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Objectivity – to account for nature as it is, free from subjective biases – is a standard of science 
and commonsense.  However, postmodernists distort it into God’s perspective.  Because God’s 
position is beyond human reach, they dismiss objectivity as a sham and relegate all science and 
knowledge to be nothing but social constructions relative to specific cultures.  Their forced 
choice between two polar options – an illusory absolute stance and arbitrary cultural fashions – is 
unwarranted.  Objectivity has clear meaning within the bounds of human understanding. 
 
Physical things do not contain concepts, which are our intellectual contributions to knowledge of 
them.  Perhaps God can comprehend without concepts, but humans cannot.  Without concepts, 
the world would be unintelligible to us and objectivity itself loses meaning.  Therefore, the 
demand of objectivity cannot be the absolute purge of concepts; it can only be a critical analysis 
of concepts to eliminate extraneous and arbitrary elements.  Its standards are reasonably achieved 
in science, although a healthy dose of skepticism is always useful to prevent complacency. 
 
We will examine objectivity and conventionality in three forms of description: the subject-
predicate form in common language, the functional form in most mathematical theories, and 
symmetry form in certain modern physical theories.  Our languages, mathematics, and ways of 
thinking have their own structures, which may not fit perfectly the structures of reality that they 
are used to represent.  Arbitrary elements do burden our representations.  The question is 
whether they can be teased out, criticized, and, if not purged, have their detrimental effects 
neutralized.  Symmetry, developed to handle delicate phenomena addressed by modern physics, 
offers an answer.  It explicitly ensures that the objective features described are independent of 
the conventional representations used in the theories. 
 
 
Science, commonsense, philosophy 
 
When I was a graduate student, once I went to my thesis professor after working for weeks on a 
calculation.  I proudly presented him with a pile of papers covered with Feynman diagrams.  He 
glanced at it and asked: “Where is the physics in all these?”  Sure, he told me, a physicist must 
be proficient in mathematics, but that is not enough.  He would do poorly if he were engrossed 
by calculation to the neglect of its meaning.  Its meaning is the physics.  What is the physics?  
That question, which I soon found to be a favorite among physicists, sticks to my mind.  So, 
when I turned from physics to philosophy, I constantly ask myself: What is the philosophy?  That 
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question prevents me from stir-frying technical physics, just as I once ground out Feynman 
diagrams, and garnishing the dish with a few pieces of naive philosophy. 
 
The question I am interested in is central to traditional Western philosophy.  What is the relation 
between the physical world and our thoughts, concepts, and theories about it?   
 
This problem, explicitly formulated at least since Descartes, was tackled by a long list of 
philosophers.  Quine's worry about words and objects and Putnam's question of how words hook 
on to word are only two of the latest additions.  In a word, this is the problem of reality, because 
the real world is intelligible to us only through our concepts and theories.  According to Einstein, 
the question of reality is also the central to the interpretation of modern physics. 
 
I try to extract philosophical answers to the problem of reality mostly, but not only, from 
physical theories, especially gauge field theory.  To avoid confusion, allow me to make two 
points at the beginning: 
 
1.  I examine only the logical forms of thinking and representation, not the substantive contents 

of physical theories.  You will not hear about the physical structures of electrons and quarks.  
What you will hear are the logical form of theories that describe the physical properties.  
Logical forms convey general concepts such as object, entity, property.  We will examine 
how the symmetry form asserts the objectivity of theoretical descriptions. 

 
2.  The subject matter of physical theories may be different and remote from the things familiar 

in our daily life, but the general structures of the theories are close to that of commonsense.  I 
will compare the two in seeking answers to the philosophical problem of reality. 

 
Albert Einstein once wrote: “The whole of science is nothing more than a refinement of 
everyday thinking.  Therefore the critical thinking of the physicist cannot be restricted to 
concepts in his special field, but must include an analysis of the nature of everyday thinking.”  
Why must we analyze commonsense?  If science is the development of everyday thinking, what 
advantages can philosophers gain in analyzing physical theories? 
 
Scientists are first human beings and then scientists.  Modern physics investigates exotic things 
remote from our everyday experience, but these strange things are not fantasies but part of the 
real world.  When physicists distinguish between physics and mathematics, they have already 
understood that some parts of their theories have objective meaning while other parts are merely 
theoretical or instrumental.  The thinking of physicists has already presupposed many concepts 
in our everyday thinking, general concepts such as reality and objectivity.  These general 
concepts are indispensable in any interpretation of physical theories, but they attract little 
attention, because they are what we tacitly understand and automatically use in our everyday life.  
Everyone knows them, but our knowledge is not distinct but confused.  Augustine remarked 
about time: "if no one asks me, I know what it is.  If I wish to explain it to someone who asks, I 
do not know."  The same can be said of most general concepts. 
 
