
Two Types of Multiple-ConclusionSystemsARNON AVRON, School of Mathematical Sciences, Sackler Faculty ofExact Sciences, Tel Aviv University, Ramat Aviv 69978, Israel.E-mail: aa@math.tau.ac.ilAbstractHypersequents are �nite sets of ordinary sequents. We show that multiple-conclusion sequents andsingle-conclusion hypersequents represent two di�erent natural methods of switching from a single-conclusion calculus to a multiple-conclusionone. The use of multiple-conclusion sequents correspondsto using a multiplicative disjunction, while the use of single-conclusion hypersequents corresponds tousing an additive one. Moreover: each of the two methods is usually based on a di�erent natural se-mantic idea and accordingly leads to a di�erent class of algebraic structures. In the cases we considerhere the use of multiple-conclusion sequents corresponds to focusing the attention on structures inwhich there is a full symmetry between the sets of designated and antidesignated elements. The useof single-conclusion hypersequents, on the other hand, corresponds to the use of structures in whichall elements except one are designated. Not surprisingy, the use of multiple-conclusion hypersequentscorresponds to the use of structures which are both symmetrical and with a single nondesignatedelement.Keywords: Hypersequents, Consequence relations, Substructural logics, Relevance logics1 IntroductionHypersequents ([7]) are essentially �nite sets of ordinary sequents. As such they areusually taken as a generalization of Gentzen's sequents, and calculi which manipulatehypersequents are usually classi�ed as a generalization of Gentzen-type calculi (thisindeed is how they were presented in [7] and previous papers). This picture is notabsolutely correct, though. Gentzen's multiple-conclusion sequents as introduced in[14] were themselves a generalization. They generalize his much more natural single-conclusion sequents. Now hypersequents in which all the components are single-conclusion sequents form in fact another, di�erent generalization of this basic datastructure, orthogonal in a way to Gentzen's multiple-conclusion sequents. Employinghypersequents in which the components are multiple-conclusion sequents provides, ofcourse, the most natural generalization of both methods.Our main thesis in this research is that multiple-conclusion sequents and single-conclusion hypersequents represent two di�erent methods of switching from a single-conclusion calculus to a multiple-conclusion one, and that both are natural. In fact,from the proof-theoretical point of view each of these methods corresponds to the useof a di�erent type of disjunction. That of multiple-conclusion sequents corresponds(in the terminology of [15]) to the use of the multiplicative disjunction, while thatof single-conclusion hypersequents corresponds to the use of the additive disjunction.Moreover: each of the two methods is usually based on a di�erent natural semanticidea and accordingly leads to a di�erent class of algebraic structures. Now in classical695L. J. of the IGPL, Vol. 6 No. 5, pp. 695{717 1998 c
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696 Two Types of Multiple-Conclusion Systemslogic there is no di�erence between the multiplicative disjunction and the additiveone. Hence one might expect the di�erences between the two types of generalizationsof basic sequents to be re
ected only relative to proper substructural logics. Thisindeed is the case. While in the switch from intuitionistic logic to classical logic thetwo methods give equivalent results, this is not so with respect to weaker substructurallogics.The main part of this paper will be devoted to showing the di�erent e�ects ofapplying the two methods of obtaining classical logic from intuitionistic logic to sub-structural logics which lack the full power of weakening. We show that the use ofmultiple-conclusion sequents corresponds to focusing the attention on structures inwhich each element is either designated or antidesignated ([16]), and there is a fullsymmetry between the sets of designated and antidesignated elements. The use ofsingle-conclusion hypersequents, on the other hand, corresponds to the use of struc-tures in which all elements except one are designated (It is interesting to note, thatin the class of Heyting Algebras, the algebraic structures which correspond to in-tuitionistic logic, the two-valued classical algebra is the only one which falls undereither category). Finally (and not surprisingly) the common extension to a calculusof multiple-conclusion hypersequents corresponds to the use of structures which areboth symmetrical and with a single nondesignated element1.To make the presentation shorter and simpler, we choose to work with one particularsystem. Most of the proof-theoretical and the abstract semantic results can howevereasily be generalized to other substructural systems of this sort. The system we chooseis the one which is obtained from the multiplicative-additive fragment of IntuitionisticLinear Logic by adding to it the contraction rule as well as its converse. There aretwo reasons for this choice. First, the availability of these two rules means that inthis logic we are really dealing with sets of premises rather than with multisets (asin Linear Logic and in R). This is much closer in spirit to intuitionistic and classicallogic, the connections between which we are trying to generalize. Second, in this casethe multiple-conclusion generalizations lead to algebraic structures which are simple,useful and illuminating (this does not seem to be the case with close relatives, like themultiplicative fragment of R, for which only abstract algebraic semantics is known).Two other interesting phenomena that are revealed in our case study and deservementioning are the following. First, the use of multiple-conclusion hypersequentsallows us to get strong completeness theorems in cases in which the use of ordinary(multiple-conclusion) sequents provides only weak completeness. Second: there are ingeneral two mainmethods of de�ning a consequence relation, given someGentzen-typecalculus. In calculi of sequents these methods usually lead to di�erent consequencerelations in case additive connectives are included (and this is indeed what happenshere). In contrast, for the hypersequential systems we study here the two consequencerelations are identical even in the presence of the additive connectives!2 The General Proof-Theoretical FrameworkIn this section we describe the four types of Gentzen-type calculi we are about toemploy in this paper. We start with some very general de�nitions.1Note that being an antidesignated element and being a nondesignated one is not the same thing. In our mainstructures each nondesignated element will be antidesignated, but not vice versa.



2. THE GENERAL PROOF-THEORETICAL FRAMEWORK 697In what follows L is a �xed language.De�nition 2.1 A (Tarskian) �nitary Consequence Relation (CR) is a relation ` be-tween theories (i.e., sets of formulas) in L and formulas in L such that:(i) fAg ` A(ii) If T ` A and T � T � then T � ` A(iii) If T ` A and T [ fAg ` B then T ` B.(iv) T ` A only if � ` A for some �nite subset � of T .De�nition 2.2 1. A single-conclusion sequent (s-sequent, in short) is a syntacticstructure of the form � ) A, where � and A are, respectively, a multiset offormulas and a formula of L.2. An s-sequential calculus is an axiomatic system G for s-sequents which satis�esthe following conditions:Re
exivity: `G A) A for all A.Cut: f(�1; A;�2 ) B); (�) A)g `G �1;�;�2 ) B.NoteIt is possible to use lists instead of multisets in the last de�nition, without a�ectingmuch the next de�nition and the proposition that follows it. The Cut condition wasformulated, in fact, so that this may be done easily. Still, it is much easier to generalizeit to the multiple-conclusion case in a natural way if we use multisets rather than lists.Since we assume the permutation rule in all the systems considered in this paper, thepresent de�nition su�ces for our needs.De�nition 2.3 Let G be an s-sequential calculus. The external and the internal CRswhich are induced by G are de�ned as follows:The external CR: T `eG B if () A1); : : : ; () An) `G) B for some A1; : : : ; An inT .The internal CR: T `iG B if there exists a multiset � of elements of T so that`G �) B.Proposition 2.4 1. `eG and `iG are CRs.2. If T `iG B then T `eG B.3. If all the rules of G are pure (or \multiplicative") then T `iG B whenever T `eG B(a rule of an s-sequential calculus is pure if whenever � ) A can be inferred byit from �i ) Bi (i = 1; : : : ; n) then �;�01; : : : ;�0n ) A can also be inferred by itfrom �i;�0i ) Bi (i = 1; : : : ; n)).Proof. It is obvious that `eG is a CR. That so is also `iG follows from the two condi-tions in the de�nition of an s-sequential calculus. The second part of the propositionfollows by cuts, while the third is a consequence of the re
exivity condition and thepurity of the rules. Details are left for the reader.De�nition 2.5 1. A multiple-conclusion sequent (m-sequent, in short) is a structureof the form �) �, where � and � are multisets of formulas of L.



