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Abstract

Hypersequents are finite sets of ordinary sequents. We show that multiple-conclusion sequents and
single-conclusion hypersequents represent two different natural methods of switching from a single-
conclusion calculus to a multiple-conclusion one. The use of multiple-conclusion sequents corresponds
to using a multiplicative disjunction, while the use of single-conclusion hypersequents corresponds to
using an additive one. Moreover: each of the two methods is usually based on a different natural se-
mantic idea and accordingly leads to a different class of algebraic structures. In the cases we consider
here the use of multiple-conclusion sequents corresponds to focusing the attention on structures in
which there is a full symmetry between the sets of designated and antidesignated elements. The use
of single-conclusion hypersequents, on the other hand, corresponds to the use of structures in which
all elements except one are designated. Not surprisingy, the use of multiple-conclusion hypersequents
corresponds to the use of structures which are both symmetrical and with a single nondesignated
element.
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1 Introduction

Hypersequents ([7]) are essentially finite sets of ordinary sequents. As such they are
usually taken as a generalization of Gentzen’s sequents, and calculi which manipulate
hypersequents are usually classified as a generalization of Gentzen-type calculi (this
indeed is how they were presented in [7] and previous papers). This picture is not
absolutely correct, though. Gentzen’s multiple-conclusion sequents as introduced in
[14] were themselves a generalization. They generalize his much more natural single-
conclusion sequents. Now hypersequents in which all the components are single-
conclusion sequents form in fact another, different generalization of this basic data
structure, orthogonal in a way to Gentzen’s multiple-conclusion sequents. Employing
hypersequents in which the components are multiple-conclusion sequents provides, of
course, the most natural generalization of both methods.

Our main thesis in this research is that multiple-conclusion sequents and single-
conclusion hypersequents represent two different methods of switching from a single-
conclusion calculus to a multiple-conclusion one, and that both are naturael. In fact,
from the proof-theoretical point of view each of these methods corresponds to the use
of a different type of disjunction. That of multiple-conclusion sequents corresponds
(in the terminology of [15]) to the use of the multiplicative disjunction, while that
of single-conclusion hypersequents corresponds to the use of the additive disjunction.
Moreover: each of the two methods is usually based on a different natural semantic
idea and accordingly leads to a different class of algebraic structures. Now in classical
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logic there is no difference between the multiplicative disjunction and the additive
one. Hence one might expect the differences between the two types of generalizations
of basic sequents to be reflected only relative to proper substructural logics. This
indeed is the case. While in the switch from intuitionistic logic to classical logic the
two methods give equivalent results, this is not so with respect to weaker substructural
logics.

The main part of this paper will be devoted to showing the different effects of
applying the two methods of obtaining classical logic from intuitionistic logic to sub-
structural logics which lack the full power of weakening. We show that the use of
multiple-conclusion sequents corresponds to focusing the attention on structures in
which each element is either designated or antidesignated ([16]), and there is a full
symmetry between the sets of designated and antidesignated elements. The use of
single-conclusion hypersequents, on the other hand, corresponds to the use of struc-
tures in which all elements except one are designated (It is interesting to note, that
in the class of Heyting Algebras, the algebraic structures which correspond to in-
tuitionistic logic, the two-valued classical algebra is the only one which falls under
either category). Finally (and not surprisingly) the common extension to a calculus
of multiple-conclusion hypersequents corresponds to the use of structures which are
both symmetrical and with a single nondesignated element!.

To make the presentation shorter and simpler, we choose to work with one particular
system. Most of the proof-theoretical and the abstract semantic results can however
easlly be generalized to other substructural systems of this sort. The system we choose
is the one which is obtained from the multiplicative-additive fragment of Intuitionistic
Linear Logic by adding to it the contraction rule as well as its converse. There are
two reasons for this choice. First, the availability of these two rules means that in
this logic we are really dealing with sets of premises rather than with multisets (as
in Linear Logic and in R). This is much closer in spirit to intuitionistic and classical
logic, the connections between which we are trying to generalize. Second, in this case
the multiple-conclusion generalizations lead to algebraic structures which are simple,
useful and illuminating (this does not seem to be the case with close relatives, like the
multiplicative fragment of R, for which only abstract algebraic semantics is known).

Two other interesting phenomena that are revealed in our case study and deserve
mentioning are the following. First, the use of multiple-conclusion hypersequents
allows us to get strong completeness theorems in cases in which the use of ordinary
(multiple-conclusion) sequents provides only weak completeness. Second: there are in
general two main methods of defining a consequence relation, given some Gentzen-type
calculus. In calculi of sequents these methods usually lead to different consequence
relations in case additive connectives are included (and this is indeed what happens
here). In contrast, for the hypersequential systems we study here the two consequence
relations are identical even in the presence of the additive connectives!

2 The General Proof-Theoretical Framework

In this section we describe the four types of Gentzen-type calculi we are about to
employ in this paper. We start with some very general definitions.

1Note that being an antidesignated element and being a nondesignated one is not the same thing. In our main
structures each nondesignated element will be antidesignated, but not vice versa.
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In what follows L is a fixed language.

Definition 2.1 A (Tarskian) finitary Consequence Relation (CR) is a relation - be-
tween theories (i.e., sets of formulas) in L and formulas in L such that:

(i){A}+ A
(i) If T-Aand TCT* thenT*F A
(i) If T A and TU{A}F B then T B.
(iv) TH A only if T F A for some finite subset T of T'.

Definition 2.2 1. A single-conclusion sequent (s-sequent, in short) is a syntactic
structure of the form I' = A, where T' and A are, respectively, a multiset of
formulas and a formula of L.

2. An s-sequential calculus is an aziomatic system G for s-sequents which satisfies
the following conditions:
Reflexivity:Fg¢ A = A for all A.
Cut: {(I‘l, AT, = B), (A = A)} Fe I'1, A, Ty = B.

NoTE

It is possible to use lists instead of multisets in the last definition, without affecting
much the next definition and the proposition that follows it. The Cut condition was
formulated, in fact, so that this may be done easily. Still, it is much easier to generalize
it to the multiple-conclusion case in a natural way if we use multisets rather than lists.
Since we assume the permutation rule in all the systems considered in this paper, the
present definition suffices for our needs.