Our vague ideas of objects and reality may work in ordinary situations, but the vagueness hurts 
when modern physics confronts the unfamiliar and counterintuitive subatomic world.  In the 
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difficult situation, one cannot evade the task of analyzing the concepts we have already 
presupposed in our everyday thinking and carried over to physical theories.  Without analyzing 
presuppositions, interpretations of physical theories tend to be philosophically naive. 
 
 
Two classical forms of description 
 
“The sun revolves around the earth.”  “The earth revolves around the sun.”  These two 
statements anchor the debate that launched the Scientific Revolution.  They also make a 
paradigmatic case for science superseding commonsense.  Actually, what science refutes is the 
substantive content of a common belief, a folk wisdom.  Science has not touched the logical form 
of common thinking.  Both statements assert a relation between two entities, the sun and the 
earth, and both use the same logical form Rab (read relation between a and b). 
 
 

 Forms of description 
 

English 
 

Mathematical theory Predicate logic

Subject-predicate propositions: 
     It has some color.  
     It is red. 
     The apple is red. 
 

Statistical description: 
     Whatever that is red. 

 
f(x)  = y 
f(x)  = y0 
f(x0) = y0 
 

 
f--1(y0) = x  

 
 
∃xFx 
Fa 
 

 
∃xFx 

 
 
Consider the simple statement “The apple is red.”  Its content is about the apple’s color.  Its form 
is the subject-predicate proposition, Fa.  We refer to a subject, the apple or generally a, and 
describe it by a predicate, red or generally F.   
 
Besides proper nouns or definite articles for picking out subjects of discourse, common 
languages also provide pronouns.  “It” is a variable that designates different things in different 
contexts.  Variables are widely used in mathematical theories.  Those that pick out subjects of 
discourse are usually called independent variables.  The x in the table below is an independent 
variable with meaning akin to “it.”  A variable can take on any one of a range of values, e. g., x 
can take on the values x0, x1, x2, . . ., which can be number, vectors, things, anything at issue. 
 
Science is superior in describing properties systematically.  In mathematical theories, both 
systematic predicates and systematic assignments find powerful representation in the functional 
form of description f(x) = y. 
  
A mathematical function f is rule that systematically maps from a domain to a range.  The 
domain is represented by the independent variable x, the range by the dependent variable y.  The 
function f  systematically assigns to each value x0 of x in its domain an unique value of  y0 = f(x0) 
in its range.  A value of x maps into only one y, but more than one value of x can map into one 
value of y. 
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Functions perform a million jobs in the mathematical sciences.  Among the most common is to 
represent broad types of property, e.g., position or energy.  In this capacity f(x) = y is akin to a 
subject-predicate proposition; it systematically assigns specific properties within the type to 
various entities.  Suppose f represents the property type of color, then the values of its range 
represent specific colors in  the color spectrum, y0 = red, y1 =  green, etc., and f(x)  = y reads "it 
(x) has some color (y)," where both x and y are variables.  If we fix a value for x by specifying an 
entity, e.g., x0 for this apple, and if the color function f assigns the color red represented by y0 to 
x0, then f(x0) = y0 reads "this apple is colored red." 
 
The functional form is more complicated than the canonical form of predication in predicate 
logic, ∃xFx (read, “there is an apple and it is red.”)  The predicate-logic form ∃xFx  has only two 
elements, the subject x and the predicate F, which can be anything arbitrary.  The functional 
form f(x) = y has three elements.  Besides the subject x and predicate y, it also indicates f, the 
type to which y belongs.  Thus, it eliminates ambiguities in assertions such as “he is red” by 
indicating whether “red” describes a color or an ethnicity or a political inclination.  
 
Philosophers may be interested to note that the functional form is sophisticated enough to resolve 
a dispute about two interpretation of ∃xFx.  The traditional interpretation corresponds to the 
functional form.  Quine’s interpretation of ∃xFx as “whatever that are red” corresponds to the 
inverse functional form, which not a subject-predicate statement but a statistical statement, 
which is coarser grained. 
 