698 Two Types of Multiple-Conclusion Systems2. An m-sequential calculus is an axiomatic system G for m-sequents which satis�esthe Relexivity condition from the de�nition of an s-sequential calculus as well asthe following version of the Cut condition:f(�1;) �1; A); (A;�2 ) �2)g `G �1;�2 ) �1;�2:3. The external and the internal CRs are de�ned for m-sequential calculi exactly asin the s-sequential case.Proposition 2.6 Proposition 2.4 is true also for m-sequential calculi (where the def-inition of a pure rule is changed in the obvious way).Proof. Left for the reader.De�nition 2.7 1. A single-conclusion hypersequent (s-hyperequent, in short) is asyntactic structure of the form:�1 ) A1 j �2 ) A2 j � � � j �n ) An(where �i ) Ai is an ordinary s-sequent).2. A multiple-conclusion hypersequent (m-hypersequent, in short) is a syntactic struc-ture of the form �1 ) �1 j �2 ) �2 j � � � j �n ) �n (where �i ) �i is anordinary m-sequent).3. An s-hypersequential calculus is an axiomatic system G for derivings-hypersequents which satis�es the following conditions:Re
exivity: `G A) A for all A.Cut: S1 j T1 j �1;�2 ) B j S2 j T2 follows in G from the set f(S1 j �1 )A j S2); (T1 j A;�2 ) B j T2)g (where S1; S2; T1; T2 are (possibly empty)s-hypersequents).External Contraction: S j T j T j U `G S j T j U .External Permutation: S j T jW j U `G S jW j T j U .4. An m-hypersequential calculus is an axiomatic system G for m-hypersequentswhich satis�es the above Re
exivity, External Contraction, and External Per-mutation conditions, and in which S1 j T1 j �1;�2 ) �1;�2 j S2 j T2 followsfrom f(S1 j �1 ) �1; A j S2); (T1 j A;�2 ) �2 j T2)g (where S1; S2; T1; T2 are(possibly empty) m-hypersequents).5. Let G be an (s- or m-) hypersequential calculus. The external CR, `eG, is de�nedfor G exactly as in the sequential case, while the internal CR, `iG, is de�ned forG as follows: T `iG B i� there exist multisets �1; : : : ;�n of elements of T suchthat `G �1 ) B j � � � j �n ) B.NoteThe names \External Contraction" and \External Permutation" are also used for theobvious rules which correspond to the above conditions, while \External Weakening"is the rule which allows to add arbitrary components to a hypersequent. The threerules are usually called the standard external structural rules (see [7]).Proposition 2.8 Proposition 2.4 is true also for hypersequential calculi (where againthe de�nition of a pure rule is changed so that side sequents are allowed).



3. TWO WAYS FROM INTUITIONISTIC TO CLASSICAL LOGIC 699Proof. Most of the parts are straightforward. The only problematic one is show-ing the transitivity conditions for `iG. For this we have to show that if there aresubmultisets �1; : : :�n;�1; : : : ;�m;�01; : : : ;�0p of T such that `G �1 ) A j � � � j�n ) A and `G �1; A ) B j � � � j �m; A ) B j �01 ) B j � � � j �0p ) Bthen T `iG B. For this we prove by induction on n that if there are submultisets�1; : : :�n;�01; : : : ;�0k;�1; : : : ;�m;�01; : : : ;�0p of T such that `G �1 ) A j � � � j �n )A j �01 ) B j � � � j �0k ) B and `G �1; A ) B j � � � j �m; A ) B j �01 ) B j � � � j�0p ) B then T `iG B. We leave the details to the reader.3 Two Ways from Intuitionistic to Classical LogicLet LJ be the Gentzen-type formulation of Propositional Intuitionistic Logic, in whichthe negation of a formulaA is de�ned as A!? and the axioms are taken to be A) Aand ?) A (for all A). LJ is a paradigmatic example of an s-sequential calculus. Theusual way of obtaining Classical Logic from it is to turn this s-sequential calculus intoan m-sequential one LK. This is done by keeping in LK exactly the same axioms andlogical rules as in LJ (but allowing in applications of the logical rules also extra sideformulas on the r.h.s of the)), and by adding to the set of structural rules of LJ theirr.h.s counterparts. The usual interpretation of an m-sequentA1; : : : ; An ) B1; : : : ; Bkof LK is the sentence A1&A2& � � �&An ! B1 _B2 _ � � � _Bk.NoteThere is a slight di�erence between this formulation of LK and the usual one, inthat in the above version the r.h.s. of a sequent cannot be empty. We take, however,a sequent of the form � ) to be the same as � ) ?. It is straightforward to seethat with this translation the above version and the little bit more standard one areequivalent.We present now another method of obtaining classical logic from LJ , which uses ans-hypersequential calculus rather than an m-sequential one. Our starting point is thatin all the hypersequential calculi that have been used in the past new components areadded to a given hypersequent by some form of the splitting rule:Gj�1;�2 ) �1;�2jHGj�1 ) �1j�2 ) �2jHBy trying to directly apply this scheme to s-hypersequents we get:Gj�1;�2 ) AjHGj�1 ) Aj�2 ) jHThis, however, is not an s-hypersequent. Following, however, our understanding abovethat an empty succedent means ?, we get the following rule:Gj�1;�2 ) AjHGj�1 ) Aj�2 )?jHA cut of this with the axiom ?) B leads to the following rule:Gj�1;�2 ) AjHGj�1 ) Aj�2 ) BjH