Definition 2.3 Let G be an s-sequential calculus. The external and the internal CRs
which are induced by G are defined as follows:

The external CR: T % B if (= A1),...,(= An) Fe= B for some Aq,..., A, in
T.

The internal CR: T I—"G B if there exists a multiset T' of elements of T so that
Fe¢ T = B.

Proposition 2.4 1.+% and %, are CRs.
2.If T+, B then T+ B.

3. If all the rules of G are pure (or “multiplicative”) then T ', B whenever T +& B
(a rule of an s-sequential calculus is pure if whenever T' = A can be inferred by
it from; = B; (i=1,...,n) then I',T,..., T}, = A can also be inferred by it
fromT;,T: = B; (i=1,...,n)).

ProoF. It is obvious that - is a CR. That so is also I—"G follows from the two condi-
tions in the definition of an s-sequential calculus. The second part of the proposition
follows by cuts, while the third is a consequence of the reflexivity condition and the
purity of the rules. Details are left for the reader. [ |

Definition 2.5 1. A multiple-conclusion sequent (m-sequent, in short) is a structure
of the form T' = A, where I' and A are multisets of formulas of L.



698 Two Types of Multiple-Conclusion Systems

2. An m-sequential calculus is an aziomatic system G for m-sequents which satisfies
the Relexivity condition from the definition of an s-sequential calculus as well as
the following version of the Cut condition:

{(I‘l, = Al,A), (A, I', = Az)} Fa I‘l, I',= Al, As.

3. The external and the internal CRs are defined for m-sequential calculi exactly as
in the s-sequential case.

Proposition 2.6 Proposition 2.4 is true also for m-sequential calculi (where the def-
inition of a pure rule is changed in the obvious way).

Proor. Left for the reader. [ |

Definition 2.7 1. A single-conclusion hypersequent (s-hyperequent, in short) is a
syntactic structure of the form.:

I'y=> A | Ta=As |-+ | T = Ay

(where T'; = A; is an ordinary s-sequent).

2. A multiple-conclusion hypersequent (m-hypersequent, in short) is a syntactic struc-
ture of the form Ty = Ay | T2 = Az | --+ | Tp = Ay (where Ty = A; is an
ordinary m-sequent).

8. An s-hypersequential calculus is an aziomatic system G for deriving
s-hypersequents which satisfies the following conditions:

Reflexivity:Fg¢ A = A for all A.

Cut:S; | Ty | T'1,T2 = B | Sa | Ty follows in G from the set {(S1 | T'1 =
A | Sy), (Ty | A,T2 = B | T2)} (where S1,S2,T1, T2 are (possibly empty)
s-hypersequents).

External Contraction: S |T |T |Ute S|T|U.

External Permutation: S |T |W |UFeg S |W |T|U.

4. An m-hypersequential calculus is an aziomatic system G for m-hypersequents
which satisfies the above Reflexivity, Ezternal Contraction, and FEzternal Per-
mutation conditions, and in which S1 | Ty | ['1,T2 = A1, Ay | S2 | To follows
from {(Sl | I'y = Al,A | Sz), (Tl | A, T'y = Ay | Tz)} (where Sl,Sz,Tl,Tz are
(possibly empty) m-hypersequents).

5. Let G be an (s- or m-) hypersequential calculus. The ezternal CR, 5, is defined
for G ezactly as in the sequential case, while the internal CR, I—"C;, is defined for
G as follows: T I—"G B iff there exist multisets T, ..., Ty, of elements of T such
that g I‘1:>B||I‘n:>B

NoTE

The names “External Contraction” and “External Permutation” are also used for the
obvious rules which correspond to the above conditions, while “External Weakening”
is the rule which allows to add arbitrary components to a hypersequent. The three
rules are usually called the standard ezternal structural rules (see [7]).

Proposition 2.8 Proposition 2.4 is true also for hypersequential calculi (where again
the definition of o pure rule is changed so that side sequents are allowed).
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ProOOF. Most of the parts are straightforward. The only problematic one is show-
ing the transitivity conditions for ;. For this we have to show that if there are

submultisets T'1,...Tn, Ay, ..., Am, Al,..., A, of T such that g Ty = A | -+ |
I, = Aand Fg Ay ,A = B | | Ag,A=>B| A, = B|---| A, = B
then T}, B. For this we prove by induction on n that if there are submultisets
T1,...Tn, T4y, T ALy oo, A, Al ..., A of T such that Fg Ty = A |-+ | Ty =
A|T;=>B|---|T,=>Bandtg Aj,A=>B |-+ |Am,A=>B|A;=>B| |
A;, = B then T I—"G B. We leave the details to the reader. [ |

3 Two Ways from Intuitionistic to Classical Logic

Let LJ be the Gentzen-type formulation of Propositional Intuitionistic Logic, in which
the negation of a formula A4 is defined as A — 1 and the axioms are takentobe A = A
and L = A (for all A). LJ is a paradigmatic example of an s-sequential calculus. The
usual way of obtaining Classical Logic from it is to turn this s-sequential calculus into
an m-sequential one LK. This is done by keeping in LK exactly the same axioms and
logical rules as in LJ (but allowing in applications of the logical rules also extra side
formulas on the r.h.s of the =), and by adding to the set of structural rules of LJ their

r.h.s counterparts. The usual interpretation of an m-sequent A4,..., 4, = By,...,Bi
of LK is the sentence A1& A& ---&A, - B1VByV---V Byg.
NoTE

There is a slight difference between this formulation of LK and the usual one, in
that in the above version the r.h.s. of a sequent cannot be empty. We take, however,
a sequent of the form I' = to be the same as I' = 1. It is straightforward to see
that with this translation the above version and the little bit more standard one are
equivalent.

We present now another method of obtaining classical logic from LJ, which uses an
s-hypersequential calculus rather than an m-sequential one. Our starting point is that
in all the hypersequential calculi that have been used in the past new components are
added to a given hypersequent by some form of the splitting rule:

G|I‘1,I‘2 = Al,A2|H
G|F1 = A1|I‘2 = A2|H

By trying to directly apply this scheme to s-hypersequents we get:

G|, Ty = A|H
Gy = Al = |H

This, however, is not an s-hypersequent. Following, however, our understanding above
that an empty succedent means 1, we get the following rule:
G|Il', Ty = AH
G|F1 = A|I‘2 = J_|H

A cut of this with the axiom | = B leads to the following rule:

G|T1, Ty = A|H
G|F1 = A|I‘2 = B|H
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In order to have cut elimination, we adopt the last rule as the official rule of our
s-hypersequential version of classical logic.?

