formal correctness analysis. For instance
the utterance S1 is clearly a contribution to the proof, but since the step only
introduces a new variable binding, there is no assertion whose truth value can be
checked. However, anticipating that the student wants to use the subset definition
A ⊂ B⇔ x ∈ A⇒ x ∈ B allows us to determine that the new variable binding
is useful. Utterance S1b is also a correct contribution, but the second subgoal is
not stated. This is however necessary in order to verify that the subset relation is
part of the equality of sets.
These examples show that the verification in this scenario is not simply a matter
of checking logical correctness, but we must take the proof context into account.

Ambiguity: Ambiguity pervades all levels of the analysis of natural language and
mathematical expressions. Even in fully specified proof steps an element of am-
biguity may remain. For example in any proof step which follows S1a, we don’t
know which subgoal the student has decided to work on. Also, when students
state formulas without natural language expressions, such as “hence” or “con-
jecture”, it is not clear whether the formula is a newly derived fact or a newly
introduced conjecture. Again, this type of ambiguity can only be resolved in the
context of the current proof. When no resolution is possible, the ambiguity must
be propagated and this must be done by maintaining multiple parallel interpre-
tations, which are retained until enough information is available later on in the
proof attempt.

5.2.2 Cognitive Proof States

A well-known phenomenon with underspecified or faulty proof steps, is that there
is in general more than one reasonable reconstruction. Each reconstruction directly
influences the analysis of the subsequent proof step, that is, a subsequent step can be
classified to be correct with respect to one reconstruction, but not with respect to an-
other. Hence it is necessary to determine and maintain all possible reconstructions,
which we call cognitive proof states. Ambiguities which can not immediately be
resolved are propagated as parallel cognitive proof states until enough information
is available for their resolution.
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Technically, the PDS is used to simultaneously represent all of the possible cog-
nitive proof states of the student, each represented by an agenda. Initially, there is
only one cognitive proof state, containing the initial task T = Γ ⊢∆ where Γ denotes
the assumptions and ∆ is the subgoal to be shown.

Updating the Cognitive Proof States

Given a set of possible cognitive proof states and a preprocessed utterance s, all
possible successor states have to be determined, which are consistent with the utter-
ance s. Each utterance is possibly—but not necessarily—annotated with informa-
tion about whether the step represents a new lemma or whether it is supposed to
contribute to the overall proof.

For each given cognitive proof state, we determine the successor states that are
consistent with the utterance s. If no such successor state can be found this cognitive
state is deleted. If several, alternative successor states can be found, i.e. the utterance
s is ambiguous, they replace the given cognitive state.

That procedure also resolves ambiguities introduced in previous proof steps by
deleting all cognitive states that are no longer consistent with the current utterance
s. If all cognitive proof states are deleted, i.e. no successor state is found for any of
the given cognitive states, the step is classified as incorrect.

The overall result is a confirmation of whether the step could be verified, along
with the side-effect that the PDS has been updated to contain exactly the possible
cognitive proof states resulting from the performance of the step. More details about
the update process are given in (Dietrich and Buckley, 2007; Buckley and Dietrich,
2007).

5.2.3 Evaluation

We tested our proof-step checking component on a little less than 20 tutorial dialogs
from a Wizard-of-Oz experiment, where students had to solve exercises on binary
relations. Of 116 correct steps, 113 (97.4%) were correctly verified and we correctly
classify 141 out of 144 steps (97.9%) as correct or wrong. The verification failed for
the remaining three steps. The average checking time was around 4 seconds on a
standard PC, the longest checking time has been 30 seconds. The main reason for
the efficiency lies in the fact that we directly search at the assertion level, which
makes a small search depth sufficient to verify correct proof steps.

6 Future Research

We now want to improve the system quality of ΩMEGA, such that we can train users
to author documents with formal logical content. The ΩMEGA system now provides
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an adequate environment for this endeavour, because its high-level proof represen-
tation and proof planning techniques presuppose little knowledge—the main hurdle
which typically hampers the use of such systems. Furthermore, ΩMEGA’s capa-
bilites to adapt to different users and usages provides a basis for the integration into
standard text preparation systems and e-learning environments.

First we want to support authoring and maintenance of documents with formal
logical content such that the author can formulate new concepts, conjectures and
proofs in a document. Furthermore, we want to integrate other modalities like dia-
grams both to describe mathematical content and use it within mathematical proof.

Secondly, we want to further increase usability of formal reasoning tools by fur-
ther developing the logical foundations of assertion-level proofs and automate proof
search either by proof planning directly on the assertion-level or by transforming
proofs obtained from classical automated deduction systems; a key question here
is how to characterise and search for “good” proofs. Furthermore, we plan to auto-
mate proof search in large, structured theories, where, to date, human guidance of
the proof procedures is indispensable, even for theorems that are simple by human
standards. We will research how to exploit the structures in large theories not only to
search for proofs but also to synthesise new interesting knowledge using automated
theory formation (McCasland and Bundy, 2006).

Finally, we want to support the training of students in using formal reasoning
tools. Rather than teaching students mathematical proof by forcing them to do a
proof in a typical formal calculus, we want to allow the student to freely build
any valid proof of the theorem at hand. On the tutoring side, this gives the free-
dom to adapt the tutoring to the student’s skills: less experienced students will be
taught more rigid proof styles that come close to the proof style enforced by classi-
cal formal calculi, while this is not imposed for more experienced students. In this
context, we will further develop domain-independent criteria to dynamically eval-
uate the correctness, granularity and relevance of user uttered proof steps, provide
domain-independent and domain-specific didactic strategies exploiting the dynamic
proof step analysis capabilities of the ΩMEGA system, and exploit them to generate
useful hints for the student.
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