700 Two Types of Multiple-Conclusion SystemsIn order to have cut elimination, we adopt the last rule as the o�cial rule of ours-hypersequential version of classical logic.2De�nition 3.1 The s-hypersequential system LJh is de�ned as follows:Axioms: As in LJ .Logical Rules: The s-hypersequential versions of the logical rules of LJ .Structural Rules:1. The standard external structural rules.2. The s-hypersequential versions of the structural rules of LJ .3. Classical splitting (CS): Gj�1;�2 ) AjHGj�1 ) Aj�2 ) BjHThe proof of the following theorem is now straightforward:Theorem 3.2 1. LJh admits cut-elimination.2. LJh and LK are equivalent: the m-sequent �1; : : : ;�n ) A1; : : : ; An is derivablein LK i� the s-hypersequent �1 ) A1 j � � � j �n ) An is derivable in LJh.Like the m-sequents of LK, the s-hypersequents of LJh also have a standard in-terpretation. The interpretation of the s-hypersequent �1 ) A1 j � � � j �n ) An is(&�1 ! A1)_ � � �_ (&�n ! An) (where &� is the conjunction of the sentences in �).We see, therefore, that multiplicity of conclusions in an m-sequent corresponds to aninternal disjunction of formulas within a sequent, while the multiplicity of conclusionsin an s-hypersequent corresponds to an external disjunction of the translations of theindividual components. In classical logic these two disjunctions are identical, sinceA ! B _ C is equivalent in it to (A ! B) _ (A ! C). This phenomenon is due tothe fact that all the internal standard structural rules (on the l.h.s. of a sequent) areavailable in intuitionistic logic | the single-conclusion logic from which classical logicis derived. One might expect therefore that things would be di�erent if we start witha substructural ([10]) single-conclusion logic. In the next section we will investigatean interesting representative case of this sort.4 RM0im and Its ExtensionsIn this section we apply the two processes that lead from intuitionistic logic to classicallogic to another substructural logic which is single-conclusion in an essential way:RM0im. This logic is based on RM0! (see [1]) which is the minimal implicationallogic for which the following deduction theorem obtains: there is a proof of A ! Bfrom the set � which uses all the formulas in � i� there is a proof of B from �[ fAgwhich uses all formulas in � [ fAg.In order to get RM0im we enrich the language of RM0! by adding to it versionsof the two other connectives which are characteristic for logics which are essentially2Another reasonable possibility of splitting in the s-hypersequential case is to split only the antecedent. This leadsto the rule: Gj�1; �2 ) AjHGj�1 ) Aj�2 ) AjH . In [5] it is shown that the use of this rule leads from intuitionistic logic toGodel-Dummet intermediate logic LC ([11]). This is a demonstration of the fact, that the use of s-hypersequentsrather than m-sequents allows more possibilities and better insights.



4. RM0IM AND ITS EXTENSIONS 701single-conclusion: conjunction and absurdity (?).3 In order to deal �rst with logicswhich are purely multiplicative, we use the multiplicative 
 for our conjunction. Weshall denote by Lim (intuitionistic multiplicative) the language f!;
;?g. Later weshall investigate the e�ects of adding to Lim the multiplicative constant 1 of [15] (alsodenoted t in the relevance literature), as well as the additive connectives.4.1 The Basic Logics and Their Proof SystemsSince we are interested in this paper in Gentzen-type systems, we present the variouslogics by using such systems (it is possible to present corresponding Hilbert-typesystems as well, but this is not important for our present purposes). We remind thereader that the permutation rule is tacitly assumed in all the systems below.(1) The s-sequential system RM0im.Axioms: A) A �;?) ALogical Rules:(!)) �) A B;�) CA! B;�;�) C �; A) B�) A! B ()!)(
 !) �; A;B;�) C�; A
 B;�) C �1 ) A �2 ) B�1;�2 ) A
 B ()
)Structural Rules:(C) �; A;A) B�; A) B �) A �) A�;�) A (M )�1 ) A A;�2 ) B�1;�2 ) B (cut)NoteThe proof-theoretical properties of the implicational fragment of RM0im has �rstbeen investigated in [18]. For reasons that will be clari�ed later, we have followedthat paper in choosing the mingle rule (M) as primitive. Another possibility is tochoose instead Expansion (E): �; A;�) B�; A;A;�) B . The two formulations are equivalent,and both admit cut-elimination.The next system is the natural m-sequential extension of RM0im.3We could have easily included > as well, but this is de�nable as ?! ?. In linear logic ? and > (or \0" and \>"as in [15], but unlike [19]) are considered to be \additives". In [8] we explain why it is safe (and even preferable)to take them as a part of the \multiplicative" fragment.



702 Two Types of Multiple-Conclusion Systems(2) The m-sequential system RMIim.Axioms: A) A �;?) � (� 6= ;)Logical Rules: The m-sequential versions of the logical rules of RM0im.Structural Rules: The m-sequential versions of the structural rules of RM0im aswell as their duals:A;A;�) � �) �; A;AA;�) � �) �; AA;�1 ) �1 A;�2 ) �2 �1 ) �1; A �2 ) �2; AA;�1;�2 ) �1;�2 �1;�2 ) �1;�2; A�1 ) �1; A A;�2 ) �2�1;�2 ) �1;�2Notes1. Again, instead of the two (relevant) mingle rules we could have chosen to use thetwo m-sequential Expansion rules.2. A natural step is to combine the two \mingle" rules of RMI into one by deletingthe \A" which is common to the two premises. We get what is known as the\mix" rule of [15]. This leads to the following stronger system:(3) The m-sequential system RMim. This is the system which is obtainedfrom RMIim by replacing the two mingle rules by:�1 ) �1 �2 ) �2�1;�2 ) �1;�2 (mix) :NoteBoth RMIim and RMim as presented here are really the Lim-fragments of the fullsystems RMI and RM (see [1], [13] for RM , [4] for RMI).We turn now to the classical-like hypersequential extensions of these three logics.(4) The s-hypersequential system RM0him.Axioms: As in RM0im.Logical Rules: The hypersequential versions of the logical rules of RM0im.Structural Rules:(i) The standard external structural rules.(ii) The hypersequential versions of the structural rules of RM0im.(iii) Classical Splitting (CS): Gj�1;�2 ) AjHGj�1 ) Aj�2;�) BjH



4. RM0IM AND ITS EXTENSIONS 703NoteThis version of Classical Splitting can be derived from the original one using cuts.If � = A1; : : : ; Ak then by using the classical splitting rule of the last section, onecan derive from Gj�1;�2 ) AjH the hypersequent Gj�1 ) Aj�2 ) A1 
A2 
 � � � 
Ak ! BjH. Since `RM0im �; A1 
 A2 
 � � � 
 Ak ! B ) B, the hypersequentGj�2 ) Aj�;�2 ) BjH follows by a cut. We have chosen the present version inorder to secure cut-elimination.(5) The m-hypersequentialRMIhim. This is the m-hypersequential extensionof RM0him. Thus, for example, classical splitting takes here the form:Gj�1;�2 ) �1;�2jHGj�1 ) �1j�;�2 ) �2;�jHprovided �1 6= ; and �2 [� 6= ;.NoteRMIhim is also (as its name suggests) the natural classical hypersequential extensionof RMIim.(6) The m-hypersequential RMhim. This is the classical hypersequential ex-tension of RMim. Alternatively, it is the system which is obtained from RMIhim byreplacing the two (hypersequential) mingle rules by the (hypersequential) mix rule.NoteAs noted above, RM0im, RMIim, and RMim are either natural conservative ex-tensions or else fragments of well known systems. RMIhim and RMhim are in turnthe Lim-fragments of the systems SRMI? and SRM? (respectively) of [8] (this fol-lows either by cut-elimination or can be shown by semantical methods). The systemRM0him, on the other hand, is introduced and investigated here for the �rst time.Since all the six systems we have just introduced are purely multiplicative, there isno di�erence between the internal and the external consequence relations which areinduced by them. Accordingly, we shall denote both by `RM0im ;`RMhim , etc. Figure1 displays the obvious relations between these six systems in the form of a lattice(ordered by inclusion). We shall see below that it re
ects the exact relationshipswhich exist between these systems. RMhimRMIhimRMIimRM0himRM0im RMimFigure 1