Definition 3.1 The s-hypersequential system LJ"* is defined as follows:

Axioms: As in LJ.
Logical Rules: The s-hypersequential versions of the logical rules of LJ.

Structural Rules:
1. The standard external structural rules.
2. The s-hypersequential versions of the structural rules of LJ.

3. Classical splitting (CS):

G|T1, T, = A|H
G|F1 = A|I‘2 = B|H

The proof of the following theorem is now straightforward:

Theorem 3.2 1. LJ" admits cut-elimination.

2. LJ* and LK are equivalent: the m-sequent T'y,..., T, = Aq,..., Ay is derivable
in LK iff the s-hypersequent T'y = A; | ---| 'y, = A, is derivable in LJ*.

Like the m-sequents of LK, the s-hypersequents of LJ* also have a standard in-
terpretation. The interpretation of the s-hypersequent T'y = Ay | --- | T, = A, is
(&T'1 — A1) V-V (&Ty, — A,) (where &T is the conjunction of the sentences in T').
We see, therefore, that multiplicity of conclusions in an m-sequent corresponds to an
internal disjunction of formulas within a sequent, while the multiplicity of conclusions
in an s-hypersequent corresponds to an ezternal disjunction of the translations of the
individual components. In classical logic these two disjunctions are identical, since
A — BV C is equivalent in it to (A — B) V (A — C). This phenomenon is due to
the fact that all the internal standard structural rules (on the L.h.s. of a sequent) are
available in intuitionistic logic — the single-conclusion logic from which classical logic
is derived. One might expect therefore that things would be different if we start with
a substructural ([10]) single-conclusion logic. In the next section we will investigate
an interesting representative case of this sort.

4 RMO,,, and Its Extensions

In this section we apply the two processes that lead from intuitionistic logic to classical
logic to another substructural logic which is single-conclusion in an essential way:
RMO0;pm. This logic is based on RMO0_, (see [1]) which is the minimal implicational
logic for which the following deduction theorem obtains: there is a proof of A — B
from the set ' which uses all the formulas in T iff there is a proof of B from I' U{A}
which uses all formulasin ' U {A}.

In order to get RMO0;,, we enrich the language of RM0_, by adding to it versions
of the two other connectives which are characteristic for logics which are essentially

2Ano':her reasonable possibility of splitting in the s-hypersequential case is to split only the antecedent. This leads
GIr,,Ts = A|H

G, > AT, = A|H"

Godel-Dummet intermediate logic LC ([11]). This is a demonstration of the fact, that the use of s-hypersequents

to the rule: In [5] it is shown that the use of this rule leads from intuitionistic logic to

rather than m-sequents allows more possibilities and better insights.
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single-conclusion: conjunction and absurdity (1).2 In order to deal first with logics
which are purely multiplicative, we use the multiplicative ® for our conjunction. We
shall denote by L;m, (intuitionistic multiplicative) the language {—, ®, L}. Later we
shall investigate the effects of adding to L;, the multiplicative constant 1 of [15] (also
denoted ¢ in the relevance literature), as well as the additive connectives.

4.1 The Basic Logics and Thewr Proof Systems

Since we are interested in this paper in Gentzen-type systems, we present the various
logics by using such systems (it is possible to present corresponding Hilbert-type
systems as well, but this is not important for our present purposes). We remind the
reader that the permutation rule is tacitly assumed in all the systems below.

(1) The s-sequential system RMO;,,.

Axioms:
A=A 1= 4A4
Logical Rules:
(_):>)I‘:>A B,A=C ' A=1B (=)
A— BT ,A=C '=A—-B
(® =) I'VA,B, A= C =4 I‘2:>B(:>®)
A B,A=C ', =>A®B
Structural Rules:
' A,A=1B r=4 A=A
©) T a=5 rasa )

'i= A A,I‘2:>B( t)
T.,,l, > B v

NoTE
The proof-theoretical properties of the implicational fragment of RMO0;, has first
been investigated in [18]. For reasons that will be clarified later, we have followed

that paper in choosing the mingle rule (M) as primitive. Another possibility is to

choose instead Expansion (E): % The two formulations are equivalent,

and both admit cut-elimination.
The next system is the natural m-sequential extension of RM 0y, .

3We could have easily included T as well, but this is definable as L — L. In linear logic L and T (or “0” and “T™"
as in [15], but unlike [19]) are considered to be “additives”. In [8] we explain why it is safe (and even preferable)
to take them as a part of the “multiplicative” fragment.
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(2) The m-sequential system RMI;,,.

Axioms: A=A I'1=>A (A#£0)

Logical Rules: The m-sequential versions of the logical rules of RM0;y,.

Structural Rules: The m-sequential versions of the structural rules of RMO0;,, as
well as their duals:

AAT= A '=>AA A

AT=A F'=AA

A,Fl :>A1 A,Fz :>A2 I‘l :>A1,A I‘z :>A2,A
AT, Ty = Ag, Ay ', Ta= A1, A5, A

I‘1:>A1,A A,I‘2:>A2
I',Ty = A1, Ay

NoTES

1. Again, instead of the two (relevant) mingle rules we could have chosen to use the
two m-sequential Expansion rules.

2. A natural step is to combine the two “mingle” rules of RM I into one by deleting
the “A” which is common to the two premises. We get what is known as the
“mix” rule of [15]. This leads to the following stronger system:

(3) The m-sequential system RM;,,. This is the system which is obtained
from RM I, by replacing the two mingle rules by:

'y = A Ty = A,
[',Ty = A, Ay

(mix) .

NoTE
Both RMI;,, and RM;,, as presented here are really the L;,-fragments of the full
systems RMI and RM (see [1], [13] for RM, [4] for RMI).

We turn now to the classical-like hypersequential extensions of these three logics.

(4) The s-hypersequential system RMO0”? .