 
Saying too much 
 
The functional form is successful in many scientific theories.  It represents almost all quantities 
in classical physics and other mathematical sciences.  Why is it not sufficient in modern physical 
theories?  There are two major reasons.  Both deal with the fact that the functional form is too 
definite.  It says too much. 
 
First, many functions are capable of describing the same thing.  For example, a classical particle 
is completely characterized by six parameters, i.e., six values of y.  The six parameters may be 
the three components of position and three components of velocity; or they can be the positions, 
energy, and two components of momentum; or they can be the positions, energy, angular 
momentum, and a component of momentum.  Note that not only the predicates y, the function f 
itself differ in the three descriptions.  We need the velocity function in one case, the energy 
function and the momentum function in the other, and so on.  Which functions we use is our 
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choice.  The particular choice, however, is usually decided by theoretical convenience and has 
nothing to do with the objective reality.  It introduces a conventional factor into our theories, 
which may produce spurious results.  Furthermore, in view of multiple representations, we need 
to be sure that they are equivalent, which is usually not as obvious as in the classical mechanics 
case. 
 
Another reason for the inadequacy of the functional form is that the range of the function, which 
represents the properties of the entities, usually has mathematical structures of its own that are 
not exactly fit for properties.  If the representative system has too little structure, the solution is 
relatively easy, we can construct upon it.  If it has too much structure already, it is much harder 
to erase the unwanted feature; it is difficult to eat one's words. 
 
Most physical quantities are represented quantitatively, in numbers.  The real numbers provide a 
systemic way of creating infinitely many predicates.  However, the number system itself has rich 
structures: it has a zero, it has an ordering, it a direction in ascending number, it has a 
quantitative measure.  These structures may not hold for all objective states of affairs.  They are 
too much spacetime, and their excess posed a problem that the theories of relativity eventually 
solved – by introducing a new form of predication. 
 
In short, functional form is often too heavy handed and surreptitious projects the structures of our 
logical thinking into the objects describe.  (Ordinary languages are even worse).  We have to find 
some ways that separate clearly the objective and the conventional elements in description.  
Symmetry provides an answer.  It does not discard functions but embeds them in a larger 
conceptual framework that is capable of unsaying some of what the functions say.  Symmetry 
introduces a new form of description that incorporates the functional form, brings out its 
weakness, compensates for it, and makes sure that it does not contaminate the objective 
statement about physical motion. 
 
 
Symmetry and symmetry breaking 
 
Technically, the symmetry of an object is defined in terms of the transformations that bring the 
object back into itself, or that leave the object unchanged or invariant.  For example, a figure has 
bilateral symmetry if it returns to itself when it flips about the axis.  If no transformation besides 
the identity can bring a figure back into itself, then the figure is asymmetric. 
 
The mathematics for suitable for presenting symmetry is group theory.  A symmetry is defined 
by the group of symmetry transformations such that the initial and final configurations of the 
transformation are indistinguishable from each other.  The features that are invariant under the 
transformation are locus of the symmetry. 
 
For example, an equilateral triangle returns to itself by any of six transformations: rotations 
through 120, 240, and 360 degrees about the center, and rotations through 180 degrees about the 
three bisectors.  The group of these six transformations constitutes the symmetry that 
characterizes the property of being an equilateral triangle.  Conversely, instead of defining an 
equilateral triangle as something with three equal sides or three equal angles, we can define it by 
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symmetry as something that is invariant under the group of six transformations.  The two 
definitions are not equivalent, however.  The symmetry definition is more abstract and general.  
As far as symmetry is concerned, the triangle is not different to a circle with three equidistance 
points on it. 
 
The more transformations that leave it unchanged, the more symmetric the object is.  A circle has 
higher symmetry than a triangle.  Only six transformations can bring an equilateral triangle back 
into itself.  Infinitely many ways exist to transform a circle into a position indistinguishable from 
the original: rotating about the center through any angle, or flipping about any axis. 
 

                                    
 
 
An entity with higher symmetry has fewer features.  A circle lacks the three corners featured by 
the triangle.  Additional features breaks symmetry.  Add three equidistance dots on the circle, 
and its symmetry reduces to that of a circle.  The group of its symmetry transformation also 
reduces correspondingly. 
 