704 Two Types of Multiple-Conclusion SystemsProposition 4.1 All the six systems above are di�erent from each other. Moreover:no inclusion relations, other than those shown in Figure 1 (or which follow from it bytransitivity), hold among them.Proof. Obviously it is enough to show the following:(i) RM0him 6� RMim(ii) RMim 6� RMIhim(iii) RMIim 6� RM0himNow (i) follows from the fact that A
B `RM0him A (since `RM0him A
B ) Aj ) A,using CS on A ) A and the (
 )) rule), but A 
 B 6`RMim A (this can easilybe shown by using the cut-elimination theorem or by using Sugihara matrix, whichis characteristic for RM [1]). For (ii) we note that ((A ! (B ! B)) ! A) ! Acan easily be proved in RMim but it is not provable in RMIhim (this is shown, usinga semantic method, after Theorem 5.19 below). Similarly, for (iii) we have that((B ! B) ! (A ! A)) ! (((A ! B) ! A) ! A) is a theorem of RMIim but notof RM0him (this again, is shown below by semantic method. See the example afterTheorem 5.18).Theorem 4.2 The cut-elimination theorem is valid for all the systems above.The proof of this theorem uses the \history" technique from [3] and is quite long.We omit the details.Notes1. In the last proof we gave explicit examples of theorems of RMim and RMIimwhich are not theorems of RMIhim and RM0him (respectively). We did not providesuch an example for RM0him and RMim. The reason is that it does not exist!At the next section it is shown that RMim and RMhim have the same set oftheorems, and similarly for RMIim and RMIhim. The di�erences in these casesare due only to the consequence relations. On the other hand, the set of theoremsof RM0him strictly contains that of RM0im: In [8], p. 203 there is a proof of((A ! B) ! A) ! A 
 ((A ! B) ! (A ! B)) which is really in RM0him. It iseasy, however, to see that this is not a theorem of RM0im.2. The fact that A 
 B `RM0him A (and A 
 B `RM0him B) means that 
 behavesas an \extensional" conjunction in the three hypersequential systems we considerhere, and so it has been justi�ed to select it as the counterpart of classical andintuitionistic conjunction.43. The cut-elimination theorem can be used to showmany important proof-theoreticalproperties of the above systems. It would be easier, however, to use for this thesemantics of these systems. This will be developed in the next section.4.2 Disjunction Connectives and TranslationsIt is straightforward to translate single-conclusion sequents into formulas:4This idea has already been explored, but only in the presence of an involutive negation, in [8] and [9].



4. RM0IM AND ITS EXTENSIONS 705De�nition 4.3 Let � = A1; : : : ; An. The translation of the sequent � ) B is theformula A1 
 A2 
 � � � 
 An ! B (and just B if n = 0). We denote this translationby ��)B.It is very easy to show that if s is a single-conclusion sequent then s and ) �sfollow from each other in RM0im (or any extension). In contrast, no translationof � ) � seems to be available in Lim (unless � is a singleton). In order to beable to translate multiple-conclusion sequents, we should enrich the language with amultiplicative disjunction +. The corresponding Gentzen-type rules are:(+)) A;�1 ) �1 B;�2 ) �2A+ B;�1;�2 ) �1;�2 �) �; A;B�) �; A+ B () +)It is not di�cult to see that the cut elimination theorem still obtains when we extendthe various systems above with +. Hence all these extensions are conservative. Nowin the presence of + we have the following obvious translation for multiple-conclusionsequents:De�nition 4.4 Let � = A1; : : : ; An and � = B1; : : : ; Bk (k > 0). ��)�, the trans-lation of the sequent �) �, is the formula:A1 
 A2 
 � � � 
 An ! B1 + B2 + � � �+ Bk.Proposition 4.5 Let s be a multiple-conclusion sequent. Then s and ) �s followfrom each other in RM0im, enriched with the two rules for + (or any extension ofthis system).NoteIt is possible to conservatively add to all the m-sequential and m-hypersequentialsystems we consider here also multiplicative negation without losing cut-elimination.Most of the results are preserved. Those that are not are noted below.It follows that the multiplicity of formulas in the succedent of an m-sequent cor-responds to the multiplicative disjunction of these formulas. We now show that themultiplicity of sequents in an hypersequent corresponds to the additive disjunction ofits components. For this we enrich the language with the connective _, together withthe appropriate version (in each case) of the following s-sequential rules:A;�) C B;�) CA _B;�) C �) A�) A _B �) B�) A _BBy using the techniques of [3] and [6] it is possible to show that cut-elimination ispreserved by this addition in all the cases we consider. It follows that the systems weget are all conservative extensions of the corresponding multiplicative systems (thisfact can also be demonstrated using the semantical results of the next section).With _ in our disposal we can now translate hypersequents into formulas:De�nition 4.6 Let H = �1 ) �1j � � � j�n ) �n be a hypersequent. �H , its trans-lation, is ��1)�1 _ � � � _ ��n)�n , where ��i)�i is the translation of �i ) �i asde�ned above (note that for the m-hypersequential system we need to use also +, themultiplicative disjunction, for translating each component).