Axioms: As in RMO0;,,.
Logical Rules: The hypersequential versions of the logical rules of RM0;,.
Structural Rules:
(i) The standard external structural rules.
(ii) The hypersequential versions of the structural rules of RM0;p,.
(iii) Classical Splitting (CS):
G|Il', Ty = AH
G|l'y = A|l'2,A= B|H
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NoTE

This version of Classical Splitting can be derived from the original one using cuts.
If A = Ay,..., A then by using the classical splitting rule of the last section, one
can derive from G|T'1,T's = A|H the hypersequent G|T'; = AT = 41 8 4, ®---®
Ay — B|H. Since Frao,, A, 41 ® 42 ® -+ ® Ay — B = B, the hypersequent
G|l'; = A|A,T; = B|H follows by a cut. We have chosen the present version in
order to secure cut-elimination.

(5) The m-hypersequential RMI;‘m. This is the m-hypersequential extension
of RMO0® . Thus, for example, classical splitting takes here the form:
G|I‘1, I‘z = Al, A2|H
G|F1 = A1|I‘, I',= Az, A|H

provided A; # § and Ay UA # 0.

NoTE
RMI! is also (as its name suggests) the natural classical hypersequential extension

of RM I;p,.

(6) The m-hypersequential RMZ.hm. This is the classical hypersequential ex-
tension of RM;y,. Alternatively, it is the system which is obtained from RMI! by
replacing the two (hypersequential) mingle rules by the (hypersequential) mix rule.

NoTE
As noted above, RMO0;,,, RMI;,, and RM,;,, are either natural conservative ex-
tensions or else fragments of well known systems. RMI! and RM[ are in turn
the Lim-fragments of the systems SRM I+ and SRM~ (respectively) of [8] (this fol-
lows either by cut-elimination or can be shown by semantical methods). The system
RMO0%,, on the other hand, is introduced and investigated here for the first time.
Since all the six systems we have just introduced are purely multiplicative, there is
no difference between the internal and the external consequence relations which are
induced by them. Accordingly, we shall denote both by Fruo,.., Frar» , etc. Figure
1 displays the obvious relations between these six systems in the form of a lattice
(ordered by inclusion). We shall see below that it reflects the ezact relationships
which exist between these systems.

RMh
/
Rth
RMoh Iim
\ /
RM0;,

FIGURE 1
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Proposition 4.1 All the siz systems above are different from each other. Moreover:
no inclusion relations, other than those shown in Figure 1 (or which follow from it by
transitivity), hold among them.

Proor. Obviously it is enough to show the following:

(i) RMO: ¢ RM;p,
(ii) RM;m ¢ RMI,
(iii) RM L;y, € RMO}

Now (i) follows from the fact that A® B Frpror A (since Fryor AR B = A| = A4,
using CS on A = A and the (® =) rule), but A ® B t/ra,,, A (this can easily
be shown by using the cut-elimination theorem or by using Sugihara matrix, which
is characteristic for RM [1]). For (ii) we note that ((A — (B — B)) - A) — 4
can easily be proved in RM;,, but it is not provable in RM I (this is shown, using
a semantic method, after Theorem 5.19 below). Similarly, for (iii) we have that
(B—B)—(A—A4)) = (((A— B)—> A) - A) is a theorem of RM I, but not
of RMO0!  (this again, is shown below by semantic method. See the example after

Theorem 5.18). [ |
Theorem 4.2 The cut-elimination theorem is valid for all the systems above.

The proof of this theorem uses the “history” technique from [3] and is quite long.
We omit the details.

NoTES

1. In the last proof we gave explicit examples of theorems of RM;,, and RMI;,
which are not theorems of RMI: and RMO0! (respectively). We did not provide
such an example for RMO;‘m and RM;,,. The reason is that it does not exist!
At the next section it is shown that RM;,, and RMi’:n have the same set of
theorems, and similarly for RMI;,,, and RMI! . The differences in these cases
are due only to the consequence relations. On the other hand, the set of theorems
of RMO!  strictly contains that of RMO0;m,: In [8], p. 203 there is a proof of
(A— B) - A) - A® ((A — B) = (A — B)) which is really in RM0 . Tt is
easy, however, to see that this is not a theorem of RM0;,,.

2. The fact that A ® B Fgpyor A (and A ® B Fgpon  B) means that ® behaves
as an “extensional” conjuncItTon in the three hyperseﬁuential systems we consider
here, and so it has been justified to select it as the counterpart of classical and
intuitionistic conjunction.*

3. The cut-elimination theorem can be used to show many important proof-theoretical
properties of the above systems. It would be easier, however, to use for this the
semantics of these systems. This will be developed in the next section.

4.2 Disjunction Connectives and Translations

It is straightforward to translate single-conclusion sequents into formulas:

4

This idea has already been explored, but only in the presence of an involutive negation, in [8] and [9].
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Definition 4.3 Let I' = A4,...,A,. The translation of the sequent I' = B is the
formula A1 ® A2 ® ---® An — B (and just B if n = 0). We denote this translation
by ¢r=5-

It is very easy to show that if s is a single-conclusion sequent then s and = ¢,
follow from each other in RMO0;,, (or any extension). In contrast, no translation
of I' = A seems to be available in L;, (unless A is a singleton). In order to be
able to translate multiple-conclusion sequents, we should enrich the language with a
multiplicative disjunction +. The corresponding Gentzen-type rules are:

(+ )A,I‘1:>A1 B, Ty = A, '=>AAB (= +)
A+B,I‘1,I‘2:>A1,A2 I‘:>A,A+B

It is not difficult to see that the cut elimination theorem still obtains when we extend
the various systems above with +. Hence all these extensions are conservative. Now
in the presence of + we have the following obvious translation for multiple-conclusion
sequents:

Definition 4.4 Let T = Aq,...,Ap and A = By,...,Bg (k > 0). ¢r=a, the trans-
lation of the sequent T' = A, s the formula:

AIRA R QA, —+B1+By+---+ By

Proposition 4.5 Let s be a multiple-conclusion sequent. Then s and = ¢; follow
from each other in RMO0;,, enriched with the two rules for + (or any eztension of
this system).

NoTE

It is possible to conservatively add to all the m-sequential and m-hypersequential
systems we consider here also multiplicative negation without losing cut-elimination.
Most of the results are preserved. Those that are not are noted below.

It follows that the multiplicity of formulas in the succedent of an m-sequent cor-
responds to the multiplicative disjunction of these formulas. We now show that the
multiplicity of sequents in an hypersequent corresponds to the additive disjunction of
its components. For this we enrich the language with the connective V, together with
the appropriate version (in each case) of the following s-sequential rules:

AT=C B, I'=C r= A ' B
AVvB,T=C '=AVB '=AVB

By using the techniques of [3] and [6] it is possible to show that cut-elimination is
preserved by this addition in all the cases we consider. It follows that the systems we

get are all conservative extensions of the corresponding multiplicative systems (this
fact can also be demonstrated using the semantical results of the next section).