Symmetry was first introduced in the special theory of relativity, where it characterizes spatio-
temporal properties.  Since then it has proliferated.  Physicists retrofit it into Newtonian physics.  
Here are some of the symmetries in modern physics.  The Galilean group of classical mechanics 
contains fewer transformations than the Poincaré group of special relativity, which in turn is 
much smaller than the group of diffeomorphism for general relativity.  The objective features 
they define are corresponding simpler and more general.  The points in the manifold defined by 
diffeomorphism are applicable to all spatio-temporal theories, whereas the distance defined by 
the Galilean group is not applicable to relativity.  Similarly, the unitary group SU(2) × U(1) for 
the electroweak interaction is larger than the U(1) and SU(2) groups for the electromagnetic and 
the weak interactions separately, for the unification captures what is common to the two 
interactions. 
 
 

Symmetry in modern physics 
 

Theory Symmetry group Objective features 
 

Newtonian mechanics 
Special relativity 
General relativity 
Electromagnetism 
Weak interaction 
Electroweak 
Strong interaction 
 

Galilean group 
Poincaré group 
Diff(M4) 
U(1) 
SU(2) 
SU(2) × U(1) 
SU(3) 

distance, time interval 
proper time interval 
points in manifold 
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Symmetry descriptions are the contrast to ordinary descriptions in one way.  Ordinarily, the more 
objective features there are, the more complex the description.  That is intuitive.  In symmetry, 
more objective features entails less descriptions in the sense of requiring smaller groups of 
transformations.  The most featureless entity, a manifold of points with no interval of any kind, 
requires the most complex symmetry transformations.  Why is symmetry so perverse? 
 
Symmetry transformations erase features.  If the characteristics of an entity is defined by a group 
of transformations, then any feature that are changed by any of the transformations is excluded or 
erased.  A circle with random points on it has low symmetry.  If you want to erase the points, 
simply add more transformations; rotate the circle a bit, and the points are at a different position; 
they are no longer invariant, so they are expelled.  We have seen earlier that the functional form 
and other descriptions are too heavy handed and inadvertently introduce conventional elements 
into descriptions of nature.  The ability to erase extraneous features makes symmetry most 
powerful in objective descriptions.  The more extraneous features to erase, the more work is 
required of symmetry descriptions. 
 
 
The symmetry form 
 
Wolfgang Pauli remarked that Einstein introduced not merely a specific group of transformations 
but a new way of thinking, which changed "the general way of thinking of the physicists of 
today."  This way of thinking is a new form of predication, the symmetry form in lieu of the 
functional form.  It is the symmetry form of description that physicists retrofit into classical 
mechanics.  The retrofit does not change the objective contents. 
 
Remember that a symmetry transformation brings a system into a final state that is identical to its 
initial state.  This definition of symmetry invokes difference and identity in a single breath; it 
distinguishes the initial and final configurations and immediately identifies the two.  Thus it 
involves three concepts:  We distinguish the initial from the final state by certain representations, 
for instance some labels or coordinate systems.  Symmetry transformations relate the different 
states.  The identity of a transformation's initial and final state defines the invariant features of 
the system.  The concepts of representations, transformations among representations, the features 
invariant under transformations form the triad of a symmetry. 
 
This is a schematic for the form of symmetry.  It is a mess not easily rendered in words, because 
it has woven several important ideas into an integral conceptual structure.  The important thing is 
that the whole structure works as a unit in physical theories. 
 
Symmetry includes the subject-predicate or functional form of description.  We have a system 
with various states x.  According to the functional form of description, we use a function f1 that 
assign a predicate y1 = f1(x).  This is usually called a representation of the object.  This is the 
functional form of description in classical mechanics. 
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There is nothing unique or necessary about the particular representation.  There are many ways 
of saying the same thing.  We can use another function f2, which assigns another predicate y2 to 
describe the same x.  It is like you can say "snow is white" in English or Chinese or German, and 
the different words for white does not affect the color of the snow at all.  Simple examples such 
as snow is white give the wrong impression that it is a trivial matter to translation among the 
languages; but philosophers are familiar with the difficulty of translation.  Translations among 
different representations are not always easy.  This is apparent in the familiar example of the 
desk; what is a plain metal desk to most people is a sea of electrons in an ionic lattice for 
physicists. 
 
In short, there is certain arbitrariness in the way we represent things.  The arbitrariness is not 
absent in physical theories.  A coordinate system in classical mechanics presents a particular 
representation, and which system we pick is arbitrary.  Physicists have long acknowledged the 
arbitrariness, as they routinely transformed from Cartesian to spherical coordinates or back.  
However, the knowledge of the arbitrariness and the coordinate transformation were not stated 
explicitly within classical physical theories; they belonged to the intuitive practice of physicists.  
The intuition suffices for the rather simple subject matter of classical physics, but when modern 
physics becomes so complicated and strange, intuition is readily confused.  When there are many 
options, the choice of a particular option involves some information, and this information may be 
extraneous to the objective state of affairs.  In complicated and unfamiliar situations we cannot 
rely on intuition to ensure that the extraneous information dose not contaminate our description 
of the objective states of affair.  The arbitrariness of representation systems needs to be explicitly 
acknowledged within physical theories, so that means can be instituted to safeguard against their 
unwanted effects. 
 