706 Two Types of Multiple-Conclusion SystemsProposition 4.7 Let G be any of the 3 hypersequential systems above. Then H and) �H follow from each other in G (where H is an arbitrary hypersequent).Proof. Since �) � and) ��)� follow from each other already in the s-sequentialsystem on which G is based, all we really need to show is that) A_B and) Aj ) Bfollow from each other in the basic hypersequential system with _. Well, the fact that) A _ B follows there from ) Aj ) B is trivial (using the rules for _ and externalcontraction), while the converse follows by a cut from the fact that A_B ) Aj ) Bis provable (note the crucial role of the CS rule in deriving this sequent!).The upshot is that the two methods of extending a single-conclusion system intoa multiple-conclusion one correspond to the two natural disjunctions that we have insubstructural logics.4.3 Adding Additive Conjunction and IdentityIn this subsection we brie
y discuss what happens if we add to the language andour systems the other standard connectives of substructural logics which �t a single-conclusion framework: the additive (or extensional) conjunction (^) and the proposi-tional constant 1 (or t, as in the literature of relevance logic). Their basic s-sequentialrules are: A;�) CA ^B;�) C B;�) CA ^B;�) C �) A �) B�) A ^B) 1 �) C1;�) Cwe will denote the systems which result from the six systems of Figure 1 by theaddition of the appropriate versions of these rules and the rules for _ by RM0i, RM0hietc.4.3.1 The Consequence RelationsWith respect to the consequence relations there is a signi�cant di�erence between thesequential calculi and the hypersequential ones. Relative to the sequential calculi `eGand `iG are not identical anymore. Thus A;B `eG A ^B in all systems, but it is easyto see that A;B 6`iG A ^B when G is one of the sequential systems. Relative to thehypersequential systems the two consequence relations are still the same, despite theimpurity of the additive rules. For example, the fact that A;B `iRM0hi A ^ B canbe seen as follows: By CS we can infer from A ) A A;B ) A ^ Bj ) A. Thehypersequent A;B ) A ^ Bj ) B can similarly be proved from B ) B. Finally,from the two last hypersequents it is possible to infer A;B ) A ^Bj ) A ^B.In the general case one should prove the following:Theorem 4.8 Let � = A1; : : : ; An and suppose thatf() A1); : : : ; () An)g `RM0hi �1 ) B1j � � � j�k ) Bk:Then `RM0hi �;�1 ) B1j�1 ) B1j � � � j�;�k ) Bkj�k ) Bk:



5. CORRESPONDING ALGEBRAIC STRUCTURES 707Similar theorems obtain for RMIhi and RMhi .Proof. By induction on the proof of �1 ) B1j � � � j�k ) Bk from the given as-sumptions. We do one case as an example. Suppose the last step in the given proof isinferringA_B;�) C fromA;�) C andB;�) C (for simplicity, we omit irrelevantcomponents of the hypersequents). By induction hypothesis A;�) Cj�; A;�) C isprovable. From this we can infer by CS A;�) CjA;�) Cj�; A_B;�) C and thenA;� ) Cj�; A_ B;� ) C follows by an external contraction (we assume here that� is nonempty, since the theorem is trivial otherwise). B;� ) Cj�; A _ B;� ) Ccan be proved similarly, and from these two sequents A_B;�) Cj�; A_B;�) Cimmediately follows.NoteThe use of CS is essential in this proof, and the theorem is not always valid if weakerversions of splitting are used.4.3.2 Cut-elimination and conservation resultsUsing the techniques of [3] and [6] it is possible to show that the cut elimination theo-rem obtain for RM0i, RM0hi , RMi and RMhi . It follows that they all are conservativeextensions of the corresponding multiplicative systems.With respect to the remaining two systems (RMIi and RMIhi ) things are morecomplicated. We have already noted that if we add to RMIim and RMIhim only theadditive disjunction _ then we still have cut-elimination (and the resulting systemsare conservative over their multiplicative fragments). If, however, we add either ^ or1 then this is not the case anymore. For example: two cuts of 1; p) p and 1; q ) qwith ) 1; 1 yield p; q ) p; q. This sequent obviously does not have a cut free proofeven in RMIhi , and it is not provable in either RMIim or in RMIhim. It is provable,however, in RMm or RMhi . It is not di�cult, in fact, to see that RMIi and RMi areequivalent, and so are RMIhi and RMhi .Without entering into details, we note that the reason for the di�erence here be-tween _ and ^ is that applications of the impure () ^) rule can be done withoutany side formulas, while this is not possible in our systems in applications of the dual(_ )) (since the succedents are never empty). When an internal negation is addedthis di�erence disappears. On the other hand it is proved in [6] that if we limit () ^)so that the presence of at least one side formula is required (i.e., it is not allowed toinfer ) A ^ B from ) A and ) B) then we do have cut elimination (even in thepresence of an internal negation). It is here where the use of the Mingle rules ratherthan Expansion becomes crucial.55 Corresponding Algebraic StructuresIn this section we present the algebraic semantics of the systems above. We start withRM0im. Its algebraic semantics is very abstract, and so not too useful. Still, it servesas the common basis for the much more illuminating semantics that we construct forits extensions later.5It is interesting to note also that conjunction turns out to be problematic in a similar way also in certain importantintermediate logics (See [5]).



708 Two Types of Multiple-Conclusion SystemsDe�nition 5.1 An RM0im-structure is a tuple S = hS;�;?;>;
;!; Di such that:1. hS;�;?;>i is a nontrivial bounded poset.2. 
 is an associative, commutative and idempotent operation on S.3. ! is residuation operation w.r.t. 
:a
 b � c, a � b! c4. D is a cone in S: D � S, anda 2 D; a � b) b 2 D5. a � b, a! b 2 DLemma 5.2 In every RM0im-structure:1. > 2 D; ? 62 D2. a � b) a
 c � b
 c (i.e. 
 is order preserving)3. a 2 D; b 2 D ) a
 b 2 D and a
 b = sup(a; b)4. D is an upper semilattice with a top element (>)5. a 2 D; a � b) a! b = b6. a
 ? = ?
 a = ?7. ?! a = >8. a 2 D ) a!? = ?De�nition 5.3 An RM0im-model of a formula ' in Lim is a pair hS; vi where Sis an RM0im-structure and v is an operations-respecting valuation in S such thatv(') 2 D. An RM0im-model of a theory T is an RM0im-model of each element ofT .The following theorem can easily be proved with the help of the previous lemmaand the use of Lindenbaum Algebras:Theorem 5.4 Soundness and Strong Completeness: T `RM0im ' i� everyRM0im-model of T is an RM0im-model of '.Notes1. It can be shown that every RM0im-structure can be embedded in a lattice whichis also an RM0im-structure. Hence it is possible to make the last completenesstheorem w.r.t. the narrower class of what might be called RM0im-lattices (i.e.RM0im-structures in which hS;�i is a lattice).2. If we assume that D = f>g we get a sound and strongly complete semantics ofintuitionistic logic (in the language Lim). It is easy to see that in this case a 
 bis the meet of a and b, and so hS;�i is a lower semilattice. If we demand italso to actually be a lattice we get another characterization of what is known asHeyting Algebras (it is easy to see that the various conditions would indeed forcethis lattice to be distributive).