With V in our disposal we can now translate hypersequents into formulas:

Definition 4.6 Let H = T'; = A4|---|T'y, = A, be a hypersequent. ¢g, its trans-
lation, is ¢r,on, V-V ¢r, >, , where ¢r,on; is the translation of I'; = A; as
defined above (note that for the m-hypersequential system we need to use also +, the
multiplicative disjunction, for translating each component).
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Proposition 4.7 Let G be any of the & hypersequential systems above. Then H and
= ¢ follow from each other in G (where H is an arbitrary hypersequent).

ProoF. Since I' = A and = ¢ro a follow from each other already in the s-sequential
system on which G is based, all we really need to show is that = AV B and = A| = B
follow from each other in the basic hypersequential system with V. Well, the fact that
= AV B follows there from = A| = B is trivial (using the rules for V and external
contraction), while the converse follows by a cut from the fact that AVB = A| = B
is provable (note the crucial role of the CS rule in deriving this sequent!). [ |

The upshot is that the two methods of extending a single-conclusion system into
a multiple-conclusion one correspond to the two natural disjunctions that we have in
substructural logics.

4.8 Adding Additive Congunction and Identity

In this subsection we briefly discuss what happens if we add to the language and
our systems the other standard connectives of substructural logics which fit a single-
conclusion framework: the additive (or extensional) conjunction (A) and the proposi-
tional constant 1 (or ¢, as in the literature of relevance logic). Their basic s-sequential
rules are:

AT=C B, I'=C r=4 '=B
AANB,T=C AANB,I'=C '=AAB
N r==2=
,I'=>C

we will denote the systems which result from the six systems of Figure 1 by the
addition of the appropriate versions of these rules and the rules for V by RM0;, RM0*
etc.

4.3.1 The Consequence Relations

With respect to the consequence relations there is a significant difference between the
sequential calculi and the hypersequential ones. Relative to the sequential calculi F§
and F%, are not identical anymore. Thus A, B F% A A B in all systems, but it is easy
to see that A, B I/, AA B when G is one of the sequential systems. Relative to the
hypersequential systems the two consequence relations are still the same, despite the
impurity of the additive rules. For example, the fact that A, B I—EMO,_, A A B can
be seen as follows: By CS we can infer from A = A A,B = AA Br = A. The
hypersequent A, B = A A B| = B can similarly be proved from B = B. Finally,
from the two last hypersequents it is possible to infer A, B = AA B| = AA B.
In the general case one should prove the following:

Theorem 4.8 Let A = A,,..., A, and suppose that
{(:> Al), ceey (:> An)} l_RMOfL' 'y = Bl| s |Fk = Bg.

Then
l_RMO’.' A,I‘l = Bl|F1 = Bl| ---|A,I‘k = Bk|Fk = Bk.
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Similar theorems obtain for RMIP and RM}.

ProoF. By induction on the proof of Ty = Bj|---|I'y = Bj from the given as-
sumptions. We do one case as an example. Suppose the last step in the given proof is
inferring AVB, T = C from A,T = C and B, T = C (for simplicity, we omit irrelevant
components of the hypersequents). By induction hypothesis A,T' = C|A, A,T = C'is
provable. From this we can infer by CS A, T = C|A,T = C|A,AVB,T = C and then
A, T = C|A,AV B,T = C follows by an external contraction (we assume here that
A is nonempty, since the theorem is trivial otherwise). B,T' = C|A, AV B,T = C
can be proved similarly, and from these two sequents AV B,I' = C|A, AV B, T = C
immediately follows. [ |

NoTE
The use of CS is essential in this proof, and the theorem is not always valid if weaker
versions of splitting are used.

4.3.2 Cut-elimination and conservation results

Using the techniques of [3] and [6] it is possible to show that the cut elimination theo-
rem obtain for RM0;, RM0* RM; and RM}. 1t follows that they all are conservative
extensions of the corresponding multiplicative systems.

With respect to the remaining two systems (RMI; and RMI"?) things are more
complicated. We have already noted that if we add to RM I;;,, and RM ! only the
additive disjunction V then we still have cut-elimination (and the resulting systems
are conservative over their multiplicative fragments). If, however, we add either A or
1 then this is not the case anymore. For example: two cuts of 1,p = pand 1,9 = ¢
with = 1,1 yield p,q¢ = p,q. This sequent obviously does not have a cut free proof
even in RMI®, and it is not provable in either RM I;y, or in RMIE . It is provable,
however, in RM,, or RM}. 1t is not difficult, in fact, to see that RMI; and RM; are
equivalent, and so are RMI* and RMP}.

Without entering into details, we note that the reason for the difference here be-
tween V and A is that applications of the impure (= A) rule can be done without
any side formulas, while this is not possible in our systems in applications of the dual
(V =) (since the succedents are never empty). When an internal negation is added
this difference disappears. On the other hand it is proved in [6] that if we limit (= A)
so that the presence of at least one side formula is required (i.e., it is not allowed to
infer = A A B from = A and = B) then we do have cut elimination (even in the
presence of an internal negation). It is here where the use of the Mingle rules rather
than Expansion becomes crucial.’

5 Corresponding Algebraic Structures

In this section we present the algebraic semantics of the systems above. We start with
RMO0;,,. Its algebraic semantics is very abstract, and so not too useful. Still, it serves
as the common basis for the much more illuminating semantics that we construct for
its extensions later.

51t is interesting to note also that conjunction turns out to be problematic in a similar way also in certain important
intermediate logics (See [5]).
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Definition 5.1 An RM0;,,-structure is a tuple S = (S, <, L, T,®, —, D) such that:

1.{8,<, 1, T) is a nontrivial bounded poset.
2. ® is an associative, commutative and idempotent operation on S.