We make reality intelligible by our words and concepts.  Concepts are general and rule like, and 
to be so, they must have some structures of their own.  The structures are sometimes explicit, 
sometimes tacit, and they may not all be suitable for the structures of the objective state of affairs 
that they are used to describe.  Whenever we say something definite and give a definite 
description of something, we are saying too much.  Our description hides something peculiar to 
the specific condition of assertion; our viewpoint, perspective, intellectual tool; our choice of a 
particular representation.  This peculiarity is not objective and unsuited for the objective 
description.  A big job of symmetry is to erase whatever extraneous and nonobjective elements 
in our definite descriptions.  Symmetry transformations erase features, which is why a larger 
group of transformation produce a system with less features. 
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The form of symmetry collects all possible representations of a system, f1, f2, etc., and all 
possible transformations among them.  It abstracts what are common to all representations, what 
are invariant under the transformations, and attributes only the invariant features to the system as 
its objective properties.  Because the invariant features abstract from all representations, they are 
explicitly independent of any representation and answer to the intuitive notion of objectivity. 
 
If only the invariant features are objective, why do we not try to represent them abstractly?  Why 
do we need the various representations and the symmetry transformations?  We need them 
because even in the most general physical theories, we are not merely stating what is universal.  
We also need to say definite things about particular systems because we need to do experiments.  
Without experiment, physical theories would cease to be empirical but be reduced to abstract 
mathematics.  Experiments, however, are always performed in particular conditions.  To specify 
experimental conditions so that their data can be compared to theories, we must use 
representations.  That is why we need the entire complicated symmetry structure in physical 
theories. 
 
If the particular representations y1 = f1(x) and y2 = f2(x) are deemed "subjective" because they are 
peculiar to the persons or the experimentalists who choose to use it, then the symmetry 
transformation y2 =  f2 •  f--1

1(y1) ensures intersubjective agreement by erasing the differences.  
Various representations translate into each other.  The translation is not merely conventional.  
When you analyze it you find that it breaks into two mappings, an inverse function f--1

1(y1) = x 
followed by f-

2(x) = y2.  The inverse of the first representation, f--1
1, points back to the object x, 

which the second representation represents.   The object x, being common and same to all 
representations, is independent of any representation and whatever “subjective” elements it may 
carry.  Its features that remain invariant through transforming among all representation are 
objective because the transformations have erased all extraneous elements. 
 
 
Intelligibility and objectivity 
 
Modern physical theories have adopted symmetry as the major form of characterization.  
Symmetry is a complicated conceptual structure that incorporates several major strands of ideas.  
Separately, the ideas themselves are common sense.  We take for granted that we rely on 
concepts to bring things within our knowledge, that we have many ways of describing things, 
and that things are what they are independent of our concepts, our descriptions, our mind.  But so 
far, the notion that things are independent of our description remains intuitive.  Hence there is the 
idealist doctrine that it is senseless to say things are independent of mind, because even in 
asserting the independence, we are already thinking about it. 
 
Symmetry answers the philosophical question.  The objective world that is intelligible to us is 
not absolutely mind independent, because being intelligible is imposes a certain condition.  
However, this condition is very general and abstract.  Objective features of the world are 
independent of any substantive concepts by which we describe them, but to be intelligible at all, 
they are not independent of general concepts such as objectivity.  The general concept of 
objectivity is theoretically represented by the symmetry form.  Substantive descriptive concepts 
are represented by functional form within the symmetry form.  They are retained so that we can 
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think about and observe the properties and hence to make them intelligible to us.  On the other 
hand, symmetry transformations ensure that objective features abstract from them.  Thus, 
symmetry articulates clearly the intuitive idea that objective properties are independent of our 
substantive concepts and representations.  The symmetry form elucidates in what sense things 
are independent of us and yet intelligible to us.  It elucidates the general concept of objects, 
which, as Kant argued, is the most general concept of our understanding and theoretical reason. 
 
Part of a talk presented at the Philosophy Department 
Concordia University, Montreal. 
April 3, 1998. 
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