5. CORRESPONDING ALGEBRAIC STRUCTURES 709As was noted above, the value of this semantics for RM0im-structures is ratherlimited (although the fact mentioned in note 1 can, e.g., be used to show a proof-theoretical result: that the addition of the additive disjunction with its rules toRM0im is a conservative extension). As promised, we turn now to show that itstwo \classical", multiple-conclusion extensions do have concrete semantics, with a\surprising" value. The structures which are involved are based on D (the set ofdesignated values) in an essential way. We start with RMIim. The structures whichcorrespond to this system have already been introduced and thoroughly investigatedin [4]. Here we only give a description (which is not identical to that in [4] but isobviously equivalent to it) and the relevant results.De�nition 5.5 A proper symmetrical lattice (a proper S-lattice, in short) is a tupleS = hS;�;?;>; Di such that1. hS;�;?;>i is a nontrivial bounded poset.2. D is a subset of S such that:(a) D is an upper semilattice w.r.t. �.(b) a 2 D, a � b) b 2 D (in particular, > 2 D).(c) a 2 D, a � b, a � c) b � c or c � b.63. There is a function �a:a+ from D (the complement of D w.r.t. S) onto D suchthat(a) If a; b 2 D then a � b i� b+ � a+ (in particular, �a:a+ is 1-1).(b) If a 2 D and b 2 D then a � b i� either a+ � b or b � a+ (in particular,a < a+ for all a 2 D).NoteIt is not di�cult to show that proper S-lattices are structures which are constructedas follows: Given an upper semilattice hD;�Di which has a top element and whichsatis�es condition (2)(iii) from the last de�nition, we make a mirror-image hD;�Di ofit and then \glue" D and D together so that a < a+ for each a 2 D (where a+ is theelement from D of which a is the mirror image). For example, if D is the inverse treeof Figure 2, then D is the tree of Figure 3, and by \gluing" them we get the properS-lattice of Figure 4: �a+ c+ b+ d+� � �� ��Figure 26In case D is �nite, condition (iii) together with the fact that > 2 D implies condition (i), and it means that hD;�iis a tree. In the general case conditions (i)-(iii) can be taken as a generalization of the notion of a tree which isslightly weaker than the usual one.



710 Two Types of Multiple-Conclusion Systems�a c b d� � �� ��Figure 3
�a c b d� � �� ��a+ c+ b+ d+� �� ��� �D

D Figure 4It is also not di�cult to see that by using (3)(ii) (from De�nition 5.5) as a de�nitionwe get the minimal poset which extends both hD;�i, hD �Di and such that a < a+for all a 2 D.De�nition 5.6 Let S be a proper S-lattice. De�nejaj = (a a 2 Da+ a 2 DTheorem 5.7 A proper S-lattice is indeed a lattice.Proof. It is straightforward to see that for all a; b 2 Sa _ b = 8><>:b a � ba b � asup(jaj; jbj) otherwise a ^ b = 8><>:a a � bb b � asup(jaj; jbj)� otherwisewhere if a 2 D then a� denotes the unique x 2 D s.t. a = x+ (the assumption thathD;�i is tree-like is crucial here!).



5. CORRESPONDING ALGEBRAIC STRUCTURES 711De�nition 5.8 Let S be a proper S-lattice, a; b 2 S. de�ne:a! b =8><>:sup(jaj; jbj) a � bsup(jaj; jbj)� a 6� ba
 b = 8>>><>>>:min(a; b) jaj = jbja jbj < jajb jaj < jbjsup(jaj; jbj) otherwise :Theorem 5.9 If S is a proper S-lattice then S together with! and 
 is an RM0im-structure.The proof of this theorem is implicit in [4].NoteAs can be expected in structures which correspond to a multiple-conclusion logic, inproper S-lattices there is a very natural way to de�ne a De-Morgan negation and aninternal (multiplicative) disjunction:� a = 8><>:a+ a 2 Da� a 2 Da + b =� (� a
 � b):Before showing a soundness and completeness theorem forRMIim relative to properS-lattices, let us generalize these structures a bit:De�nition 5.10 A symmetrical lattice (S-lattice, in short) is de�ned exactly as aproper S-lattice, except that the demand that �a 2 D:a+ is surjective is relaxed to:(�) If a 2 D is not in the image (under �x:x+) of any x 2 D, then a is a minimalelement of D.>From an intuitive point of view, the de�nition of an S-lattice means that when we\glue" together D and its mirror image we may identify minimal elements of D withthe corresponding elements of its image. If we return, e.g., to Figures 2 and 3, thenby identifying a with a+, b with b+ we get:



712 Two Types of Multiple-Conclusion Systems�c d� � �� ��c+ d+�� ���a = a+ b = b+DD Figure 5Note that it is not necessary to identity all minimal elements of D with the corre-sponding elements of D. Thus in Figure 5 c+ and d+ are elements of D which arenot identi�ed with c and d (respectively).The de�nitions of jaj; a _ b; a ^ b; a ! b; a 
 b and a + b can now be extended toS-lattices without any change. The same applies to the de�nition of � a, provided wede�ne a� to be a in case no b 2 D exists s.t. a = b+ (this can happen, recall, only ifa is a minimal element of D). Theorems 5.7 and 5.9 remain then valid for S-latticesin general.NoteIt seems appropriate to call an element a such that � a 2 D antidesignated. In properS-lattices an element is antidesignated i� it is not designated, but in general a minimalelement of D can sometimes be antidesignated as well. Note that the symmetry inS-lattices is a symmetry between D and the set of antidesignated elements.We now turn to the soundness and completeness results.De�nition 5.11 A (proper) RMIim-model of a sentence ' is a pair hS; vi whereS is a (proper) S-lattice and v is an operations-respecting valuation in it such thatv(') 2 D. A (proper) RMIim-model of a theory T is an RMIim-model of eachelement of T .Theorem 5.12 Strong soundness and completeness of RMIim: T `RMIim 'i� every RMIim-model of T is an RMIim-model of '.Proof. An analogous theorem was proved in [4] for RMIm, the full multiplicativefragment of RMI (including negation and +).7 The soundness part of the presenttheorem is an immediate corollary. By the cut-elimination theorem for RMIm, so isalso the completeness part, since it implies that if a sequent of the form � ) A isprovable in RMIm, and �; A are in Lim then �) A is provable in RMIim.7The propositional constant ? has not been considered there, but it is obvious that its addition causes no problem.Note also that RMIm was called in [4] RMI�!, following the names in [1].