3. — s residuation operation w.r.t. ®:
a®@b<cea<lbe
4.D isaconeinS: DCS, and
a€D, a<b=beD

5a<b&sa—beD
Lemma 5.2 In every RM 0;p,-structure:

.TeD, L¢gD

a<b=>a®c<bQc (ie. ® is order preserving)
.a€D, beD=a®be D and a® b =sup(a,b)
. D is an upper semilattice with a top element (T)
.a€D,a<b=>a—b=0b

6.aRl=1Qa=_1

7 1L —a=T

8.aeD=a—>1=1

Gy ™ Lo o M~

Definition 5.3 An RM0;,,-model of a formula ¢ in Lim is a pair (S,v) where S
1s an RMO0;p,-structure and v is an operations-respecting valuation in S such that
v(p) € D. An RMO0;p,-model of a theory T is an RM0;p-model of each element of
T.

The following theorem can easily be proved with the help of the previous lemma
and the use of Lindenbaum Algebras:

Theorem 5.4 Soundness and Strong Completeness: 7 Fgruo,, ¢ iff every
RMO0;y,-model of T is an RM 0;,,-model of .

NoTES

1. It can be shown that every RM 0;,,-structure can be embedded in a lattice which
is also an RM 0;y,-structure. Hence it is possible to make the last completeness
theorem w.r.t. the narrower class of what might be called RM0;,,-lattices (i.e.
RM0;m-structures in which (S, <) is a lattice).

2. If we assume that D = {T} we get a sound and strongly complete semantics of
intuitionistic logic (in the language L;p,). It is easy to see that in this case a ® b
is the meet of @ and b, and so (S, <) is a lower semilattice. If we demand it
also to actually be a lattice we get another characterization of what is known as
Heyting Algebras (it is easy to see that the various conditions would indeed force
this lattice to be distributive).
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As was noted above, the value of this semantics for RM 0;,,,-structures is rather
limited (although the fact mentioned in note 1 can, e.g., be used to show a proof-
theoretical result: that the addition of the additive disjunction with its rules to
RMO0;n is a conservative extension). As promised, we turn now to show that its
two “classical”, multiple-conclusion extensions do have concrete semantics, with a
“surprising” value. The structures which are involved are based on D (the set of
designated values) in an essential way. We start with RM I;y,. The structures which
correspond to this system have already been introduced and thoroughly investigated
in [4]. Here we only give a description (which is not identical to that in [4] but is
obviously equivalent to it) and the relevant results.

Definition 5.5 A proper symmetrical lattice (a proper S-lattice, in short) is a tuple

S ={(5<,1,T, D) such that

1.{8,<, 1, T) is a nontrivial bounded poset.
2. D is a subset of S such that:

(a) D is an upper semilattice w.r.t. <.
(b)a €D, a<b=bec D (in particular, T € D).
(c)acD,a<ba<c=>b<corc<bb
3. There is a function Aa.at from D (the complement of D w.r.t. S) onto D such
that
(a) If a,b € D then a < b iff b+ < a* (in particular, Aa.a™ is 1-1).
(b) Ifa € D and b € D then a < b iff either at < borb < at (in particular,
a<a' forallae D).

NoTE

It is not difficult to show that proper S-lattices are structures which are constructed
as follows: Given an upper semilattice (D, <p) which has a top element and which
satisfles condition (2)(iii) from the last definition, we make a mirror-image (D, <7} of
it and then “glue” D and D together so that a < a't for each a € D (where at is the
element from D of which a is the mirror image). For example, if D is the inverse tree
of Figure 2, then D is the tree of Figure 3, and by “gluing” them we get the proper
S-lattice of Figure 4:

FIGURE 2

6111 case D is finite, condition (iii) together with the fact that T € D implies condition (i), and it means that (D, >)
is a tree. In the general case conditions (i)-(iii) can be taken as a generalization of the notion of a tree which is
slightly weaker than the usual one.
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a b
c d
FIGURE 3
D
d-l—
a-l—
a
d
D
FIGURE 4

It is also not difficult to see that by using (3)(ii) (from Definition 5.5) as a definition
we get the minimal poset which extends both (D, <), (D <g) and such that a < at
for alla € D.

Definition 5.6 Let S be a proper S-lattice. Define

a ac D
|a’|: _|_ Y
a ac D

Theorem 5.7 A proper S-lattice is indeed a lattice.

Proor. It is straightforward to see that for all a,b € S

b a<b a a<b
aVb=<a b<a aANb=<b b<a
sup(|al, |b]) otherwise sup(|al, |b])t otherwise

where if @ € D then a' denotes the unique z € D s.t. a = 27 (the assumption that
(D, <} is tree-like is crucial here!). | |
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Definition 5.8 Let S be a proper S-lattice, a,b € S. define:

sup(|al, |b]) a<b

a— b=
sup(|al, |b|)J‘ asdb
min(a, b) la| = |b]
a 6] < |al
a®b=
b la| < [b]

sup(|al, |b]) otherwise .

Theorem 5.9 If S is a proper S-lattice then S together with — and @ is an RM 0, -
structure.

The proof of this theorem is implicit in [4].

NoTE

As can be expected in structures which correspond to a multiple-conclusion logic, in
proper S-lattices there is a very natural way to define a De-Morgan negation and an
internal (multiplicative) disjunction:

a+b=~(~a® ~b).

Before showing a soundness and completeness theorem for RM I;,, relative to proper
S-lattices, let us generalize these structures a bit:

Definition 5.10 A symmetrical lattice (S-lattice, in short) is defined exactly as a
proper S-lattice, except that the demand that Aa € D.a™ is surjective is relazed to:

(x) Ifa € D 1is not in the image (under Az.zt) of any =z € D, then a is a minimal
element of D.

iFrom an intuitive point of view, the definition of an S-lattice means that when we
“glue” together D and its mirror image we may identify minimal elements of D with
the corresponding elements of its image. If we return, e.g., to Figures 2 and 3, then
by identifying a with a™, b with b1 we get:
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FIGURE )

Note that it is not necessary to identity all minimal elements of D with the corre-
sponding elements of D. Thus in Figure 5 ¢t and dt are elements of D which are
not identified with ¢ and d (respectively).

The definitions of |a|,aV b,a Ab,a — b,a ® b and a + b can now be extended to
S-lattices without any change. The same applies to the definition of ~ a, provided we
define al to be a in case no b € D exists s.t. @ = bt (this can happen, recall, only if
@ is a minimal element of D). Theorems 5.7 and 5.9 remain then valid for S-lattices
in general.