5. CORRESPONDING ALGEBRAIC STRUCTURES 713NoteIt seems di�cult to prove the soundness part directly, since unless � is a singleton,no translation of �) � seems to be available in Lim.Theorem 5.13 Strong soundness and completeness of RMIim, version II:T `RMIim ' i� every proper RMIim-model of T is an RMIim-model of '.Proof. Soundness follows immediately from the previous theorem. For completeness,assume T 6`RMIim '. We construct a proper RMIim-model of T which is not a modelof '. By the previous theorem there is an RMIim-model (S; v) of T which is not amodel of '. Suppose S = hS;�;?;>; Di. Let S� = hS�;��;?;>; Di be the uniqueproper S-lattice which is based on D. It is easy to see that the di�erence between S�and S is that S� is obtained from S by splitting each element a ofD which is not in theimage of �x:x+ into two elements, a and a+, so that a is now a new maximal elementof D, while a+ replaces a in D (compare how the proper S-lattice of Figure 4 can beobtained from the improper S-lattice of Figure 5)8. De�ne now an assignment v� onS� so that v�(p) = v(p), unless v(p) has been split, in which case v�(p) = (v(p))+ . Itis easy to see that for every Av�(A) = (�v(A)�+ v(A) has been splitv(A) otherwise :It follows that if v(A) is not designated in S then v�(A) is not designated in S� either(since only designated elements might have been split), while if v(A) is designated inS then v�(A) is designated in S� (since a+ is designated). In particular hS�; v�i is aproper model of T which is not a model of '.NoteThe last theorem is not valid when � is present, since every proper model of f� A;Agis trivially a proper model of B, but � A;A 6`RMIim B. The reason is that whilea ! a = a 
 a = a in case a 2 D, this is never true for � a in proper models(our theorem and proof remain valid, therefore, when we add & and _, since againa _ a = a&a = a for all a. It remains valid, in fact, even if we add +!).The above two theorems are strong completeness theorems for RMIim. This meansthat they characterize the consequence relation which is associated with this logic. Ifwe are interested only in weak completeness (i.e. characterizing the set of provableformulas) then just one, extremely simple S-lattice will do. This is the (improper!)denumerable S-lattice A!, in which S = f>;?; I1; I2; I3; : : :g, a � b i� either a = ?or b = > or a = b, D = f?g, and ?+ = >.Theorem 5.14 Weak completeness of RMIim: `RMIim ' i� ' is valid in A!.Proof. The corresponding result for the system RMIm has been proved, using twodi�erent methods, in [2] and [4]. Its adaption to the im-language is done exactly asin the proof of 5.12.8Exact de�nitions of this \splitting" can be found in [4].



714 Two Types of Multiple-Conclusion SystemsNoteTheorem 5.14 provides a decision procedure forRMIim and a powerful tool for provingproperties of it (for example the fact that the rule A
BA is admissible in it is a trivialcorollary of 5.14).Before turning to RM0him a few words on RMim are in order. It is not di�cult toshow that the corresponding semantics is that of linear S-lattices, i.e., S-lattices inwhich � is a total order. Linear S-lattices are exactly what is usually called SugiharaMatrices ([1],[13]). Again we have the option to limit ourselves to proper linear S-lattices (which are Sugihara matrices without 0). For weak completeness just the3-valued S-lattice su�ces (This 3-valued structure is usually known as Soboci�nski 3-valued logic, and was �rst introduced in [17]. In [2] and [8] it is called A1). As in thecase of RMIim, these results all follow from corresponding known results concerningRMm of Soboci�nski ([17]), Meyer ([1]), Dunn ([12]), and the author of this paper.We turn now to the semantics of RM0him. Like RMIim, the corresponding algebraicstructures are based on D. The construction is, however, much simpler in this case.De�nition 5.15 An im-F -structure (or just F -structure, in short9) is an RM0im-structure S in which S = D [ f?g.F -structures can rather easily be constructed and characterized. The followingtheorem means, in fact, that the complicated notion of an F -structure is equivalentto the rather simple one of a bounded upper semilattice.Theorem 5.16 In every F -structure S the carrier S is a bounded upper semilatticewith respect to �. Conversely, let hS;�;?;>i be a bounded upper semilattice s.t.? 6= >. Then there is a unique way to turn it into an F -structure.Proof. That in every F -structure S, hS;�;?;>i is a bounded upper semilatticefollows from Lemma 5.2(4). For the converse, let S = hS;�;?;>i be a boundedupper semilattice such that ? 6= >. The de�nition of an F -structure and Lemma 5.2together imply that the only possible way to turn it into an F -structure is to de�ne:D = S � f?ga 
 b = 8><>:? a = ?_ b = ?sup(a; b) otherwise a! b = 8><>:? a 6� b> a = ?b otherwiseIt remains to show that with this de�nition hS;�;?;>; D;
;!i is indeed an F -structure. This is straightforward.De�nition 5.17 An F -model of a sentence A is a pair hS; vi where S is an F -structure and v is a valuation in S s.t. v(A) 6= ? (i.e., v(A) 2 D). An F -modelof a sequent s is an F -model of �s. An F -model of a hypersequent is an F -model ofat least one of its components.Theorem 5.18 Strong soundness and completeness: T `RM0him ' i� every F -model of T is also an F -model of '.9Note that the name \F -structures" has been used in [9] for a more general type of structures, in which 
 is notnecessarily idempotent.



5. CORRESPONDING ALGEBRAIC STRUCTURES 715Proof. For soundness it su�ces to prove that if hS; vi is an F -model of T and thehypersequent G follows in RM0him from f) AjA 2 T g then hS; vi is an F -model ofG. This is obvious, except perhaps the validity of CS. So suppose Gj�1;�2 ) AjHis true in hS; vi. If one of the components of G or of H is true in hS; vi we are done.Otherwise �1;�2 ) A is true. If all the sentences in �2 are true this entails that�1 ) A is true. If not then v(C) =? for some C in �2, and so v(�2;�) B) = > forall �; B, by Lemma 5.2(7).For the converse, suppose T 6`RM0him '. We construct a model hS; vi of T in which' is not true. For this extend T to a maximal theory T � such that T � 6`RM0him '.Obviously, A 62 T � i� there exist �1; : : : ;�k � T � such that`RM0him A;�1 ) 'j � � � jA;�j ) 'j�j+1 ) 'j � � � j�k ) ' :This easily entails, using cuts, that(i) If T � `RM0him �1 ) B1j � � � j�k ) Bk and �1; : : : ;�k � T � then Bi 2 T � forsome 1 � i � k.Since RM0im is contained in RM0him, (i) entails that(ii) If T � `RM0im C then C 2 T �.Since `RM0him) Aj ) A! B (because fromA) A one can infer this hypersequentby CS and ()!)), another corollary of (i) is:(iii) For every A;B, either A 2 T � or A! B 2 T �.De�ne now the Lindenbaum algebra S of T � and the canonical valuation v in it inthe usual way. Using (ii) it is easy to see that S is an RM0im-structure and v is amodel of T in it which is not a model of '. It remains to show that S is actually anF -structure. This, however, easily follows from (iii).ExampleIn the proof of 4.1 we used the fact that ((B ! B) ! (A ! A)) ! (((A ! B) !A)! A) is not provable in RM0him. This can be shown now using the counter-modelhS; vi, where S = f?; 1; 2;>g, ? < 1 < 2 < > and v(A) = 2; v(B) = 1.We turn now to the semantics of the last two systems, RMIhim and RMhim. Westart with RMIhim. Since it is an extension of both RM0him and RMIim, it is soundw.r.t. the semantics of both. Now the simplest in�nite structure which is both anS-lattice and an F -structure is A! (see theorem 5.14. In fact A! is the simplestin�nite S-lattice as well as the simplest in�nite F -structure!). It turns out that it isindeed a strongly characteristic matrix for RMIhim.Theorem 5.19 Soundness and Strong Completeness for RMIhim: T `RMIhim 'i� every model of T in A! is also a model of '.Proof. The corresponding result for the full multiplicative language was proved intheorem 8.10 of [8]. Again its adaption to the im-language is done exactly as in theproof of 5.12. (it is not too di�cult also to prove it directly along the lines of theproof of 5.18).



716 Two Types of Multiple-Conclusion SystemsExampleIn the proof of 4.1 we used the fact that ((A ! (B ! B)) ! A) ! A is notprovable in RMIhim. This is immediate from the last theorem, since by de�ningv(A) = I1; v(B) = I2 we get a counter-model of this formula in A!.Theorems 5.19 should be compared with theorem 5.14. From the two theoremsfollow that RMIhim is a conservative extension of RMIim (with respect to provabilityof sequents), and that the di�erence between the sequential calculus and the associatedhypersequential one corresponds (in this case, at least) to the di�erence betweenstrong completeness and week completeness.Finally, RMhim is an extension of both RM0him and RMim, and so it is soundw.r.t. the semantics of both. Now the only structures which are both linear S-latticesand also F -structures are the two-valued Boolean Algebra and A1, the three-valuedsubstructure of A! (see discussion after the proof of 5.14). This observation naturallyleads to the following theorem, which again follows from a corresponding result in [8]for the full multiplicative language:Theorem 5.20 Soundness and Strong Completeness for RMhim: T `RMhim 'i� every model of T in A1 is also a model of '.Again the strong completeness of RMhim relative to A1 should be compared withthe weak completeness of RMim relative to this matrix.The algebraic semantics can help also to shed a new light on the di�erence thatwe have seen in the previous section between _ on the one hand and ^ and 1 on theother.Let us start with _. From an algebraic point of view its rules clearly representthe operation of a join. To have an appropriate semantics for it we need thereforeto use upper semilattices. But with the exception of RM0im, the structures whichcorrespond to our various systems are indeed upper semilattices. As for RM0im,we noted already above that we could have demanded the corresponding structuresto be lattices without losing completeness. Hence _ has an obvious interpretationin the structures we consider, relative to which its rules are sound. This fact aloneimmediately entails that its addition is conservative (w.r.t. all of our systems). It isnot di�cult to see also that the hypersequential systems with _ are in fact completerelative to this semantics (the fact that the two consequence relations are identicalthere is very important for the proof). As for the sequential ones| there is certainlyno completeness if we use `i (since A _B ) C does not follow according to it fromA) C and B ) C), and I dont know whether the systems are complete with `e.Things are more complicated if we add conjunction. Its rules partially correspondto the operation of a meet. Hence we should demand our structures to be lowersemilattices in order to give it an appropriate interpretation. This is not enough,though. In order for instances of () ^) with no side formulas to be sound, the setD of designated elements should be closed under ^. The only type of S-lattices inwhich this is the case are the linear ones (i.e.: Sugihara matrices). This explains whyRMIim and RMIhim collapse to RMim and RMhim (respectively) if we add ^ to them.The structures which corresponds to the other 4 systems either satisfy already thetwo demands or can be embedded in structures which do so. Hence the addition of ^to them is conservative. As for completeness| it is not di�cult to show that we haveit in the hypersequential cases if we add ^ and its rules (or both ^ and _). On the



5. CORRESPONDING ALGEBRAIC STRUCTURES 717other hand the distributive laws are valid in Sugihara matrices but cannot be provedin RMi. Hence we dont even have weak completeness in the case of RMIi = RMi(To get it we need another hypersequential system. See [3]). It is not clear whetherwe have weak completeness in the case of RM0i.Finally the rules for 1 mean that the set D should have a least element. Obviously,the situation w.r.t. this demand is similar to that concerning ^.References[1] Anderson A.R. and Belnap N.D., Entailment vol. 1, Princeton University Press, Princeton, N.J., 1975.[2] Avron A., Relevant Entailment - Semantics and Formal Systems, Journal of Symbolic Logic,vol. 49 (1984), pp. 334-342.[3] Avron A., A Constructive Analysis of RM, Journal of symbolic Logic 52 (1987), pp. 939-951.[4] Avron A., Relevance and Paraconsistency - A New Approach, Part I: Journal of Symbolic Logic,vol. 55 (1990), pp. 707-732. Part II (the Formal systems): Notre Dame Journal of Formal Logic,vol 31 (1990), pp. 169-202.[5] Avron A., Hypersequents, Logical Consequence and Intermediate Logics for Concurrency, An-nals of Mathematics and Arti�cial Intelligence 4 (1991), pp. 225-248.[6] Avron A., Relevance and Paraconsistency - A New Approach. Part 3: Gentzen-type Systems,Notre-Dame Journal of Formal Logic, vol 32 (1991), pp. 147-160.[7] Avron A., The Method of Hypersequents in Proof Theory of Propositional Non-Classical Logics,In: Logic: Foundations to Applications, Ed. by W. Hodges, M. Hyland, C. Steinhorn andJ Truss, Oxford Science Publications (1996), pp. 1-32.[8] Avron A., Multiplicative Conjunction as an Extensional Conjunction, Logic Journal of theIGPL, vol. 5 (1997), pp. 181-208.[9] Avron A.,Multiplicative Conjunction and the Algebraic Meaning of Contraction and Weakening,forthcoming in the Journal of Symbolic Logic.[10] Do�sen K. A Historical Introduction to Substructural Logics, in: Substructural Logics, Ed. bySchroeder-Heister P. and Do�sen K, Oxford University Press, 1993, pp. 1-30.[11] Dummett M., A Propositional Calculus with a Denumerable matrix, Journal of Symbolic Logic,vol 24 (1959), pp. 96-107.[12] Dunn J.M. Algebraic completeness results for R-mingle and its extensions, Journal of SymbolicLogic, vol. 35 (1970), pp. 1-13.[13] Dunn J.M. Relevant logic and entailment, in: Handbook of Philosophical Logic, Vol III,ed. by D. Gabbay and F. Guenthner, Reidel: Dordrecht, Holland; Boston: U.S.A. (1986).[14] Gentzen G. Investigations into logical deduction, in: The collected work of GerhardGentzen, edited by M.E. Szabo, North-Holland, Amsterdam, (1969).[15] Girard J.Y., Linear Logic, Theoretical Computer Science, vol. 50 (1987), pp. 1-101.[16] Rescher N., Many-valued Logics, McGraw-Hill, New-York, 1969.[17] Soboci�nski B. Axiomatization of partial system of three-valued calculus of propositions, Thejournal of computing systems, vol. 1 (1952), pp. 23-55.[18] Tamura S., The Implicational Fragment of R-mingle, Proceedings of the Japan Academy, vol.47 (1971), pp. 71-75.[19] Troelstra A.S., Lectures on Linear Logic, CSLI Lecture Notes No. 29, Center for the Studyof Language and Information, Stanford University, 1992.Received March 10, 1998