NoTE
It seems appropriate to call an element @ such that ~ ¢ € D antidesignated. In proper
S-lattices an element is antidesignated iff it is not designated, but in general a minimal
element of D can sometimes be antidesignated as well. Note that the symmetry in
S-lattices is a symmetry between D and the set of antidesignated elements.

We now turn to the soundness and completeness results.

Definition 5.11 A (proper) RM I;y,-model of a sentence ¢ is a pair {S,v) where
S isa (proper) S-lattice and v is an operations-respecting valuation in it such that
v(p) € D. A (proper) RM I, -model of a theory T is an RM I;p-model of each
element of T .

Theorem 5.12 Strong soundness and completeness of RMI;,.: T Frumi,, ¢
iff every RM I;,-model of T is an RM I, -model of ¢.

PRrROOF. An analogous theorem was proved in [4] for RMI,,, the full multiplicative
fragment of RM I (including negation and —1—).7 The soundness part of the present
theorem is an immediate corollary. By the cut-elimination theorem for RMI,,, so is
also the completeness part, since it implies that if a sequent of the form I' = A is
provable in RMI,,, and T', A are in L;,, then ' = A is provable in RM I,,,. [ |

7The propositional constant | has not been considered there, but it is obvious that its addition causes no problem.
Note also that RM I, was called in [4] RMI~, following the names in [1].
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NoTE
It seems difficult to prove the soundness part directly, since unless A is a singleton,
no translation of I' = A seems to be available in L;,,.

Theorem 5.13 Strong soundness and completeness of RMI;,,, version II:
T Frur,,, ¢ iff every proper RM I;,-model of T is an RM I;m-model of .

PrROOF. Soundness follows immediately from the previous theorem. For completeness,
assume T Frurr,,, ©. We construct a proper RM I;y,-model of 7 which is not a model
of . By the previous theorem there is an RM I;y,-model (S, v) of T which is not a
model of ¢. Suppose S = (S, <, 1, T, D). Let S = (§*,<*, L, T, D) be the unique
proper S-lattice which is based on D. It is easy to see that the difference between S*
and S is that S* is obtained from S by splitting each element a of D which is not in the
image of A, ,+ into two elements, a and a™, so that a is now a new maximal element
of D, while at replaces a in D (compare how the proper S-lattice of Figure 4 can be
obtained from the improper S-lattice of Figure 5)8. Define now an assignment v* on
S* so that v*(p) = v(p), unless v(p) has been split, in which case v*(p) = (v(p))*. It
is easy to see that for every A

v (4) = {(” A))+ v(A) has been split

v(4) otherwise .

It follows that if v(A) is not designated in S then v*(A) is not designated in S* either
(since only designated elements might have been split), while if v(A) is designated in

S then v*(A) is designated in S* (since at is designated). In particular (S§*,v*) is a
proper model of 7 which is not a model of .

NoTE

The last theorem is not valid when ~ is present, since every proper model of {~ A, A}
is trivially a proper model of B, but ~ A, A /garr,,, B. The reason is that while
a > a=a®a = ain case ¢ € D, this is never true for ~ a in proper models
(our theorem and proof remain valid, therefore, when we add & and V, since again
aVa = a&a = a for all a. It remains valid, in fact, even if we add +!).

The above two theorems are strong completeness theorems for RM I;,,,. This means
that they characterize the consequence relation which is associated with this logic. If
we are interested only in weak completeness (i.e. characterizing the set of provable
formulas) then just one, extremely simple S-lattice will do. This is the (improper!)
denumerable S-lattice A,, in which § = {T, L, 1,5, I3,...}, a < b iff either a = L
orb=Tora=b D={1},and LT =T.

Theorem 5.14 Weak completeness of RM Ip: Fruyr,,, ¢ iff ¢ is valid in A,,.

ProoF. The corresponding result for the system RM I, has been proved, using two
different methods, in [2] and [4]. Its adaption to the im-language is done exactly as
in the proof of 5.12. [ |

sExact definitions of this “splitting” can be found in [4].
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NoTE

Theorem 5.14 provides a decision procedure for RM I, and a powerful tool for proving
properties of it (for example the fact that the rule % is admissible in it is a trivial
corollary of 5.14).

Before turning to RM 0% a few words on RM;,, are in order. It is not difficult to
show that the corresponding semantics is that of linear S-lattices, i.e., S-lattices in
which < is a total order. Linear S-lattices are exactly what is usually called Sugihara
Matrices ([1],[13]). Again we have the option to limit ourselves to proper linear S-
lattices (which are Sugihara matrices without 0). For weak completeness just the
3-valued S-lattice suffices (This 3-valued structure is usually known as Sobocinski 3-
valued logic, and was first introduced in [17]. In [2] and [8] it is called A;). As in the
case of RM I, these results all follow from corresponding known results concerning
RM,, of Sobocinski ([17]), Meyer ([1]), Dunn ([12]), and the author of this paper.

We turn now to the semantics of RM 0% . Like RM I;,, the corresponding algebraic
structures are based on D. The construction is, however, much simpler in this case.

Definition 5.15 An im-F-structure (or just F-structure, in shortg) is an RMO0;p,-
structure S in which S = DU{Ll}.

F-structures can rather easily be constructed and characterized. The following
theorem means, in fact, that the complicated notion of an F-structure is equivalent
to the rather simple one of a bounded upper semilattice.

Theorem 5.16 In every F-structure S the carrier S is a bounded upper semilattice
with respect to <. Conversely, let {(S,<, L, T) be a bounded upper semilattice s.t.
L # T. Then there is a unique way to turn it into an F-structure.

PROOF. That in every F-structure S, (5,<,1,T) is a bounded upper semilattice
follows from Lemma 5.2(4). For the converse, let S = (S,<, 1, T) be a bounded
upper semilattice such that L # T. The definition of an F-structure and Lemma 5.2
together imply that the only possible way to turn it into an F-structure is to define:

D=S1{l}
L a=1Vvb=_1 L a<b
a®b= a—>b=<{T a=_1
sup(a,b) otherwise b otherwise

It remains to show that with this definition (S, <, 1, T, D,®,—) is indeed an F-
structure. This is straightforward. [ |

Definition 5.17 An F-model of a sentence A is a pair (S,v) where S is an F-
structure and v is @ valuation in S s.t. v(A) £ L (i.e., v(A) € D). An F-model
of a sequent s is an F-model of ¢,. An F-model of a hypersequent is an F-model of
at least one of its components.

Theorem 5.18 Strong soundness and completeness: T Fgpon @ iff every F-
model of T is also an F-model of ¢.

9

necessarily idempotent.

Note that the name “F-structures” has been used in [9] for a more general type of structures, in which ® is not
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ProoF. For soundness it suffices to prove that if (S,v) is an F-model of 7 and the
hypersequent G follows in RM 0% from {= A|A € T} then (S, v) is an F-model of
G. This is obvious, except perhaps the validity of CS. So suppose G|T';,T'2 = A|H
is true in (S, v). If one of the components of G or of H is true in (S, v) we are done.
Otherwise I'y,T's = A is true. If all the sentences in I'; are true this entails that
I'y = A is true. If not then v(C) =1 for some C in 'y, and so ¥(T'3, A = B) = T for
all A, B, by Lemma 5.2(7).

For the converse, suppose T /garo» . We construct a model (S, v) of 7 in which
¢ is not true. For this extend 7 to a maximal theory T* such that 7* Veaor @
Obviously, A € T* iff there exist Ay,..., A C 7T* such that o

Fraron, A D1 = ol |4, 8 = plAj1 = ol Ak > o

This easily entails, using cuts, that

(1) IfT7* l_RMO’.' A = Bl||Ak = B and Al,...,Ak - T* then B; € T* for
some 1 <1< k.
Since RM0;y, is contained in RMO02_, (i) entails that

(i) If T7* Fraso,,. C then C € T*.

Since Fgpron = A| = A — B (because from A = A one can infer this hypersequent
by CS and (=—)), another corollary of (i) is:

(iii) For every A, B, either A€ T* or A— B € T*.

Define now the Lindenbaum algebra S of 7* and the canonical valuation v in it in
the usual way. Using (ii) it is easy to see that S is an RM0;p,-structure and v is a
model of 7 in it which is not a model of ¢. It remains to show that S is actually an
F-structure. This, however, easily follows from (iii). [ |

EXAMPLE

In the proof of 4.1 we used the fact that (B - B) = (4 — 4)) —» (((4 —» B) —
A) — A) is not provable in RM02,. This can be shown now using the counter-model
(S,v), where § ={1,1,2, T}, L <1<2< T and v(A4) =2,v(B) = 1.

We turn now to the semantics of the last two systems, RMI® and RM! . We
start with RMIth. Since it is an extension of both RMO;‘m and RM I;y,, it is sound
w.r.t. the semantics of both. Now the simplest infinite structure which is both an
S-lattice and an F-structure is A, (see theorem 5.14. In fact A, is the simplest
infinite S-lattice as well as the simplest infinite F-structure!). It turns out that it is
indeed a strongly characteristic matrix for RMI! .

Theorem 5.19 Soundness and Strong Completeness for RMIE : T Fpuye @
iff every model of T in A, is also a model of ¢.

ProoF. The corresponding result for the full multiplicative language was proved in
theorem 8.10 of [8]. Again its adaption to the im-language is done exactly as in the
proof of 5.12. (it is not too difficult also to prove it directly along the lines of the
proof of 5.18). [ |
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EXAMPLE

In the proof of 4.1 we used the fact that (4 — (B — B)) - A) — A is not
provable in RM I . This is immediate from the last theorem, since by defining
v(A) = I1, v(B) = I, we get a counter-model of this formula in A, .

Theorems 5.19 should be compared with theorem 5.14. From the two theorems
follow that RM I is a conservative extension of RM Iy, (with respect to provability
of sequents), and that the difference between the sequential calculus and the associated
hypersequential one corresponds (in this case, at least) to the difference between
strong completeness and week completeness.

Finally, RM?! is an extension of both RM0* and RM;y, and so it is sound
w.r.t. the semantics of both. Now the only structures which are both linear S-lattices
and also F-structures are the two-valued Boolean Algebra and A;, the three-valued
substructure of A, (see discussion after the proof of 5.14). This observation naturally
leads to the following theorem, which again follows from a corresponding result in [8]
for the full multiplicative language:

Theorem 5.20 Soundness and Strong Completeness for RM2 : T bpuyn o
iff every model of T in A1 is also a model of .

Again the strong completeness of RM} relative to A; should be compared with
the weak completeness of RM;,, relative to this matrix.

The algebraic semantics can help also to shed a new light on the difference that
we have seen in the previous section between V on the one hand and A and 1 on the
other.

Let us start with V. From an algebraic point of view its rules clearly represent
the operation of a join. To have an appropriate semantics for it we need therefore
to use upper semilattices. But with the exception of RM 0;y,, the structures which
correspond to our various systems are indeed upper semilattices. As for RM0;p,,
we noted already above that we could have demanded the corresponding structures
to be lattices without losing completeness. Hence V has an obvious interpretation
in the structures we consider, relative to which its rules are sound. This fact alone
immediately entails that its addition is conservative (w.r.t. all of our systems). It is
not difficult to see also that the hypersequential systems with V are in fact complete
relative to this semantics (the fact that the two consequence relations are identical
there is very important for the proof). As for the sequential ones— there is certainly
no completeness if we use F* (since AV B = C does not follow according to it from
A= C and B = C), and I dont know whether the systems are complete with .

Things are more complicated if we add conjunction. Its rules partially correspond
to the operation of a meet. Hence we should demand our structures to be lower
semilattices in order to give it an appropriate interpretation. This is not enough,
though. In order for instances of (= A) with no side formulas to be sound, the set
D of designated elements should be closed under A. The only type of S-lattices in
which this is the case are the linear ones (i.e.: Sugihara matrices). This explains why
RM Iy, and RMIE, collapse to RM;,, and RM}, (respectively) if we add A to them.
The structures which corresponds to the other 4 systems either satisfy already the
two demands or can be embedded in structures which do so. Hence the addition of A
to them is conservative. As for completeness— it is not difficult to show that we have
it in the hypersequential cases if we add A and its rules (or both A and V). On the
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other hand the distributive laws are valid in Sugihara matrices but cannot be proved
in RM;. Hence we dont even have weak completeness in the case of RMI; = RM;
(To get it we need another hypersequential system. See [3]). It is not clear whether
we have weak completeness in the case of RM0;.

Finally the rules for 1 mean that the set D should have a least element. Obviously,
the situation w.r.t. this demand is similar to that concerning A.
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